Compare commits

..

11 Commits

Author SHA1 Message Date
bolun 608f997042 Add comments in conv benchmark 2023-07-20 16:57:27 +08:00
bolun 97970c5d94 Add benchmark for conv 2023-07-20 16:49:14 +08:00
bolun 4b762cc8d9 Merge branch 'benchmark_softmax' of github.com:InfiniTensor/InfiniTensor into benchmark_conv 2023-07-20 14:15:37 +08:00
bolun 1c55c74151 Add comments 2023-07-20 14:14:06 +08:00
bolun ddaddf375e Init benchmark for conv 2023-07-20 14:03:05 +08:00
bolun 7945693131 Add: benchmark for cudnn softmax 2023-07-20 11:03:07 +08:00
bolun fdb2d30868 fix: Makefile 2023-07-19 11:29:15 +08:00
zhangyue207 f532784d4f update CMakeList.txt Makefile for micro benchmark 2023-07-19 11:10:18 +08:00
zhangyue207 454b7651a8 update CMakeList.txt Makefile for micro benchmark 2023-07-19 10:55:51 +08:00
zhangyue207 48322dbf27 Conv Kernel FP16 2023-07-19 10:06:47 +08:00
zhangyue207 523946cb8b add conv_half kernel 2023-07-18 16:55:00 +08:00
455 changed files with 4246 additions and 23082 deletions

View File

@ -1,11 +1,12 @@
name: Build and test cpu
on:
push:
branch: 'master'
paths-ignore:
- '**.md'
- 'LICENSE'
pull_request:
paths:
paths-ignore:
- '**.md'
- 'LICENSE'
@ -14,10 +15,10 @@ env:
protobuf-version: "3.21.12"
python-version: "3.10"
resnet-download: https://github.com/InfiniTensor/InfiniTensor/releases/download/test-models/resnet18-v2-7.onnx
inception-download: https://github.com/InfiniTensor/InfiniTensor/releases/download/test-models/inception-v2-9.onnx
densenet-download: https://github.com/InfiniTensor/InfiniTensor/releases/download/test-models/densenet-12.onnx
efficientnet-download: https://github.com/InfiniTensor/InfiniTensor/releases/download/test-models/efficientnet-lite4-11.onnx
resnet-download: https://github.com/onnx/models/raw/main/vision/classification/resnet/model/resnet18-v2-7.onnx
inception-download: https://media.githubusercontent.com/media/onnx/models/main/vision/classification/inception_and_googlenet/inception_v2/model/inception-v2-9.onnx
densenet-download: https://github.com/onnx/models/raw/main/vision/classification/densenet-121/model/densenet-12.onnx
efficientnet-download: https://github.com/onnx/models/raw/main/vision/classification/efficientnet-lite4/model/efficientnet-lite4-11.onnx
jobs:
build:

View File

@ -1,11 +1,12 @@
name: clang-format Check
on:
push:
branch: 'master'
paths-ignore:
- '**.md'
- 'LICENSE'
pull_request:
paths:
paths-ignore:
- '**.md'
- 'LICENSE'

2
.gitignore vendored
View File

@ -42,5 +42,3 @@ build_debug/
# onnx model
*.onnx
*.pb
*.npy

5
.gitmodules vendored
View File

@ -11,8 +11,5 @@
path = 3rd-party/backward-cpp
url = git@github.com:bombela/backward-cpp.git
[submodule "example"]
path = examples/NNmodel
path = example
url = git@github.com:wanghailu0717/NNmodel.git
[submodule "examples/distributed/onnxsim_large_model"]
path = examples/distributed/onnxsim_large_model
url = git@github.com:luchangli03/onnxsim_large_model.git

