forked from jiuyuan/InfiniTensor
Operator serialization (#14)
Class "Cuda Runtime" fulfills function "tune" and adds corresponding testcase. *Add: convCudnn::tune, convCudnn::cuDNNdescriptorAccess. *Add: testcase tune. *Fix: a brief bug in CPU Runtime.
This commit is contained in:
parent
93f86d3f4d
commit
25f0c441d2
|
@ -14,7 +14,7 @@ set(DEFAULT_BUILD_TYPE "RelWithDebInfo")
|
|||
|
||||
set(CMAKE_CXX_STANDARD 17)
|
||||
set(CMAKE_CXX_EXTENSIONS OFF) # -std=gnu++11 when on, -std=c++11 when off
|
||||
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -Wall -Werror -Wno-error=deprecated-declarations")
|
||||
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -Wall -Werror -Wno-error=deprecated-declarations -Wno-error=sign-compare")
|
||||
set(CMAKE_CXX_FLAGS_RELEASE "${CMAKE_CXX_FLAGS_RELEASE} -UNDEBUG") # Enable assertion
|
||||
set(CMAKE_CXX_FLAGS_RELWITHDEBINFO "${CMAKE_CXX_FLAGS_RELWITHDEBINFO} -UNDEBUG") # Enable assertion
|
||||
|
||||
|
|
|
@ -71,8 +71,9 @@ template <typename T> std::string vecToString(const std::vector<T> &vec) {
|
|||
return ret;
|
||||
}
|
||||
|
||||
double timeit(const std::function<void()> &func, int warmupRounds = 200,
|
||||
int timingRounds = 200,
|
||||
const std::function<void(void)> &sync = {});
|
||||
double timeit(
|
||||
const std::function<void()> &func,
|
||||
const std::function<void(void)> &sync = []() {}, int warmupRounds = 200,
|
||||
int timingRounds = 200);
|
||||
|
||||
} // namespace infini
|
||||
|
|
|
@ -21,6 +21,7 @@ class CudaRuntimeObj : public RuntimeObj {
|
|||
workspace = alloc(workspaceSize);
|
||||
}
|
||||
virtual ~CudaRuntimeObj() {
|
||||
dealloc(workspace);
|
||||
checkCudnnError(cudnnDestroy(cudnn));
|
||||
checkCublasError(cublasDestroy(cublas));
|
||||
}
|
||||
|
@ -57,6 +58,6 @@ class CudaRuntimeObj : public RuntimeObj {
|
|||
}
|
||||
|
||||
private:
|
||||
void runWithoutSync(const Graph &graph) const;
|
||||
void runWithoutSync(const Graph &graph, bool tune, bool profiling) const;
|
||||
};
|
||||
} // namespace infini
|
|
@ -4,8 +4,9 @@
|
|||
|
||||
namespace infini {
|
||||
|
||||
double timeit(const std::function<void()> &func, int warmupRounds,
|
||||
int timingRounds, const std::function<void(void)> &sync) {
|
||||
double timeit(const std::function<void()> &func,
|
||||
const std::function<void(void)> &sync, int warmupRounds,
|
||||
int timingRounds) {
|
||||
for (int i = 0; i < warmupRounds; ++i)
|
||||
func();
|
||||
if (sync)
|
||||
|
|
|
@ -40,17 +40,18 @@ void CpuRuntimeObj::run(const Graph &graph, bool tune, bool profiling) const {
|
|||
// Tune the kernel if there is no record
|
||||
if (!perfData) {
|
||||
// TODO: record is not used
|
||||
// printf("no record data\n");
|
||||
record = kernel->tune(op, this);
|
||||
perfEngine.setPerfData(perfKey, record);
|
||||
} else
|
||||
record = *perfData;
|
||||
|
||||
if (!profiling) {
|
||||
kernel->compute(op, *perfData, this);
|
||||
kernel->compute(op, record, this);
|
||||
continue;
|
||||
} else {
|
||||
double t =
|
||||
timeit([&]() { kernel->compute(op, *perfData, this); }, 1, 1);
|
||||
