# Modified by Lu He # ------------------------------------------------------------------------ # Deformable DETR # Copyright (c) 2020 SenseTime. All Rights Reserved. # Licensed under the Apache License, Version 2.0 [see LICENSE for details] # ------------------------------------------------------------------------ # Modified from DETR (https://github.com/facebookresearch/detr) # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved # ------------------------------------------------------------------------ """ COCO dataset which returns image_id for evaluation. Mostly copy-paste from https://github.com/pytorch/vision/blob/13b35ff/references/detection/coco_utils.py """ from pathlib import Path import torch import torch.utils.data from pycocotools import mask as coco_mask from .coco_video_parser import CocoVID from .torchvision_datasets import CocoDetection as TvCocoDetection from util.misc import get_local_rank, get_local_size import datasets.transforms_multi as T from torch.utils.data.dataset import ConcatDataset import random import os from PIL import Image import os import os.path from io import BytesIO class CocoDetection(TvCocoDetection): def __init__(self, img_folder, ann_file, transforms, return_masks, interval1, interval2, num_ref_frames= 3, is_train = True, filter_key_img=True, cache_mode=False, local_rank=0, local_size=1): super(CocoDetection, self).__init__(img_folder, ann_file, cache_mode=cache_mode, local_rank=local_rank, local_size=local_size) self._transforms = transforms self.prepare = ConvertCocoPolysToMask(return_masks) self.ann_file = ann_file self.frame_range = [-2, 2] self.num_ref_frames = num_ref_frames self.cocovid = CocoVID(self.ann_file) self.is_train = is_train self.filter_key_img = filter_key_img self.interval1 = interval1 self.interval2 = interval2 def get_image(self, path): if self.cache_mode: raise NotImplementedError rgb = Image.open(os.path.join(self.root, path)).convert('RGB') ir_path = path.split('/') ir_path[-2] = 'ir' ir_path = os.path.join(*ir_path) ir = Image.open(os.path.join(self.root, ir_path)).convert('RGB') return rgb, ir def __getitem__(self, idx): """ Args: index (int): Index Returns: tuple: Tuple (image, target). target is the object returned by ``coco.loadAnns``. """ # idx若为675834,则img_id为675835(img_id=idx+1) imgs = [] coco = self.coco img_id = self.ids[idx] img_info = coco.loadImgs(img_id)[0] path = img_info['file_name'] video_id = img_info['video_id'] rgb_img, ir_img = self.get_image(path) _target = {'image_id': img_id, 'video_id': video_id, 'frame_id': img_info['frame_id']} # import cv2 # import numpy as np # image = np.array(rgb_img) # image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) # box = _target['annotations'][0]['bbox'] # image = cv2.rectangle(image, (box[0], box[1]), (box[0]+box[2], box[1]+box[3]), color=(0, 0, 255), thickness=1) # cv2.imshow('rgb_img', image) # image = np.array(ir_img) # image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) # box = _target['annotations'][0]['bbox'] # image = cv2.rectangle(image, (box[0], box[1]), (box[0]+box[2], box[1]+box[3]), color=(0, 0, 255), thickness=1) # cv2.imshow('ir_img', image) # cv2.waitKey(0) rgb_img, target = self.prepare(rgb_img, _target) ir_img, _ = self.prepare(ir_img, _target) imgs.append((rgb_img, ir_img)) if video_id == -1: # imgnet_det raise NotImplementedError else: # imgnet_vid img_ids = self.cocovid.get_img_ids_from_vid(video_id) index = img_ids.index(img_id) if index >= self.num_ref_frames: ref_img_ids = img_ids[index-self.num_ref_frames:index] else: if index == 0: ref_img_ids = [img_ids[index]] * self.num_ref_frames else: ref_img_ids = img_ids[:index] while len(ref_img_ids) < self.num_ref_frames: ref_img_ids.insert(0, ref_img_ids[0]) ref_img_ids.sort(reverse=True) for ref_img_id in ref_img_ids: ref_ann_ids = coco.getAnnIds(imgIds=ref_img_id) ref_img_info = coco.loadImgs(ref_img_id)[0] ref_img_path = ref_img_info['file_name'] ref_rgb_img, ref_ir_img = self.get_image(ref_img_path) imgs.append((ref_rgb_img, ref_ir_img)) if self._transforms is not None: rgb_imgs = [v[0] for v in imgs] ir_imgs = [v[1] for v in imgs] target_copy = target.copy() rgb_imgs, target = self._transforms(rgb_imgs, target) ir_imgs, _ = self._transforms(ir_imgs, target_copy) imgs = rgb_imgs + ir_imgs return torch.cat(imgs, dim=0), target def convert_coco_poly_to_mask(segmentations, height, width): masks = [] for polygons in segmentations: rles = coco_mask.frPyObjects(polygons, height, width) mask = coco_mask.decode(rles) if len(mask.shape) < 3: mask = mask[..., None] mask = torch.as_tensor(mask, dtype=torch.uint8) mask = mask.any(dim=2) masks.append(mask) if masks: masks = torch.stack(masks, dim=0) else: masks = torch.zeros((0, height, width), dtype=torch.uint8) return masks class ConvertCocoPolysToMask(object): def __init__(self, return_masks=False): self.return_masks = return_masks def __call__(self, image, target): w, h = image.size image_id = target["image_id"] video_id = target["video_id"] frame_id = target['frame_id'] image_id = torch.tensor([image_id]) video_id = torch.tensor([video_id]) frame_id = torch.tensor([frame_id]) target = {} target["image_id"] = image_id target["video_id"] = video_id target['frame_id'] = frame_id target["orig_size"] = torch.as_tensor([int(h), int(w)]) target["size"] = torch.as_tensor([int(h), int(w)]) return image, target def make_coco_transforms(image_set): normalize = T.Compose([ T.ToTensor(), T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) ]) scales = [480, 512, 544, 576, 608, 640, 672, 704, 736, 768, 800] if image_set == 'train_vid' or image_set == "train_det" or image_set == "train_joint": return T.Compose([ T.RandomHorizontalFlip(), T.RandomResize([600], max_size=1000), normalize, ]) if image_set == 'test': return T.Compose([ T.RandomResize([600], max_size=1000), normalize, ]) raise ValueError(f'unknown {image_set}') def build(image_set, args): root = Path(args.vid_path) assert root.exists(), f'provided COCO path {root} does not exist' mode = 'instances' PATHS = { "test": [(root / "Data" , root / "annotations" / 'sky_data_vid_test.json')], } datasets = [] for (img_folder, ann_file) in PATHS[image_set]: dataset = CocoDetection(img_folder, ann_file, transforms=make_coco_transforms(image_set), is_train =(not args.eval), interval1=args.interval1, interval2=args.interval2, num_ref_frames = args.num_ref_frames, return_masks=args.masks, cache_mode=args.cache_mode, local_rank=get_local_rank(), local_size=get_local_size()) datasets.append(dataset) if len(datasets) == 1: return datasets[0] return ConcatDataset(datasets)