492 lines
23 KiB
Python
492 lines
23 KiB
Python
|
# ------------------------------------------------------------------------
|
|||
|
# Deformable DETR
|
|||
|
# Copyright (c) 2020 SenseTime. All Rights Reserved.
|
|||
|
# Licensed under the Apache License, Version 2.0 [see LICENSE for details]
|
|||
|
# ------------------------------------------------------------------------
|
|||
|
# Modified from DETR (https://github.com/facebookresearch/detr)
|
|||
|
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
|
|||
|
# ------------------------------------------------------------------------
|
|||
|
|
|||
|
"""
|
|||
|
Deformable DETR model and criterion classes.
|
|||
|
"""
|
|||
|
import torch
|
|||
|
import torch.nn.functional as F
|
|||
|
from torch import nn
|
|||
|
import math
|
|||
|
|
|||
|
from util import box_ops
|
|||
|
from util.misc import (NestedTensor, nested_tensor_from_tensor_list,
|
|||
|
accuracy, get_world_size, interpolate,
|
|||
|
is_dist_avail_and_initialized, inverse_sigmoid)
|
|||
|
|
|||
|
from .backbone import build_backbone
|
|||
|
from .matcher import build_matcher
|
|||
|
from .segmentation import (DETRsegm, PostProcessPanoptic, PostProcessSegm,
|
|||
|
dice_loss, sigmoid_focal_loss)
|
|||
|
from .deformable_transformer_single import build_deforamble_transformer
|
|||
|
import copy
|
|||
|
|
|||
|
|
|||
|
def _get_clones(module, N):
|
|||
|
return nn.ModuleList([copy.deepcopy(module) for i in range(N)])
|
|||
|
|
|||
|
|
|||
|
class DeformableDETR(nn.Module):
|
|||
|
""" This is the Deformable DETR module that performs object detection """
|
|||
|
def __init__(self, backbone, transformer, num_classes, num_queries, num_feature_levels,
|
|||
|
aux_loss=True, with_box_refine=False, two_stage=False):
|
|||
|
""" Initializes the model.
|
|||
|
Parameters:
|
|||
|
backbone: torch module of the backbone to be used. See backbone.py
|
|||
|
transformer: torch module of the transformer architecture. See transformer.py
|
|||
|
num_classes: number of object classes
|
|||
|
num_queries: number of object queries, ie detection slot. This is the maximal number of objects
|
|||
|
DETR can detect in a single image. For COCO, we recommend 100 queries.
|
|||
|
aux_loss: True if auxiliary decoding losses (loss at each decoder layer) are to be used.
|
|||
|
with_box_refine: iterative bounding box refinement
|
|||
|
two_stage: two-stage Deformable DETR
|
|||
|
"""
|
|||
|
super().__init__()
|
|||
|
self.num_queries = num_queries
|
|||
|
self.transformer = transformer
|
|||
|
hidden_dim = transformer.d_model
|
|||
|
self.class_embed = nn.Linear(hidden_dim, num_classes)
|
|||
|
self.bbox_embed = MLP(hidden_dim, hidden_dim, 4, 3)
|
|||
|
self.num_feature_levels = num_feature_levels
|
|||
|
if not two_stage:
|
|||
|
self.query_embed = nn.Embedding(num_queries, hidden_dim*2)
|
|||
|
if num_feature_levels > 1:
|
|||
|
num_backbone_outs = len(backbone.strides)
|
|||
|
input_proj_list = []
|
|||
|
for _ in range(num_backbone_outs):
|
|||
|
in_channels = backbone.num_channels[_]
|
|||
|
input_proj_list.append(nn.Sequential(
|
|||
|
nn.Conv2d(in_channels, hidden_dim, kernel_size=1),
|
|||
|
nn.GroupNorm(32, hidden_dim),
|
|||
|
))
|
|||
|
for _ in range(num_feature_levels - num_backbone_outs):
