2023-02-12 08:23:49 +08:00
|
|
|
|
import os, onnx, unittest
|
|
|
|
|
from onnx import TensorProto
|
2023-02-14 11:27:57 +08:00
|
|
|
|
from onnx.helper import (
|
|
|
|
|
make_model,
|
|
|
|
|
make_node,
|
|
|
|
|
make_tensor,
|
|
|
|
|
make_graph,
|
|
|
|
|
make_tensor_value_info,
|
|
|
|
|
)
|
2023-02-12 08:23:49 +08:00
|
|
|
|
from onnx.checker import check_model
|
|
|
|
|
from pyinfinitensor.onnx import from_onnx, parse_onnx, backend, runtime
|
|
|
|
|
|
|
|
|
|
|
2023-02-13 13:50:07 +08:00
|
|
|
|
def make_and_import_model(graph: onnx.GraphProto):
|
|
|
|
|
model = make_model(graph)
|
|
|
|
|
check_model(model)
|
|
|
|
|
from_onnx(model)
|
|
|
|
|
|
|
|
|
|
|
2023-02-12 08:23:49 +08:00
|
|
|
|
class TestStringMethods(unittest.TestCase):
|
|
|
|
|
def test_load(self):
|
|
|
|
|
model_file = next(
|
|
|
|
|
(name for name in os.listdir() if name.endswith(".onnx")), None
|
|
|
|
|
)
|
|
|
|
|
if model_file != None:
|
|
|
|
|
print(
|
|
|
|
|
"model: {file}({size:.2f} MiB)".format(
|
|
|
|
|
file=model_file, size=os.path.getsize(model_file) / 1024 / 1024
|
|
|
|
|
)
|
|
|
|
|
)
|
|
|
|
|
parse_onnx(onnx.load(model_file))
|
|
|
|
|
|
2023-02-13 11:25:54 +08:00
|
|
|
|
def test_tensor(self):
|
|
|
|
|
x = make_tensor_value_info("x", TensorProto.FLOAT, [1, 2, 3])
|
2023-02-13 13:50:07 +08:00
|
|
|
|
make_and_import_model(make_graph([], "tensor", [x], [x]))
|
2023-02-13 11:25:54 +08:00
|
|
|
|
|
|
|
|
|
def test_matmul(self):
|
|
|
|
|
x = make_tensor_value_info("x", TensorProto.FLOAT, [1, 2, 3])
|
|
|
|
|
a = make_tensor_value_info("a", TensorProto.FLOAT, [1, 3, 4])
|
|
|
|
|
xa = make_tensor_value_info("b", TensorProto.FLOAT, [1, 2, 4])
|
|
|
|
|
matmul = make_node("MatMul", ["x", "a"], ["xa"], name="matmul")
|
2023-02-13 13:50:07 +08:00
|
|
|
|
make_and_import_model(make_graph([matmul], "matmul", [x, a], [xa]))
|
2023-02-13 11:25:54 +08:00
|
|
|
|
|
2023-02-14 08:54:58 +08:00
|
|
|
|
def test_batch_norm(self):
|
|
|
|
|
x = make_tensor_value_info("x", TensorProto.UINT32, [1, 3, 2, 2])
|
|
|
|
|
scale = make_tensor_value_info("scale", TensorProto.FLOAT, [1, 3, 1, 1])
|
|
|
|
|
b = make_tensor_value_info("b", TensorProto.FLOAT, [1, 3, 1, 1])
|
|
|
|
|
mean = make_tensor_value_info("mean", TensorProto.FLOAT, [1, 3, 1, 1])
|
|
|
|
|
var = make_tensor_value_info("var", TensorProto.FLOAT, [1, 3, 1, 1])
|
|
|
|
|
y = make_tensor_value_info("y", TensorProto.UINT32, [1, 3, 2, 2])
|
|
|
|
|
batch_norm = make_node(
|
|
|
|
|
"BatchNormalization",
|
|
|
|
|
["x", "scale", "b", "mean", "var"],
|
|
|
|
|
["y"],
|
|
|
|
|
name="batchNormalization",
|
|
|
|
|
)
|
|
|
|
|
make_and_import_model(
|
2023-02-14 16:26:47 +08:00
|
|
|
|