View File

@ -1,45 +1,20 @@
# Do not change these options in this file. Use cmake.config, cmake -DOPTION=VALUE, or ccmake to specify them.
option(USE_CUDA "Support CUDA GPU" OFF)
option(USE_BANG "Support BANG MLU" OFF)
option(USE_KUNLUN "Support KUNLUN XPU" OFF)
option(USE_INTELCPU "Support INTELCPU" OFF)
option(USE_BACKTRACE "Print backtrace on exception and segmentation fault" ON)
option(USE_PROTOBUF "Serialize and deserialize tensors" OFF)
option(BUILD_NNET "Build nnet" OFF)
option(BUILD_DIST "Build project for distributed running" OFF)
option(BUILD_TEST "Build tests" OFF)
if(USE_CUDA)
message("CMake 3.18 or higher is required for setting CUDAToolkit")
cmake_minimum_required(VERSION 3.18) # FindCUDAToolkit
else()
cmake_minimum_required(VERSION 3.17)
endif()
cmake_minimum_required(VERSION 3.17) # FindCUDAToolkit
include(CMakeDependentOption)
project(InfiniTensor C CXX)
# Do not change these options in this file. Use cmake.config, cmake -DOPTION=VALUE, or ccmake to specify them.
option(USE_CUDA "Support CUDA GPU" OFF)
option(USE_BANG "Support BANG MLU" OFF)
option(USE_INTELCPU "Support INTELCPU" OFF)
option(USE_BACKTRACE "Print backtrace on exception and segmentation fault" ON)
option(USE_PROTOBUF "Serialize and deserialize tensors" OFF)
option(BUILD_TEST "Build tests" OFF)
cmake_dependent_option(BUILD_TEST_CORE "Build tests for core components" ON BUILD_TEST OFF)
cmake_dependent_option(BUILD_TEST_PET "Build tests for PET" OFF BUILD_TEST OFF)
cmake_dependent_option(BUILD_TEST_EINNET "Build tests for EINNET" OFF BUILD_TEST OFF)
set(DEFAULT_BUILD_TYPE "RelWithDebInfo")
# Build Type
if(CMAKE_BUILD_TYPE STREQUAL "Debug")
message("Configuring for Debug build.")
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -g -O0")
add_compile_definitions(DEBUG_MODE)
elseif(CMAKE_BUILD_TYPE STREQUAL "Release")
message("Configuring for Release build.")
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -O2")
add_compile_definitions(NDEBUG)
elseif(CMAKE_BUILD_TYPE STREQUAL "RelWithDebInfo")
message("Configuring for RelWithDebInfo build.")
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -g -O2")
else()
message("Build type not specified. Configuring for RelWithDebInfo build.")
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -g -O2")
endif()
if(EXISTS ${CMAKE_CURRENT_BINARY_DIR}/config.cmake)
message(STATUS "Using config.cmake in CMAKE_CURRENT_BINARY_DIR directory")
@ -53,13 +28,11 @@ endif()
set(CMAKE_CXX_STANDARD 17)
set(CMAKE_CXX_EXTENSIONS OFF) # -std=gnu++11 when on, -std=c++11 when off
add_compile_options(-Wno-error=unused-variable)
find_package(
Python
COMPONENTS Interpreter Development
REQUIRED)
# OpenMP
find_package(OpenMP)
if(OpenMP_C_FOUND)
@ -96,17 +69,16 @@ add_subdirectory(3rd-party/nlohmann_json_cmake_fetchcontent)
include_directories(3rd-party/nlohmann_json_cmake_fetchcontent/single_include)
# TVM backend
if(BUILD_NNET AND BUILD_TEST)
if(BUILD_TEST_EINNET)
if (NOT TVM_INCLUDE_DIR OR NOT DMLC_INCLUDE_DIR OR NOT DLPACK_INCLUDE_DIR OR NOT DLPACK_INCLUDE_DIR)
message(FATAL_ERROR "TVM_INCLUDE_DIR, DMLC_INCLUDE_DIR, and DLPACK_INCLUDE_DIR must be set when BUILD_TEST_EINNET is ON")
endif()
# TVM and DMLC for invoking TVM packed functions
include_directories(${TVM_INCLUDE_DIR})
include_directories(${DMLC_INCLUDE_DIR})
include_directories(${DLPACK_INCLUDE_DIR})
if (TVM_INCLUDE_DIR AND DMLC_INCLUDE_DIR AND DLPACK_INCLUDE_DIR AND DLPACK_INCLUDE_DIR)
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -DDMLC_USE_LOGGING_LIBRARY=\\\<${TVM_INCLUDE_DIR}/tvm/runtime/logging.h\\\> ")
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -DINFINI_USE_TVM=1") # Enable TVM codegen kernels
else()
# message(FATAL_ERROR "TVM_INCLUDE_DIR, DMLC_INCLUDE_DIR, and DLPACK_INCLUDE_DIR must be set when BUILD_NNET AND BUILD_TEST is ON")
endif()
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -DDMLC_USE_LOGGING_LIBRARY=\\\<${TVM_INCLUDE_DIR}/tvm/runtime/logging.h\\\> ")
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -DINFINI_USE_TVM=1") # Enable TVM codegen kernels
endif()
if(BUILD_TEST)
@ -120,21 +92,13 @@ if(BUILD_TEST)
include_directories(3rd-party/googletest/googletest/include)
endif()
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -g -Wall -Werror -Wno-error=deprecated-declarations -Wno-error=pointer-arith")
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -g -Wall -Werror -Wno-error=deprecated-declarations")
set(CMAKE_CXX_FLAGS_RELEASE "${CMAKE_CXX_FLAGS_RELEASE} -UNDEBUG") # Enable assertion
set(CMAKE_CXX_FLAGS_RELWITHDEBINFO "${CMAKE_CXX_FLAGS_RELWITHDEBINFO} -UNDEBUG") # Enable assertion
# Source files
file(GLOB_RECURSE SRC src/ffi/*.cc src/core/*.cc src/kernels/cpu/*.cc src/operators/*.cc src/utils/*.cc)
if(BUILD_NNET)
add_compile_definitions(BUILD_NNET=1)
file(GLOB_RECURSE SRC_NNET src/nnet/*.cc)
list (APPEND SRC ${SRC_NNET})
# For locating resource files
set_source_files_properties(src/nnet/test.cc PROPERTIES COMPILE_OPTIONS "-DINFINI_PROJECT_HOME=${CMAKE_CURRENT_SOURCE_DIR}")
endif()
file(GLOB_RECURSE SRC src/ffi/*.cc src/core/*.cc src/kernels/cpu/*.cc src/nnet/*.cc src/operators/*.cc src/utils/*.cc)
if(USE_CUDA)
file(GLOB_RECURSE SRC_CUDA src/cuda/*.cc src/cuda/*.cu src/kernels/cuda/*.cc src/kernels/cuda/*.cu)
@ -146,11 +110,6 @@ if(USE_BANG)
list (APPEND SRC ${SRC_BANG})
endif()
if(USE_KUNLUN)
file(GLOB_RECURSE SRC_KUNLUN src/kunlun/*.cc src/kernels/kunlun/*.cc )
list (APPEND SRC ${SRC_KUNLUN})
endif()
if(USE_INTELCPU)
file(GLOB_RECURSE SRC_INTELCPU src/intelcpu/*.cc src/kernels/intelcpu/*.cc )
list (APPEND SRC ${SRC_INTELCPU})
@ -165,7 +124,7 @@ endif()
target_link_libraries(InfiniTensor pybind11::embed)
# TVM backend
if(BUILD_NNET AND BUILD_TEST AND TVM_LIB_DIR)
if(BUILD_TEST_EINNET)
target_link_libraries(InfiniTensor ${TVM_LIB_DIR}/libtvm.so)
endif()
@ -218,13 +177,6 @@ if(USE_CUDA)
enable_language(CUDA)
find_package(CUDAToolkit) # For nvrtc and cuda driver
target_link_libraries(InfiniTensor cudnn CUDA::curand CUDA::cublas CUDA::nvrtc CUDA::cudart CUDA::cuda_driver)
if (BUILD_DIST)
message(STATUS "Add BUILD_DIST, use NCCL with CUDA")
list(APPEND CMAKE_MODULE_PATH ${PROJECT_SOURCE_DIR}/cmake)
find_package(NCCL REQUIRED)
add_compile_definitions(INFINI_USE_NCCL=1)
target_link_libraries(InfiniTensor nccl)
endif()
endif()
if(USE_BANG)
@ -263,50 +215,7 @@ if(USE_BANG)
# BangC Kernels
################################################################################
if (BUILD_DIST)
find_library(CAMBRICON_CNCL libcncl.so "${NEUWARE_HOME}/lib64")
target_link_libraries(InfiniTensor ${CAMBRICON_CNCL} ${CAMBRICON_CNNL} ${CAMBRICON_CNRT} ${CAMBRICON_CNDRV} stdc++)
message(STATUS "Add BUILD_DIST, use CNCL with BANG")
add_compile_definitions(INFINI_USE_CNCL=1)
else()
target_link_libraries(InfiniTensor ${CAMBRICON_CNNL} ${CAMBRICON_CNRT} ${CAMBRICON_CNDRV} stdc++)
endif()
endif()
if(USE_KUNLUN)
add_compile_definitions(USE_KUNLUN=1)
if ((NOT DEFINED KUNLUN_HOME) AND (NOT DEFINED ENV{KUNLUN_HOME}))
message(FATAL_ERROR "KUNLUN_HOME is not defined from cmake or env")
elseif (DEFINED KUNLUN_HOME)
set(KUNLUN_HOME ${KUNLUN_HOME} CACHE STRING "KUNLUN_HOME directory for Kunlun development")
else()
set(KUNLUN_HOME $ENV{KUNLUN_HOME} CACHE STRING "KUNLUN_HOME directory for Kunlun development")
endif()
message(STATUS "KUNLUN_HOME: ${KUNLUN_HOME}")
include_directories("${KUNLUN_HOME}/include/")
find_library(KUNLUN_RT libxpurt.so "${KUNLUN_HOME}/lib64/")
find_library(KUNLUN_DNN libxpuapi.so "${KUNLUN_HOME}/lib64/")
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -lstdc++ -Wall -Werror")
if ((NOT DEFINED TARGET_CPU_ARCH) AND (NOT DEFINED ENV{TARGET_CPU_ARCH}))
execute_process(COMMAND uname -m OUTPUT_VARIABLE _uname_m OUTPUT_STRIP_TRAILING_WHITESPACE)
set(TARGET_CPU_ARCH "${_uname_m}" CACHE STRING "Target CPU ARCH")
elseif(DEFINED TARGET_CPU_ARCH)
set(TARGET_CPU_ARCH ${TARGET_CPU_ARCH} CACHE STRING "Target CPU ARCH")
else()
set(TARGET_CPU_ARCH $ENV{TARGET_CPU_ARCH} CACHE STRING "Target CPU ARCH")
endif()
message(STATUS "TARGET_CPU_ARCH: ${TARGET_CPU_ARCH}")
if (BUILD_DIST)
message(STATUS "Add BUILD_DIST, use XCCL with KUNLUN XPU")
list(APPEND CMAKE_MODULE_PATH ${PROJECT_SOURCE_DIR}/cmake)
find_package(XCCL REQUIRED)
add_compile_definitions(INFINI_USE_XCCL=1)
target_link_libraries(InfiniTensor ${XCCL_LIBRARIES})
endif()
target_link_libraries(InfiniTensor ${KUNLUN_RT} ${KUNLUN_DNN} stdc++)
target_link_libraries(InfiniTensor ${CAMBRICON_CNNL} ${CAMBRICON_CNRT} ${CAMBRICON_CNDRV} stdc++)
endif()
# # Python bindings
@ -325,7 +234,6 @@ function(build_test files)
endfunction()
if(BUILD_TEST)
add_compile_definitions(BUILD_TEST=1)
enable_testing()
if(USE_TRACE)
build_test(test/trace/*.cc)
@ -333,18 +241,11 @@ if(BUILD_TEST)
if(BUILD_TEST_CORE)
build_test(test/core/*.cc)
build_test(test/operators/*.cc)
build_test(test/kernels/nativecpu/*.cc)
if (USE_CUDA)
build_test(test/kernels/cuda/*.cc)
build_test(test/cuda/*.cc)
endif()
if (USE_BANG)
build_test(test/kernels/bang/*.cc)
build_test(test/bang/*.cc)
endif()
if (USE_KUNLUN)
build_test(test/kernels/kunlun/*.cc)
build_test(test/kunlun/*.cc)
endif()
if (USE_INTELCPU)
build_test(test/kernels/intelcpu/*.cc)
@ -353,7 +254,7 @@ if(BUILD_TEST)
if(BUILD_TEST_PET)
build_test(test/pet/*.cc)
endif()
if(BUILD_NNET AND BUILD_TEST)
if(BUILD_TEST_EINNET)
build_test(test/nnet/test_*.cc)
# Build expression reader
@ -361,3 +262,19 @@ if(BUILD_TEST)
target_link_libraries(nnet_reader InfiniTensor)
endif()
endif()
function(build_bench files)
file(GLOB BENCH_SOURCES ${files})
foreach(benchsourcefile ${BENCH_SOURCES})
get_filename_component(benchname ${benchsourcefile} NAME_WE)
add_executable("benchmark_${benchname}" ${benchsourcefile})
target_link_libraries("benchmark_${benchname}" InfiniTensor)
# add_custom_target(NAME ${benchname} COMMAND ${benchname})
endforeach(benchsourcefile ${BENCH_SOURCES})
endfunction()
if (BENCH)
if (USE_CUDA)
build_bench(benchmark/kernels/cuda/*.cc)
endif()
endif()

