InfiniTensor/pyinfinitensor/tests/test_onnx.py

598 lines
26 KiB
Python

import os, onnx, unittest
from onnx import TensorProto
from onnx.helper import (
make_model,
make_node,
make_tensor,
make_graph,
make_tensor_value_info,
)
from onnx.checker import check_model, check_graph
from onnx.shape_inference import infer_shapes
from pyinfinitensor.onnx import from_onnx, OnnxStub, backend, _parse_data_fp16
import numpy as np
def make_and_import_model(graph: onnx.GraphProto):
check_graph(graph)
model = make_model(graph)
check_model(model)
from_onnx(model, backend.cpu_runtime())
class TestStringMethods(unittest.TestCase):
# def test_run(self):
# model_file = next(
# (name for name in os.listdir() if name.endswith(".onnx")), None
# )
# if model_file != None:
# print(
# "model: {file}({size:.2f} MiB)".format(
# file=model_file, size=os.path.getsize(model_file) / 1024 / 1024
# )
# )
# run_onnx(onnx.load(model_file), runtime)
def test_load(self):
for model_file in os.listdir():
if model_file.endswith(".onnx"):
print(
"model: {file}({size:.2f} MiB)".format(
file=model_file, size=os.path.getsize(model_file) / 1024 / 1024
)
)
model = OnnxStub(onnx.load(model_file), backend.cpu_runtime()).to_onnx(
"new"
)
model = infer_shapes(model)
def test_tensor(self):
x = make_tensor_value_info("x", TensorProto.FLOAT, [1, 2, 3])
make_and_import_model(make_graph([], "tensor", [x], [x]))
def test_conv(self):
i = make_tensor_value_info("i", TensorProto.FLOAT, [1, 3, 4, 4])
w = make_tensor_value_info("w", TensorProto.FLOAT, [2, 3, 3, 3])
o = make_tensor_value_info("o", TensorProto.FLOAT, [1, 2, 2, 2])
conv = make_node(
"Conv",
["i", "w"],
["o"],
"conv",
pads=[1, 1, 1, 1],
strides=[2, 1],
dilations=[1, 2],
)
make_and_import_model(make_graph([conv], "conv", [i, w], [o]))
def test_conv_fp16(self):
i = make_tensor_value_info("i", TensorProto.FLOAT16, [1, 3, 4, 4])
w = make_tensor_value_info("w", TensorProto.FLOAT16, [2, 3, 3, 3])
o = make_tensor_value_info("o", TensorProto.FLOAT16, [1, 2, 2, 2])
conv = make_node(
"Conv",
["i", "w"],
["o"],
"conv",
pads=[1, 1, 1, 1],
strides=[2, 1],
dilations=[1, 2],
)
make_and_import_model(make_graph([conv], "conv_fp16", [i, w], [o]))
def test_conv_bfp16(self):
i = make_tensor_value_info("i", TensorProto.BFLOAT16, [1, 3, 4, 4])
w = make_tensor_value_info("w", TensorProto.BFLOAT16, [2, 3, 3, 3])
o = make_tensor_value_info("o", TensorProto.BFLOAT16, [1, 2, 2, 2])
conv = make_node(
"Conv",
["i", "w"],
["o"],
"conv",
pads=[1, 1, 1, 1],
strides=[2, 1],
dilations=[1, 2],
)
make_and_import_model(make_graph([conv], "conv_bfp16", [i, w], [o]))
def test_matmul(self):
x = make_tensor_value_info("x", TensorProto.FLOAT, [1, 2, 3])
a = make_tensor_value_info("a", TensorProto.FLOAT, [1, 3, 4])
xa = make_tensor_value_info("xa", TensorProto.FLOAT, [1, 2, 4])
matmul = make_node("MatMul", ["x", "a"], ["xa"], name="matmul")
make_and_import_model(make_graph([matmul], "matmul", [x, a], [xa]))
def test_gemm(self):
a = make_tensor_value_info("a", TensorProto.FLOAT, [1, 2, 3])
b = make_tensor_value_info("b", TensorProto.FLOAT, [1, 4, 3])
c = make_tensor_value_info("c", TensorProto.FLOAT, [1, 2, 4])
y = make_tensor_value_info("y", TensorProto.FLOAT, [1, 2, 4])
gemm = make_node("Gemm", ["a", "b", "c"], ["y"], transB=1, name="gemm")
make_and_import_model(make_graph([gemm], "gemm", [a, b, c], [y]))
def test_batch_norm(self):
x = make_tensor_value_info("x", TensorProto.UINT32, [1, 3, 2, 2])
scale = make_tensor_value_info("scale", TensorProto.FLOAT, [3])