|
|||
|
input_proj_list.append(nn.Sequential(
|
|||
|
nn.Conv2d(in_channels, hidden_dim, kernel_size=3, stride=2, padding=1),
|
|||
|
nn.GroupNorm(32, hidden_dim),
|
|||
|
))
|
|||
|
in_channels = hidden_dim
|
|||
|
self.input_proj = nn.ModuleList(input_proj_list)
|
|||
|
else:
|
|||
|
self.input_proj = nn.ModuleList([
|
|||
|
nn.Sequential(
|
|||
|
nn.Conv2d(backbone.num_channels[0], hidden_dim, kernel_size=1),
|
|||
|
nn.GroupNorm(32, hidden_dim),
|
|||
|
)])
|
|||
|
self.backbone = backbone
|
|||
|
self.aux_loss = aux_loss
|
|||
|
self.with_box_refine = with_box_refine
|
|||
|
self.two_stage = two_stage
|
|||
|
|
|||
|
prior_prob = 0.01
|
|||
|
bias_value = -math.log((1 - prior_prob) / prior_prob)
|
|||
|
self.class_embed.bias.data = torch.ones(num_classes) * bias_value
|
|||
|
nn.init.constant_(self.bbox_embed.layers[-1].weight.data, 0)
|
|||
|
nn.init.constant_(self.bbox_embed.layers[-1].bias.data, 0)
|
|||
|
for proj in self.input_proj:
|
|||
|
nn.init.xavier_uniform_(proj[0].weight, gain=1)
|
|||
|
nn.init.constant_(proj[0].bias, 0)
|
|||
|
|
|||
|
# if two-stage, the last class_embed and bbox_embed is for region proposal generation
|
|||
|
num_pred = (transformer.decoder.num_layers + 1) if two_stage else transformer.decoder.num_layers
|
|||
|
if with_box_refine:
|
|||
|
self.class_embed = _get_clones(self.class_embed, num_pred)
|
|||
|
self.bbox_embed = _get_clones(self.bbox_embed, num_pred)
|
|||
|
nn.init.constant_(self.bbox_embed[0].layers[-1].bias.data[2:], -2.0)
|
|||
|
# hack implementation for iterative bounding box refinement
|
|||
|
self.transformer.decoder.bbox_embed = self.bbox_embed
|
|||
|
else:
|
|||
|
nn.init.constant_(self.bbox_embed.layers[-1].bias.data[2:], -2.0)
|
|||
|
self.class_embed = nn.ModuleList([self.class_embed for _ in range(num_pred)])
|
|||
|
self.bbox_embed = nn.ModuleList([self.bbox_embed for _ in range(num_pred)])
|
|||
|
self.transformer.decoder.bbox_embed = None
|
|||
|
if two_stage:
|
|||
|
# hack implementation for two-stage
|
|||
|
self.transformer.decoder.class_embed = self.class_embed
|
|||
|
for box_embed in self.bbox_embed:
|
|||
|
nn.init.constant_(box_embed.layers[-1].bias.data[2:], 0.0)
|
|||
|
|
|||
|
def forward(self, samples: NestedTensor):
|
|||
|
""" The forward expects a NestedTensor, which consists of:
|
|||
|
- samples.tensor: batched images, of shape [batch_size x 3 x H x W]
|
|||
|
- samples.mask: a binary mask of shape [batch_size x H x W], containing 1 on padded pixels
|
|||
|
|
|||
|
It returns a dict with the following elements:
|
|||
|
- "pred_logits": the classification logits (including no-object) for all queries.
|
|||
|
Shape= [batch_size x num_queries x (num_classes + 1)]
|
|||
|
- "pred_boxes": The normalized boxes coordinates for all queries, represented as
|
|||
|
(center_x, center_y, height, width). These values are normalized in [0, 1],
|
|||
|
relative to the size of each individual image (disregarding possible padding).
|
|||
|
See PostProcess for information on how to retrieve the unnormalized bounding box.
|
|||
|
- "aux_outputs": Optional, only returned when auxilary losses are activated. It is a list of
|
|||
|
dictionnaries containing the two above keys for each decoder layer.
