97 lines
2.9 KiB
Python
97 lines
2.9 KiB
Python
# ------------------------------------------------------------------------
|
|
# Deformable DETR
|
|
# Copyright (c) 2020 SenseTime. All Rights Reserved.
|
|
# Licensed under the Apache License, Version 2.0 [see LICENSE for details]
|
|
# ------------------------------------------------------------------------
|
|
# Modified from DETR (https://github.com/facebookresearch/detr)
|
|
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
|
|
# ------------------------------------------------------------------------
|
|
|
|
"""
|
|
Utilities for bounding box manipulation and GIoU.
|
|
"""
|
|
import torch
|
|
from torchvision.ops.boxes import box_area
|
|
|
|
|
|
def box_cxcywh_to_xyxy(x):
|
|
x_c, y_c, w, h = x.unbind(-1)
|
|
b = [(x_c - 0.5 * w), (y_c - 0.5 * h),
|
|
(x_c + 0.5 * w), (y_c + 0.5 * h)]
|
|
return torch.stack(b, dim=-1)
|
|
|
|
|
|
def box_xyxy_to_cxcywh(x):
|
|
x0, y0, x1, y1 = x.unbind(-1)
|
|
b = [(x0 + x1) / 2, (y0 + y1) / 2,
|
|
(x1 - x0), (y1 - y0)]
|
|
return torch.stack(b, dim=-1)
|
|
|
|
|
|
# modified from torchvision to also return the union
|
|
def box_iou(boxes1, boxes2):
|
|
area1 = box_area(boxes1)
|
|
area2 = box_area(boxes2)
|
|
|
|
lt = torch.max(boxes1[:, None, :2], boxes2[:, :2]) # [N,M,2]
|
|
rb = torch.min(boxes1[:, None, 2:], boxes2[:, 2:]) # [N,M,2]
|
|
|
|
wh = (rb - lt).clamp(min=0) # [N,M,2]
|
|
inter = wh[:, :, 0] * wh[:, :, 1] # [N,M]
|
|
|
|
union = area1[:, None] + area2 - inter
|
|
|
|
iou = inter / union
|
|
return iou, union
|
|
|
|
|
|
def generalized_box_iou(boxes1, boxes2):
|
|
"""
|
|
Generalized IoU from https://giou.stanford.edu/
|
|
|
|
The boxes should be in [x0, y0, x1, y1] format
|
|
|
|
Returns a [N, M] pairwise matrix, where N = len(boxes1)
|
|
and M = len(boxes2)
|
|
"""
|
|
# degenerate boxes gives inf / nan results
|
|
# so do an early check
|
|
assert (boxes1[:, 2:] >= boxes1[:, :2]).all()
|
|
assert (boxes2[:, 2:] >= boxes2[:, :2]).all()
|
|
iou, union = box_iou(boxes1, boxes2)
|
|
|
|
lt = torch.min(boxes1[:, None, :2], boxes2[:, :2])
|
|
rb = torch.max(boxes1[:, None, 2:], boxes2[:, 2:])
|
|
|
|
wh = (rb - lt).clamp(min=0) # [N,M,2]
|
|
area = wh[:, :, 0] * wh[:, :, 1]
|
|
|
|
return iou - (area - union) / area
|
|
|
|
|
|
def masks_to_boxes(masks):
|
|
"""Compute the bounding boxes around the provided masks
|
|
|
|
The masks should be in format [N, H, W] where N is the number of masks, (H, W) are the spatial dimensions.
|
|
|
|
Returns a [N, 4] tensors, with the boxes in xyxy format
|
|
"""
|
|
if masks.numel() == 0:
|
|
return torch.zeros((0, 4), device=masks.device)
|
|
|
|
h, w = masks.shape[-2:]
|
|
|
|
y = torch.arange(0, h, dtype=torch.float)
|
|
x = torch.arange(0, w, dtype=torch.float)
|
|
y, x = torch.meshgrid(y, x)
|
|
|
|
x_mask = (masks * x.unsqueeze(0))
|
|
x_max = x_mask.flatten(1).max(-1)[0]
|
|
x_min = x_mask.masked_fill(~(masks.bool()), 1e8).flatten(1).min(-1)[0]
|
|
|
|
y_mask = (masks * y.unsqueeze(0))
|
|
y_max = y_mask.flatten(1).max(-1)[0]
|
|
y_min = y_mask.masked_fill(~(masks.bool()), 1e8).flatten(1).min(-1)[0]
|
|
|
|
return torch.stack([x_min, y_min, x_max, y_max], 1)
|