b = make_tensor_value_info("b", TensorProto.FLOAT, [3])
mean = make_tensor_value_info("mean", TensorProto.FLOAT, [3])
var = make_tensor_value_info("var", TensorProto.FLOAT, [3])
y = make_tensor_value_info("y", TensorProto.UINT32, [1, 3, 2, 2])
batch_norm = make_node(
"BatchNormalization",
["x", "scale", "b", "mean", "var"],
["y"],
name="batchNormalization",
)
make_and_import_model(
make_graph([batch_norm], "batchNormalzation", [x, scale, b, mean, var], [y])
)
def test_max_pool(self):
x = make_tensor_value_info("x", TensorProto.UINT32, [1, 64, 162, 162])
y = make_tensor_value_info("y", TensorProto.UINT32, [1, 64, 80, 80])
pool = make_node(
"MaxPool",
["x"],
["y"],
kernel_shape=[3, 3],
dilations=[1, 1],
pads=[0, 0, 0, 0],
strides=[2, 2],
name="maxPool",
)
make_and_import_model(make_graph([pool], "maxPool", [x], [y]))
def test_avg_pool(self):
x = make_tensor_value_info("x", TensorProto.UINT32, [1, 64, 162, 162])
y = make_tensor_value_info("y", TensorProto.UINT32, [1, 64, 80, 80])
pool = make_node(
"AveragePool",
["x"],
["y"],
kernel_shape=[3, 3],
pads=[0, 0, 0, 0],
strides=[2, 2],
name="avgPool",
)
make_and_import_model(make_graph([pool], "avgPool", [x], [y]))
def test_global_avg_pool(self):
x = make_tensor_value_info("x", TensorProto.UINT32, [30, 30, 30, 30])
y = make_tensor_value_info("y", TensorProto.UINT32, [30, 30, 1, 1])
pool = make_node(
"GlobalAveragePool",
["x"],
["y"],
name="globalAvgPool",
)
make_and_import_model(make_graph([pool], "avgPool", [x], [y]))
def test_add(self):
a = make_tensor_value_info("a", TensorProto.FLOAT, [1, 3, 5, 7])
b = make_tensor_value_info("b", TensorProto.FLOAT, [1, 3, 5, 7])
c = make_tensor_value_info("c", TensorProto.FLOAT, [1, 3, 5, 7])
add = make_node("Add", ["a", "b"], ["c"], name="add")
make_and_import_model(make_graph([add], "add", [a, b], [c]))
def test_sub(self):
a = make_tensor_value_info("a", TensorProto.FLOAT, [1, 3, 5, 7])
b = make_tensor_value_info("b", TensorProto.FLOAT, [1, 3, 5, 7])
c = make_tensor_value_info("c", TensorProto.FLOAT, [1, 3, 5, 7])
sub = make_node("Sub", ["a", "b"], ["c"], name="sub")
make_and_import_model(make_graph([sub], "sub", [a, b], [c]))
def test_mul(self):
a = make_tensor_value_info("a", TensorProto.FLOAT, [1, 3, 5, 7])
b = make_tensor_value_info("b", TensorProto.FLOAT, [1, 3, 5, 7])
c = make_tensor_value_info("c", TensorProto.FLOAT, [1, 3, 5, 7])
mul = make_node("Mul", ["a", "b"], ["c"], name="mul")
make_and_import_model(make_graph([mul], "mul", [a, b], [c]))
def test_div(self):
a = make_tensor_value_info("a", TensorProto.FLOAT, [1, 3, 5, 7])
b = make_tensor_value_info("b", TensorProto.FLOAT, [1, 3, 5, 7])
c = make_tensor_value_info("c", TensorProto.FLOAT, [1, 3, 5, 7])
div = make_node("Div", ["a", "b"], ["c"], name="div")
make_and_import_model(make_graph([div], "div", [a, b], [c]))
def test_pow(self):
a = make_tensor_value_info("a", TensorProto.FLOAT, [1, 3, 5, 7])
b = make_tensor_value_info("b", TensorProto.FLOAT, [1, 3, 5, 7])
c = make_tensor_value_info("c", TensorProto.FLOAT, [1, 3, 5, 7])
pow = make_node("Pow", ["a", "b"], ["c"], name="pow")
make_and_import_model(make_graph([pow], "pow", [a, b], [c]))
def test_relu(self):
x = make_tensor_value_info("x", TensorProto.FLOAT, [1, 3, 5, 7])
y = make_tensor_value_info("y", TensorProto.FLOAT, [1, 3, 5, 7])
relu = make_node("Relu", ["x"], ["y"], name="relu")
make_and_import_model(make_graph([relu], "relu", [x], [y]))
"""Gelu operator is not supported by onnx 14.1 currently."""