make_graph([batch_norm], "batchNorm", [x, scale, b, mean, var], [y])
|
2023-02-14 08:54:58 +08:00
|
|
|
|
)
|
|
|
|
|
|
2023-02-14 16:26:47 +08:00
|
|
|
|
def test_max_pool(self):
|
|
|
|
|
x = make_tensor_value_info("x", TensorProto.UINT32, [1, 64, 162, 162])
|
|
|
|
|
y = make_tensor_value_info("y", TensorProto.UINT32, [1, 64, 80, 80])
|
|
|
|
|
pool = make_node(
|
|
|
|
|
"MaxPool",
|
|
|
|
|
["x"],
|
|
|
|
|
["y"],
|
|
|
|
|
kernel_shape=[3, 3],
|
|
|
|
|
dilations=[1, 1],
|
|
|
|
|
pads=[0, 0],
|
|
|
|
|
strides=[2, 2],
|
|
|
|
|
name="maxPool",
|
|
|
|
|
)
|
|
|
|
|
make_and_import_model(make_graph([pool], "maxPool", [x], [y]))
|
|
|
|
|
|
|
|
|
|
def test_avg_pool(self):
|
|
|
|
|
x = make_tensor_value_info("x", TensorProto.UINT32, [1, 64, 162, 162])
|
|
|
|
|
y = make_tensor_value_info("y", TensorProto.UINT32, [1, 64, 80, 80])
|
|
|
|
|
pool = make_node(
|
|
|
|
|
"AveragePool",
|
|
|
|
|
["x"],
|
|
|
|
|
["y"],
|
|
|
|
|
kernel_shape=[3, 3],
|
|
|
|
|
pads=[0, 0],
|
|
|
|
|
strides=[2, 2],
|
|
|
|
|
name="avgPool",
|
|
|
|
|
)
|
|
|
|
|
make_and_import_model(make_graph([pool], "avgPool", [x], [y]))
|
|
|
|
|
|
2023-02-13 11:25:54 +08:00
|
|
|
|
def test_add(self):
|
|
|
|
|
a = make_tensor_value_info("a", TensorProto.FLOAT, [1, 3, 5, 7])
|
|
|
|
|
b = make_tensor_value_info("b", TensorProto.FLOAT, [1, 3, 5, 7])
|
|
|
|
|
c = make_tensor_value_info("c", TensorProto.FLOAT, [1, 3, 5, 7])
|
|
|
|
|
add = make_node("Add", ["a", "b"], ["c"], name="add")
|
2023-02-13 13:50:07 +08:00
|
|
|
|
make_and_import_model(make_graph([add], "add", [a, b], [c]))
|
2023-02-13 11:25:54 +08:00
|
|
|
|
|
|
|
|
|
def test_sub(self):
|
|
|
|
|
a = make_tensor_value_info("a", TensorProto.FLOAT, [1, 3, 5, 7])
|
|
|
|
|
b = make_tensor_value_info("b", TensorProto.FLOAT, [1, 3, 5, 7])
|
|
|
|
|
c = make_tensor_value_info("c", TensorProto.FLOAT, [1, 3, 5, 7])
|
|
|
|
|
sub = make_node("Sub", ["a", "b"], ["c"], name="sub")
|
2023-02-13 13:50:07 +08:00
|
|
|
|
make_and_import_model(make_graph([sub], "sub", [a, b], [c]))
|
2023-02-13 11:25:54 +08:00
|
|
|
|
|
|
|
|
|
def test_mul(self):
|
|
|
|
|
a = make_tensor_value_info("a", TensorProto.FLOAT, [1, 3, 5, 7])
|
|
|
|
|
b = make_tensor_value_info("b", TensorProto.FLOAT, [1, 3, 5, 7])
|
|
|
|
|
c = make_tensor_value_info("c", TensorProto.FLOAT, [1, 3, 5, 7])
|
|
|
|
|
mul = make_node("Mul", ["a", "b"], ["c"], name="mul")
|
2023-02-13 13:50:07 +08:00
|
|
|
|
make_and_import_model(make_graph([mul], "mul", [a, b], [c]))
|
2023-02-13 11:25:54 +08:00
|
|
|
|
|
|
|
|
|
def test_div(self):
|
|
|
|
|
a = make_tensor_value_info("a", TensorProto.FLOAT, [1, 3, 5, 7])
|
|
|
|
|
b = make_tensor_value_info("b", TensorProto.FLOAT, [1, 3, 5, 7])
|
|
|
|
|
