c7a5620ccc | ||
---|---|---|
.. | ||
belle_multiturn | ||
hh_rlhf_en | ||
mllm_demo_data | ||
ultra_chat | ||
README.md | ||
README_zh.md | ||
alpaca_en_demo.json | ||
alpaca_zh_demo.json | ||
c4_demo.json | ||
dataset_info.json | ||
dpo_en_demo.json | ||
dpo_zh_demo.json | ||
glaive_toolcall_en_demo.json | ||
glaive_toolcall_zh_demo.json | ||
identity.json | ||
kto_en_demo.json | ||
mllm_demo.json | ||
wiki_demo.txt |
README.md
The dataset_info.json contains all available datasets. If you are using a custom dataset, please make sure to add a dataset description in dataset_info.json
and specify dataset: dataset_name
before training to use it.
Currently we support datasets in alpaca and sharegpt format.
"dataset_name": {
"hf_hub_url": "the name of the dataset repository on the Hugging Face hub. (if specified, ignore script_url and file_name)",
"ms_hub_url": "the name of the dataset repository on the Model Scope hub. (if specified, ignore script_url and file_name)",
"script_url": "the name of the directory containing a dataset loading script. (if specified, ignore file_name)",
"file_name": "the name of the dataset folder or dataset file in this directory. (required if above are not specified)",
"formatting": "the format of the dataset. (optional, default: alpaca, can be chosen from {alpaca, sharegpt})",
"ranking": "whether the dataset is a preference dataset or not. (default: False)",
"subset": "the name of the subset. (optional, default: None)",
"folder": "the name of the folder of the dataset repository on the Hugging Face hub. (optional, default: None)",
"num_samples": "the number of samples in the dataset used for training. (optional, default: None)",
"columns (optional)": {
"prompt": "the column name in the dataset containing the prompts. (default: instruction)",
"query": "the column name in the dataset containing the queries. (default: input)",
"response": "the column name in the dataset containing the responses. (default: output)",
"history": "the column name in the dataset containing the histories. (default: None)",
"messages": "the column name in the dataset containing the messages. (default: conversations)",
"system": "the column name in the dataset containing the system prompts. (default: None)",
"tools": "the column name in the dataset containing the tool description. (default: None)",
"images": "the column name in the dataset containing the image inputs. (default: None)",
"chosen": "the column name in the dataset containing the chosen answers. (default: None)",
"rejected": "the column name in the dataset containing the rejected answers. (default: None)",
"kto_tag": "the column name in the dataset containing the kto tags. (default: None)"
},
"tags (optional, used for the sharegpt format)": {
"role_tag": "the key in the message represents the identity. (default: from)",
"content_tag": "the key in the message represents the content. (default: value)",
"user_tag": "the value of the role_tag represents the user. (default: human)",
"assistant_tag": "the value of the role_tag represents the assistant. (default: gpt)",
"observation_tag": "the value of the role_tag represents the tool results. (default: observation)",
"function_tag": "the value of the role_tag represents the function call. (default: function_call)",
"system_tag": "the value of the role_tag represents the system prompt. (default: system, can override system column)"
}
}
Alpaca Format
Supervised Fine-Tuning Dataset
In supervised fine-tuning, the instruction
column will be concatenated with the input
column and used as the human prompt, then the human prompt would be instruction\ninput
. The output
column represents the model response.
The system
column will be used as the system prompt if specified.
The history
column is a list consisting of string tuples representing prompt-response pairs in the history messages. Note that the responses in the history will also be learned by the model in supervised fine-tuning.
[
{
"instruction": "human instruction (required)",
"input": "human input (optional)",
"output": "model response (required)",
"system": "system prompt (optional)",
"history": [
["human instruction in the first round (optional)", "model response in the first round (optional)"],
["human instruction in the second round (optional)", "model response in the second round (optional)"]
]
}
]
Regarding the above dataset, the dataset description in dataset_info.json
should be:
"dataset_name": {
"file_name": "data.json",
"columns": {
"prompt": "instruction",
"query": "input",
"response": "output",
"system": "system",
"history": "history"
}
}
Pre-training Dataset
In pre-training, only the text
column will be used for model learning.