double t = timeit([&]() { kernel->compute(op, record, this); },
|
||||
[]() {}, 1, 1);
|
||||
op->print();
|
||||
printf(" op_time %lf\n", t);
|
||||
totalTime += t;
|
||||
|
|
|
@ -4,10 +4,13 @@
|
|||
|
||||
namespace infini {
|
||||
|
||||
void CudaRuntimeObj::runWithoutSync(const Graph &graph) const {
|
||||
void CudaRuntimeObj::runWithoutSync(const Graph &graph, bool tune = false,
|
||||
bool profiling = false) const {
|
||||
const auto &kernelRegistry = KernelRegistry::getInstance();
|
||||
auto perfEngine = PerfEngine::getInstance();
|
||||
|
||||
double totalTime = 0;
|
||||
std::map<OpType, double> opTime;
|
||||
std::map<OpType, int> opCnt;
|
||||
for (auto &op : graph->getOperators()) {
|
||||
// HACK: set correct data type
|
||||
auto kernelAttrs =
|
||||
|
@ -15,17 +18,40 @@ void CudaRuntimeObj::runWithoutSync(const Graph &graph) const {
|
|||
Kernel *kernel = kernelRegistry.getKernel(kernelAttrs);
|
||||
auto perfKey = PerfEngine::Key{kernelAttrs, op->getOpPerfKey()};
|
||||
std::optional<PerfRecord> perfData = perfEngine.getPerfData(perfKey);
|
||||
if (perfData)
|
||||
kernel->compute(op, *perfData, this);
|
||||
else
|
||||
if (!perfData && !tune) {
|
||||
kernel->compute(op, this);
|
||||
continue;
|
||||
}
|
||||
|
||||
PerfRecord record;
|
||||
|
||||
if (!perfData) {
|
||||
record = kernel->tune(op, this);
|
||||
perfEngine.setPerfData(perfKey, record);
|
||||
|
||||
} else
|
||||
record = *perfData;
|
||||
|
||||
double t = record.time;
|
||||
totalTime += t;
|
||||
|
||||
if (profiling) {
|
||||
double t = timeit([&]() { kernel->compute(op, record, this); },
|
||||
[&]() { sync(); }, 1, 1);
|
||||
op->print();
|
||||
printf(" op_time on cuda %lf\n", t);
|
||||
totalTime += t;
|
||||
opTime[op->getOpType()] += t;
|
||||
opCnt[op->getOpType()]++;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void CudaRuntimeObj::run(const Graph &graph, bool tune, bool profiling) const {
|
||||
if (tune || profiling)
|
||||
if (profiling)
|
||||
IT_TODO_HALT();
|
||||
runWithoutSync(graph);
|
||||
|
||||
runWithoutSync(graph, tune);
|
||||
sync();
|
||||
}
|
||||
|
||||
|
|
|
@ -1,7 +1,10 @@
|
|||
#include "operators/conv.h"
|
||||
#include "core/kernel.h"
|
||||
#include "cuda/cuda_runtime.h"
|
||||
|
||||
#include <chrono>
|
||||
#include <functional>
|
||||
#include <limits>
|
||||
#include <tuple>
|
||||
namespace infini {
|
||||
|
||||
static constexpr int N_ALGO = 8;
|
||||
|
@ -14,18 +17,25 @@ static constexpr cudnnConvolutionFwdAlgo_t ALGOS[N_ALGO] = {
|
|||
CUDNN_CONVOLUTION_FWD_ALGO_FFT_TILING,
|
||||
CUDNN_CONVOLUTION_FWD_ALGO_WINOGRAD,
|
||||
CUDNN_CONVOLUTION_FWD_ALGO_WINOGRAD_NONFUSED};
|
||||
static constexpr int N_MODE = 2;
|
||||
static constexpr cudnnConvolutionMode_t MODES[N_MODE] = {
|
||||
CUDNN_CONVOLUTION, CUDNN_CROSS_CORRELATION};
|
||||
|
||||
struct ConvCuDnnPerfRecord : public PerfRecord {
|
||||
int algo = 0; // cudnnConvolutionFwdAlgo_t
|
||||
int mode = 1;
|
||||
size_t workspaceSize = 100000;
|
||||
bool fuseAct = false;
|
||||
};
|
||||
|
||||
class convCudnn : public Kernel {
|
||||
|
||||
