forked from jiuyuan/InfiniTensor
Add: Membound operator serialization
This commit is contained in:
parent
2812900ea2
commit
537b3b4ea4
|
@ -36,10 +36,14 @@ class Serializer : public Functor<string()> {
|
|||
* @param expr The expression to be serialized
|
||||
* @param filePath The path of json file to be output
|
||||
* @param msg Message of derivation
|
||||
* @param inputs membound operator attributes
|
||||
* @param exec_time membound operator attributes
|
||||
* @param hint membound operator attributes
|
||||
* @return bool Whether the serialization succeed
|
||||
*/
|
||||
bool serialize(const Expr &expr, const string &filePath,
|
||||
const string &msg = "");
|
||||
const string &msg = "", vector<Tensor> inputs = {},
|
||||
double exec_time = -1e9, string hint = "");
|
||||
|
||||
/**
|
||||
* @brief Deserialize the given json file to expression
|
||||
|
@ -48,6 +52,9 @@ class Serializer : public Functor<string()> {
|
|||
* @return Expression deserialized from the given json file
|
||||
*/
|
||||
Expr deserialize(const string &filePath);
|
||||
|
||||
tuple<Expr, vector<Tensor>, double, string>
|
||||
deserializeAsMemobundOp(const string &filePath);
|
||||
};
|
||||
|
||||
} // namespace nnet
|
|
@ -6,14 +6,17 @@ namespace infini {
|
|||
|
||||
class MemBoundObj : public OperatorObj {
|
||||
private:
|
||||
nnet::Expr expr;
|
||||
std::vector<nnet::Tensor>
|
||||
nnetInputs; // The order of inputs in nnetInputs should be consistant
|
||||
// with inputs in infinitensor
|
||||
nnet::Expr expr, simplifiedExpr;
|
||||
double exec_time;
|
||||
std::string hint;
|
||||
HashType hash, simplifiedHash;
|
||||
int n, f, h, w;
|
||||
|
||||
// Generated attributes
|
||||
HashType hash;
|
||||
nnet::Expr simplifiedExpr;
|
||||
HashType simplifiedHash;
|
||||
|
||||
public:
|
||||
MemBoundObj(GraphObj *graph, const TensorVec &input,
|
||||
|
|
|
@ -82,13 +82,26 @@ string Serializer::visit_(const Func &c) {
|
|||
}
|
||||
|
||||
bool Serializer::serialize(const Expr &expr, const string &filePath,
|
||||
const string &msg) {
|
||||
const string &msg, vector<Tensor> inputs,
|
||||
double exec_time, string hint) {
|
||||
// Metadata
|
||||
j["Version"] = VERSION;
|
||||
j["Msg"] = msg;
|
||||
j["exec_time"] = exec_time;
|
||||
j["hint"] = hint;
|
||||
// Expressions and routines
|
||||
id = 0;
|
||||
dispatch(expr);
|
||||
|
||||
// Input tensors
|
||||
vector<string> inputsIndices;
|
||||
for (const auto &tensor : inputs) {
|
||||
inputsIndices.emplace_back(std::to_string(id));
|
||||
dispatch(tensor);
|
||||
}
|
||||
j["nnetInputs"] = inputsIndices;
|
||||
|
||||
// Write to file
|
||||
std::ofstream fout(filePath);
|
||||
fout << std::setw(4) << j << std::endl;
|
||||
return true;
|
||||
|
@ -254,4 +267,15 @@ Routine Serializer::buildRoutine(string key) {
|
|||
return nullptr;
|
||||
}
|
||||
|
||||
tuple<Expr, vector<Tensor>, double, string>
|
||||
Serializer::deserializeAsMemobundOp(const string &filePath) {
|
||||
std::ifstream fin(filePath);
|
||||
fin >> j;
|
||||
assert(j["Version"] == VERSION);
|
||||
vector<Tensor> inputs;
|
||||
for (const auto &input : j["nnetInputs"])
|
||||
inputs.emplace_back(as<TensorNode>(buildExprTree(input)));
|
||||