View File

@ -1,38 +1,19 @@
.PHONY : build clean format install-python test-cpp test-onnx
.PHONY : build clean install-python test-cpp test-onnx
TYPE ?= Release
TYPE ?= release
CUDA ?= OFF
BANG ?= OFF
KUNLUN ?= OFF
INTELCPU ?= off
BACKTRACE ?= ON
TEST ?= ON
DIST ?= OFF
NNET ?= OFF
DIST ?= OFF
FORMAT_ORIGIN ?=
# Docker build options
DOCKER_NAME ?= infinitensor
DOCKER_IMAGE_NAME ?= infinitensor
DOCKER_FILE ?= infinitensor_ubuntu_22.04.dockerfile
DOCKER_RUN_OPTION ?=
# CUDA option.
ifeq ($(CUDA), ON)
DOCKER_IMAGE_NAME = infinitensor_cuda
DOCKER_NAME = infinitensor_cuda
DOCKER_FILE = infinitensor_ubuntu_22.04_CUDA.dockerfile
DOCKER_RUN_OPTION += --gpus all -it --ipc=host --ulimit memlock=-1 --ulimit stack=67108864 -v `pwd`:`pwd` -w `pwd`
endif
BENCH ?= ON
CMAKE_OPT = -DCMAKE_BUILD_TYPE=$(TYPE)
CMAKE_OPT += -DUSE_CUDA=$(CUDA)
CMAKE_OPT += -DUSE_BANG=$(BANG)
CMAKE_OPT += -DUSE_KUNLUN=$(KUNLUN)
CMAKE_OPT += -DUSE_BACKTRACE=$(BACKTRACE)
CMAKE_OPT += -DBUILD_TEST=$(TEST)
CMAKE_OPT += -DBUILD_DIST=$(DIST)
CMAKE_OPT += -DBUILD_NNET=$(NNET)
CMAKE_OPT += -DBENCH=$(BENCH)
ifeq ($(INTELCPU), ON)
CMAKE_OPT += -DUSE_INTELCPU=ON -DCMAKE_CXX_COMPILER=dpcpp
@ -45,12 +26,9 @@ build:
clean:
rm -rf build
format:
@python3 scripts/format.py $(FORMAT_ORIGIN)
install-python: build
cp build/$(TYPE)/backend*.so pyinfinitensor/src/pyinfinitensor
pip install -e pyinfinitensor/
pip install pyinfinitensor/
test-cpp:
@echo
@ -59,19 +37,3 @@ test-cpp:
test-onnx:
@echo
python3 pyinfinitensor/tests/test_onnx.py
test-api:
@echo
python3 pyinfinitensor/tests/test_api.py
docker-build:
docker build -f scripts/dockerfile/$(DOCKER_FILE) -t $(DOCKER_NAME) .
docker-run:
docker run -t --name $(DOCKER_IMAGE_NAME) -d $(DOCKER_NAME) $(DOCKER_RUN_OPTION)
docker-start:
docker start $(DOCKER_IMAGE_NAME)
docker-exec:
docker exec -it $(DOCKER_IMAGE_NAME) bash

View File

@ -33,14 +33,13 @@ There are several configurable CMake options, see the [CMakeLists.txt](/CMakeLis
## Roadmap
- [RefactorGraph](https://github.com/InfiniTensor/RefactorGraph) is a newly designed AI framework that is set to replace the current main branch.
- [EinNet](https://github.com/InfiniTensor/InfiniTensor/tree/NNET_e2e) is going to be merged into the main branch.
- Integration of [PET](https://github.com/thu-pacman/PET), a tensor program optimizer supporting partially equivalent transformations.
- Supported hardware
- ✔ NVIDIA GPU
- ✔ Cambricon MLU
- ✔ Kunlunxin XPU
- ⬜ Ascend NPU
- ⬜ Kunlunxin XPU
## Contributor Guide

