193 lines
9.1 KiB
Python
193 lines
9.1 KiB
Python
|
# --------------------------------------------------------------------------------------------------------------------------
|
||
|
# Deformable DETR
|
||
|
# Copyright (c) 2020 SenseTime. All Rights Reserved.
|
||
|
# Licensed under the Apache License, Version 2.0 [see LICENSE for details]
|
||
|
# --------------------------------------------------------------------------------------------------------------------------
|
||
|
# Modified from https://github.com/pytorch/pytorch/blob/173f224570017b4b1a3a1a13d0bff280a54d9cd9/torch/distributed/launch.py
|
||
|
# --------------------------------------------------------------------------------------------------------------------------
|
||
|
|
||
|
r"""
|
||
|
`torch.distributed.launch` is a module that spawns up multiple distributed
|
||
|
training processes on each of the training nodes.
|
||
|
The utility can be used for single-node distributed training, in which one or
|
||
|
more processes per node will be spawned. The utility can be used for either
|
||
|
CPU training or GPU training. If the utility is used for GPU training,
|
||
|
each distributed process will be operating on a single GPU. This can achieve
|
||
|
well-improved single-node training performance. It can also be used in
|
||
|
multi-node distributed training, by spawning up multiple processes on each node
|
||
|
for well-improved multi-node distributed training performance as well.
|
||
|
This will especially be benefitial for systems with multiple Infiniband
|
||
|
interfaces that have direct-GPU support, since all of them can be utilized for
|
||
|
aggregated communication bandwidth.
|
||
|
In both cases of single-node distributed training or multi-node distributed
|
||
|
training, this utility will launch the given number of processes per node
|
||
|
(``--nproc_per_node``). If used for GPU training, this number needs to be less
|
||
|
or euqal to the number of GPUs on the current system (``nproc_per_node``),
|
||
|
and each process will be operating on a single GPU from *GPU 0 to
|
||
|
GPU (nproc_per_node - 1)*.
|
||
|
**How to use this module:**
|
||
|
1. Single-Node multi-process distributed training
|
||
|
::
|
||
|
>>> python -m torch.distributed.launch --nproc_per_node=NUM_GPUS_YOU_HAVE
|
||
|
YOUR_TRAINING_SCRIPT.py (--arg1 --arg2 --arg3 and all other
|
||
|
arguments of your training script)
|
||
|
2. Multi-Node multi-process distributed training: (e.g. two nodes)
|
||
|
Node 1: *(IP: 192.168.1.1, and has a free port: 1234)*
|
||
|
::
|
||
|
>>> python -m torch.distributed.launch --nproc_per_node=NUM_GPUS_YOU_HAVE
|
||
|
--nnodes=2 --node_rank=0 --master_addr="192.168.1.1"
|
||
|
--master_port=1234 YOUR_TRAINING_SCRIPT.py (--arg1 --arg2 --arg3
|
||
|
and all other arguments of your training script)
|
||
|
Node 2:
|
||
|
::
|
||
|
>>> python -m torch.distributed.launch --nproc_per_node=NUM_GPUS_YOU_HAVE
|
||
|
--nnodes=2 --node_rank=1 --master_addr="192.168.1.1"
|
||
|
--master_port=1234 YOUR_TRAINING_SCRIPT.py (--arg1 --arg2 --arg3
|
||
|
and all other arguments of your training script)
|
||
|
3. To look up what optional arguments this module offers:
|
||
|
::
|
||
|
>>> python -m torch.distributed.launch --help
|
||
|
**Important Notices:**
|
||
|
1. This utilty and multi-process distributed (single-node or
|
||
|
multi-node) GPU training currently only achieves the best performance using
|
||
|
the NCCL distributed backend. Thus NCCL backend is the recommended backend to
|
||
|
use for GPU training.
|
||
|
2. In your training program, you must parse the command-line argument:
|
||
|
``--local_rank=LOCAL_PROCESS_RANK``, which will be provided by this module.
|
||
|
If your training program uses GPUs, you should ensure that your code only
|
||
|
runs on the GPU device of LOCAL_PROCESS_RANK. This can be done by:
|
||
|
Parsing the local_rank argument
|
||
|
::
|
||
|
>>> import argparse
|
||
|
>>> parser = argparse.ArgumentParser()
|
||
|
>>> parser.add_argument("--local_rank", type=int)
|
||
|
>>> args = parser.parse_args()
|
||
|
Set your device to local rank using either
|
||
|
::
|
||
|
>>> torch.cuda.set_device(arg.local_rank) # before your code runs
|
||
|
or
|
||
|
::
|
||
|
>>> with torch.cuda.device(arg.local_rank):
|
||
|
>>> # your code to run
|
||
|
3. In your training program, you are supposed to call the following function
|
||
|
at the beginning to start the distributed backend. You need to make sure that
|
||
|
the init_method uses ``env://``, which is the only supported ``init_method``
|
||
|
by this module.
|
||
|
::
|
||
|
torch.distributed.init_process_group(backend='YOUR BACKEND',
|
||
|
init_method='env://')
|
||
|
4. In your training program, you can either use regular distributed functions
|
||
|
or use :func:`torch.nn.parallel.DistributedDataParallel` module. If your
|
||
|
training program uses GPUs for training and you would like to use
|
||
|
:func:`torch.nn.parallel.DistributedDataParallel` module,
|
||
|
here is how to configure it.
