541 lines
18 KiB
Python
541 lines
18 KiB
Python
# ------------------------------------------------------------------------
|
|
# Deformable DETR
|
|
# Copyright (c) 2020 SenseTime. All Rights Reserved.
|
|
# Licensed under the Apache License, Version 2.0 [see LICENSE for details]
|
|
# ------------------------------------------------------------------------
|
|
# Modified from DETR (https://github.com/facebookresearch/detr)
|
|
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
|
|
# ------------------------------------------------------------------------
|
|
|
|
"""
|
|
Misc functions, including distributed helpers.
|
|
|
|
Mostly copy-paste from torchvision references.
|
|
"""
|
|
import os
|
|
import subprocess
|
|
import time
|
|
from collections import defaultdict, deque
|
|
import datetime
|
|
import pickle
|
|
from typing import Optional, List
|
|
|
|
import torch
|
|
import torch.nn as nn
|
|
import torch.distributed as dist
|
|
from torch import Tensor
|
|
|
|
# needed due to empty tensor bug in pytorch and torchvision 0.5
|
|
import torchvision
|
|
if float(torchvision.__version__[:3]) < 0.5:
|
|
import math
|
|
from torchvision.ops.misc import _NewEmptyTensorOp
|
|
def _check_size_scale_factor(dim, size, scale_factor):
|
|
# type: (int, Optional[List[int]], Optional[float]) -> None
|
|
if size is None and scale_factor is None:
|
|
raise ValueError("either size or scale_factor should be defined")
|
|
if size is not None and scale_factor is not None:
|
|
raise ValueError("only one of size or scale_factor should be defined")
|
|
if not (scale_factor is not None and len(scale_factor) != dim):
|
|
raise ValueError(
|
|
"scale_factor shape must match input shape. "
|
|
"Input is {}D, scale_factor size is {}".format(dim, len(scale_factor))
|
|
)
|
|
def _output_size(dim, input, size, scale_factor):
|
|
# type: (int, Tensor, Optional[List[int]], Optional[float]) -> List[int]
|
|
assert dim == 2
|
|
_check_size_scale_factor(dim, size, scale_factor)
|
|
if size is not None:
|
|
return size
|
|
# if dim is not 2 or scale_factor is iterable use _ntuple instead of concat
|
|
assert scale_factor is not None and isinstance(scale_factor, (int, float))
|
|
scale_factors = [scale_factor, scale_factor]
|
|
# math.floor might return float in py2.7
|
|
return [
|
|
int(math.floor(input.size(i + 2) * scale_factors[i])) for i in range(dim)
|
|
]
|
|
elif float(torchvision.__version__[:3]) < 0.7:
|
|
from torchvision.ops import _new_empty_tensor
|
|
from torchvision.ops.misc import _output_size
|
|
|
|
|
|
class SmoothedValue(object):
|
|
"""Track a series of values and provide access to smoothed values over a
|
|
window or the global series average.
|
|
"""
|
|
|
|
def __init__(self, window_size=20, fmt=None):
|
|
if fmt is None:
|
|
fmt = "{median:.4f} ({global_avg:.4f})"
|
|
self.deque = deque(maxlen=window_size)
|
|
self.total = 0.0
|
|
self.count = 0
|
|
self.fmt = fmt
|
|
|
|
def update(self, value, n=1):
|
|
self.deque.append(value)
|
|
self.count += n
|
|
self.total += value * n
|
|
|
|
def synchronize_between_processes(self):
|
|
"""
|
|
Warning: does not synchronize the deque!
