bigdata/chapter3/spark.py

157 lines
5.4 KiB
Python

from pyspark.sql import SparkSession
from pyspark.sql import Row
# $example off:spark_hive$
import os
import pymysql
import datetime
import time
import json
def mysql_query(sql):
db = pymysql.connect("localhost","root","123456789","sparkproject" )
cursor = db.cursor()
cursor.execute(sql)
data = cursor.fetchone()
db.close()
return data
def mysql_execute(sql):
print("execute: %s" % sql)
db = pymysql.connect("localhost","root","123456789","sparkproject" )
cursor = db.cursor()
try:
cursor.execute(sql)
db.commit()
except Exception as e:
print(e)
db.rollback()
finally:
db.close()
def today():
return time.strftime('%Y-%m-%d')
def getYesterday(day):
today=datetime.date.today()
oneday=datetime.timedelta(days=day)
yesterday=today-oneday
return yesterday.strftime('%Y-%m-%d')
def get_last_month(num):
date = datetime.datetime.now()
year = date.year
month = date.month
month = month - num
if month<=0:
month = 12 - (num-1)
year -= 1
return "%d-%02d" % (year, month)
def collect_last_month_sells(spark):
data = {}
for i in range(5):
month = get_last_month(i)
df = spark.sql("select count(*) as N from jd_comment where comment_time like '"+month+"%' ")
jd_comment_count = df.rdd.collect()[0]["N"]
data[month] = jd_comment_count
mysql_execute("update datas set data = '{}' where `key` = 'last_month_sell'".format( json.dumps(data,ensure_ascii=False) ))
def collect_hour_sells(spark):
data = {}
for i in range(24):
hour = "%02d" % (i)
df = spark.sql("select count(*) as N from jd_comment where comment_time like '% "+hour+":%'")
jd_comment_count = df.rdd.collect()[0]["N"]
data[hour] = jd_comment_count
mysql_execute("update datas set data = '{}' where `key` = 'hour_sell'".format( json.dumps(data,ensure_ascii=False) ))
def collect_crawl_info(spark):
df = spark.sql("select count(*) as N from jd_comment")
jd_comment_count = df.rdd.collect()[0]["N"]
df = spark.sql("select count(*) as N from jd_comment where created_at like '"+today()+"%'")
jd_comment_today_count = df.rdd.collect()[0]["N"]
df = spark.sql("select count(*) as N from jd")
jd_count = df.rdd.collect()[0]["N"]
df = spark.sql("select count(*) as N from jd where created_at like '"+today()+"%'")
jd_today_count = df.rdd.collect()[0]["N"]
total_count = jd_comment_count + jd_count
today_total_count = jd_comment_today_count + jd_today_count
mysql_execute("insert into crawl_infos (total_count, today_total_count, product_count, today_product_count, comment_count, today_comment_count) values ({},{},{},{},{},{})".format(
total_count, today_total_count, jd_count,jd_today_count, jd_comment_count, jd_comment_today_count) )
def collect_news(spark):
df = spark.sql("select * from jd_comment order by created_at desc limit 20")
for row in df.rdd.collect():
mysql_execute("insert into news (comment_time, content, comment_id) values ('{}', '{}', '{}')".format(
row["comment_time"], row["content"], row["id"]))
mysql_execute("delete from news where id not in ( select x.id from (select id from news order by id desc limit 20) as x);")
def get_last_day_count(spark):
"""获取过去几天的采集量"""
for i in range(5):
df = spark.sql("select count(*) as N from jd where created_at like '"+getYesterday(i)+"%'")
jd_last_count = df.rdd.collect()[0]["N"]
df = spark.sql("select count(*) as N from jd_comment where created_at like '"+getYesterday(i)+"%'")
jd_comment_last_count = df.rdd.collect()[0]["N"]
mysql_execute("update last_day_counts set product_c = {}, comment_c = {} where last_day = {}".format(
jd_last_count, jd_comment_last_count, i+1))
def collect_top10_sells(spark):
df = spark.sql("select * from jd order by good_count desc limit 10")
i = 1
for row in df.rdd.collect():
mysql_execute("update top10_sells set product_name = '{}', good_c = {}, price={} where order_n = {} ".format(
row["name"], row["good_count"], int(float(row["price"])),i))
i += 1
def collect_from_type(spark):
df = spark.sql("select from_type, count(*) N from jd_comment group by from_type")
data = {}
for row in df.rdd.collect():
if row["from_type"]:
data[row["from_type"]] = row["N"]
mysql_execute("update datas set data = '{}' where `key` = 'from_type'".format( json.dumps(data,ensure_ascii=False) ))
if __name__ == "__main__":
# $example on:spark_hive$
# warehouse_location points to the default location for managed databases and tables
warehouse_location = os.path.abspath('spark-warehouse')
spark = SparkSession \
.builder \
.appName("Python Spark SQL Hive integration example") \
.config("spark.sql.warehouse.dir", warehouse_location) \
.enableHiveSupport() \
.getOrCreate()
count = 0
while True:
collect_crawl_info(spark)
collect_news(spark)
if count == 0 or count >100:
get_last_day_count(spark)
collect_top10_sells(spark)
collect_from_type(spark)
collect_last_month_sells(spark)
collect_hour_sells(spark)
count = 1
time.sleep(10)
count += 1
spark.stop()