View File

@ -0,0 +1,243 @@
#include "core/graph.h"
#include "core/kernel.h"
#include "core/runtime.h"
#include "cuda/cuda_runtime.h"
#include "cuda/cuda_utility.h"
#include "operators/conv.h"
#include "benchmark.h"
#include <iostream>
#include <cmath>
#include <chrono>
#include <sys/time.h>
using namespace infini;
#define M 1048576
const char algo_name[8][50] = {
"CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_GEMM",
"CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_PRECOMP_GEMM",
"CUDNN_CONVOLUTION_FWD_ALGO_GEMM",
"CUDNN_CONVOLUTION_FWD_ALGO_DIRECT",
"CUDNN_CONVOLUTION_FWD_ALGO_FFT",
"CUDNN_CONVOLUTION_FWD_ALGO_FFT_TILING",
"CUDNN_CONVOLUTION_FWD_ALGO_WINOGRAD",
"CUDNN_CONVOLUTION_FWD_ALGO_WINOGRAD_NONFUSED",
};
const char mode_name[2][50] = {
"CUDNN_CONVOLUTION",
"CUDNN_CROSS_CORRELATION"
};
int main() {
// Benchmark Settings
int warmupRounds = 50;
int timingRounds = 100;
DataType dtype = DataType::Float32;
// cudnn Conv Configurations
cudnnConvolutionMode_t convMode = CUDNN_CROSS_CORRELATION;
cudnnConvolutionFwdAlgo_t convAlgo = CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_PRECOMP_GEMM;
float alpha = 1.f, beta = 0.f;
int n, c, h, w, f, r, s;
int INPUT_BATCH_SIZE = n = 16;
int INPUT_CHANNELS = c = 128;
int INPUT_HEIGHT = h = 128;
int INPUT_WIDTH = w = 128;
Shape INPUT_SHAPE = {INPUT_BATCH_SIZE, INPUT_CHANNELS, \
INPUT_HEIGHT, INPUT_WIDTH};
int OUTPUT_CHANNELS = f = 256;
int KERNEL_HEIGHT = r = 3;
int KERNEL_WIDTH = s = 3;
Shape KERNEL_SHAPE = {INPUT_CHANNELS, OUTPUT_CHANNELS, \
KERNEL_HEIGHT, KERNEL_WIDTH};
int NUM_GROUPS = 1;
int PAD_HEIGHT = 0;
int PAD_WIDTH = 0;
int VERTICAL_STRIDE = 1;
int HORIZONTAL_STRIDE = 1;
int DILATION_HEIGHT = 1;
int DILATION_WIDTH = 1;
// Get input size
size_t inputSize = 1;
for (auto dim: INPUT_SHAPE) {
inputSize *= dim;
}
size_t inputSizeInBytes = inputSize * sizeof(dtype);
// Get kernel size
size_t kernelSize = 1;
for (auto dim: KERNEL_SHAPE) {
kernelSize *= dim;
}
size_t kernelSizeInBytes = kernelSize * sizeof(dtype);
// Init time variables
double time_memcpy_htod = 0.0, time_memcpy_dtoh = 0.0;
double time_op = 0.0;
// Create runtime
Runtime cpuRuntime = NativeCpuRuntimeObj::getInstance();
auto cudaRuntime = make_ref<CudaRuntimeObj>();
// Build input data and kernel on CPU
Tensor inputCpu =
make_ref<TensorObj>(INPUT_SHAPE, dtype, cpuRuntime);
inputCpu->dataMalloc();
inputCpu->setData(RandomGenerator());
Tensor kernelCpu =
make_ref<TensorObj>(KERNEL_SHAPE, dtype, cpuRuntime);
kernelCpu->dataMalloc();
kernelCpu->setData(RandomGenerator());
// Build input data and kernel on GPU
Tensor inputGpu =
make_ref<TensorObj>(INPUT_SHAPE, dtype, cudaRuntime);
inputGpu->dataMalloc();
Tensor kernelGpu =
make_ref<TensorObj>(KERNEL_SHAPE, dtype, cudaRuntime);
kernelGpu->dataMalloc();
// Do memcpy host to device
time_memcpy_htod += timeit(
[&]() {
inputGpu = inputCpu->clone(cudaRuntime);
kernelGpu = kernelCpu->clone(cudaRuntime);
},
[&]() { cudaRuntime->sync(); },
warmupRounds, timingRounds
);
int channelsPerGrp = INPUT_CHANNELS / NUM_GROUPS;
// Build cudnn descriptors
// input descriptor
cudnnTensorDescriptor_t inDesc;
checkCudnnError(cudnnCreateTensorDescriptor(&inDesc));
checkCudnnError(cudnnSetTensor4dDescriptor(
inDesc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, n, c, h, w));
// kernel descriptor
cudnnFilterDescriptor_t knDesc;
checkCudnnError(cudnnCreateFilterDescriptor(&knDesc));
checkCudnnError(cudnnSetFilter4dDescriptor(knDesc, CUDNN_DATA_FLOAT,
CUDNN_TENSOR_NCHW, f,
channelsPerGrp, r, s));
// bias descriptor
// cudnnTensorDescriptor_t biasDesc;
// checkCudnnError(cudnnCreateTensorDescriptor(&biasDesc));
// checkCudnnError(cudnnSetTensor4dDescriptor(
// biasDesc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 1, f, 1, 1));
// convlution descriptor
cudnnConvolutionDescriptor_t convDesc;
checkCudnnError(cudnnCreateConvolutionDescriptor(&convDesc));
checkCudnnError(cudnnSetConvolution2dDescriptor(
convDesc, PAD_HEIGHT, PAD_WIDTH, VERTICAL_STRIDE, HORIZONTAL_STRIDE,
DILATION_HEIGHT, DILATION_WIDTH, convMode, CUDNN_DATA_FLOAT));
if (NUM_GROUPS > 1) {
checkCudnnError(cudnnSetConvolutionGroupCount(convDesc, NUM_GROUPS));
}
// Get output shape
int outn, outc, outh, outw;
checkCudnnError(cudnnGetConvolution2dForwardOutputDim(
convDesc, inDesc, knDesc, &outn, &outc, &outh, &outw));
// Build output descriptor
cudnnTensorDescriptor_t outDesc;
checkCudnnError(cudnnCreateTensorDescriptor(&outDesc));
checkCudnnError(cudnnSetTensor4dDescriptor(outDesc, CUDNN_TENSOR_NCHW,
CUDNN_DATA_FLOAT, outn, outc,
outh, outw));
// Get output size
Shape OUTPUT_SHAPE = {outn, outc, outh, outw};
size_t outputSize = 1;
for (auto dim: OUTPUT_SHAPE) {
outputSize *= dim;
}
size_t outputSizeInBytes = outputSize * sizeof(dtype);
// Build output data on CPU
Tensor outputCpu =
make_ref<TensorObj>(OUTPUT_SHAPE, dtype, cpuRuntime);
outputCpu->dataMalloc();
// Build output data on GPU
Tensor outputGpu =
make_ref<TensorObj>(OUTPUT_SHAPE, dtype, cudaRuntime);
outputGpu->dataMalloc();
// Get workspace size
size_t workspaceSize = 0;
checkCudnnError(cudnnGetConvolutionForwardWorkspaceSize(
cudaRuntime->cudnnHandle(), inDesc, knDesc, convDesc,
outDesc, convAlgo, &workspaceSize));
CudaPtr workspace = cudaRuntime->getWorkspace(workspaceSize);
// Do forward
time_op += timeit(
[&]() {
cudnnConvolutionForward(cudaRuntime->cudnnHandle(), &alpha,
inDesc, inputGpu->getRawDataPtr<void *>(),
knDesc, kernelGpu->getRawDataPtr<void *>(),
convDesc, convAlgo, workspace,
workspaceSize, &beta,
outDesc, outputGpu->getRawDataPtr<void *>());
},
[&]() { cudaRuntime->sync(); },
warmupRounds, timingRounds
);
checkCudnnError(cudnnDestroyTensorDescriptor(outDesc));
checkCudnnError(cudnnDestroyConvolutionDescriptor(convDesc));
// checkCudnnError(cudnnDestroyTensorDescriptor(biasDesc));
checkCudnnError(cudnnDestroyFilterDescriptor(knDesc));
checkCudnnError(cudnnDestroyTensorDescriptor(inDesc));
// Do memcpy device to host
time_memcpy_dtoh += timeit(
[&]() {
outputCpu = outputGpu->clone(cpuRuntime);
},
[&]() { cudaRuntime->sync(); },
warmupRounds, timingRounds
);
// Print Results
printf("Operator - Convolution:\n");
printf("Conv Algo: %s\n", algo_name[convAlgo]);
printf("Conv Mode: %s\n", mode_name[convMode]);
printf("Input shape: (%d, %d, %d, %d)\n",
INPUT_SHAPE[0], INPUT_SHAPE[1], INPUT_SHAPE[2], INPUT_SHAPE[3]);
printf("Kernel shape: (%d, %d, %d, %d)\n",
KERNEL_SHAPE[0], KERNEL_SHAPE[1], KERNEL_SHAPE[2], KERNEL_SHAPE[3]);
printf("Output shape: (%d, %d, %d, %d)\n",
OUTPUT_SHAPE[0], OUTPUT_SHAPE[1], OUTPUT_SHAPE[2], OUTPUT_SHAPE[3]);
printf("Workspace size: %ld Bytes, dtype: %s\n",
workspaceSize, dtype.toString().c_str());
printf("TFlops: %.5lf tflops\n",
2.0 * INPUT_BATCH_SIZE * channelsPerGrp * outh * outw * \
OUTPUT_CHANNELS * KERNEL_HEIGHT * KERNEL_WIDTH / \
VERTICAL_STRIDE / HORIZONTAL_STRIDE / 1e9 / time_op);
printf("Memcpy time: h2d - %.6lf ms, d2h - %.6lf ms\n",
time_memcpy_htod, time_memcpy_dtoh);
printf("Memcpy throughput: h2d - %.6lf MB/ms, d2h: %.6lf MB/ms\n",
(inputSizeInBytes + kernelSizeInBytes) / M / time_memcpy_htod,
outputSizeInBytes / M / time_memcpy_dtoh);
printf("Operation: %.6lf ms\n", time_op);
return 0;
}