bool cuDNNUnfused(const Ref<ConvObj> &op, const ConvCuDnnPerfRecord &record,
|
||||
const CudaRuntimeObj *context) const {
|
||||
cudnnStatus_t stat;
|
||||
std::tuple<void *, void *, void *, cudnnTensorDescriptor_t,
|
||||
cudnnFilterDescriptor_t, cudnnTensorDescriptor_t,
|
||||
cudnnConvolutionDescriptor_t, cudnnActivationDescriptor_t,
|
||||
cudnnTensorDescriptor_t>
|
||||
cuDNNDescriptorAccess(const Ref<ConvObj> &op,
|
||||
const ConvCuDnnPerfRecord &record) const {
|
||||
void *const inData = (op->getInputs(0)->getRawDataPtr<void *>());
|
||||
void *const knData = (op->getInputs(1)->getRawDataPtr<void *>());
|
||||
if (op->getInputs().size() > 2) // Bias is not supported yet
|
||||
|
@ -52,7 +62,6 @@ class convCudnn : public Kernel {
|
|||
checkCudnnError(cudnnSetFilter4dDescriptor(knDesc, CUDNN_DATA_FLOAT,
|
||||
CUDNN_TENSOR_NCHW, f,
|
||||
channelsPerGrp, r, s));
|
||||
|
||||
// get bias
|
||||
cudnnTensorDescriptor_t biasDesc;
|
||||
checkCudnnError(cudnnCreateTensorDescriptor(&biasDesc));
|
||||
|
@ -64,7 +73,7 @@ class convCudnn : public Kernel {
|
|||
checkCudnnError(cudnnCreateConvolutionDescriptor(&convDesc));
|
||||
// TODO: CUDNN_CONVOLUTION is a tunable argument
|
||||
checkCudnnError(cudnnSetConvolution2dDescriptor(
|
||||
convDesc, ph, pw, sh, sw, dh, dw, CUDNN_CROSS_CORRELATION,
|
||||
convDesc, ph, pw, sh, sw, dh, dw, MODES[record.mode],
|
||||
CUDNN_DATA_FLOAT));
|
||||
if (g > 1) {
|
||||
checkCudnnError(cudnnSetConvolutionGroupCount(convDesc, g));
|
||||
|
@ -93,7 +102,6 @@ class convCudnn : public Kernel {
|
|||
assert(false);
|
||||
}
|
||||
|
||||
// get outputs
|
||||
int outn, outc, outh, outw;
|
||||
checkCudnnError(cudnnGetConvolution2dForwardOutputDim(
|
||||
convDesc, inDesc, knDesc, &outn, &outc, &outh, &outw));
|
||||
|
@ -106,6 +114,15 @@ class convCudnn : public Kernel {
|
|||
op->getOutput()->getDims(),
|
||||
"cuDNN output shape mismatches with OP output shape");
|
||||
|
||||
return tuple(inData, knData, outData, inDesc, knDesc, biasDesc,
|
||||
convDesc, actDesc, outDesc);
|
||||
}
|
||||
bool cuDNNUnfused(const Ref<ConvObj> &op, const ConvCuDnnPerfRecord &record,
|
||||
const CudaRuntimeObj *context) const {
|
||||
cudnnStatus_t stat;
|
||||
|
||||
auto [inData, knData, outData, inDesc, knDesc, biasDesc, convDesc,
|
||||
actDesc, outDesc] = cuDNNDescriptorAccess(op, record);
|
||||
// get workspace
|
||||
size_t wsSize = record.workspaceSize;
|
||||
stat = cudnnGetConvolutionForwardWorkspaceSize(
|
||||
|
@ -113,9 +130,7 @@ class convCudnn : public Kernel {
|
|||
ALGOS[record.algo], &wsSize);
|
||||
if (stat != CUDNN_STATUS_SUCCESS)
|
||||
return false;
|
||||
// assert(wsSize < (size_t)3 * 1024 * 1024 * 1024);
|
||||
// if (wsSize >= (size_t)10 * 1024 * 1024 * 1024)
|
||||
// continue;
|
||||
|
||||
CudaPtr wsData = context->getWorkspace(wsSize);
|
||||
float alpha = 1.f, beta = 0.f;
|
||||
|
||||
|
@ -172,10 +187,12 @@ class convCudnn : public Kernel {
|
|||
|
||||
// Destories in CUDA does not require sync. But cuDNN does not state
|
||||
// whether sync is required before destories.