return {buildExprTree("0"), inputs, j["exec_time"], j["hint"]};
|
||||
}
|
||||
|
||||
} // namespace nnet
|
|
@ -10,8 +10,8 @@ MemBoundObj::MemBoundObj(GraphObj *graph, const TensorVec &input,
|
|||
const TensorVec &output,
|
||||
const std::vector<nnet::Tensor> &nnetInputs,
|
||||
nnet::Expr expr, double exec_time, std::string hint)
|
||||
: OperatorObj(OpType::MemBound, input, output), nnetInputs(nnetInputs),
|
||||
expr(expr), exec_time(exec_time), hint(hint) {
|
||||
: OperatorObj(OpType::MemBound, input, output), expr(expr),
|
||||
nnetInputs(nnetInputs), exec_time(exec_time), hint(hint) {
|
||||
IT_ASSERT(checkValid(graph));
|
||||
IT_ASSERT(!checkOOB(expr));
|
||||
hash = calcHash(expr);
|
||||
|
@ -61,11 +61,18 @@ string MemBoundObj::toString() const {
|
|||
|
||||
optional<vector<Shape>> MemBoundObj::inferShape(const TensorVec &inputs) const {
|
||||
// inputs have to match nnetInputs excatly
|
||||
if (inputs.size() != nnetInputs.size())
|
||||
if (inputs.size() != nnetInputs.size()) {
|
||||
std::cout << "Num mismatch" << inputs.size() << " "
|
||||
<< nnetInputs.size();
|
||||
return {};
|
||||
}
|
||||
for (size_t i = 0; i < inputs.size(); ++i)
|
||||
if (inputs[i]->getDims() != nnetInputs[i]->getShape())
|
||||
if (inputs[i]->getDims() != nnetInputs[i]->getShape()) {
|
||||
std::cout << "Shape mismatch " << inputs[i]
|
||||
<< vecToString(inputs[i]->getDims()) << " "
|
||||
<< vecToString(nnetInputs[i]->getShape());
|
||||
return {};
|
||||
}
|
||||
return {{nnet::as<nnet::RangeOpNode>(expr)->getOutputShape()}};
|
||||
}
|
||||
|
||||
|
@ -85,7 +92,8 @@ bool MemBoundObj::checkOOB(nnet::Expr expr) {
|
|||
}
|
||||
|
||||
void MemBoundObj::saveAsJson(string path) const {
|
||||
bool status = nnet::Serializer().serialize(expr, path);
|
||||
bool status = nnet::Serializer().serialize(
|
||||
expr, path, "MemBoundObj::saveAsJson", nnetInputs, exec_time, hint);
|
||||
IT_ASSERT(status);
|
||||
}
|
||||
|
||||
|
|
|
@ -1,9 +1,11 @@
|
|||
#include "core/graph.h"
|
||||
#include "nnet/Visitor/FullPrinterVisitor.h"
|
||||
#include "nnet/Visitor/Serializer.h"
|
||||
#include "nnet/test.h"
|
||||
#include "operators/membound.h"
|
||||
#include "gtest/gtest.h"
|
||||
using namespace nnet;
|
||||
using namespace std;
|
||||
#define DEFINE_VAR(name) auto name = make_ref<VarNode>(#name);
|
||||
|
||||
//{L<i3:0:2500><i4:0:4><b:0:8><w:0:65>Sum<k:0:512>
|
||||
//{({A}[b, (i3 + (2500 * i4)), k] * {B<pad=0,128,0>}[b, ((i3 + (2500 * i4)) +
|
||||
|
@ -12,11 +14,7 @@ using namespace std;
|
|||
// ==> B : Input Tensor shape=[8,10000,512] pad=[0,128,0]
|
||||
|
||||
Expr buildSimpleExpr() {
|
||||
DEFINE_VAR(b);
|
||||
DEFINE_VAR(w);
|
||||
DEFINE_VAR(k);
|
||||
DEFINE_VAR(i3);
|
||||
DEFINE_VAR(i4);
|
||||
DEFINE_VAR(b, w, k, i3, i4);
|
||||
auto A = makeTensor("A", {8, 10000, 512}, {0, 0, 0});
|
||||
auto B = makeTensor("B", {8, 10000, 512}, {0, 128, 0});
|
||||
auto subA = makeSubscript(A, {b, (i3 + (2500 * i4)), k});
|
||||
|
@ -28,9 +26,7 @@ Expr buildSimpleExpr() {
|
|||
}
|
||||
|
||||
Expr buildNestedExpr() {
|
||||
DEFINE_VAR(j1);
|
||||
DEFINE_VAR(j2);
|
||||
DEFINE_VAR(j3);
|
||||
DEFINE_VAR(j1, j2, j3);
|
||||
// Build a Matmul to verify.