|
||
|
::
|
||
|
model = torch.nn.parallel.DistributedDataParallel(model,
|
||
|
device_ids=[arg.local_rank],
|
||
|
output_device=arg.local_rank)
|
||
|
Please ensure that ``device_ids`` argument is set to be the only GPU device id
|
||
|
that your code will be operating on. This is generally the local rank of the
|
||
|
process. In other words, the ``device_ids`` needs to be ``[args.local_rank]``,
|
||
|
and ``output_device`` needs to be ``args.local_rank`` in order to use this
|
||
|
utility
|
||
|
5. Another way to pass ``local_rank`` to the subprocesses via environment variable
|
||
|
``LOCAL_RANK``. This behavior is enabled when you launch the script with
|
||
|
``--use_env=True``. You must adjust the subprocess example above to replace
|
||
|
``args.local_rank`` with ``os.environ['LOCAL_RANK']``; the launcher
|
||
|
will not pass ``--local_rank`` when you specify this flag.
|
||
|
.. warning::
|
||
|
``local_rank`` is NOT globally unique: it is only unique per process
|
||
|
on a machine. Thus, don't use it to decide if you should, e.g.,
|
||
|
write to a networked filesystem. See
|
||
|
https://github.com/pytorch/pytorch/issues/12042 for an example of
|
||
|
how things can go wrong if you don't do this correctly.
|
||
|
"""
|
||
|
|
||
|
|
||
|
import sys
|
||
|
import subprocess
|
||
|
import os
|
||
|
import socket
|
||
|
from argparse import ArgumentParser, REMAINDER
|
||
|
|
||
|
import torch
|
||
|
|
||
|
|
||
|
def parse_args():
|
||
|
"""
|
||
|
Helper function parsing the command line options
|
||
|
@retval ArgumentParser
|
||
|
"""
|
||
|
parser = ArgumentParser(description="PyTorch distributed training launch "
|
||
|
"helper utilty that will spawn up "
|
||
|
"multiple distributed processes")
|
||
|
|
||
|
# Optional arguments for the launch helper
|
||
|
parser.add_argument("--nnodes", type=int, default=1,
|
||
|
help="The number of nodes to use for distributed "
|
||
|
"training")
|
||
|
parser.add_argument("--node_rank", type=int, default=0,
|
||
|
help="The rank of the node for multi-node distributed "
|
||
|
"training")
|
||
|
parser.add_argument("--nproc_per_node", type=int, default=1,
|
||
|
help="The number of processes to launch on each node, "
|
||
|
"for GPU training, this is recommended to be set "
|
||
|
"to the number of GPUs in your system so that "
|
||
|
"each process can be bound to a single GPU.")
|
||
|
parser.add_argument("--master_addr", default="127.0.0.1", type=str,
|
||
|
help="Master node (rank 0)'s address, should be either "
|
||
|
"the IP address or the hostname of node 0, for "
|
||
|
"single node multi-proc training, the "
|
||
|
"--master_addr can simply be 127.0.0.1")
|
||
|
parser.add_argument("--master_port", default=29501, type=int,
|
||
|
help="Master node (rank 0)'s free port that needs to "
|
||
|
"be used for communciation during distributed "
|
||
|
"training")
|
||
|
|
||
|
# positional
|
||
|
parser.add_argument("training_script", type=str,
|
||
|
help="The full path to the single GPU training "
|
||
|
"program/script to be launched in parallel, "
|
||
|
"followed by all the arguments for the "
|
||
|
"training script")
|
||
|
|
||
|
# rest from the training program
|
||
|
parser.add_argument('training_script_args', nargs=REMAINDER)
|
||
|
return parser.parse_args()
|
||
|
|
||
|
|
||
|
def main():
|
||
|
args = parse_args()
|
||
|
|
||
|
# world size in terms of number of processes
|
||
|
dist_world_size = args.nproc_per_node * args.nnodes
|
||
|
|
||
|
# set PyTorch distributed related environmental variables
|
||
|
current_env = os.environ.copy()
|
||
|
current_env["MASTER_ADDR"] = args.master_addr
|
||
|
current_env["MASTER_PORT"] = str(args.master_port)
|
||
|
current_env["WORLD_SIZE"] = str(dist_world_size)
|
||
|
|
||
|
processes = []
|
||
|
|
||
|
for local_rank in range(0, args.nproc_per_node):
|
||
|
# each process's rank
|
||
|
dist_rank = args.nproc_per_node * args.node_rank + local_rank
|
||
|
current_env["RANK"] = str(dist_rank)
|
||
|
current_env["LOCAL_RANK"] = str(local_rank)
|
||
|
|
||
|
cmd = [args.training_script] + args.training_script_args
|
||
|
|
||
|
process = subprocess.Popen(cmd, env=current_env)
|
||
|
processes.append(process)
|
||
|
|
||
|
for process in processes:
|
||
|
process.wait()
|
||
|
if process.returncode != 0:
|
||
|
raise subprocess.CalledProcessError(returncode=process.returncode,
|
||
|
cmd=process.args)
|
||
|
|
||
|
|
||
|
if __name__ == "__main__":
|
||
|
main()
|