|
|||
|
"""
|
|||
|
if not isinstance(samples, NestedTensor):
|
|||
|
samples = nested_tensor_from_tensor_list(samples)
|
|||
|
features, pos = self.backbone(samples)
|
|||
|
|
|||
|
srcs = []
|
|||
|
masks = []
|
|||
|
for l, feat in enumerate(features):
|
|||
|
src, mask = feat.decompose()
|
|||
|
srcs.append(self.input_proj[l](src))
|
|||
|
masks.append(mask)
|
|||
|
assert mask is not None
|
|||
|
if self.num_feature_levels > len(srcs):
|
|||
|
_len_srcs = len(srcs)
|
|||
|
for l in range(_len_srcs, self.num_feature_levels):
|
|||
|
if l == _len_srcs:
|
|||
|
src = self.input_proj[l](features[-1].tensors)
|
|||
|
else:
|
|||
|
src = self.input_proj[l](srcs[-1])
|
|||
|
m = samples.mask
|
|||
|
mask = F.interpolate(m[None].float(), size=src.shape[-2:]).to(torch.bool)[0]
|
|||
|
pos_l = self.backbone[1](NestedTensor(src, mask)).to(src.dtype)
|
|||
|
srcs.append(src)
|
|||
|
masks.append(mask)
|
|||
|
pos.append(pos_l)
|
|||
|
|
|||
|
query_embeds = None
|
|||
|
if not self.two_stage:
|
|||
|
query_embeds = self.query_embed.weight
|
|||
|
hs, init_reference, inter_references, enc_outputs_class, enc_outputs_coord_unact = self.transformer(srcs, masks, pos, query_embeds)
|
|||
|
|
|||
|
outputs_classes = []
|
|||
|
outputs_coords = []
|
|||
|
for lvl in range(hs.shape[0]):
|
|||
|
if lvl == 0:
|
|||
|
reference = init_reference
|
|||
|
else:
|
|||
|
reference = inter_references[lvl - 1]
|
|||
|
reference = inverse_sigmoid(reference)
|
|||
|
outputs_class = self.class_embed[lvl](hs[lvl])
|
|||
|
tmp = self.bbox_embed[lvl](hs[lvl])
|
|||
|
if reference.shape[-1] == 4:
|
|||
|
tmp += reference
|
|||
|
else:
|
|||
|
assert reference.shape[-1] == 2
|
|||
|
tmp[..., :2] += reference
|
|||
|
outputs_coord = tmp.sigmoid()
|
|||
|
outputs_classes.append(outputs_class)
|
|||
|
outputs_coords.append(outputs_coord)
|
|||
|
outputs_class = torch.stack(outputs_classes)
|
|||
|
outputs_coord = torch.stack(outputs_coords)
|
|||
|
|
|||
|
out = {'pred_logits': outputs_class[-1], 'pred_boxes': outputs_coord[-1]}
|
|||
|
if self.aux_loss:
|
|||
|
out['aux_outputs'] = self._set_aux_loss(outputs_class, outputs_coord)
|
|||
|
|
|||
|
if self.two_stage:
|
|||
|
enc_outputs_coord = enc_outputs_coord_unact.sigmoid()
|
|||
|
out['enc_outputs'] = {'pred_logits': enc_outputs_class, 'pred_boxes': enc_outputs_coord}
|
|||
|
return out
|
|||
|
|
|||
|
@torch.jit.unused
|
|||
|
def _set_aux_loss(self, outputs_class, outputs_coord):
|
|||
|
# this is a workaround to make torchscript happy, as torchscript
|
|||
|
# doesn't support dictionary with non-homogeneous values, such
|
|||
|
# as a dict having both a Tensor and a list.
|
|||
|
return [{'pred_logits': a, 'pred_boxes': b}
|
|||
|
for a, b in zip(outputs_class[:-1], outputs_coord[:-1])]
|
|||
|
|
|||
|
|
|||
|
class SetCriterion(nn.Module):
|
|||
|
""" This class computes the loss for DETR.
|
|||
|
The process happens in two steps:
|
|||
|
1) we compute hungarian assignment between ground truth boxes and the outputs of the model
|
|||
|
2) we supervise each pair of matched ground-truth / prediction (supervise class and box)
|
|||
|
"""
|
|||
|
def __init__(self, num_classes, matcher, weight_dict, losses, focal_alpha=0.25):
|
|||
|
""" Create the criterion.
|
|||
|
Parameters:
|
|||
|
num_classes: number of object categories, omitting the special no-object category
|
|||
|
matcher: module able to compute a matching between targets and proposals
|
|||
|
weight_dict: dict containing as key the names of the losses and as values their relative weight.
|
|||
|
losses: list of all the losses to be applied. See get_loss for list of available losses.
