project1/datasets/__init__.py

50 lines
2.1 KiB
Python

# ------------------------------------------------------------------------
# Deformable DETR
# Copyright (c) 2020 SenseTime. All Rights Reserved.
# Licensed under the Apache License, Version 2.0 [see LICENSE for details]
# ------------------------------------------------------------------------
# Modified from DETR (https://github.com/facebookresearch/detr)
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
# ------------------------------------------------------------------------
import torch.utils.data
from .torchvision_datasets import CocoDetection
from .coco import build as build_coco
from .vid_multi import build as build_vid_multi
from .vid_single import build as build_vid_single
from .vid_multi_mine import build as build_vid_multi_mine
from .vid_multi_mine_multi import build as build_vid_multi_mine_multi
from .vid_multi_mine_multi_test import build as build_vid_multi_mine_multi_test
def get_coco_api_from_dataset(dataset):
for _ in range(10):
# if isinstance(dataset, torchvision.datasets.CocoDetection):
# break
if isinstance(dataset, torch.utils.data.Subset):
dataset = dataset.dataset
if isinstance(dataset, CocoDetection):
return dataset.coco
def build_dataset(image_set, args):
if image_set == 'test':
return build_vid_multi_mine_multi_test(image_set, args)
if args.dataset_file == 'coco':
return build_coco(image_set, args)
if args.dataset_file == 'coco_panoptic':
# to avoid making panopticapi required for coco
from .coco_panoptic import build as build_coco_panoptic
return build_coco_panoptic(image_set, args)
if args.dataset_file == 'vid_single':
return build_vid_single(image_set, args)
if args.dataset_file == "vid_multi":
return build_vid_multi(image_set, args)
if args.dataset_file == "vid_multi_mine":
return build_vid_multi_mine(image_set, args)
if args.dataset_file == "vid_multi_mine_multi":
return build_vid_multi_mine_multi(image_set, args)
raise ValueError(f'dataset {args.dataset_file} not supported')