[
{"text": "document"},
{"text": "document"}
]
Regarding the above dataset, the dataset description in dataset_info.json
should be:
"dataset_name": {
"file_name": "data.json",
"columns": {
"prompt": "text"
}
}
Preference Dataset
Preference datasets are used for reward modeling, DPO training and ORPO training.
It requires a better response in chosen
column and a worse response in rejected
column.
[
{
"instruction": "human instruction (required)",
"input": "human input (optional)",
"chosen": "chosen answer (required)",
"rejected": "rejected answer (required)"
}
]
Regarding the above dataset, the dataset description in dataset_info.json
should be:
"dataset_name": {
"file_name": "data.json",
"ranking": true,
"columns": {
"prompt": "instruction",
"query": "input",
"chosen": "chosen",
"rejected": "rejected"
}
}
KTO Dataset
KTO datasets require a extra kto_tag
column containing the boolean human feedback.
[
{
"instruction": "human instruction (required)",
"input": "human input (optional)",
"output": "model response (required)",
"kto_tag": "human feedback [true/false] (required)"
}
]
Regarding the above dataset, the dataset description in dataset_info.json
should be:
"dataset_name": {
"file_name": "data.json",
"columns": {
"prompt": "instruction",
"query": "input",
"response": "output",
"kto_tag": "kto_tag"
}
}
Multimodal Dataset
Multimodal datasets require a images
column containing the paths to the input images. Currently we only support one image.
[
{
"instruction": "human instruction (required)",
"input": "human input (optional)",
"output": "model response (required)",
"images": [
"image path (required)"
]
}
]
Regarding the above dataset, the dataset description in dataset_info.json
should be:
"dataset_name": {
"file_name": "data.json",
"columns": {
"prompt": "instruction",
"query": "input",
"response": "output",
"images": "images"
}
}
Sharegpt Format
Supervised Fine-Tuning Dataset
Compared to the alpaca format, the sharegpt format allows the datasets have more roles, such as human, gpt, observation and function. They are presented in a list of objects in the conversations
column.
Note that the human and observation should appear in odd positions, while gpt and function should appear in even positions.
[
{
"conversations": [
{
"from": "human",
"value": "human instruction"
},
{
"from": "function_call",
"value": "tool arguments"
},
{
"from": "observation",
"value": "tool result"
},
{
"from": "gpt",
"value": "model response"
}
],
"system": "system prompt (optional)",
"tools": "tool description (optional)"
}
]
Regarding the above dataset, the dataset description in dataset_info.json
should be:
"dataset_name": {
"file_name": "data.json",
"formatting": "sharegpt",
"columns": {
"messages": "conversations",
"system": "system",
"tools": "tools"
}
}
Preference Dataset
Preference datasets in sharegpt format also require a better message in chosen
column and a worse message in rejected
column.
[
{
"conversations": [
{
"from": "human",
"value": "human instruction"
},
{
"from": "gpt",
"value": "model response"
},
{
"from": "human",
"value": "human instruction"
}
],
"chosen": {
"from": "gpt",
"value": "chosen answer (required)"
},
"rejected": {
"from": "gpt",
"value": "rejected answer (required)"
}
}
]
Regarding the above dataset, the dataset description in dataset_info.json
should be:
"dataset_name": {
"file_name": "data.json",
"formatting": "sharegpt",
"ranking": true,
"columns": {
"messages": "conversations",
"chosen": "chosen",
"rejected": "rejected"
}
}
OpenAI Format
The openai format is simply a special case of the sharegpt format, where the first message may be a system prompt.
[
{
"messages": [
{
"role": "system",
"content": "system prompt (optional)"
},
{
"role": "user",
"content": "human instruction"
},
{
"role": "assistant",
"content": "model response"
}
]
}
]
Regarding the above dataset, the dataset description in dataset_info.json
should be:
"dataset_name": {
"file_name": "data.json",
"formatting": "sharegpt",
"columns": {
"messages": "messages"
},
"tags": {
"role_tag": "role",
"content_tag": "content",
"user_tag": "user",
"assistant_tag": "assistant",
"system_tag": "system"
}
}
The KTO datasets and multimodal datasets in sharegpt format are similar to the alpaca format.
Pre-training datasets are incompatible with the sharegpt format.