|
|||
|
focal_alpha: alpha in Focal Loss
|
|||
|
"""
|
|||
|
super().__init__()
|
|||
|
self.num_classes = num_classes
|
|||
|
self.matcher = matcher
|
|||
|
self.weight_dict = weight_dict
|
|||
|
self.losses = losses
|
|||
|
self.focal_alpha = focal_alpha
|
|||
|
|
|||
|
def loss_labels(self, outputs, targets, indices, num_boxes, log=True):
|
|||
|
"""Classification loss (NLL)
|
|||
|
targets dicts must contain the key "labels" containing a tensor of dim [nb_target_boxes]
|
|||
|
"""
|
|||
|
assert 'pred_logits' in outputs
|
|||
|
src_logits = outputs['pred_logits']
|
|||
|
|
|||
|
idx = self._get_src_permutation_idx(indices)
|
|||
|
target_classes_o = torch.cat([t["labels"][J] for t, (_, J) in zip(targets, indices)])
|
|||
|
target_classes = torch.full(src_logits.shape[:2], self.num_classes,
|
|||
|
dtype=torch.int64, device=src_logits.device)
|
|||
|
target_classes[idx] = target_classes_o
|
|||
|
|
|||
|
target_classes_onehot = torch.zeros([src_logits.shape[0], src_logits.shape[1], src_logits.shape[2] + 1],
|
|||
|
dtype=src_logits.dtype, layout=src_logits.layout, device=src_logits.device)
|
|||
|
target_classes_onehot.scatter_(2, target_classes.unsqueeze(-1), 1)
|
|||
|
|
|||
|
target_classes_onehot = target_classes_onehot[:,:,:-1]
|
|||
|
loss_ce = sigmoid_focal_loss(src_logits, target_classes_onehot, num_boxes, alpha=self.focal_alpha, gamma=2) * src_logits.shape[1]
|
|||
|
losses = {'loss_ce': loss_ce}
|
|||
|
|
|||
|
if log:
|
|||
|
# TODO this should probably be a separate loss, not hacked in this one here
|
|||
|
losses['class_error'] = 100 - accuracy(src_logits[idx], target_classes_o)[0]
|
|||
|
return losses
|
|||
|
|
|||
|
@torch.no_grad()
|
|||
|
def loss_cardinality(self, outputs, targets, indices, num_boxes):
|
|||
|
""" Compute the cardinality error, ie the absolute error in the number of predicted non-empty boxes
|
|||
|
This is not really a loss, it is intended for logging purposes only. It doesn't propagate gradients
|
|||
|
"""
|
|||
|
pred_logits = outputs['pred_logits']
|
|||
|
device = pred_logits.device
|
|||
|
tgt_lengths = torch.as_tensor([len(v["labels"]) for v in targets], device=device)
|
|||
|
# Count the number of predictions that are NOT "no-object" (which is the last class)
|
|||
|
card_pred = (pred_logits.argmax(-1) != pred_logits.shape[-1] - 1).sum(1)
|
|||
|
card_err = F.l1_loss(card_pred.float(), tgt_lengths.float())
|
|||
|
losses = {'cardinality_error': card_err}
|
|||
|
return losses
|
|||
|
|
|||
|
def loss_boxes(self, outputs, targets, indices, num_boxes):
|
|||
|
"""Compute the losses related to the bounding boxes, the L1 regression loss and the GIoU loss
|
|||
|
targets dicts must contain the key "boxes" containing a tensor of dim [nb_target_boxes, 4]
|
|||
|
The target boxes are expected in format (center_x, center_y, h, w), normalized by the image size.
|
|||
|
"""
|
|||
|
assert 'pred_boxes' in outputs
|
|||
|
idx = self._get_src_permutation_idx(indices)
|
|||
|
src_boxes = outputs['pred_boxes'][idx]
|
|||
|
target_boxes = torch.cat([t['boxes'][i] for t, (_, i) in zip(targets, indices)], dim=0)
|
|||
|
|
|||
|
loss_bbox = F.l1_loss(src_boxes, target_boxes, reduction='none')
|
|||
|
|
|||
|
losses = {}
|
|||
|
losses['loss_bbox'] = loss_bbox.sum() / num_boxes
|
|||
|
|
|||
|
loss_giou = 1 - torch.diag(box_ops.generalized_box_iou(
|
|||
|
box_ops.box_cxcywh_to_xyxy(src_boxes),
|
|||
|
box_ops.box_cxcywh_to_xyxy(target_boxes)))
|
|||
|
losses['loss_giou'] = loss_giou.sum() / num_boxes
|
|||
|
return losses
|
|||
|
|
|||
|
def loss_masks(self, outputs, targets, indices, num_boxes):
|
|||
|
"""Compute the losses related to the masks: the focal loss and the dice loss.