View File

@ -0,0 +1,126 @@
#include "core/graph.h"
#include "core/kernel.h"
#include "core/runtime.h"
#include "cuda/cuda_runtime.h"
#include "cuda/cuda_utility.h"
#include "operators/softmax.h"
#include "benchmark.h"
#include <iostream>
#include <cmath>
#include <chrono>
#include <sys/time.h>
using namespace infini;
#define M 1048576
int main() {
// Benchmark Settings
int warmupRounds = 200;
int timingRounds = 200;
Shape INPUT_SHAPE = {16, 3, 128, 128};
DataType dtype = DataType::Float32;
// Get data size
size_t size = 1;
for (auto dim: INPUT_SHAPE) {
size *= dim;
}
size_t sizeInBytes = size * sizeof(dtype);
// Init time variables
double time_memcpy_htod = 0.0, time_memcpy_dtoh = 0.0;
double time_op = 0.0;
// Create runtime
Runtime cpuRuntime = NativeCpuRuntimeObj::getInstance();
auto cudaRuntime = make_ref<CudaRuntimeObj>();
// Build input data on CPU
Tensor inputCpu =
make_ref<TensorObj>(INPUT_SHAPE, dtype, cpuRuntime);
inputCpu->dataMalloc();
inputCpu->setData(RandomGenerator());
// Build input data on GPU
Tensor inputGpu =
make_ref<TensorObj>(INPUT_SHAPE, dtype, cudaRuntime);
inputGpu->dataMalloc();
// Do memcpy host to device
time_memcpy_htod += timeit(
[&]() {
inputGpu = inputCpu->clone(cudaRuntime);
},
[&]() { cudaRuntime->sync(); },
warmupRounds, timingRounds
);
// Build output data on CPU
auto outputGpu = inputGpu->clone(cudaRuntime);
// Build output data on GPU
Tensor outputCpu =
make_ref<TensorObj>(INPUT_SHAPE, dtype, cpuRuntime);
outputCpu->dataMalloc();
// Build cudnn descriptors
cudnnTensorDescriptor_t inputDesc, outputDesc;
// input descriptor
checkCudnnError(cudnnCreateTensorDescriptor(&inputDesc));
checkCudnnError(cudnnSetTensor4dDescriptor(
inputDesc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, INPUT_SHAPE[0],
INPUT_SHAPE[1], INPUT_SHAPE[2], INPUT_SHAPE[3]));
// output descriptor
checkCudnnError(cudnnCreateTensorDescriptor(&outputDesc));
checkCudnnError(cudnnSetTensor4dDescriptor(
outputDesc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, INPUT_SHAPE[0],
INPUT_SHAPE[1], INPUT_SHAPE[2], INPUT_SHAPE[3]));
// cudnn operator settings
float alpha = 1.0, beta = 0.0;
cudnnSoftmaxAlgorithm_t algo = CUDNN_SOFTMAX_FAST;
cudnnSoftmaxMode_t mode = CUDNN_SOFTMAX_MODE_INSTANCE;
// Do forward
time_op += timeit(
[&]() {
cudnnSoftmaxForward(cudaRuntime->cudnnHandle(), algo, mode,
&alpha, inputDesc, inputGpu->getRawDataPtr<void *>(),
&beta, outputDesc, outputGpu->getRawDataPtr<void *>());
},
[&]() { cudaRuntime->sync(); },
warmupRounds, timingRounds
);
checkCudnnError(cudnnDestroyTensorDescriptor(inputDesc));
checkCudnnError(cudnnDestroyTensorDescriptor(outputDesc));
// Do memcpy device to host
time_memcpy_dtoh += timeit(
[&]() {
outputCpu = outputGpu->clone(cpuRuntime);
},
[&]() { cudaRuntime->sync(); },
warmupRounds, timingRounds
);
// Print Results
printf("Operator - Softmax:\n");
printf("Input shape: (%d, %d, %d, %d)\n",
INPUT_SHAPE[0], INPUT_SHAPE[1], INPUT_SHAPE[2], INPUT_SHAPE[3]);
printf("Input size: %ld, dtype: %s, size in bytes: %ld\n",
size, dtype.toString().c_str(), sizeInBytes);
printf("TFlops: %.5lf tflops\n", 5 * size / 1e9 / time_op);
printf("Memcpy time: h2d - %.6lf ms, d2h - %.6lf ms\n",
time_memcpy_htod, time_memcpy_dtoh);
printf("Memcpy throughput: h2d - %.6lf MB/ms, d2h: %.6lf MB/ms\n",
sizeInBytes / M / time_memcpy_htod, sizeInBytes / M / time_memcpy_dtoh);
printf("Operation: %.6lf ms\n", time_op);
return 0;
}

View File

@ -1,76 +0,0 @@
SET(CNCL_LIB_SEARCH_PATHS $ENV{NEUWARE_HOME}/lib64)
SET(CNCL_INCLUDE_SEARCH_PATHS $ENV{NEUWARE_HOME}/include)
set(CNCL_INCLUDE_DIR $ENV{NEUWARE_HOME}/include)
set(CNCL_LIB_DIR $ENV{NEUWARE_HOME}/lib64)
set(CNCL_VERSION $ENV{CNCL_VERSION} CACHE STRING "Version of CNCL to build with")
if ($ENV{CNCL_ROOT_DIR})
message(WARNING "CNCL_ROOT_DIR is deprecated. Please set CNCL_ROOT instead.")
endif()
list(APPEND CNCL_ROOT $ENV{CNCL_ROOT_DIR} ${MLU_TOOLKIT_ROOT_DIR})
# Compatible layer for CMake <3.12. CNCL_ROOT will be accounted in for searching paths and libraries for CMake >=3.12.
list(APPEND CMAKE_PREFIX_PATH ${CNCL_ROOT})
find_path(CNCL_INCLUDE_DIRS
NAMES cncl.h
HINTS ${CNCL_INCLUDE_DIR})
if (USE_STATIC_CNCL)
MESSAGE(STATUS "USE_STATIC_CNCL is set. Linking with static CNCL library.")
SET(CNCL_LIBNAME "CNCL_static")
if (CNCL_VERSION) # Prefer the versioned library if a specific CNCL version is specified
set(CMAKE_FIND_LIBRARY_SUFFIXES ".a.${CNCL_VERSION}" ${CMAKE_FIND_LIBRARY_SUFFIXES})
endif()
else()
SET(CNCL_LIBNAME "cncl")
if (CNCL_VERSION) # Prefer the versioned library if a specific CNCL version is specified
set(CMAKE_FIND_LIBRARY_SUFFIXES ".so.${CNCL_VERSION}" ${CMAKE_FIND_LIBRARY_SUFFIXES})
endif()
endif()
find_library(CNCL_LIBRARIES
NAMES ${CNCL_LIBNAME}
HINTS ${CNCL_LIB_DIR})
include(FindPackageHandleStandardArgs)
find_package_handle_standard_args(CNCL DEFAULT_MSG CNCL_INCLUDE_DIRS CNCL_LIBRARIES)
if(CNCL_FOUND) # obtaining CNCL version and some sanity checks
set (CNCL_HEADER_FILE "${CNCL_INCLUDE_DIRS}/cncl.h")
message (STATUS "Determining CNCL version from ${CNCL_HEADER_FILE}...")
set (OLD_CMAKE_REQUIRED_INCLUDES ${CMAKE_REQUIRED_INCLUDES})
list (APPEND CMAKE_REQUIRED_INCLUDES ${CNCL_INCLUDE_DIRS})
include(CheckCXXSymbolExists)
check_cxx_symbol_exists(CNCL_VERSION_CODE CNCL.h CNCL_VERSION_DEFINED)
if (CNCL_VERSION_DEFINED)
set(file "${PROJECT_BINARY_DIR}/detect_cncl_version.cc")
file(WRITE ${file} "
#include <iostream>
#include <cncl.h>
int main()
{
std::cout << CNCL_MAJOR << '.' << CNCL_MINOR << '.' << CNCL_PATCH << std::endl;
int x;
CNCLGetVersion(&x);
return x == CNCL_VERSION_CODE;
}
")
try_run(CNCL_VERSION_MATCHED compile_result ${PROJECT_BINARY_DIR} ${file}
RUN_OUTPUT_VARIABLE CNCL_VERSION_FROM_HEADER
CMAKE_FLAGS "-DINCLUDE_DIRECTORIES=${CNCL_INCLUDE_DIRS}"
LINK_LIBRARIES ${CNCL_LIBRARIES})
if (NOT CNCL_VERSION_MATCHED)
message(FATAL_ERROR "Found CNCL header version and library version do not match! \
(include: ${CNCL_INCLUDE_DIRS}, library: ${CNCL_LIBRARIES}) Please set CNCL_INCLUDE_DIR and CNCL_LIB_DIR manually.")
endif()
message(STATUS "CNCL version: ${CNCL_VERSION_FROM_HEADER}")
else()
# message(STATUS "CNCL version < 2.3.5-5")
endif ()
set (CMAKE_REQUIRED_INCLUDES ${OLD_CMAKE_REQUIRED_INCLUDES})
message(STATUS "Found CNCL (include: ${CNCL_INCLUDE_DIRS}, library: ${CNCL_LIBRARIES})")
mark_as_advanced(CNCL_ROOT_DIR CNCL_INCLUDE_DIRS CNCL_LIBRARIES)
endif()