def test_gelu(self):
pass
# x = make_tensor_value_info("x", TensorProto.FLOAT, [1, 3, 5, 7])
# y = make_tensor_value_info("y", TensorProto.FLOAT, [1, 3, 5, 7])
# gelu = make_node("Gelu", ["x"], ["y"], name="gelu")
# make_and_import_model(make_graph([gelu], "gelu", [x], [y]))
def test_erf(self):
x = make_tensor_value_info("x", TensorProto.FLOAT, [1, 3, 5, 7])
y = make_tensor_value_info("y", TensorProto.FLOAT, [1, 3, 5, 7])
erf = make_node("Erf", ["x"], ["y"], name="erf")
make_and_import_model(make_graph([erf], "erf", [x], [y]))
def test_sqrt(self):
x = make_tensor_value_info("x", TensorProto.FLOAT, [1, 3, 5, 7])
y = make_tensor_value_info("y", TensorProto.FLOAT, [1, 3, 5, 7])
sqrt = make_node("Sqrt", ["x"], ["y"], name="sqrt")
make_and_import_model(make_graph([sqrt], "sqrt", [x], [y]))
def test_sigmoid(self):
x = make_tensor_value_info("x", TensorProto.FLOAT, [1, 3, 5, 7])
y = make_tensor_value_info("y", TensorProto.FLOAT, [1, 3, 5, 7])
sigmoid = make_node("Sigmoid", ["x"], ["y"], name="sigmoid")
make_and_import_model(make_graph([sigmoid], "sigmoid", [x], [y]))
def test_tanh(self):
x = make_tensor_value_info("x", TensorProto.FLOAT, [1, 3, 5, 7])
y = make_tensor_value_info("y", TensorProto.FLOAT, [1, 3, 5, 7])
tanh = make_node("Tanh", ["x"], ["y"], name="tanh")
make_and_import_model(make_graph([tanh], "tanh", [x], [y]))
def test_hard_sigmoid(self):
x = make_tensor_value_info("x", TensorProto.FLOAT, [1, 3, 5, 7])
y = make_tensor_value_info("y", TensorProto.FLOAT, [1, 3, 5, 7])
hardSigmoid = make_node("HardSigmoid", ["x"], ["y"], name="hardSigmoid")
make_and_import_model(make_graph([hardSigmoid], "hardSigmoid", [x], [y]))
def test_hard_swish(self):
x = make_tensor_value_info("x", TensorProto.FLOAT, [1, 3, 5, 7])
y = make_tensor_value_info("y", TensorProto.FLOAT, [1, 3, 5, 7])
hardSwish = make_node("HardSwish", ["x"], ["y"], name="hardSwish")
make_and_import_model(make_graph([hardSwish], "hardSwish", [x], [y]))
def test_softmax(self):
x = make_tensor_value_info("x", TensorProto.FLOAT, [1, 3, 5, 7])
y = make_tensor_value_info("y", TensorProto.FLOAT, [1, 3, 5, 7])
softmax = make_node("Softmax", ["x"], ["y"], axis=2, name="softmax")
make_and_import_model(make_graph([softmax], "softmax", [x], [y]))
def test_abs(self):
x = make_tensor_value_info("x", TensorProto.FLOAT, [1, 3, 5, 7])
y = make_tensor_value_info("y", TensorProto.FLOAT, [1, 3, 5, 7])
abs = make_node("Abs", ["x"], ["y"], name="abs")
make_and_import_model(make_graph([abs], "abs", [x], [y]))
def test_neg(self):
x = make_tensor_value_info("x", TensorProto.FLOAT, [1, 3, 5, 7])
y = make_tensor_value_info("y", TensorProto.FLOAT, [1, 3, 5, 7])
neg = make_node("Neg", ["x"], ["y"], name="neg")
make_and_import_model(make_graph([neg], "neg", [x], [y]))
def test_identity(self):
x = make_tensor_value_info("x", TensorProto.FLOAT, [1, 3, 5, 7])
y = make_tensor_value_info("y", TensorProto.FLOAT, [1, 3, 5, 7])
identity = make_node("Identity", ["x"], ["y"], name="identity")
make_and_import_model(make_graph([identity], "identity", [x], [y]))
def test_flatten(self):