|
|||
|
targets dicts must contain the key "masks" containing a tensor of dim [nb_target_boxes, h, w]
|
|||
|
"""
|
|||
|
assert "pred_masks" in outputs
|
|||
|
|
|||
|
src_idx = self._get_src_permutation_idx(indices)
|
|||
|
tgt_idx = self._get_tgt_permutation_idx(indices)
|
|||
|
|
|||
|
src_masks = outputs["pred_masks"]
|
|||
|
|
|||
|
# TODO use valid to mask invalid areas due to padding in loss
|
|||
|
target_masks, valid = nested_tensor_from_tensor_list([t["masks"] for t in targets]).decompose()
|
|||
|
target_masks = target_masks.to(src_masks)
|
|||
|
|
|||
|
src_masks = src_masks[src_idx]
|
|||
|
# upsample predictions to the target size
|
|||
|
src_masks = interpolate(src_masks[:, None], size=target_masks.shape[-2:],
|
|||
|
mode="bilinear", align_corners=False)
|
|||
|
src_masks = src_masks[:, 0].flatten(1)
|
|||
|
|
|||
|
target_masks = target_masks[tgt_idx].flatten(1)
|
|||
|
|
|||
|
losses = {
|
|||
|
"loss_mask": sigmoid_focal_loss(src_masks, target_masks, num_boxes),
|
|||
|
"loss_dice": dice_loss(src_masks, target_masks, num_boxes),
|
|||
|
}
|
|||
|
return losses
|
|||
|
|
|||
|
def _get_src_permutation_idx(self, indices):
|
|||
|
# permute predictions following indices
|
|||
|
batch_idx = torch.cat([torch.full_like(src, i) for i, (src, _) in enumerate(indices)])
|
|||
|
src_idx = torch.cat([src for (src, _) in indices])
|
|||
|
return batch_idx, src_idx
|
|||
|
|
|||
|
def _get_tgt_permutation_idx(self, indices):
|
|||
|
# permute targets following indices
|
|||
|
batch_idx = torch.cat([torch.full_like(tgt, i) for i, (_, tgt) in enumerate(indices)])
|
|||
|
tgt_idx = torch.cat([tgt for (_, tgt) in indices])
|
|||
|
return batch_idx, tgt_idx
|
|||
|
|
|||
|
def get_loss(self, loss, outputs, targets, indices, num_boxes, **kwargs):
|
|||
|
loss_map = {
|
|||
|
'labels': self.loss_labels,
|
|||
|
'cardinality': self.loss_cardinality,
|
|||
|
'boxes': self.loss_boxes,
|
|||
|
'masks': self.loss_masks
|
|||
|
}
|
|||
|
assert loss in loss_map, f'do you really want to compute {loss} loss?'
|
|||
|
return loss_map[loss](outputs, targets, indices, num_boxes, **kwargs)
|
|||
|
|
|||
|
def forward(self, outputs, targets):
|
|||
|
""" This performs the loss computation.
|
|||
|
Parameters:
|
|||
|
outputs: dict of tensors, see the output specification of the model for the format
|
|||
|
targets: list of dicts, such that len(targets) == batch_size.