View File

@ -1,165 +0,0 @@
# Copyright (c) 2021-2022, NVIDIA CORPORATION. All rights reserved.
#
# From PyTorch:
#
# Copyright (c) 2016- Facebook, Inc (Adam Paszke)
# Copyright (c) 2014- Facebook, Inc (Soumith Chintala)
# Copyright (c) 2011-2014 Idiap Research Institute (Ronan Collobert)
# Copyright (c) 2012-2014 Deepmind Technologies (Koray Kavukcuoglu)
# Copyright (c) 2011-2012 NEC Laboratories America (Koray Kavukcuoglu)
# Copyright (c) 2011-2013 NYU (Clement Farabet)
# Copyright (c) 2006-2010 NEC Laboratories America (Ronan Collobert, Leon Bottou, Iain Melvin, Jason Weston)
# Copyright (c) 2006 Idiap Research Institute (Samy Bengio)
# Copyright (c) 2001-2004 Idiap Research Institute (Ronan Collobert, Samy Bengio, Johnny Mariethoz)
#
# From Caffe2:
#
# Copyright (c) 2016-present, Facebook Inc. All rights reserved.
#
# All contributions by Facebook:
# Copyright (c) 2016 Facebook Inc.
#
# All contributions by Google:
# Copyright (c) 2015 Google Inc.
# All rights reserved.
#
# All contributions by Yangqing Jia:
# Copyright (c) 2015 Yangqing Jia
# All rights reserved.
#
# All contributions by Kakao Brain:
# Copyright 2019-2020 Kakao Brain
#
# All contributions from Caffe:
# Copyright(c) 2013, 2014, 2015, the respective contributors
# All rights reserved.
#
# All other contributions:
# Copyright(c) 2015, 2016 the respective contributors
# All rights reserved.
#
# Caffe2 uses a copyright model similar to Caffe: each contributor holds
# copyright over their contributions to Caffe2. The project versioning records
# all such contribution and copyright details. If a contributor wants to further
# mark their specific copyright on a particular contribution, they should
# indicate their copyright solely in the commit message of the change when it is
# committed.
#
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in the
# documentation and/or other materials provided with the distribution.
#
# 3. Neither the names of Facebook, Deepmind Technologies, NYU, NEC Laboratories America
# and IDIAP Research Institute nor the names of its contributors may be
# used to endorse or promote products derived from this software without
# specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
# ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
# LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
# CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
# SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
# INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
# CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
# ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
# POSSIBILITY OF SUCH DAMAGE.
#
# Find the nccl libraries
#
# The following variables are optionally searched for defaults
# NCCL_ROOT: Base directory where all NCCL components are foundHong Xu, 1 year ago: Let CMake handle NCCL detection instead of ou
# NCCL_INCLUDE_DIR: Directory where NCCL header is foundPieter Noordhuis, 3 years ago: Bump gloo
# NCCL_LIB_DIR: Directory where NCCL library is found
#
# The following are set after configuration is done:
# NCCL_FOUND
# NCCL_INCLUDE_DIRS
# NCCL_LIBRARIES
#
# The path hints include CUDA_TOOLKIT_ROOT_DIR seeing as some folks
# install NCCL in the same location as the CUDA toolkit.
# See https://github.com/caffe2/caffe2/issues/1601
set(NCCL_INCLUDE_DIR $ENV{NCCL_INCLUDE_DIR} CACHE PATH "Folder contains NVIDIA NCCL headers")
set(NCCL_LIB_DIR $ENV{NCCL_LIB_DIR} CACHE PATH "Folder contains NVIDIA NCCL libraries")
set(NCCL_VERSION $ENV{NCCL_VERSION} CACHE STRING "Version of NCCL to build with")
if ($ENV{NCCL_ROOT_DIR})
message(WARNING "NCCL_ROOT_DIR is deprecated. Please set NCCL_ROOT instead.")
endif()
list(APPEND NCCL_ROOT $ENV{NCCL_ROOT_DIR} ${CUDA_TOOLKIT_ROOT_DIR})
# Compatible layer for CMake <3.12. NCCL_ROOT will be accounted in for searching paths and libraries for CMake >=3.12.
list(APPEND CMAKE_PREFIX_PATH ${NCCL_ROOT})
find_path(NCCL_INCLUDE_DIRS
NAMES nccl.h
HINTS ${NCCL_INCLUDE_DIR})
if (USE_STATIC_NCCL)
MESSAGE(STATUS "USE_STATIC_NCCL is set. Linking with static NCCL library.")
SET(NCCL_LIBNAME "nccl_static")
if (NCCL_VERSION) # Prefer the versioned library if a specific NCCL version is specified
set(CMAKE_FIND_LIBRARY_SUFFIXES ".a.${NCCL_VERSION}" ${CMAKE_FIND_LIBRARY_SUFFIXES})
endif()
else()
SET(NCCL_LIBNAME "nccl")
if (NCCL_VERSION) # Prefer the versioned library if a specific NCCL version is specified
set(CMAKE_FIND_LIBRARY_SUFFIXES ".so.${NCCL_VERSION}" ${CMAKE_FIND_LIBRARY_SUFFIXES})
endif()
endif()
find_library(NCCL_LIBRARIES
NAMES ${NCCL_LIBNAME}
HINTS ${NCCL_LIB_DIR})
include(FindPackageHandleStandardArgs)
find_package_handle_standard_args(NCCL DEFAULT_MSG NCCL_INCLUDE_DIRS NCCL_LIBRARIES)
if(NCCL_FOUND) # obtaining NCCL version and some sanity checks
set (NCCL_HEADER_FILE "${NCCL_INCLUDE_DIRS}/nccl.h")
message (STATUS "Determining NCCL version from ${NCCL_HEADER_FILE}...")
set (OLD_CMAKE_REQUIRED_INCLUDES ${CMAKE_REQUIRED_INCLUDES})
list (APPEND CMAKE_REQUIRED_INCLUDES ${NCCL_INCLUDE_DIRS})
include(CheckCXXSymbolExists)
check_cxx_symbol_exists(NCCL_VERSION_CODE nccl.h NCCL_VERSION_DEFINED)
if (NCCL_VERSION_DEFINED)
set(file "${PROJECT_BINARY_DIR}/detect_nccl_version.cc")
file(WRITE ${file} "
#include <iostream>
#include <nccl.h>
int main()
{
std::cout << NCCL_MAJOR << '.' << NCCL_MINOR << '.' << NCCL_PATCH << std::endl;
int x;
ncclGetVersion(&x);
return x == NCCL_VERSION_CODE;
}
")
try_run(NCCL_VERSION_MATCHED compile_result ${PROJECT_BINARY_DIR} ${file}
RUN_OUTPUT_VARIABLE NCCL_VERSION_FROM_HEADER
CMAKE_FLAGS "-DINCLUDE_DIRECTORIES=${NCCL_INCLUDE_DIRS}"
LINK_LIBRARIES ${NCCL_LIBRARIES})
if (NOT NCCL_VERSION_MATCHED)
message(FATAL_ERROR "Found NCCL header version and library version do not match! \
(include: ${NCCL_INCLUDE_DIRS}, library: ${NCCL_LIBRARIES}) Please set NCCL_INCLUDE_DIR and NCCL_LIB_DIR manually.")
endif()
message(STATUS "NCCL version: ${NCCL_VERSION_FROM_HEADER}")
else()
# message(STATUS "NCCL version < 2.3.5-5")
endif ()
set (CMAKE_REQUIRED_INCLUDES ${OLD_CMAKE_REQUIRED_INCLUDES})
message(STATUS "Found NCCL (include: ${NCCL_INCLUDE_DIRS}, library: ${NCCL_LIBRARIES})")
mark_as_advanced(NCCL_ROOT_DIR NCCL_INCLUDE_DIRS NCCL_LIBRARIES)
endif()