c = make_tensor_value_info("c", TensorProto.FLOAT, [1, 3, 5, 7])
|
|
|
|
|
div = make_node("Div", ["a", "b"], ["c"], name="div")
|
2023-02-13 13:50:07 +08:00
|
|
|
|
make_and_import_model(make_graph([div], "div", [a, b], [c]))
|
2023-02-13 11:25:54 +08:00
|
|
|
|
|
|
|
|
|
def test_pow(self):
|
|
|
|
|
a = make_tensor_value_info("a", TensorProto.FLOAT, [1, 3, 5, 7])
|
|
|
|
|
b = make_tensor_value_info("b", TensorProto.FLOAT, [1, 3, 5, 7])
|
|
|
|
|
c = make_tensor_value_info("c", TensorProto.FLOAT, [1, 3, 5, 7])
|
|
|
|
|
pow = make_node("Pow", ["a", "b"], ["c"], name="pow")
|
2023-02-13 13:50:07 +08:00
|
|
|
|
make_and_import_model(make_graph([pow], "pow", [a, b], [c]))
|
2023-02-13 11:25:54 +08:00
|
|
|
|
|
2023-02-13 11:54:54 +08:00
|
|
|
|
def test_relu(self):
|
|
|
|
|
x = make_tensor_value_info("x", TensorProto.FLOAT, [1, 3, 5, 7])
|
|
|
|
|
y = make_tensor_value_info("y", TensorProto.FLOAT, [1, 3, 5, 7])
|
|
|
|
|
relu = make_node("Relu", ["x"], ["y"], name="relu")
|
2023-02-13 13:50:07 +08:00
|
|
|
|
make_and_import_model(make_graph([relu], "relu", [x], [y]))
|
2023-02-13 11:54:54 +08:00
|
|
|
|
|
|
|
|
|
def test_sigmoid(self):
|
|
|
|
|
x = make_tensor_value_info("x", TensorProto.FLOAT, [1, 3, 5, 7])
|
|
|
|
|
y = make_tensor_value_info("y", TensorProto.FLOAT, [1, 3, 5, 7])
|
|
|
|
|
sigmoid = make_node("Sigmoid", ["x"], ["y"], name="sigmoid")
|
2023-02-13 13:50:07 +08:00
|
|
|
|
make_and_import_model(make_graph([sigmoid], "sigmoid", [x], [y]))
|
2023-02-13 11:54:54 +08:00
|
|
|
|
|
|
|
|
|
def test_tanh(self):
|
|
|
|
|
x = make_tensor_value_info("x", TensorProto.FLOAT, [1, 3, 5, 7])
|
|
|
|
|
y = make_tensor_value_info("y", TensorProto.FLOAT, [1, 3, 5, 7])
|
|
|
|
|
tanh = make_node("Tanh", ["x"], ["y"], name="tanh")
|
2023-02-13 13:50:07 +08:00
|
|
|
|
make_and_import_model(make_graph([tanh], "tanh", [x], [y]))
|
2023-02-13 11:54:54 +08:00
|
|
|
|
|
|
|
|
|
def test_softmax(self):
|
|
|
|
|
x = make_tensor_value_info("x", TensorProto.FLOAT, [1, 3, 5, 7])
|
|
|
|
|
y = make_tensor_value_info("y", TensorProto.FLOAT, [1, 3, 5, 7])
|
|
|
|
|
softmax = make_node("Softmax", ["x"], ["y"], name="softmax")
|
2023-02-13 13:50:07 +08:00
|
|
|
|
make_and_import_model(make_graph([softmax], "softmax", [x], [y]))
|
2023-02-13 11:54:54 +08:00
|
|
|
|
|
|
|
|
|
def test_abs(self):
|
|
|
|
|
x = make_tensor_value_info("x", TensorProto.FLOAT, [1, 3, 5, 7])
|
|
|
|
|
y = make_tensor_value_info("y", TensorProto.FLOAT, [1, 3, 5, 7])
|
|
|
|
|
abs = make_node("Abs", ["x"], ["y"], name="abs")
|
2023-02-13 13:50:07 +08:00
|
|
|
|
make_and_import_model(make_graph([abs], "abs", [x], [y]))
|
|
|
|
|
|
|
|
|
|
def test_identity(self):
|
|
|
|
|