|
|||
|
The expected keys in each dict depends on the losses applied, see each loss' doc
|
|||
|
"""
|
|||
|
outputs_without_aux = {k: v for k, v in outputs.items() if k != 'aux_outputs' and k != 'enc_outputs'}
|
|||
|
|
|||
|
# Retrieve the matching between the outputs of the last layer and the targets
|
|||
|
indices = self.matcher(outputs_without_aux, targets)
|
|||
|
|
|||
|
# Compute the average number of target boxes accross all nodes, for normalization purposes
|
|||
|
num_boxes = sum(len(t["labels"]) for t in targets)
|
|||
|
num_boxes = torch.as_tensor([num_boxes], dtype=torch.float, device=next(iter(outputs.values())).device)
|
|||
|
if is_dist_avail_and_initialized():
|
|||
|
torch.distributed.all_reduce(num_boxes)
|
|||
|
num_boxes = torch.clamp(num_boxes / get_world_size(), min=1).item()
|
|||
|
|
|||
|
# Compute all the requested losses
|
|||
|
losses = {}
|
|||
|
for loss in self.losses:
|
|||
|
kwargs = {}
|
|||
|
losses.update(self.get_loss(loss, outputs, targets, indices, num_boxes, **kwargs))
|
|||
|
|
|||
|
# In case of auxiliary losses, we repeat this process with the output of each intermediate layer.
|
|||
|
if 'aux_outputs' in outputs:
|
|||
|
for i, aux_outputs in enumerate(outputs['aux_outputs']):
|
|||
|
indices = self.matcher(aux_outputs, targets)
|
|||
|
for loss in self.losses:
|
|||
|
if loss == 'masks':
|
|||
|
# Intermediate masks losses are too costly to compute, we ignore them.
|
|||
|
continue
|
|||
|
kwargs = {}
|
|||
|
if loss == 'labels':
|
|||
|
# Logging is enabled only for the last layer
|
|||
|
kwargs['log'] = False
|
|||
|
l_dict = self.get_loss(loss, aux_outputs, targets, indices, num_boxes, **kwargs)
|
|||
|
l_dict = {k + f'_{i}': v for k, v in l_dict.items()}
|
|||
|
losses.update(l_dict)
|
|||
|
|
|||
|
if 'enc_outputs' in outputs:
|
|||
|
enc_outputs = outputs['enc_outputs']
|
|||
|
bin_targets = copy.deepcopy(targets)
|
|||
|
for bt in bin_targets:
|
|||
|
bt['labels'] = torch.zeros_like(bt['labels'])
|
|||
|
indices = self.matcher(enc_outputs, bin_targets)
|
|||
|
for loss in self.losses:
|
|||
|
if loss == 'masks':
|
|||
|
# Intermediate masks losses are too costly to compute, we ignore them.
|
|||
|
continue
|
|||
|
kwargs = {}
|
|||
|
if loss == 'labels':
|
|||
|
# Logging is enabled only for the last layer
|
|||
|
kwargs['log'] = False
|
|||
|
l_dict = self.get_loss(loss, enc_outputs, bin_targets, indices, num_boxes, **kwargs)
|
|||
|
l_dict = {k + f'_enc': v for k, v in l_dict.items()}
|
|||
|
losses.update(l_dict)
|
|||
|
|
|||
|
return losses
|
|||
|
|
|||
|
|
|||
|
class PostProcess(nn.Module):
|
|||
|
""" This module converts the model's output into the format expected by the coco api"""
|
|||
|
|
|||
|
@torch.no_grad()
|
|||
|
def forward(self, outputs, target_sizes):
|
|||
|
""" Perform the computation
|
|||
|
Parameters:
|
|||
|
outputs: raw outputs of the model
|
|||
|
target_sizes: tensor of dimension [batch_size x 2] containing the size of each images of the batch
|
|||
|
For evaluation, this must be the original image size (before any data augmentation)
|
|||
|
For visualization, this should be the image size after data augment, but before padding
|
|||
|
"""
|
|||
|
out_logits, out_bbox = outputs['pred_logits'], outputs['pred_boxes']
|
|||
|
|
|||
|
assert len(out_logits) == len(target_sizes)
|
|||
|
assert target_sizes.shape[1] == 2
