project1/datasets/vid_multi_mine_multi_test.py

215 lines
7.8 KiB
Python
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

# Modified by Lu He
# ------------------------------------------------------------------------
# Deformable DETR
# Copyright (c) 2020 SenseTime. All Rights Reserved.
# Licensed under the Apache License, Version 2.0 [see LICENSE for details]
# ------------------------------------------------------------------------
# Modified from DETR (https://github.com/facebookresearch/detr)
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
# ------------------------------------------------------------------------
"""
COCO dataset which returns image_id for evaluation.
Mostly copy-paste from https://github.com/pytorch/vision/blob/13b35ff/references/detection/coco_utils.py
"""
from pathlib import Path
import torch
import torch.utils.data
from pycocotools import mask as coco_mask
from .coco_video_parser import CocoVID
from .torchvision_datasets import CocoDetection as TvCocoDetection
from util.misc import get_local_rank, get_local_size
import datasets.transforms_multi as T
from torch.utils.data.dataset import ConcatDataset
import random
import os
from PIL import Image
import os
import os.path
from io import BytesIO
class CocoDetection(TvCocoDetection):
def __init__(self, img_folder, ann_file, transforms, return_masks, interval1, interval2, num_ref_frames= 3,
is_train = True, filter_key_img=True, cache_mode=False, local_rank=0, local_size=1):
super(CocoDetection, self).__init__(img_folder, ann_file,
cache_mode=cache_mode, local_rank=local_rank, local_size=local_size)
self._transforms = transforms
self.prepare = ConvertCocoPolysToMask(return_masks)
self.ann_file = ann_file
self.frame_range = [-2, 2]
self.num_ref_frames = num_ref_frames
self.cocovid = CocoVID(self.ann_file)
self.is_train = is_train
self.filter_key_img = filter_key_img
self.interval1 = interval1
self.interval2 = interval2
def get_image(self, path):
if self.cache_mode:
raise NotImplementedError
rgb = Image.open(os.path.join(self.root, path)).convert('RGB')
ir_path = path.split('/')
ir_path[-2] = 'ir'
ir_path = os.path.join(*ir_path)
ir = Image.open(os.path.join(self.root, ir_path)).convert('RGB')
return rgb, ir
def __getitem__(self, idx):
"""
Args:
index (int): Index
Returns:
tuple: Tuple (image, target). target is the object returned by ``coco.loadAnns``.
"""
# idx若为675834则img_id为675835(img_id=idx+1)
imgs = []
coco = self.coco
img_id = self.ids[idx]
img_info = coco.loadImgs(img_id)[0]
path = img_info['file_name']
video_id = img_info['video_id']
rgb_img, ir_img = self.get_image(path)
_target = {'image_id': img_id, 'video_id': video_id, 'frame_id': img_info['frame_id']}
# import cv2
# import numpy as np
# image = np.array(rgb_img)
# image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
# box = _target['annotations'][0]['bbox']
# image = cv2.rectangle(image, (box[0], box[1]), (box[0]+box[2], box[1]+box[3]), color=(0, 0, 255), thickness=1)
# cv2.imshow('rgb_img', image)
# image = np.array(ir_img)
# image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
# box = _target['annotations'][0]['bbox']
# image = cv2.rectangle(image, (box[0], box[1]), (box[0]+box[2], box[1]+box[3]), color=(0, 0, 255), thickness=1)
# cv2.imshow('ir_img', image)
# cv2.waitKey(0)
rgb_img, target = self.prepare(rgb_img, _target)
ir_img, _ = self.prepare(ir_img, _target)
imgs.append((rgb_img, ir_img))
if video_id == -1: # imgnet_det
raise NotImplementedError
else: # imgnet_vid
img_ids = self.cocovid.get_img_ids_from_vid(video_id)
index = img_ids.index(img_id)
if index >= self.num_ref_frames:
ref_img_ids = img_ids[index-self.num_ref_frames:index]
else:
if index == 0:
ref_img_ids = [img_ids[index]] * self.num_ref_frames
else:
ref_img_ids = img_ids[:index]
while len(ref_img_ids) < self.num_ref_frames:
ref_img_ids.insert(0, ref_img_ids[0])
ref_img_ids.sort(reverse=True)
for ref_img_id in ref_img_ids:
ref_ann_ids = coco.getAnnIds(imgIds=ref_img_id)
ref_img_info = coco.loadImgs(ref_img_id)[0]
ref_img_path = ref_img_info['file_name']
ref_rgb_img, ref_ir_img = self.get_image(ref_img_path)
imgs.append((ref_rgb_img, ref_ir_img))
if self._transforms is not None:
rgb_imgs = [v[0] for v in imgs]
ir_imgs = [v[1] for v in imgs]
target_copy = target.copy()
rgb_imgs, target = self._transforms(rgb_imgs, target)
ir_imgs, _ = self._transforms(ir_imgs, target_copy)
imgs = rgb_imgs + ir_imgs
return torch.cat(imgs, dim=0), target
def convert_coco_poly_to_mask(segmentations, height, width):
masks = []
for polygons in segmentations:
rles = coco_mask.frPyObjects(polygons, height, width)
mask = coco_mask.decode(rles)
if len(mask.shape) < 3:
mask = mask[..., None]
mask = torch.as_tensor(mask, dtype=torch.uint8)
mask = mask.any(dim=2)
masks.append(mask)
if masks:
masks = torch.stack(masks, dim=0)
else:
masks = torch.zeros((0, height, width), dtype=torch.uint8)
return masks
class ConvertCocoPolysToMask(object):
def __init__(self, return_masks=False):
self.return_masks = return_masks
def __call__(self, image, target):
w, h = image.size
image_id = target["image_id"]
video_id = target["video_id"]
frame_id = target['frame_id']
image_id = torch.tensor([image_id])
video_id = torch.tensor([video_id])
frame_id = torch.tensor([frame_id])
target = {}
target["image_id"] = image_id
target["video_id"] = video_id
target['frame_id'] = frame_id
target["orig_size"] = torch.as_tensor([int(h), int(w)])
target["size"] = torch.as_tensor([int(h), int(w)])
return image, target
def make_coco_transforms(image_set):
normalize = T.Compose([
T.ToTensor(),
T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])
scales = [480, 512, 544, 576, 608, 640, 672, 704, 736, 768, 800]
if image_set == 'train_vid' or image_set == "train_det" or image_set == "train_joint":
return T.Compose([
T.RandomHorizontalFlip(),
T.RandomResize([600], max_size=1000),
normalize,
])
if image_set == 'test':
return T.Compose([
T.RandomResize([600], max_size=1000),
normalize,
])
raise ValueError(f'unknown {image_set}')
def build(image_set, args):
root = Path(args.vid_path)
assert root.exists(), f'provided COCO path {root} does not exist'
mode = 'instances'
PATHS = {
"test": [(root / "Data" , root / "annotations" / 'sky_data_vid_test.json')],
}
datasets = []
for (img_folder, ann_file) in PATHS[image_set]:
dataset = CocoDetection(img_folder, ann_file, transforms=make_coco_transforms(image_set), is_train =(not args.eval), interval1=args.interval1,
interval2=args.interval2, num_ref_frames = args.num_ref_frames, return_masks=args.masks, cache_mode=args.cache_mode,
local_rank=get_local_rank(), local_size=get_local_size())
datasets.append(dataset)
if len(datasets) == 1:
return datasets[0]
return ConcatDataset(datasets)