x = make_tensor_value_info("x", TensorProto.FLOAT, [1, 3, 5, 7])
y = make_tensor_value_info("y", TensorProto.FLOAT, [1 * 3, 5 * 7])
flatten = make_node("Flatten", ["x"], ["y"], axis=2, name="flatten")
make_and_import_model(make_graph([flatten], "flatten", [x], [y]))
def test_reshape(self):
data = make_tensor_value_info("data", TensorProto.FLOAT, [2, 3, 4, 5])
shape = make_tensor_value_info("shape", TensorProto.INT64, [3])
shape_data = make_tensor("shape", TensorProto.INT64, [3], [5, 3, 8])
reshaped = make_tensor_value_info(
"reshaped", TensorProto.FLOAT, shape_data.int64_data
)
reshape = make_node("Reshape", ["data", "shape"], ["reshaped"], name="reshape")
make_and_import_model(
make_graph([reshape], "reshape", [data, shape], [reshaped], [shape_data])
)
def test_resize(self):
x = make_tensor_value_info("x", TensorProto.FLOAT, [1, 128, 40, 40])
roi = make_tensor("roi", TensorProto.FLOAT, [0], [])
scales = make_tensor("scales", TensorProto.FLOAT, [4], [1, 1, 2, 2])
y = make_tensor_value_info("y", TensorProto.FLOAT, [1, 128, 80, 80])
reshape = make_node("Resize", ["x", "roi", "scales"], ["y"], name="resize")
make_and_import_model(make_graph([reshape], "resize", [x], [y], [roi, scales]))
def test_squeeze(self):
input = make_tensor_value_info("input", TensorProto.FLOAT, [1, 3, 1, 5])
axes = make_tensor_value_info("axes", TensorProto.INT64, [2])
axes_data = make_tensor("axes", TensorProto.INT64, [2], [0, 2])
output = make_tensor_value_info("output", TensorProto.FLOAT, [3, 5])
squeeze = make_node("Squeeze", ["input", "axes"], ["output"], name="squeeze")
make_and_import_model(
make_graph([squeeze], "squeeze", [input, axes], [output], [axes_data])
)
def test_unsqueeze(self):
input = make_tensor_value_info("input", TensorProto.FLOAT, [2, 3, 4, 5])
axes = make_tensor_value_info("axes", TensorProto.INT64, [2])
axes_data = make_tensor("axes", TensorProto.INT64, [2], [0, 2])
output = make_tensor_value_info("output", TensorProto.FLOAT, [1, 2, 1, 3, 4, 5])
unsqueeze = make_node(
"Unsqueeze", ["input", "axes"], ["output"], name="unsqueeze"
)
make_and_import_model(
make_graph([unsqueeze], "unsqueeze", [input, axes], [output], [axes_data])
)
def test_concat(self):
input1 = make_tensor_value_info("input1", TensorProto.FLOAT, [1, 3, 2, 4])
input2 = make_tensor_value_info("input2", TensorProto.FLOAT, [1, 3, 2, 5])
output = make_tensor_value_info("output", TensorProto.FLOAT, [1, 3, 2, 9])
concat = make_node(
"Concat", ["input1", "input2"], ["output"], axis=3, name="concat"
)
make_and_import_model(
make_graph([concat], "concat", [input1, input2], [output])
)
def test_gather(self):
data = make_tensor_value_info("data", TensorProto.FLOAT, [1, 3, 4, 4])
indices = make_tensor_value_info("indices", TensorProto.INT64, [2, 1, 2])
output = make_tensor_value_info("output", TensorProto.FLOAT, [1, 2, 1, 2, 4, 4])
gather = make_node(
"Gather", ["data", "indices"], ["output"], axis=1, name="gather"
)
make_and_import_model(make_graph([gather], "gather", [data, indices], [output]))
def test_gather_elements(self):
data = make_tensor_value_info("data", TensorProto.FLOAT, [2, 3, 2])
