171 lines
7.4 KiB
Python
171 lines
7.4 KiB
Python
|
# ------------------------------------------------------------------------
|
||
|
# Deformable DETR
|
||
|
# Copyright (c) 2020 SenseTime. All Rights Reserved.
|
||
|
# Licensed under the Apache License, Version 2.0 [see LICENSE for details]
|
||
|
# ------------------------------------------------------------------------
|
||
|
# Modified from DETR (https://github.com/facebookresearch/detr)
|
||
|
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
|
||
|
# ------------------------------------------------------------------------
|
||
|
|
||
|
"""
|
||
|
Train and eval functions used in main.py
|
||
|
"""
|
||
|
import math
|
||
|
import os
|
||
|
import sys
|
||
|
from typing import Iterable
|
||
|
import json
|
||
|
|
||
|
import torch
|
||
|
import util.misc as utils
|
||
|
from datasets.coco_eval import CocoEvaluator
|
||
|
from datasets.panoptic_eval import PanopticEvaluator
|
||
|
from datasets.data_prefetcher_multi import data_prefetcher
|
||
|
|
||
|
def train_one_epoch(model: torch.nn.Module, criterion: torch.nn.Module,
|
||
|
data_loader: Iterable, optimizer: torch.optim.Optimizer,
|
||
|
device: torch.device, epoch: int, max_norm: float = 0):
|
||
|
model.train()
|
||
|
criterion.train()
|
||
|
metric_logger = utils.MetricLogger(delimiter=" ")
|
||
|
metric_logger.add_meter('lr', utils.SmoothedValue(window_size=1, fmt='{value:.6f}'))
|
||
|
metric_logger.add_meter('class_error', utils.SmoothedValue(window_size=1, fmt='{value:.2f}'))
|
||
|
metric_logger.add_meter('grad_norm', utils.SmoothedValue(window_size=1, fmt='{value:.2f}'))
|
||
|
header = 'Epoch: [{}]'.format(epoch)
|
||
|
print_freq = 10
|
||
|
|
||
|
for samples, targets in metric_logger.log_every(data_loader, print_freq, header):
|
||
|
|
||
|
samples = samples.to(device)
|
||
|
targets = [{k: v.to(device) for k, v in t.items()} for t in targets]
|
||
|
outputs = model(samples)
|
||
|
loss_dict = criterion(outputs, targets)
|
||
|
weight_dict = criterion.weight_dict
|
||
|
losses = sum(loss_dict[k] * weight_dict[k] for k in loss_dict.keys() if k in weight_dict)
|
||
|
|
||
|
# reduce losses over all GPUs for logging purposes
|
||
|
loss_dict_reduced = utils.reduce_dict(loss_dict)
|
||
|
loss_dict_reduced_unscaled = {f'{k}_unscaled': v
|
||
|
for k, v in loss_dict_reduced.items()}
|
||
|
loss_dict_reduced_scaled = {k: v * weight_dict[k]
|
||
|
for k, v in loss_dict_reduced.items() if k in weight_dict}
|
||
|
losses_reduced_scaled = sum(loss_dict_reduced_scaled.values())
|
||
|
|
||
|
loss_value = losses_reduced_scaled.item()
|
||
|
|
||
|
if not math.isfinite(loss_value):
|
||
|
print("Loss is {}, stopping training".format(loss_value))
|
||
|
print(loss_dict_reduced)
|
||
|
sys.exit(1)
|
||
|
|
||
|
optimizer.zero_grad()
|
||
|
losses.backward()
|
||
|
if max_norm > 0:
|
||
|
grad_total_norm = torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm)
|
||
|
else:
|
||
|
grad_total_norm = utils.get_total_grad_norm(model.parameters(), max_norm)
|
||
|
optimizer.step()
|
||
|
|
||
|
metric_logger.update(loss=loss_value, **loss_dict_reduced_scaled, **loss_dict_reduced_unscaled)
|
||
|
metric_logger.update(class_error=loss_dict_reduced['class_error'])
|
||
|
metric_logger.update(lr=optimizer.param_groups[0]["lr"])
|
||
|
metric_logger.update(grad_norm=grad_total_norm)
|
||
|
|
||
|
# gather the stats from all processes
|
||
|
metric_logger.synchronize_between_processes()
|
||
|
print("Averaged stats:", metric_logger)
|
||
|
return {k: meter.global_avg for k, meter in metric_logger.meters.items()}
|
||
|
|
||
|
@torch.no_grad()
|
||
|
def evaluate(model, criterion, postprocessors, data_loader, base_ds, device, output_dir):
|
||
|
model.eval()
|
||
|
|
||
|
metric_logger = utils.MetricLogger(delimiter=" ")
|
||
|
header = 'Test:'