|
||||
checkCudnnError(cudnnDestroyTensorDescriptor(inDesc));
|
||||
checkCudnnError(cudnnDestroyTensorDescriptor(outDesc));
|
||||
checkCudnnError(cudnnDestroyFilterDescriptor(knDesc));
|
||||
checkCudnnError(cudnnDestroyActivationDescriptor(actDesc));
|
||||
checkCudnnError(cudnnDestroyConvolutionDescriptor(convDesc));
|
||||
checkCudnnError(cudnnDestroyTensorDescriptor(biasDesc));
|
||||
checkCudnnError(cudnnDestroyFilterDescriptor(knDesc));
|
||||
checkCudnnError(cudnnDestroyTensorDescriptor(inDesc));
|
||||
return true;
|
||||
}
|
||||
|
||||
|
@ -186,9 +203,63 @@ class convCudnn : public Kernel {
|
|||
|
||||
PerfRecord tune(const Operator &_op,
|
||||
const RuntimeObj *_context) const override {
|
||||
// TODO: real tuning
|
||||
ConvCuDnnPerfRecord ret;
|
||||
ret.time = timeit([&]() { compute(_op, _context); });
|
||||
ConvCuDnnPerfRecord ret, tmp_ret;
|
||||
ret.time = std::numeric_limits<double>::max();
|
||||
auto context = dynamic_cast<const CudaRuntimeObj *>(_context);
|
||||
auto op = as<ConvObj>(_op);
|
||||
// Try every possible data input mode of convolution func
|
||||
for (int i = 0; i < N_MODE; i++) {
|
||||
// Try every possible algorithm of convolution func
|
||||
for (int j = 0; j < N_ALGO; j++) {
|
||||
tmp_ret.algo = j;
|
||||
tmp_ret.mode = i;
|
||||
// Check if the kernel supports the op
|
||||
cudnnStatus_t stat;
|
||||
auto [inData, knData, outData, inDesc, knDesc, biasDesc,
|
||||
convDesc, actDesc, outDesc] =
|
||||
cuDNNDescriptorAccess(op, tmp_ret);
|
||||
|
||||
// get workspace
|
||||
size_t wsSize = tmp_ret.workspaceSize;
|
||||
stat = cudnnGetConvolutionForwardWorkspaceSize(
|
||||
context->cudnnHandle(), inDesc, knDesc, convDesc, outDesc,
|
||||
ALGOS[tmp_ret.algo], &wsSize);
|
||||
if (stat != CUDNN_STATUS_SUCCESS)
|
||||
continue;
|
||||
|
||||
CudaPtr wsData = context->getWorkspace(wsSize);
|
||||
float alpha = 1.f, beta = 0.f;
|
||||
|
||||
stat = cudnnConvolutionForward(
|
||||
context->cudnnHandle(), &alpha, inDesc, inData, knDesc,
|
||||
knData, convDesc, ALGOS[tmp_ret.algo], wsData, wsSize,
|
||||
&beta, outDesc, outData);
|
||||
if (stat != CUDNN_STATUS_SUCCESS)
|
||||
continue;
|
||||
tmp_ret.time = timeit(
|
||||
[&]() {
|
||||
cudnnConvolutionForward(
|
||||
context->cudnnHandle(), &alpha, inDesc, inData,
|
||||
knDesc, knData, convDesc, ALGOS[tmp_ret.algo],
|
||||
wsData, wsSize, &beta, outDesc, outData);
|
||||
},
|
||||
[&]() { context->sync(); });
|
||||
printf("mode:%d algo:%d :%.8lf\n", i, j, tmp_ret.time);
|
||||