|
||||
const int M = 10000, N = 512, K = 3;
|
||||
auto C = make_ref<TensorNode>("C", vector<int>({M, K}));
|
||||
|
@ -46,11 +42,7 @@ Expr buildNestedExpr() {
|
|||
auto E = make_ref<TensorNode>("E", shapeE, shapeE, ele2);
|
||||
auto ele1 = make_ref<ElementWiseNode>(expr, vector{E}, shapeE);
|
||||
|
||||
DEFINE_VAR(b);
|
||||
DEFINE_VAR(w);
|
||||
DEFINE_VAR(k);
|
||||
DEFINE_VAR(i3);
|
||||
DEFINE_VAR(i4);
|
||||
DEFINE_VAR(b, w, k, i3, i4);
|
||||
auto A = makeTensor("A", {8, 10000, 512}, {0, 0, 0}, matmul);
|
||||
auto B = makeTensor("B", {8, 10000, 512}, {0, 128, 0}, ele1);
|
||||
auto subA = makeSubscript(A, {b, (i3 + (2500 * i4)), k});
|
||||
|
@ -68,11 +60,7 @@ TEST(Serializer, Serialization) {
|
|||
}
|
||||
|
||||
TEST(Serializer, CompareTwoExprs) {
|
||||
DEFINE_VAR(b);
|
||||
DEFINE_VAR(w);
|
||||
DEFINE_VAR(k);
|
||||
DEFINE_VAR(i3);
|
||||
DEFINE_VAR(i4);
|
||||
DEFINE_VAR(b, w, k, i3, i4);
|
||||
auto A = makeTensor("A", {8, 10000, 512}, {0, 0, 0});
|
||||
auto B = makeTensor("B", {8, 10000, 512}, {0, 128, 0});
|
||||
auto subA = makeSubscript(A, {b, (i3 + (2500 * i4)), k});
|
||||
|
@ -98,3 +86,31 @@ TEST(Serializer, Serialization_NestedTensor) {
|
|||
auto output = printer.print(exprDeserialized);
|
||||
EXPECT_EQ(output, ans);
|
||||
}
|
||||
|
||||
TEST(Serializer, Serialization_memboundOp) {
|
||||
auto expr = buildSimpleExpr();
|
||||
auto A = makeTensor("A", {8, 10000, 512}, {0, 0, 0});
|
||||
auto B = makeTensor("B", {8, 10000, 512}, {0, 128, 0});
|
||||
// using namespace infini;
|
||||
auto runtime = infini::NativeCpuRuntimeObj::getInstance();
|
||||
auto g = infini::make_ref<infini::GraphObj>(runtime);
|
||||
auto AT = g->addTensor({8, 10000, 512});
|
||||
auto BT = g->addTensor({8, 10000, 512});
|
||||
auto CT = g->addTensor({2500, 4, 8, 65});
|
||||
|
||||
vector<Tensor> nnetInputs{A, B};
|
||||
double execTime = 1;
|
||||
string hint = "test";
|
||||
infini::MemBoundObj memboundOp(nullptr, {AT, BT}, {CT}, nnetInputs, expr,
|
||||
execTime, hint);
|
||||
memboundOp.saveAsJson("./test_serializer.json");
|
||||
auto [exprLoaded, nnetInputsLoaded, execTimeLoaded, hintLoaded] =
|
||||
Serializer().deserializeAsMemobundOp("./test_serializer.json");
|
||||
EXPECT_EQ(expr->toReadable(), exprLoaded->toReadable());
|
||||
EXPECT_EQ(execTime, execTimeLoaded);
|
||||
EXPECT_EQ(nnetInputs.size(), nnetInputsLoaded.size());
|
||||
for (size_t i = 0; i < nnetInputs.size(); ++i)
|
||||
EXPECT_EQ(nnetInputs[i]->toReadable(),
|
||||
nnetInputsLoaded[i]->toReadable());
|
||||
EXPECT_EQ(hint, hintLoaded);
|
||||
}
|
Loading…
Reference in New Issue