|
||
|
|
||
|
recorder = {'video_id': [], 'frame_id': []}
|
||
|
results_store = []
|
||
|
for samples, targets in metric_logger.log_every(data_loader, 10, header):
|
||
|
samples = samples.to(device)
|
||
|
targets = [{k: v.to(device) for k, v in t.items()} for t in targets]
|
||
|
|
||
|
outputs = model(samples)
|
||
|
|
||
|
orig_target_sizes = torch.stack([t["orig_size"] for t in targets], dim=0)
|
||
|
results = postprocessors['bbox'](outputs, orig_target_sizes)
|
||
|
res = {target['image_id'].item(): output for target, output in zip(targets, results)}
|
||
|
|
||
|
# save
|
||
|
save_res = {}
|
||
|
for image_id in res.keys():
|
||
|
save_res[image_id] = {}
|
||
|
for k, v in res[image_id].items():
|
||
|
save_res[image_id][k] = v.cpu().tolist()
|
||
|
results_store.append(save_res)
|
||
|
|
||
|
# image = samples.tensors.cpu()[0]
|
||
|
# image = (image * torch.tensor([0.229, 0.224, 0.225]).reshape(-1, 1, 1) + torch.tensor([0.485, 0.456, 0.406]).reshape(-1, 1, 1))*255
|
||
|
# image = image.permute(1, 2, 0)
|
||
|
|
||
|
# ir_image = samples.tensors.cpu()[15]
|
||
|
# ir_image = (ir_image * torch.tensor([0.229, 0.224, 0.225]).reshape(-1, 1, 1) + torch.tensor([0.485, 0.456, 0.406]).reshape(-1, 1, 1))*255
|
||
|
# ir_image = ir_image.permute(1, 2, 0)
|
||
|
# import numpy as np
|
||
|
# import cv2 as cv
|
||
|
# ir_image_np = ir_image.numpy()
|
||
|
# ir_image_np = np.array(ir_image_np, dtype=np.uint8)
|
||
|
|
||
|
# image_np = image.numpy()
|
||
|
# image_np = np.array(image_np, dtype=np.uint8)
|
||
|
|
||
|
# size = targets[0]['size'].cpu()
|
||
|
# orig_size = targets[0]['orig_size'].cpu()
|
||
|
# ratios = orig_size / size
|
||
|
# assert ratios[0] == ratios[1]
|
||
|
|
||
|
# orig_size = torch.flip(orig_size, dims=(0,))
|
||
|
# image_np = cv.resize(image_np, orig_size.tolist(), interpolation=cv.INTER_CUBIC)
|
||
|
# ir_image_np = cv.resize(ir_image_np, orig_size.tolist(), interpolation=cv.INTER_CUBIC)
|
||
|
|
||
|
# pred_boxes = results[0]['boxes'].cpu()
|
||
|
# scores = results[0]['scores'].cpu()
|
||
|
# value = scores
|
||
|
|
||
|
# for i in range(8):
|
||
|
# boxes = pred_boxes[i]
|
||
|
# v = value[i].item()
|
||
|
# if v < 0.2: continue
|
||
|
# x1, y1, x2, y2 = boxes
|
||
|
# w = x2 - x1
|
||
|
# h = y2 - y1
|
||
|
# cx = x1 + w/2
|
||
|
# cy = y1 + h/2
|
||
|
# # cx, cy, w, h = boxes
|
||
|
# x1, y1, x2, y2 = int(cx-w/2), int(cy-h/2), int(cx+w/2), int(cy+h/2)
|
||
|
# image_np = cv.rectangle(image_np.copy(), (x1, y1), (x2, y2), color=(255, 0, 0), thickness=2)
|
||
|
# if x1 <=10:
|
||
|
# cv.putText(image_np, f"{v:0.3f}", (x1-10, y1), cv.FONT_HERSHEY_SIMPLEX, fontScale=0.6, color=(255, 0, 0))
|
||
|
# else:
|
||
|
# cv.putText(image_np, f"{v:0.3f}", (x1, y1), cv.FONT_HERSHEY_SIMPLEX, fontScale=0.6, color=(255, 0, 0))
|
||
|
|
||
|
# ir_image_np = cv.rectangle(ir_image_np.copy(), (x1, y1), (x2, y2), color=(255, 0, 0), thickness=2)
|
||
|
# if x1 <=10:
|
||
|
# cv.putText(ir_image_np, f"{v:0.3f}", (x1-10, y1), cv.FONT_HERSHEY_SIMPLEX, fontScale=0.6, color=(255, 0, 0))
|
||
|
# else:
|
||
|
# cv.putText(ir_image_np, f"{v:0.3f}", (x1, y1), cv.FONT_HERSHEY_SIMPLEX, fontScale=0.6, color=(255, 0, 0))
|
||
|
|
||
|
# image_np = cv.cvtColor(image_np, cv.COLOR_BGR2RGB)
|
||
|
# ir_image_np = cv.cvtColor(ir_image_np, cv.COLOR_BGR2RGB)
|
||
|
# im = np.concatenate([image_np, ir_image_np], 1)
|
||
|
# cv.imshow('img', im)
|
||
|
# # import os
|
||
|
# # save_path = './out_figs'
|
||
|
# # if not os.path.exists(save_path):
|
||
|
# # os.makedirs(save_path)
|
||
|
# # cv.imwrite(os.path.join(save_path, f"{targets[0]['video_id'][0].item()}_{targets[0]['frame_id'][0].item()}.jpg"), im)
|
||
|
# cv.waitKey(0)
|
||
|
|
||
|
if utils.get_rank() in [0, -1]:
|
||
|
with open('test_save.json', 'w') as f:
|
||
|
json.dump(results_store, f)
|