|
|
"""
|
|
if not is_dist_avail_and_initialized():
|
|
return
|
|
t = torch.tensor([self.count, self.total], dtype=torch.float64, device='cuda')
|
|
dist.barrier()
|
|
dist.all_reduce(t)
|
|
t = t.tolist()
|
|
self.count = int(t[0])
|
|
self.total = t[1]
|
|
|
|
@property
|
|
def median(self):
|
|
d = torch.tensor(list(self.deque))
|
|
return d.median().item()
|
|
|
|
@property
|
|
def avg(self):
|
|
d = torch.tensor(list(self.deque), dtype=torch.float32)
|
|
return d.mean().item()
|
|
|
|
@property
|
|
def global_avg(self):
|
|
return self.total / self.count
|
|
|
|
@property
|
|
def max(self):
|
|
return max(self.deque)
|
|
|
|
@property
|
|
def value(self):
|
|
return self.deque[-1]
|
|
|
|
def __str__(self):
|
|
return self.fmt.format(
|
|
median=self.median,
|
|
avg=self.avg,
|
|
global_avg=self.global_avg,
|
|
max=self.max,
|
|
value=self.value)
|
|
|
|
|
|
def all_gather(data):
|
|
"""
|
|
Run all_gather on arbitrary picklable data (not necessarily tensors)
|
|
Args:
|
|
data: any picklable object
|
|
Returns:
|
|
list[data]: list of data gathered from each rank
|
|
"""
|
|
world_size = get_world_size()
|
|
if world_size == 1:
|
|
return [data]
|
|
|
|
# serialized to a Tensor
|
|
buffer = pickle.dumps(data)
|
|
storage = torch.ByteStorage.from_buffer(buffer)
|
|
tensor = torch.ByteTensor(storage).to("cuda")
|
|
|
|
# obtain Tensor size of each rank
|
|
local_size = torch.tensor([tensor.numel()], device="cuda")
|
|
size_list = [torch.tensor([0], device="cuda") for _ in range(world_size)]
|
|
dist.all_gather(size_list, local_size)
|
|
size_list = [int(size.item()) for size in size_list]
|
|
max_size = max(size_list)
|
|
|
|
# receiving Tensor from all ranks
|
|
# we pad the tensor because torch all_gather does not support
|
|
# gathering tensors of different shapes
|
|
tensor_list = []
|
|
for _ in size_list:
|
|
tensor_list.append(torch.empty((max_size,), dtype=torch.uint8, device="cuda"))
|
|
if local_size != max_size:
|
|
padding = torch.empty(size=(max_size - local_size,), dtype=torch.uint8, device="cuda")
|
|
tensor = torch.cat((tensor, padding), dim=0)
|
|
dist.all_gather(tensor_list, tensor)
|
|
|
|
data_list = []
|
|
for size, tensor in zip(size_list, tensor_list):
|
|
buffer = tensor.cpu().numpy().tobytes()[:size]
|
|
data_list.append(pickle.loads(buffer))
|
|
|
|
return data_list
|
|
|
|
|
|
def reduce_dict(input_dict, average=True):
|
|
"""
|
|
Args:
|
|
input_dict (dict): all the values will be reduced
|
|
average (bool): whether to do average or sum
|
|
Reduce the values in the dictionary from all processes so that all processes
|
|
have the averaged results. Returns a dict with the same fields as
|
|
input_dict, after reduction.
|
|
"""
|
|
world_size = get_world_size()
|
|
if world_size < 2:
|
|
return input_dict
|
|
with torch.no_grad():
|
|
names = []
|
|
values = []
|
|
# sort the keys so that they are consistent across processes
|
|
for k in sorted(input_dict.keys()):
|
|
names.append(k)
|
|
values.append(input_dict[k])
|
|
values = torch.stack(values, dim=0)
|
|
dist.all_reduce(values)
|
|
if average:
|
|
values /= world_size
|
|
reduced_dict = {k: v for k, v in zip(names, values)}
|
|
return reduced_dict
|
|
|
|
|
|
class MetricLogger(object):
|
|
def __init__(self, delimiter="\t"):
|
|
self.meters = defaultdict(SmoothedValue)
|
|
self.delimiter = delimiter
|
|
|
|
def update(self, **kwargs):
|
|
for k, v in kwargs.items():
|
|
if isinstance(v, torch.Tensor):
|
|
v = v.item()
|
|
assert isinstance(v, (float, int))
|
|
self.meters[k].update(v)
|
|
|
|
def __getattr__(self, attr):
|
|
if attr in self.meters:
|
|
return self.meters[attr]