x = make_tensor_value_info("x", TensorProto.FLOAT, [1, 3, 5, 7])
|
|
|
|
|
y = make_tensor_value_info("y", TensorProto.FLOAT, [1, 3, 5, 7])
|
|
|
|
|
identity = make_node("Identity", ["x"], ["y"], name="identity")
|
|
|
|
|
make_and_import_model(make_graph([identity], "identity", [x], [y]))
|
|
|
|
|
|
|
|
|
|
def test_flatten(self):
|
|
|
|
|
x = make_tensor_value_info("x", TensorProto.FLOAT, [1, 3, 5, 7])
|
|
|
|
|
y = make_tensor_value_info("y", TensorProto.FLOAT, [1 * 3 * 5 * 7])
|
|
|
|
|
flatten = make_node("Flatten", ["x"], ["y"], name="flatten")
|
|
|
|
|
make_and_import_model(make_graph([flatten], "flatten", [x], [y]))
|
2023-02-13 11:54:54 +08:00
|
|
|
|
|
2023-02-14 10:14:55 +08:00
|
|
|
|
def test_reshape(self):
|
2023-02-14 13:42:35 +08:00
|
|
|
|
data = make_tensor_value_info("data", TensorProto.FLOAT, [2, 3, 4, 5])
|
2023-02-14 11:27:57 +08:00
|
|
|
|
# shape 对于后端来说并不是一个张量,然而转换中可能没有办法分辨
|
|
|
|
|
# 不知道怎么把 ValueInfoProto 转换成 TensorProto
|
2023-02-14 13:42:35 +08:00
|
|
|
|
shape = make_tensor_value_info("shape", TensorProto.INT64, [3])
|
|
|
|
|
shape_data = make_tensor("shape", TensorProto.INT64, [3], [5, 3, 8])
|
2023-02-14 11:27:57 +08:00
|
|
|
|
reshaped = make_tensor_value_info(
|
|
|
|
|
"reshaped", TensorProto.FLOAT, shape_data.int64_data
|
|
|
|
|
)
|
2023-02-14 10:14:55 +08:00
|
|
|
|
reshape = make_node("Reshape", ["data", "shape"], ["reshaped"], name="reshape")
|
2023-02-14 11:27:57 +08:00
|
|
|
|
# 可以构造一个 shape 只出现在 initializer 里而不出现在 input 里的图,
|
|
|
|
|
# 但实际上的图中 initializer 里的必然会出现在 input 里,不知道为什么这样设计
|
|
|
|
|
make_and_import_model(
|
|
|
|
|
make_graph([reshape], "reshape", [data, shape], [reshaped], [shape_data])
|
|
|
|
|
)
|
2023-02-14 09:50:32 +08:00
|
|
|
|
|
2023-02-14 13:42:35 +08:00
|
|
|
|
def test_concat(self):
|
|
|
|
|
input1 = make_tensor_value_info("input1", TensorProto.FLOAT, [1, 3, 2, 4])
|
|
|
|
|
input2 = make_tensor_value_info("input2", TensorProto.FLOAT, [1, 3, 2, 5])
|
|
|
|
|
output = make_tensor_value_info("output", TensorProto.FLOAT, [1, 3, 2, 9])
|
|
|
|
|
concat = make_node(
|
|
|
|
|
"Concat", ["input1", "input2"], ["output"], axis=3, name="concat"
|
|
|
|
|
)
|
|
|
|
|
make_and_import_model(
|
|
|
|
|
make_graph([concat], "concat", [input1, input2], [output])
|
|
|
|
|
)
|
|
|
|
|
|
2023-02-14 14:16:01 +08:00
|
|
|
|
def test_gather(self):
|
|
|
|
|
data = make_tensor_value_info("data", TensorProto.FLOAT, [1, 3, 4, 4])
|
|
|
|
|
indices = make_tensor_value_info("indices", TensorProto.FLOAT, [2, 1, 2])
|
|
|
|
|
output = make_tensor_value_info("output", TensorProto.FLOAT, [1, 2, 1, 2, 4, 4])
|
|
|
|
|
gather = make_node(
|
|
|
|
|
"Gather", ["data", "indices"], ["output"], axis=1, name="gather"
|
|
|
|
|
