98 lines
3.7 KiB
Python
98 lines
3.7 KiB
Python
# ------------------------------------------------------------------------
|
|
# Deformable DETR
|
|
# Copyright (c) 2020 SenseTime. All Rights Reserved.
|
|
# Licensed under the Apache License, Version 2.0 [see LICENSE for details]
|
|
# ------------------------------------------------------------------------
|
|
# Modified from DETR (https://github.com/facebookresearch/detr)
|
|
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
|
|
# ------------------------------------------------------------------------
|
|
|
|
"""
|
|
Various positional encodings for the transformer.
|
|
"""
|
|
import math
|
|
import torch
|
|
from torch import nn
|
|
|
|
from util.misc import NestedTensor
|
|
|
|
|
|
class PositionEmbeddingSine(nn.Module):
|
|
"""
|
|
This is a more standard version of the position embedding, very similar to the one
|
|
used by the Attention is all you need paper, generalized to work on images.
|
|
"""
|
|
def __init__(self, num_pos_feats=64, temperature=10000, normalize=False, scale=None):
|
|
super().__init__()
|
|
self.num_pos_feats = num_pos_feats
|
|
self.temperature = temperature
|
|
self.normalize = normalize
|
|
if scale is not None and normalize is False:
|
|
raise ValueError("normalize should be True if scale is passed")
|
|
if scale is None:
|
|
scale = 2 * math.pi
|
|
self.scale = scale
|
|
|
|
def forward(self, tensor_list: NestedTensor):
|
|
x = tensor_list.tensors
|
|
mask = tensor_list.mask
|
|
assert mask is not None
|
|
not_mask = ~mask
|
|
y_embed = not_mask.cumsum(1, dtype=torch.float32)
|
|
x_embed = not_mask.cumsum(2, dtype=torch.float32)
|
|
if self.normalize:
|
|
eps = 1e-6
|
|
y_embed = (y_embed - 0.5) / (y_embed[:, -1:, :] + eps) * self.scale
|
|
x_embed = (x_embed - 0.5) / (x_embed[:, :, -1:] + eps) * self.scale
|
|
|
|
dim_t = torch.arange(self.num_pos_feats, dtype=torch.float32, device=x.device)
|
|
dim_t = self.temperature ** (2 * (dim_t // 2) / self.num_pos_feats)
|
|
|
|
pos_x = x_embed[:, :, :, None] / dim_t
|
|
pos_y = y_embed[:, :, :, None] / dim_t
|
|
pos_x = torch.stack((pos_x[:, :, :, 0::2].sin(), pos_x[:, :, :, 1::2].cos()), dim=4).flatten(3)
|
|
pos_y = torch.stack((pos_y[:, :, :, 0::2].sin(), pos_y[:, :, :, 1::2].cos()), dim=4).flatten(3)
|
|
pos = torch.cat((pos_y, pos_x), dim=3).permute(0, 3, 1, 2)
|
|
return pos
|
|
|
|
|
|
class PositionEmbeddingLearned(nn.Module):
|
|
"""
|
|
Absolute pos embedding, learned.
|
|
"""
|
|
def __init__(self, num_pos_feats=256):
|
|
super().__init__()
|
|
self.row_embed = nn.Embedding(50, num_pos_feats)
|
|
self.col_embed = nn.Embedding(50, num_pos_feats)
|
|
self.reset_parameters()
|
|
|
|
def reset_parameters(self):
|
|
nn.init.uniform_(self.row_embed.weight)
|
|
nn.init.uniform_(self.col_embed.weight)
|
|
|
|
def forward(self, tensor_list: NestedTensor):
|
|
x = tensor_list.tensors
|
|
h, w = x.shape[-2:]
|
|
i = torch.arange(w, device=x.device)
|
|
j = torch.arange(h, device=x.device)
|
|
x_emb = self.col_embed(i)
|
|
y_emb = self.row_embed(j)
|
|
pos = torch.cat([
|
|
x_emb.unsqueeze(0).repeat(h, 1, 1),
|
|
y_emb.unsqueeze(1).repeat(1, w, 1),
|
|
], dim=-1).permute(2, 0, 1).unsqueeze(0).repeat(x.shape[0], 1, 1, 1)
|
|
return pos
|
|
|
|
|
|
def build_position_encoding(args):
|
|
N_steps = args.hidden_dim // 2
|
|
if args.position_embedding in ('v2', 'sine'):
|
|
# TODO find a better way of exposing other arguments
|
|
position_embedding = PositionEmbeddingSine(N_steps, normalize=True)
|
|
elif args.position_embedding in ('v3', 'learned'):
|
|
position_embedding = PositionEmbeddingLearned(N_steps)
|
|
else:
|
|
raise ValueError(f"not supported {args.position_embedding}")
|
|
|
|
return position_embedding
|