|
|
if attr in self.__dict__:
|
|
return self.__dict__[attr]
|
|
raise AttributeError("'{}' object has no attribute '{}'".format(
|
|
type(self).__name__, attr))
|
|
|
|
def __str__(self):
|
|
loss_str = []
|
|
for name, meter in self.meters.items():
|
|
loss_str.append(
|
|
"{}: {}".format(name, str(meter))
|
|
)
|
|
return self.delimiter.join(loss_str)
|
|
|
|
def synchronize_between_processes(self):
|
|
for meter in self.meters.values():
|
|
meter.synchronize_between_processes()
|
|
|
|
def add_meter(self, name, meter):
|
|
self.meters[name] = meter
|
|
|
|
def log_every(self, iterable, print_freq, header=None):
|
|
i = 0
|
|
if not header:
|
|
header = ''
|
|
start_time = time.time()
|
|
end = time.time()
|
|
iter_time = SmoothedValue(fmt='{avg:.4f}')
|
|
data_time = SmoothedValue(fmt='{avg:.4f}')
|
|
space_fmt = ':' + str(len(str(len(iterable)))) + 'd'
|
|
if torch.cuda.is_available():
|
|
log_msg = self.delimiter.join([
|
|
header,
|
|
'[{0' + space_fmt + '}/{1}]',
|
|
'eta: {eta}',
|
|
'{meters}',
|
|
'time: {time}',
|
|
'data: {data}',
|
|
'max mem: {memory:.0f}'
|
|
])
|
|
else:
|
|
log_msg = self.delimiter.join([
|
|
header,
|
|
'[{0' + space_fmt + '}/{1}]',
|
|
'eta: {eta}',
|
|
'{meters}',
|
|
'time: {time}',
|
|
'data: {data}'
|
|
])
|
|
MB = 1024.0 * 1024.0
|
|
for obj in iterable:
|
|
data_time.update(time.time() - end)
|
|
yield obj
|
|
iter_time.update(time.time() - end)
|
|
if i % print_freq == 0 or i == len(iterable) - 1:
|
|
eta_seconds = iter_time.global_avg * (len(iterable) - i)
|
|
eta_string = str(datetime.timedelta(seconds=int(eta_seconds)))
|
|
if torch.cuda.is_available():
|
|
print(log_msg.format(
|
|
i, len(iterable), eta=eta_string,
|
|
meters=str(self),
|
|
time=str(iter_time), data=str(data_time),
|
|
memory=torch.cuda.max_memory_allocated() / MB))
|
|
else:
|
|
print(log_msg.format(
|
|
i, len(iterable), eta=eta_string,
|
|
meters=str(self),
|
|
time=str(iter_time), data=str(data_time)))
|
|
i += 1
|
|
end = time.time()
|
|
total_time = time.time() - start_time
|
|
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
|
|
print('{} Total time: {} ({:.4f} s / it)'.format(
|
|
header, total_time_str, total_time / len(iterable)))
|
|
|
|
|
|
def get_sha():
|
|
cwd = os.path.dirname(os.path.abspath(__file__))
|
|
|
|
def _run(command):
|
|
return subprocess.check_output(command, cwd=cwd).decode('ascii').strip()
|
|
sha = 'N/A'
|
|
diff = "clean"
|
|
branch = 'N/A'
|
|
try:
|
|
sha = _run(['git', 'rev-parse', 'HEAD'])
|
|
subprocess.check_output(['git', 'diff'], cwd=cwd)
|
|
diff = _run(['git', 'diff-index', 'HEAD'])
|
|
diff = "has uncommited changes" if diff else "clean"
|
|
branch = _run(['git', 'rev-parse', '--abbrev-ref', 'HEAD'])
|
|
except Exception:
|
|
pass
|
|
message = f"sha: {sha}, status: {diff}, branch: {branch}"
|
|
return message
|
|
|
|
|
|
def collate_fn(batch):
|
|
batch = list(zip(*batch))
|
|
batch[0] = nested_tensor_from_tensor_list(batch[0])
|
|
return tuple(batch)
|
|
|
|
|
|
def _max_by_axis(the_list):
|
|
# type: (List[List[int]]) -> List[int]
|
|
maxes = the_list[0]
|
|
for sublist in the_list[1:]:
|
|
for index, item in enumerate(sublist):
|
|
maxes[index] = max(maxes[index], item)
|
|
return maxes
|
|
|
|
def nested_tensor_from_tensor_list(tensor_list: List[Tensor], split=True):
|
|
# TODO make this more general
|
|
if split:
|
|
# print("type input tensor list", type(tensor_list))
|
|
tensor_list = [tensor.split(3,dim=0) for tensor in tensor_list]
|
|
tensor_list = [item for sublist in tensor_list for item in sublist]
|
|
if tensor_list[0].ndim == 3:
|
|
# TODO make it support different-sized images
|