)
|
|
|
|
|
make_and_import_model(make_graph([gather], "gather", [data, indices], [output]))
|
|
|
|
|
|
2023-02-14 15:35:01 +08:00
|
|
|
|
def test_reduce_mean(self):
|
|
|
|
|
data = make_tensor_value_info("data", TensorProto.FLOAT, [2, 3, 3, 4])
|
|
|
|
|
reduced = make_tensor_value_info("reduced", TensorProto.FLOAT, [1, 1, 1, 1])
|
|
|
|
|
reduceMean = make_node(
|
|
|
|
|
"ReduceMean", ["data"], ["reduced"], keepdims=1, name="reduceMean"
|
|
|
|
|
)
|
|
|
|
|
make_and_import_model(make_graph([reduceMean], "reduceMean", [data], [reduced]))
|
|
|
|
|
|
2023-02-14 17:35:18 +08:00
|
|
|
|
def test_slice(self):
|
|
|
|
|
data = make_tensor_value_info("data", TensorProto.UINT32, [10, 64, 162, 162])
|
|
|
|
|
output = make_tensor_value_info("output", TensorProto.UINT32, [2, 1, 100, 96])
|
|
|
|
|
starts = make_tensor_value_info("starts", TensorProto.INT64, [4])
|
|
|
|
|
starts_data = make_tensor("starts", TensorProto.INT64, [4], [2, 10, 1, 5])
|
|
|
|
|
ends = make_tensor_value_info("ends", TensorProto.INT64, [4])
|
|
|
|
|
ends_data = make_tensor("ends", TensorProto.INT64, [4], [3, 10, 100, 100])
|
|
|
|
|
slice = make_node(
|
|
|
|
|
"Slice", ["data", "starts", "ends"], ["output"], name="gather"
|
|
|
|
|
)
|
|
|
|
|
make_and_import_model(
|
|
|
|
|
make_graph(
|
|
|
|
|
[slice],
|
|
|
|
|
"slice",
|
|
|
|
|
[data, starts, ends],
|
|
|
|
|
[output],
|
|
|
|
|
[starts_data, ends_data],
|
|
|
|
|
)
|
|
|
|
|
)
|
|
|
|
|
|
2023-02-13 11:25:54 +08:00
|
|
|
|
# see <https://onnx.ai/onnx/intro/python.html#a-simple-example-a-linear-regression>
|
|
|
|
|
def test_linear(self):
|
|
|
|
|
x = make_tensor_value_info("x", TensorProto.FLOAT, [1, 2, 3])
|
|
|
|
|
a = make_tensor_value_info("a", TensorProto.FLOAT, [1, 3, 4])
|
|
|
|
|
b = make_tensor_value_info("b", TensorProto.FLOAT, [1, 2, 4])
|
2023-02-13 12:13:01 +08:00
|
|
|
|
y = make_tensor_value_info("y", TensorProto.FLOAT, [1, 2, 4])
|
2023-02-13 11:25:54 +08:00
|
|
|
|
matmul = make_node("MatMul", ["x", "a"], ["xa"], name="matmul")
|
|
|
|
|
add = make_node("Add", ["xa", "b"], ["y"], name="add")
|
|
|
|
|
graph = make_graph([matmul, add], "lr", [x, a, b], [y])
|
2023-02-12 08:23:49 +08:00
|
|
|
|
model = make_model(graph)
|
|
|
|
|
check_model(model)
|
|
|
|
|
from_onnx(model)
|
|
|
|
|
parse_onnx(model)
|
|
|
|
|
|
|
|
|
|
def test_frontend(self):
|
|
|
|
|
handler = backend.GraphHandlerObj(runtime)
|
|
|
|
|
i = handler.tensor([1, 2, 3], 12)
|
|
|
|
|
w = handler.tensor([1, 3, 4], 12)
|
|
|
|
|
o = handler.tensor([1, 2, 4], 12)
|
|
|
|
|
handler.matmul(i, w, o, False, False, None, backend.ActType.Relu)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == "__main__":
|
|
|
|
|
unittest.main()
|