View File

@ -1,27 +0,0 @@
# Find the xccl libraries
set(XCCL_INCLUDE_DIR $ENV{KUNLUN_HOME}/include CACHE PATH "Folder contains KUNLUN XCCL headers")
set(XCCL_LIB_DIR $ENV{KUNLUN_HOME} CACHE PATH "Folder contains KUNLUN XCCL libraries")
list(APPEND CMAKE_PREFIX_PATH $ENV{KUNLUN_HOME})
find_path(XCCL_INCLUDE_DIRS # ${XCCL_INCLUDE_DIR}
NAMES xpu/bkcl.h
HINTS XCCL_INCLUDE_DIR)
find_library(XCCL_LIBRARIES # ${XCCL_LIB_DIR}
NAMES lib64/libbkcl.so
HINTS XCCL_LIB_DIR)
message(STATUS "XCCL_INCLUDE_DIRS: ${XCCL_INCLUDE_DIRS}")
message(STATUS "XCCL_LIBRARIES: ${XCCL_LIBRARIES}")
include(FindPackageHandleStandardArgs)
find_package_handle_standard_args(XCCL DEFAULT_MSG XCCL_INCLUDE_DIRS XCCL_LIBRARIES)
if (XCCL_FOUND)
set (XCCL_HEADER_FILE "${XCCL_INCLUDE_DIRS}/xpu/bkcl.h")
message (STATUS "Determing XCCL version from ${XCCL_HEADER_FILE}...")
list (APPEND CMAKE_REQUIRED_INCLUDES ${XCCL_INCLUDE_DIRS})
message(STATUS "Found XCCL (include: ${XCCL_INCLUDE_DIRS}, library: ${XCCL_LIBRARIES})")
mark_as_advanced(XCCL_INCLUDE_DIRS XCCL_LIBRARIES)
endif()

