# ------------------------------------------------------------------------ # Deformable DETR # Copyright (c) 2020 SenseTime. All Rights Reserved. # Licensed under the Apache License, Version 2.0 [see LICENSE for details] # ------------------------------------------------------------------------ """ Benchmark inference speed of Deformable DETR. """ import os import time import argparse import torch from main import get_args_parser as get_main_args_parser from models import build_model from datasets import build_dataset from util.misc import nested_tensor_from_tensor_list def get_benckmark_arg_parser(): parser = argparse.ArgumentParser('Benchmark inference speed of Deformable DETR.') parser.add_argument('--num_iters', type=int, default=300, help='total iters to benchmark speed') parser.add_argument('--warm_iters', type=int, default=5, help='ignore first several iters that are very slow') parser.add_argument('--batch_size', type=int, default=1, help='batch size in inference') parser.add_argument('--resume', type=str, help='load the pre-trained checkpoint') return parser @torch.no_grad() def measure_average_inference_time(model, inputs, num_iters=100, warm_iters=5): ts = [] for iter_ in range(num_iters): torch.cuda.synchronize() t_ = time.perf_counter() model(inputs) torch.cuda.synchronize() t = time.perf_counter() - t_ if iter_ >= warm_iters: ts.append(t) print(ts) return sum(ts) / len(ts) def benchmark(): args, _ = get_benckmark_arg_parser().parse_known_args() main_args = get_main_args_parser().parse_args(_) assert args.warm_iters < args.num_iters and args.num_iters > 0 and args.warm_iters >= 0 assert args.batch_size > 0 assert args.resume is None or os.path.exists(args.resume) dataset = build_dataset('val', main_args) model, _, _ = build_model(main_args) model.cuda() model.eval() if args.resume is not None: ckpt = torch.load(args.resume, map_location=lambda storage, loc: storage) model.load_state_dict(ckpt['model']) inputs = nested_tensor_from_tensor_list([dataset.__getitem__(0)[0].cuda() for _ in range(args.batch_size)]) t = measure_average_inference_time(model, inputs, args.num_iters, args.warm_iters) return 1.0 / t * args.batch_size if __name__ == '__main__': fps = benchmark() print(f'Inference Speed: {fps:.1f} FPS')