// Update the tune result
|
||||
if (ret.time > tmp_ret.time)
|
||||
ret = tmp_ret;
|
||||
|
||||
checkCudnnError(cudnnDestroyTensorDescriptor(outDesc));
|
||||
checkCudnnError(cudnnDestroyActivationDescriptor(actDesc));
|
||||
checkCudnnError(cudnnDestroyConvolutionDescriptor(convDesc));
|
||||
checkCudnnError(cudnnDestroyTensorDescriptor(biasDesc));
|
||||
checkCudnnError(cudnnDestroyFilterDescriptor(knDesc));
|
||||
checkCudnnError(cudnnDestroyTensorDescriptor(inDesc));
|
||||
}
|
||||
}
|
||||
// Test infomation output
|
||||
printf("the best algo is %d, the best conv mode is %d\n", ret.algo,
|
||||
ret.mode);
|
||||
return ret;
|
||||
}
|
||||
|
||||
|
|
|
@ -1,8 +1,10 @@
|
|||
#include "core/graph.h"
|
||||
#include "core/kernel.h"
|
||||
#include "core/runtime.h"
|
||||
#include "cuda/cuda_runtime.h"
|
||||
#include "cuda/cuda_utility.h"
|
||||
#include "operators/conv.h"
|
||||
|
||||
#include "test.h"
|
||||
|
||||
namespace infini {
|
||||
|
@ -107,4 +109,30 @@ TEST(Conv, cuDNN) {
|
|||
IncrementalGenerator(),
|
||||
vector<float>{4794, 4386, 8199, 7506, 11274, 10542, 20835, 19656});
|
||||
}
|
||||
|
||||
TEST(Conv, tune) {
|
||||
Runtime cpu = CpuRuntimeObj::getInstance(); // CPUruntime is singleton
|
||||
Graph gCpu = make_ref<GraphObj>(cpu);
|
||||
Runtime cuda = make_ref<CudaRuntimeObj>();
|
||||
Graph gCuda = make_ref<GraphObj>(cuda);
|
||||
// Set input data on CPU in a CPU Graph
|
||||
Tensor i0Cpu = gCpu->addTensor({1, 3, 800, 800}, DataType::Float32);
|
||||
Tensor w0Cpu = gCpu->addTensor({2, 3, 5, 5}, DataType::Float32);
|
||||
// Malloc data for all tensors in a graph. Do we need implicit allocation?
|
||||
gCpu->dataMalloc();
|
||||
i0Cpu->setData(IncrementalGenerator());
|
||||
w0Cpu->setData(IncrementalGenerator());
|
||||
|
||||
// Copy input tensors from CPU to CUDA
|
||||
Tensor i0Cuda = gCuda->cloneTensor(i0Cpu);
|
||||
Tensor w0Cuda = gCuda->cloneTensor(w0Cpu);
|
||||
// Build CUDA graph
|
||||
auto conv =
|
||||
gCuda->addOp<ConvObj>(i0Cuda, w0Cuda, nullptr, 1, 1, 1, 1, 1, 1);
|
||||
// allocate CUDA memory
|
||||
gCuda->dataMalloc();
|
||||
// Execute on CUDA
|
||||
bool tune = true;
|
||||
cuda->run(gCuda, tune);
|
||||
}
|
||||
} // namespace infini
|
|
@ -1,2 +1,3 @@
|
|||
. /home/spack/spack/share/spack/setup-env.sh
|
||||
spack load cuda@11.0.2 cudnn@8.0.3.33-11.0
|
||||
export CUDAHOSTCXX=/home/spack/spack/opt/spack/linux-ubuntu22.04-broadwell/gcc-9.4.0/gcc-9.4.0-st36klijpsnquihiy463hmedsyhoc3g6/bin/gcc
|
||||
|
|
Loading…
Reference in New Issue