project1/datasets/coco_panoptic.py

108 lines
4.1 KiB
Python

# ------------------------------------------------------------------------
# Deformable DETR
# Copyright (c) 2020 SenseTime. All Rights Reserved.
# Licensed under the Apache License, Version 2.0 [see LICENSE for details]
# ------------------------------------------------------------------------
# Modified from DETR (https://github.com/facebookresearch/detr)
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
# ------------------------------------------------------------------------
import json
from pathlib import Path
import numpy as np
import torch
from PIL import Image
from panopticapi.utils import rgb2id
from util.box_ops import masks_to_boxes
from .coco import make_coco_transforms
class CocoPanoptic:
def __init__(self, img_folder, ann_folder, ann_file, transforms=None, return_masks=True):
with open(ann_file, 'r') as f:
self.coco = json.load(f)
# sort 'images' field so that they are aligned with 'annotations'
# i.e., in alphabetical order
self.coco['images'] = sorted(self.coco['images'], key=lambda x: x['id'])
# sanity check
if "annotations" in self.coco:
for img, ann in zip(self.coco['images'], self.coco['annotations']):
assert img['file_name'][:-4] == ann['file_name'][:-4]
self.img_folder = img_folder
self.ann_folder = ann_folder
self.ann_file = ann_file
self.transforms = transforms
self.return_masks = return_masks
def __getitem__(self, idx):
ann_info = self.coco['annotations'][idx] if "annotations" in self.coco else self.coco['images'][idx]
img_path = Path(self.img_folder) / ann_info['file_name'].replace('.png', '.jpg')
ann_path = Path(self.ann_folder) / ann_info['file_name']
img = Image.open(img_path).convert('RGB')
w, h = img.size
if "segments_info" in ann_info:
masks = np.asarray(Image.open(ann_path), dtype=np.uint32)
masks = rgb2id(masks)
ids = np.array([ann['id'] for ann in ann_info['segments_info']])
masks = masks == ids[:, None, None]
masks = torch.as_tensor(masks, dtype=torch.uint8)
labels = torch.tensor([ann['category_id'] for ann in ann_info['segments_info']], dtype=torch.int64)
target = {}
target['image_id'] = torch.tensor([ann_info['image_id'] if "image_id" in ann_info else ann_info["id"]])
if self.return_masks:
target['masks'] = masks
target['labels'] = labels
target["boxes"] = masks_to_boxes(masks)
target['size'] = torch.as_tensor([int(h), int(w)])
target['orig_size'] = torch.as_tensor([int(h), int(w)])
if "segments_info" in ann_info:
for name in ['iscrowd', 'area']:
target[name] = torch.tensor([ann[name] for ann in ann_info['segments_info']])
if self.transforms is not None:
img, target = self.transforms(img, target)
return img, target
def __len__(self):
return len(self.coco['images'])
def get_height_and_width(self, idx):
img_info = self.coco['images'][idx]
height = img_info['height']
width = img_info['width']
return height, width
def build(image_set, args):
img_folder_root = Path(args.coco_path)
ann_folder_root = Path(args.coco_panoptic_path)
assert img_folder_root.exists(), f'provided COCO path {img_folder_root} does not exist'
assert ann_folder_root.exists(), f'provided COCO path {ann_folder_root} does not exist'
mode = 'panoptic'
PATHS = {
"train": ("train2017", Path("annotations") / f'{mode}_train2017.json'),
"val": ("val2017", Path("annotations") / f'{mode}_val2017.json'),
}
img_folder, ann_file = PATHS[image_set]
img_folder_path = img_folder_root / img_folder
ann_folder = ann_folder_root / f'{mode}_{img_folder}'
ann_file = ann_folder_root / ann_file
dataset = CocoPanoptic(img_folder_path, ann_folder, ann_file,
transforms=make_coco_transforms(image_set), return_masks=args.masks)
return dataset