|
max_size = _max_by_axis([list(img.shape) for img in tensor_list])
|
|
# min_size = tuple(min(s) for s in zip(*[img.shape for img in tensor_list]))
|
|
batch_shape = [len(tensor_list)] + max_size
|
|
b, c, h, w = batch_shape
|
|
dtype = tensor_list[0].dtype
|
|
device = tensor_list[0].device
|
|
tensor = torch.zeros(batch_shape, dtype=dtype, device=device)
|
|
mask = torch.ones((b, h, w), dtype=torch.bool, device=device)
|
|
for img, pad_img, m in zip(tensor_list, tensor, mask):
|
|
pad_img[: img.shape[0], : img.shape[1], : img.shape[2]].copy_(img)
|
|
m[: img.shape[1], :img.shape[2]] = False
|
|
else:
|
|
raise ValueError('not supported')
|
|
return NestedTensor(tensor, mask)
|
|
# def nested_tensor_from_tensor_list(tensor_list: List[Tensor]):
|
|
# # TODO make this more general
|
|
# if tensor_list[0].ndim == 3:
|
|
# # TODO make it support different-sized images
|
|
# max_size = _max_by_axis([list(img.shape) for img in tensor_list])
|
|
# # min_size = tuple(min(s) for s in zip(*[img.shape for img in tensor_list]))
|
|
# batch_shape = [len(tensor_list)] + max_size
|
|
# b, c, h, w = batch_shape
|
|
# dtype = tensor_list[0].dtype
|
|
# device = tensor_list[0].device
|
|
# tensor = torch.zeros(batch_shape, dtype=dtype, device=device)
|
|
# mask = torch.ones((b, h, w), dtype=torch.bool, device=device)
|
|
# for img, pad_img, m in zip(tensor_list, tensor, mask):
|
|
# pad_img[: img.shape[0], : img.shape[1], : img.shape[2]].copy_(img)
|
|
# m[: img.shape[1], :img.shape[2]] = False
|
|
# else:
|
|
# raise ValueError('not supported')
|
|
# return NestedTensor(tensor, mask)
|
|
|
|
|
|
class NestedTensor(object):
|
|
def __init__(self, tensors, mask: Optional[Tensor]):
|
|
self.tensors = tensors
|
|
self.mask = mask
|
|
|
|
def to(self, device, non_blocking=False):
|
|
# type: (Device) -> NestedTensor # noqa
|
|
cast_tensor = self.tensors.to(device, non_blocking=non_blocking)
|
|
mask = self.mask
|
|
if mask is not None:
|
|
assert mask is not None
|
|
cast_mask = mask.to(device, non_blocking=non_blocking)
|
|
else:
|
|
cast_mask = None
|
|
return NestedTensor(cast_tensor, cast_mask)
|
|
|
|
def record_stream(self, *args, **kwargs):
|
|
self.tensors.record_stream(*args, **kwargs)
|
|
if self.mask is not None:
|
|
self.mask.record_stream(*args, **kwargs)
|
|
|
|
def decompose(self):
|
|
return self.tensors, self.mask
|
|
|
|
def __repr__(self):
|
|
return str(self.tensors)
|
|
|
|
|
|
def setup_for_distributed(is_master):
|
|
"""
|
|
This function disables printing when not in master process
|
|
"""
|
|
import builtins as __builtin__
|
|
builtin_print = __builtin__.print
|
|
|
|
def print(*args, **kwargs):
|
|
force = kwargs.pop('force', False)
|
|
if is_master or force:
|
|
builtin_print(*args, **kwargs)
|
|
|
|
__builtin__.print = print
|
|
|
|
|
|
def is_dist_avail_and_initialized():
|
|
if not dist.is_available():
|
|
return False
|
|
if not dist.is_initialized():
|
|
return False
|
|
return True
|
|
|
|
|
|
def get_world_size():
|
|
if not is_dist_avail_and_initialized():
|
|
return 1
|
|
return dist.get_world_size()
|
|
|
|
|
|
def get_rank():
|
|
if not is_dist_avail_and_initialized():
|
|
return 0
|
|
return dist.get_rank()
|
|
|
|
|
|
def get_local_size():
|
|
if not is_dist_avail_and_initialized():
|
|
return 1
|
|
return int(os.environ['LOCAL_SIZE'])
|
|
|
|
|
|
def get_local_rank():
|
|
if not is_dist_avail_and_initialized():
|
|
return 0
|
|
return int(os.environ['LOCAL_RANK'])
|
|
|
|
|
|
def is_main_process():
|
|
return get_rank() == 0
|
|
|
|
|
|
def save_on_master(*args, **kwargs):
|
|
if is_main_process():
|
|
torch.save(*args, **kwargs)