|
|||
|
|
|||
|
prob = out_logits.sigmoid()
|
|||
|
topk_values, topk_indexes = torch.topk(prob.view(out_logits.shape[0], -1), 100, dim=1)
|
|||
|
scores = topk_values
|
|||
|
topk_boxes = topk_indexes // out_logits.shape[2]
|
|||
|
labels = topk_indexes % out_logits.shape[2]
|
|||
|
boxes = box_ops.box_cxcywh_to_xyxy(out_bbox)
|
|||
|
boxes = torch.gather(boxes, 1, topk_boxes.unsqueeze(-1).repeat(1,1,4))
|
|||
|
|
|||
|
# and from relative [0, 1] to absolute [0, height] coordinates
|
|||
|
img_h, img_w = target_sizes.unbind(1)
|
|||
|
scale_fct = torch.stack([img_w, img_h, img_w, img_h], dim=1)
|
|||
|
boxes = boxes * scale_fct[:, None, :]
|
|||
|
|
|||
|
results = [{'scores': s, 'labels': l, 'boxes': b} for s, l, b in zip(scores, labels, boxes)]
|
|||
|
|
|||
|
return results
|
|||
|
|
|||
|
|
|||
|
class MLP(nn.Module):
|
|||
|
""" Very simple multi-layer perceptron (also called FFN)"""
|
|||
|
|
|||
|
def __init__(self, input_dim, hidden_dim, output_dim, num_layers):
|
|||
|
super().__init__()
|
|||
|
self.num_layers = num_layers
|
|||
|
h = [hidden_dim] * (num_layers - 1)
|
|||
|
self.layers = nn.ModuleList(nn.Linear(n, k) for n, k in zip([input_dim] + h, h + [output_dim]))
|
|||
|
|
|||
|
def forward(self, x):
|
|||
|
for i, layer in enumerate(self.layers):
|
|||
|
x = F.relu(layer(x)) if i < self.num_layers - 1 else layer(x)
|
|||
|
return x
|
|||
|
|
|||
|
|
|||
|
def build(args):
|
|||
|
|
|||
|
num_classes = 31
|
|||
|
device = torch.device(args.device)
|
|||
|
|
|||
|
backbone = build_backbone(args)
|
|||
|
|
|||
|
transformer = build_deforamble_transformer(args)
|
|||
|
model = DeformableDETR(
|
|||
|
backbone,
|
|||
|
transformer,
|
|||
|
num_classes=num_classes,
|
|||
|
num_queries=args.num_queries,
|
|||
|
num_feature_levels=args.num_feature_levels,
|
|||
|
aux_loss=args.aux_loss,
|
|||
|
with_box_refine=args.with_box_refine,
|
|||
|
two_stage=args.two_stage,
|
|||
|
)
|
|||
|
if args.masks:
|
|||
|
model = DETRsegm(model, freeze_detr=(args.frozen_weights is not None))
|
|||
|
matcher = build_matcher(args)
|
|||
|
weight_dict = {'loss_ce': args.cls_loss_coef, 'loss_bbox': args.bbox_loss_coef}
|
|||
|
weight_dict['loss_giou'] = args.giou_loss_coef
|
|||
|
if args.masks:
|
|||
|
weight_dict["loss_mask"] = args.mask_loss_coef
|
|||
|
weight_dict["loss_dice"] = args.dice_loss_coef
|
|||
|
# TODO this is a hack
|
|||
|
if args.aux_loss:
|
|||
|
aux_weight_dict = {}
|
|||
|
for i in range(args.dec_layers - 1):
|
|||
|
aux_weight_dict.update({k + f'_{i}': v for k, v in weight_dict.items()})
|
|||
|
aux_weight_dict.update({k + f'_enc': v for k, v in weight_dict.items()})
|
|||
|
weight_dict.update(aux_weight_dict)
|
|||
|
|
|||
|
losses = ['labels', 'boxes', 'cardinality']
|
|||
|
if args.masks:
|
|||
|
losses += ["masks"]
|
|||
|
# num_classes, matcher, weight_dict, losses, focal_alpha=0.25
|
|||
|
criterion = SetCriterion(num_classes, matcher, weight_dict, losses, focal_alpha=args.focal_alpha)
|
|||
|
criterion.to(device)
|
|||
|
postprocessors = {'bbox': PostProcess()}
|
|||
|
if args.masks:
|
|||
|
postprocessors['segm'] = PostProcessSegm()
|
|||
|
if args.dataset_file == "coco_panoptic":
|
|||
|
is_thing_map = {i: i <= 90 for i in range(201)}
|
|||
|
postprocessors["panoptic"] = PostProcessPanoptic(is_thing_map, threshold=0.85)
|
|||
|
|
|||
|
return model, criterion, postprocessors
|