indices = make_tensor_value_info("indices", TensorProto.INT64, [2, 1, 2])
output = make_tensor_value_info("output", TensorProto.FLOAT, [2, 1, 2])
gatherElements = make_node(
"GatherElements",
["data", "indices"],
["output"],
axis=1,
name="gatherElements",
)
make_and_import_model(
make_graph([gatherElements], "gatherElements", [data, indices], [output])
)
def test_reduce_mean(self):
data = make_tensor_value_info("data", TensorProto.FLOAT, [2, 3, 3, 4])
reduced = make_tensor_value_info("reduced", TensorProto.FLOAT, [1, 1, 1, 1])
reduceMean = make_node(
"ReduceMean", ["data"], ["reduced"], keepdims=1, name="reduceMean"
)
make_and_import_model(make_graph([reduceMean], "reduceMean", [data], [reduced]))
def test_reduce_sum(self):
data = make_tensor_value_info("data", TensorProto.FLOAT, [2, 3, 3, 4])
reduced = make_tensor_value_info("reduced", TensorProto.FLOAT, [1, 1, 1, 1])
reduceSum = make_node(
"ReduceSum", ["data"], ["reduced"], keepdims=1, name="reduceSum"
)
make_and_import_model(make_graph([reduceSum], "reduceSum", [data], [reduced]))
def test_slice(self):
data = make_tensor_value_info("data", TensorProto.UINT32, [10, 64, 162, 162])
output = make_tensor_value_info("output", TensorProto.UINT32, [1, 1, 99, 95])
starts = make_tensor("starts", TensorProto.INT64, [4], [2, 9, 1, 5])
ends = make_tensor("ends", TensorProto.INT64, [4], [3, 10, 100, 100])
slice = make_node("Slice", ["data", "starts", "ends"], ["output"], name="slice")
make_and_import_model(
make_graph(
[slice],
"slice",
[data],
[output],
[starts, ends],
)
)
def test_pad(self):
data = make_tensor_value_info("data", TensorProto.UINT32, [1, 64, 162, 162])
output = make_tensor_value_info("output", TensorProto.UINT32, [3, 84, 164, 172])
pads = make_tensor_value_info("pads", TensorProto.INT64, [8])
pads_data = make_tensor(
"pads", TensorProto.INT64, [8], [2, 10, 1, 5, 0, 10, 1, 5]
)
pad = make_node("Pad", ["data", "pads"], ["output"], name="pad")
make_and_import_model(
make_graph(
[pad],
"pad",
[data, pads],
[output],
[pads_data],
)
)
def test_allReduceSum(self):
input = make_tensor_value_info("input", TensorProto.FLOAT, [1, 3, 2, 4])
output = make_tensor_value_info("output", TensorProto.FLOAT, [1, 3, 2, 4])
allReduceSum = make_node(
"AllReduceSum", ["input"], ["output"], name="allReduceSum"
)
graph = make_graph([allReduceSum], "allReduceSum", [input], [output])
model = make_model(graph)
from_onnx(model, backend.cpu_runtime())
def test_allReduceProd(self):
input = make_tensor_value_info("input", TensorProto.FLOAT, [1, 3, 2, 4])
output = make_tensor_value_info("output", TensorProto.FLOAT, [1, 3, 2, 4])
allReduceProd = make_node(
"AllReduceProd", ["input"], ["output"], name="allReduceProd"
)
graph = make_graph([allReduceProd], "allReduceProd", [input], [output])
model = make_model(graph)
from_onnx(model, backend.cpu_runtime())
def test_allReduceMin(self):
input = make_tensor_value_info("input", TensorProto.FLOAT, [1, 3, 2, 4])
output = make_tensor_value_info("output", TensorProto.FLOAT, [1, 3, 2, 4])
allReduceMin = make_node(