|
|
|
|
|
|
def init_distributed_mode(args):
|
|
if 'RANK' in os.environ and 'WORLD_SIZE' in os.environ:
|
|
args.rank = int(os.environ["RANK"])
|
|
args.world_size = int(os.environ['WORLD_SIZE'])
|
|
args.gpu = int(os.environ['LOCAL_RANK'])
|
|
args.dist_url = 'env://'
|
|
os.environ['LOCAL_SIZE'] = str(torch.cuda.device_count())
|
|
elif 'SLURM_PROCID' in os.environ:
|
|
proc_id = int(os.environ['SLURM_PROCID'])
|
|
ntasks = int(os.environ['SLURM_NTASKS'])
|
|
node_list = os.environ['SLURM_NODELIST']
|
|
num_gpus = torch.cuda.device_count()
|
|
addr = subprocess.getoutput(
|
|
'scontrol show hostname {} | head -n1'.format(node_list))
|
|
os.environ['MASTER_PORT'] = os.environ.get('MASTER_PORT', '29500')
|
|
os.environ['MASTER_ADDR'] = addr
|
|
os.environ['WORLD_SIZE'] = str(ntasks)
|
|
os.environ['RANK'] = str(proc_id)
|
|
os.environ['LOCAL_RANK'] = str(proc_id % num_gpus)
|
|
os.environ['LOCAL_SIZE'] = str(num_gpus)
|
|
args.dist_url = 'env://'
|
|
# args.dist_url = 'tcp://127.0.0.1:50001'
|
|
args.world_size = ntasks
|
|
args.rank = proc_id
|
|
args.gpu = proc_id % num_gpus
|
|
else:
|
|
print('Not using distributed mode')
|
|
args.distributed = False
|
|
return
|
|
|
|
args.distributed = True
|
|
|
|
torch.cuda.set_device(args.gpu)
|
|
args.dist_backend = 'nccl'
|
|
print('| distributed init (rank {}): {}'.format(
|
|
args.rank, args.dist_url), flush=True)
|
|
torch.distributed.init_process_group(backend=args.dist_backend, init_method=args.dist_url,
|
|
world_size=args.world_size, rank=args.rank)
|
|
torch.distributed.barrier()
|
|
setup_for_distributed(args.rank == 0)
|
|
|
|
|
|
@torch.no_grad()
|
|
def accuracy(output, target, topk=(1,)):
|
|
"""Computes the precision@k for the specified values of k"""
|
|
if target.numel() == 0:
|
|
return [torch.zeros([], device=output.device)]
|
|
maxk = max(topk)
|
|
batch_size = target.size(0)
|
|
|
|
_, pred = output.topk(maxk, 1, True, True)
|
|
pred = pred.t()
|
|
correct = pred.eq(target.view(1, -1).expand_as(pred))
|
|
|
|
res = []
|
|
for k in topk:
|
|
correct_k = correct[:k].view(-1).float().sum(0)
|
|
res.append(correct_k.mul_(100.0 / batch_size))
|
|
return res
|
|
|
|
|
|
def interpolate(input, size=None, scale_factor=None, mode="nearest", align_corners=None):
|
|
# type: (Tensor, Optional[List[int]], Optional[float], str, Optional[bool]) -> Tensor
|
|
"""
|
|
Equivalent to nn.functional.interpolate, but with support for empty batch sizes.
|
|
This will eventually be supported natively by PyTorch, and this
|
|
class can go away.
|
|
"""
|
|
if float(torchvision.__version__[:3]) < 0.7:
|
|
if input.numel() > 0:
|
|
return torch.nn.functional.interpolate(
|
|
input, size, scale_factor, mode, align_corners
|
|
)
|
|
|
|
output_shape = _output_size(2, input, size, scale_factor)
|
|
output_shape = list(input.shape[:-2]) + list(output_shape)
|
|
if float(torchvision.__version__[:3]) < 0.5:
|
|
return _NewEmptyTensorOp.apply(input, output_shape)
|
|
return _new_empty_tensor(input, output_shape)
|
|
else:
|
|
return torchvision.ops.misc.interpolate(input, size, scale_factor, mode, align_corners)
|
|
|
|
|
|
def get_total_grad_norm(parameters, norm_type=2):
|
|
parameters = list(filter(lambda p: p.grad is not None, parameters))
|
|
norm_type = float(norm_type)
|
|
device = parameters[0].grad.device
|
|
total_norm = torch.norm(torch.stack([torch.norm(p.grad.detach(), norm_type).to(device) for p in parameters]),
|
|
norm_type)
|
|
return total_norm
|
|
|
|
def inverse_sigmoid(x, eps=1e-5):
|
|
x = x.clamp(min=0, max=1)
|
|
x1 = x.clamp(min=eps)
|
|
x2 = (1 - x).clamp(min=eps)
|
|
return torch.log(x1/x2)
|
|
|