"AllReduceMin", ["input"], ["output"], name="allReduceMin"
)
graph = make_graph([allReduceMin], "allReduceMin", [input], [output])
model = make_model(graph)
from_onnx(model, backend.cpu_runtime())
def test_allReduceMax(self):
input = make_tensor_value_info("input", TensorProto.FLOAT, [1, 3, 2, 4])
output = make_tensor_value_info("output", TensorProto.FLOAT, [1, 3, 2, 4])
allReduceMax = make_node(
"AllReduceMax", ["input"], ["output"], name="allReduceMax"
)
graph = make_graph([allReduceMax], "allReduceMax", [input], [output])
model = make_model(graph)
from_onnx(model, backend.cpu_runtime())
def test_allReduceAvg(self):
input = make_tensor_value_info("input", TensorProto.FLOAT, [1, 3, 2, 4])
output = make_tensor_value_info("output", TensorProto.FLOAT, [1, 3, 2, 4])
allReduceAvg = make_node(
"AllReduceAvg", ["input"], ["output"], name="allReduceAvg"
)
graph = make_graph([allReduceAvg], "allReduceAvg", [input], [output])
model = make_model(graph)
from_onnx(model, backend.cpu_runtime())
def test_split(self):
input = make_tensor_value_info("input", TensorProto.FLOAT, [1, 3, 2, 4])
split = make_node("Split", ["input"], ["output"], name="split", axis=0)
output = make_tensor_value_info("output", TensorProto.FLOAT, [1, 3, 2, 4])
make_and_import_model(make_graph([split], "split", [input], [output]))
def test_split1(self):
input = make_tensor_value_info("input", TensorProto.FLOAT, [1, 3, 2, 4])
splitAttr = make_tensor("split", TensorProto.INT64, [2], [2, 1])
output1 = make_tensor_value_info("output1", TensorProto.FLOAT, [1, 2, 2, 4])
output2 = make_tensor_value_info("output2", TensorProto.FLOAT, [1, 1, 2, 4])
split = make_node(
"Split", ["input", "split"], ["output1", "output2"], name="split", axis=1
)
make_and_import_model(
make_graph([split], "split", [input], [output1, output2], [splitAttr])
)
def test_allBroadcast(self):
input = make_tensor_value_info("input", TensorProto.FLOAT, [1, 3, 2, 4])
output = make_tensor_value_info("output", TensorProto.FLOAT, [1, 3, 2, 4])
broadcast = make_node(
"Broadcast", ["input"], ["output"], name="broadcast", root=1
)
graph = make_graph([broadcast], "broadcast", [input], [output])
model = make_model(graph)
from_onnx(model, backend.cpu_runtime())
def test_allGather(self):
input = make_tensor_value_info("input", TensorProto.FLOAT, [1, 3, 2, 4])
world_size = make_tensor_value_info("world_size", TensorProto.INT32, [1])
allGather = make_node(
"AllGather", ["input", "world_size"], ["output"], name="allGather"
)
graph = make_graph([allGather], "allGather", [input, world_size], [])
model = make_model(graph)
from_onnx(model, backend.cpu_runtime())
# see <https://onnx.ai/onnx/intro/python.html#a-simple-example-a-linear-regression>
def test_linear(self):
x = make_tensor_value_info("x", TensorProto.FLOAT, [1, 2, 3])
a = make_tensor_value_info("a", TensorProto.FLOAT, [1, 3, 4])
b = make_tensor_value_info("b", TensorProto.FLOAT, [1, 2, 4])
y = make_tensor_value_info("y", TensorProto.FLOAT, [1, 2, 4])
matmul = make_node("MatMul", ["x", "a"], ["xa"], name="matmul")
add = make_node("Add", ["xa", "b"], ["y"], name="add")
graph = make_graph([matmul, add], "lr", [x, a, b], [y])
model = make_model(graph)
check_model(model)
from_onnx(model, backend.cpu_runtime())
def test_frontend(self):
handler = backend.GraphHandler(backend.cpu_runtime())
a = handler.tensor([1, 2, 3], 12)
b = handler.tensor([1, 2, 3], 12)
c = handler.tensor([1, 2, 3], 12)
d = handler.tensor([1, 2, 3], 12)
e = handler.tensor([1, 2, 3], 12)
x = handler.add(
handler.add(handler.add(handler.add(a, b, None), c, None), d, None), e, None
)
y = handler.tensor([3, 2, 1], 12)
handler.reshape(x, y, [3, 2, 1])
def test_cast(self):
input1 = make_tensor_value_info("input1", TensorProto.FLOAT, [1, 3, 2, 4])
output = make_tensor_value_info("output", TensorProto.FLOAT16, [1, 3, 2, 4])
cast = make_node(
"Cast", ["input1"], ["output"], to=TensorProto.FLOAT16, name="cast"
)
make_and_import_model(make_graph([cast], "cast", [input1], [output]))
def test_expand(self):
data = make_tensor_value_info("data", TensorProto.FLOAT, [3, 1])
dim = make_tensor_value_info("dim", TensorProto.INT64, [3])
dim_data = make_tensor("dim", TensorProto.INT64, [3], [2, 1, 6])
output = make_tensor_value_info("output", TensorProto.FLOAT, [2, 3, 6])
expand = make_node("Expand", ["data", "dim"], ["output"], name="expand")
make_and_import_model(
make_graph([expand], "expand", [data, dim], [output], [dim_data])
)
def test_where(self):
x = make_tensor_value_info("x", TensorProto.FLOAT, [1, 3, 5, 7])
y = make_tensor_value_info("y", TensorProto.FLOAT, [1, 3, 5, 7])
con = make_tensor_value_info("con", TensorProto.BOOL, [1, 3, 5, 7])
output = make_tensor_value_info("output", TensorProto.FLOAT, [1, 3, 5, 7])
where = make_node("Where", ["x", "y", "con"], ["output"], name="where")
make_and_import_model(make_graph([where], "where", [x, y, con], [output]))
def test_send(self):
sendInput = make_tensor_value_info("input", TensorProto.FLOAT, [1, 3, 5, 7])
send = make_node("Send", ["input"], [], name="send", source=0, destination=1)
graph = make_graph([send], "send", [sendInput], [])
model = make_model(graph)
from_onnx(model, backend.cpu_runtime())
def test_recv(self):
recvOutput = make_tensor_value_info("output", TensorProto.FLOAT, [1, 3, 5, 7])
recv = make_node(
"Recv",
[],
["output"],
name="recv",
source=0,
destination=1,
shape=[1, 3, 5, 7],
dataType=1,
)
graph = make_graph([recv], "recv", [], [recvOutput])
model = make_model(graph)
from_onnx(model, backend.cpu_runtime())
class TestDynamicTensor(unittest.TestCase):
def test_dynamic_tensor(self):
filename = r"resnet18-v2-7.onnx"
current_path = os.getcwd()
model_file = ""
for root, dirs, files in os.walk(current_path):
if filename in files:
model_file = os.path.join(root, filename)
model = OnnxStub(onnx.load(model_file), backend.cpu_runtime())
output_key = list(model.outputs.keys())[0]
old_output_shape = model.getShape(output_key)
self.assertEqual(old_output_shape, ([1, 1000]))
model.set_input([[5, 3, 224, 224]])
new_output_shape = model.getShape(output_key)
self.assertEqual(new_output_shape, ([5, 1000]))
if __name__ == "__main__":
unittest.main()