View File

@ -133,40 +133,10 @@
make install-python BANG=ON
```
编译 CPU 部分,同时编译昆仑 XPU 部分:
```bash
export KUNLUN_HOME=/path/to/your/kunlun_home
make install-python KUNLUN=ON
```
3. 使用方法
安装成功后,您就可以使用本项目的 Python 接口进行编码并运行。具体使用方式可以参考项目样例代码 example/Resnet/resnet.py 以及用户使用手册
## Docker
本项目也提供了 Docker 的环境,您可以使用 `make docker-build``make docker-build CUDA=ON` 命令启动并编译 Dockerfile您可以通过添加编译选项或者修改 Makefile 变量修改 docker image 名称或者所选的 Dockerfile 文件。
由于在拉取 github repo 时需要将 ssh key 加入到 github profile 中,因此暂时注释掉拉取 repo 并编译项目的过程,由用户在进入 docker 后自己维护 ssh key将 host 中的 ssh key 复制到 docker 中可能会遇到环境不一致的问题)。
```shell
# Build docker container.
make docker-build
# Run docker image.
make docker-run
# Execute docker image.
make docker-exec
```
如果需要编译 CUDA 版,请使用如下命令:
```shell
# Build docker container.
make docker-build CUDA=ON
# Run docker image.
make docker-run CUDA=ON
```
## 技术支持
如遇到问题,请联系我们技术支持团队

View File

@ -2,7 +2,6 @@
## 目录
- [环境支持](#环境支持)
- [神经网络支持](#神经网络支持)
- [技术支持](#技术支持)
@ -20,10 +19,10 @@
目前已经验证过的神经网络模型有
- [x] [ResNet18-v2](https://github.com/onnx/models/blob/main/validated/vision/classification/resnet/model/resnet18-v2-7.onnx)
- [x] [DenseNet-121-12](https://github.com/onnx/models/blob/main/validated/vision/classification/densenet-121/model/densenet-12.onnx)
- [x] [Inception-2](https://github.com/onnx/models/blob/main/validated/vision/classification/inception_and_googlenet/inception_v2/model/inception-v2-9.onnx)
- [x] [EfficientNet-Lite4](https://github.com/onnx/models/blob/main/validated/vision/classification/efficientnet-lite4/model/efficientnet-lite4-11.onnx)
- [x] [ResNet18-v2](https://github.com/onnx/models/blob/main/vision/classification/resnet/model/resnet18-v2-7.onnx)
- [x] [DenseNet-121-12](https://github.com/onnx/models/blob/main/vision/classification/densenet-121/model/densenet-12.onnx)
- [x] [Inception-2](https://github.com/onnx/models/blob/main/vision/classification/inception_and_googlenet/inception_v2/model/inception-v2-9.onnx)
- [x] [EfficientNet-Lite4](https://github.com/onnx/models/blob/main/vision/classification/efficientnet-lite4/model/efficientnet-lite4-11.onnx)
## 技术支持

View File

@ -3,10 +3,9 @@
## 目录
- [使用方法](#使用方法)
- [python 前端应用指南](#python-前端应用指南)
- [导入 onnx 模型](#导入-onnx-模型)
- [优化](#优化)
- [导出 onnx 模型](#导出-onnx-模型)
- [python-前端应用指南](#python-前端应用指南)
- [导入-onnx-模型](#导入-onnx-模型)
- [导出-onnx-模型](#导出-onnx-模型)
- [执行推理](#执行推理)
- [样例代码](#样例代码)
- [技术支持](#技术支持)
@ -14,7 +13,7 @@
## 使用方法
项目管理功能已写到 [Makefile](../Makefile),支持下列功能:
项目管理功能已写到 [Makefile](Makefile),支持下列功能:
- 编译项目:`make`/`make build`
- 清理生成文件:`make clean`
@ -27,7 +26,6 @@
- `TYPE`:编译模式(`debug`/`release`),默认值为 `release`
- `CUDA`:是否编译 CUDA 后端,默认为 `OFF``ON` 打开
- `BANG`:是否编译寒武纪后端,默认为 `OFF``ON` 打开
- `KUNLUN`:是否编译昆仑后端,默认为 `OFF``ON` 打开
- `BACKTRACE`:是否启用栈回溯,默认为 `ON``OFF` 关闭,建议调试时打开
- `TEST`:是否编译 `googletest`,默认为 `ON``OFF` 关闭,只有 `test-cpp` 时必要
@ -39,10 +37,10 @@
支持的模型:
- [x] [ResNet18-v2](https://github.com/onnx/models/blob/main/validated/vision/classification/resnet/model/resnet18-v2-7.onnx)
- [x] [DenseNet-121-12](https://github.com/onnx/models/blob/main/validated/vision/classification/densenet-121/model/densenet-12.onnx)
- [x] [Inception-2](https://github.com/onnx/models/blob/main/validated/vision/classification/inception_and_googlenet/inception_v2/model/inception-v2-9.onnx)
- [x] [EfficientNet-Lite4](https://github.com/onnx/models/blob/main/validated/vision/classification/efficientnet-lite4/model/efficientnet-lite4-11.onnx)
- [x] [ResNet18-v2](https://github.com/onnx/models/blob/main/vision/classification/resnet/model/resnet18-v2-7.onnx)
- [x] [DenseNet-121-12](https://github.com/onnx/models/blob/main/vision/classification/densenet-121/model/densenet-12.onnx)
- [x] [Inception-2](https://github.com/onnx/models/blob/main/vision/classification/inception_and_googlenet/inception_v2/model/inception-v2-9.onnx)
- [x] [EfficientNet-Lite4](https://github.com/onnx/models/blob/main/vision/classification/efficientnet-lite4/model/efficientnet-lite4-11.onnx)
```python
import onnx
@ -97,7 +95,7 @@ for name, tensor in stub.inputs.items():
print(name, tensor.shape(), tensor)
```
对于 [resnet18-v2-7.onnx](https://github.com/onnx/models/blob/main/validated/vision/classification/resnet/model/resnet18-v2-7.onnx),会打印出:
对于 [resnet18-v2-7.onnx](https://github.com/onnx/models/blob/main/vision/classification/resnet/model/resnet18-v2-7.onnx),会打印出:
```plaintext
data [1, 3, 224, 224] <backend.Tensor object at 0x7efeb828e3b0>
@ -138,7 +136,7 @@ for name, tensor in stub.outputs.items():
### 样例代码
您可以参照[resnet.py](https://github.com/wanghailu0717/NNmodel/blob/main/ResNet/resnet.py)的样例代码进行了解,并尝试运行。在这个文件中,我们使用了 Pytorch 构建了 resnet 网络。您可以查阅该脚本使用方式:
您可以参照[./example/Resnet/resnet.py](./example/ResNet/resnet.py)的样例代码进行了解,并尝试运行。在这个文件中,我们使用了 Pytorch 构建了 resnet 网络。您可以查阅该脚本使用方式:
```python
python resnet.py -h

2
env.sh
View File

@ -35,4 +35,4 @@ export LD_LIBRARY_PATH="${NEUWARE_HOME}/lib64:${LD_LIBRARY_PATH}"
# ├── tools
# ├── version
# └── XTDK
export KUNLUN_HOME=/usr/local/xpu
export XPU_HOME=/usr/local/xpu

1
example Submodule

@ -0,0 +1 @@
Subproject commit d6ac8c8c73bf83833a71b41e95820d4eb7741fa9

@ -1 +0,0 @@
Subproject commit 51d3105277f3774ed31c02ed4cd11fa92925af77

View File

@ -1,39 +0,0 @@
# 分布式脚本
## 英伟达平台运行方式
#### 1. 运行pytorch模型并生成输入和标准输出可选择导出onnx
使用 `--export_onnx` 设置导出onnx的目录默认为当前路径 `./`不使用这个flag则只进行计算和生成输入输出。
```bash
python run_pytorch.py --model gpt2 --batch_size 1 --length 1 --export_onnx ./
```
会在当前目录下生成输入输出文件`test_inputs.npy` 和 `test_results.npy`,目前只支持单一输入输出。
#### 2. 运行InfiniTensor分布式脚本
```bash
python cuda_launch.py --model "/XXX/XXX.onnx" --nproc_per_node 4
```
## 寒武纪平台运行方式
**将上述运行脚本 `run_pytorch.py` 以及 `cuda_launch.py` 针对寒武纪平台做了相应的适配,具体见 `run_pytorch_mlu.py` 以及 `bang_launch.py`。**
#### 1. 运行pytorch模型并生成输入和标准输出可选择导出onnx
使用 `--export_onnx` 设置导出onnx的目录默认为当前路径 `./`不使用这个flag则只进行计算和生成输入输出。
```bash
python run_pytorch_mlu.py --model gpt2 --batch_size 1 --length 1 --export_onnx ./
```
会在当前目录下生成输入输出文件`test_inputs.npy` 和 `test_results.npy`,目前只支持单一输入输出。
#### 2. 运行InfiniTensor分布式脚本
```bash
python bang_launch.py --model "/XXX/XXX.onnx" --nproc_per_node 4
```

View File

@ -1,187 +0,0 @@
import sys
sys.path.append('../')
import argparse
import os
import time
import multiprocessing as mp
from pyinfinitensor.onnx import OnnxStub, backend
import onnx
from onnx.external_data_helper import convert_model_to_external_data
from onnx.shape_inference import infer_shapes_path
import numpy as np
from parallel_opt import parallel_model
def parse_args():
parser = argparse.ArgumentParser(description="launch distributed infinitensor")
parser.add_argument("--num_nodes", type=int, default=1, help="number of nodes")
parser.add_argument(
"--nproc_per_node", type=int, default=1, help="number of processes per node"
)
parser.add_argument(
"--name", type=str, default="test", help="name of this instance."
)
parser.add_argument(
"--model", type=str, required=True, help="path to the ONNX model file."
)
parser.add_argument("--batch_size", type=int, default=1, help="batch size.")
parser.add_argument("--length", type=int, default=1, help="sequence length.")
parser.add_argument(
"--gen_std",
action="store_true",
help="whether to generate the standard results.",
)
parser.add_argument(
"--type", type=str, choices=["fp32", "fp16", "tf32"], default="fp32", help="data type"
)
args = parser.parse_args()
print("arg setting: ", args)
return (
args.num_nodes,
args.nproc_per_node,
args.name,
args.model,
args.batch_size,
args.length,
args.gen_std,
args.type,
)
def run_model(model, runtime, world_size=1, rank=0, n=10, data_type="default"):
stub = OnnxStub(model, runtime, matmul_compute_type=data_type)
load_inputs(stub, world_size, rank)
# stub.tune()
stub.run()
# get outputs
outputs = next(stub.outputs.values().__iter__()).copyout_numpy()
# bench
for _ in range(n):
stub.run()
begin = time.time()
for _ in range(n * 2):
stub.run()
end = time.time()
avg_time = (end - begin) / (n * 2)
print(f"average time: {avg_time}")
return outputs
def load_inputs(stub, world_size=1, rank=0):
for i, (name, tensor) in enumerate(stub.inputs.items()):
input = np.load(f"./data/input_{i}.npy")
if all(x == y for x,y in zip(input.shape,tensor.shape())):
tensor.copyin_numpy(input)
else:
tensor.copyin_numpy(np.hsplit(input, world_size)[rank])
def run_and_compare(name, model, runtime, world_size=1, rank=0, data_type="default"):
results = np.load(f"./data/output.npy")
outputs = run_model(model, runtime, world_size, rank, data_type=data_type)
print("outputs abs mean:", abs(outputs).mean())
print("max abs diff:", abs(outputs - results).max())
def start_worker(
name: str, world_size: int, rank: int, local_rank: int, model: onnx.ModelProto, data_type: str
):
dist_name = name + "_dist"
model = parallel_model(model, world_size, rank)
extern_path = f"./{dist_name}_rank{rank}.pb"
if os.path.exists(extern_path):
os.remove(extern_path)
onnx.save_model(
model,
f"./{dist_name}_rank{rank}.onnx",
save_as_external_data=True,
location=extern_path,
)
#infer_shapes_path(f"./{dist_name}_rank{rank}.onnx")
runtime = backend.BangRuntime(local_rank)
# print("init comm")
runtime.init_comm(
dist_name,
world_size,
rank,
)
run_and_compare(name, model, runtime, world_size, rank, data_type)
def start_single(name, model, data_type):
runtime = backend.BangRuntime(0)
run_and_compare(name, model, runtime, data_type=data_type)
def generate_input_output(model):
os.makedirs(os.path.dirname("./data/"), exist_ok=True)
runtime = backend.BangRuntime(0)
stub = OnnxStub(model, runtime)
position_id = 0
for i, (name, tensor) in enumerate(stub.inputs.items()):
input = tensor.copyout_numpy()
if np.issubdtype(input.dtype, np.integer):
if input.size == 1:
# input = np.array([position_id])
input = np.random.randint(0,2,size=input.shape, dtype=input.dtype)
else:
input = np.random.randint(0,2,size=input.shape, dtype=input.dtype)
elif input.dtype == np.bool_:
input = np.random.randint(0,2,size=input.shape) > 0
else:
if i == 0:
input = np.ones(input.shape).astype(input.dtype)
position_id = input.shape[-1] - 1
else:
input = np.random.rand(*input.shape).astype(input.dtype)
tensor.copyin_numpy(input)
np.save(f"./data/input_{i}", input)
stub.run()
time.sleep(0.01)
output = next(stub.outputs.values().__iter__()).copyout_numpy()
if np.isnan(output).any():
print("Nan in output")
np.save(f"./data/output", output)
def main():
nnodes, nproc_per_node, name, model_path, bs, length, gen_std, data_type = parse_args()
data_type = "default" if data_type == "fp32" else data_type
model = onnx.load(model_path)
# generate standart output
if gen_std:
print(f"generate standard data for {name}.")
# a small vocabulary size to fit all LLM.
generate_input_output(model)
return
if nproc_per_node == 1:
# run single process.
# use standalone process to isolate bang.
print("run model by single MLU.")
# p = mp.Process(target=start_single, args=(name, model, data_type))
# p.start()
# p.join()
start_single(name, model, data_type)
return
# run distributed parallel.
world_size = nnodes * nproc_per_node
print(f"run model by {world_size} MLU in parallel.")
workers = [
mp.Process(
target=start_worker,
args=(name, world_size, rank, rank % nproc_per_node, model, data_type),
)
for rank in range(world_size)
]
for w in workers:
w.start()
for w in workers:
w.join()
if __name__ == "__main__":
main()

View File

@ -1,249 +0,0 @@
import argparse
import torch
import torch_mlu
from transformers import BertModel, BertConfig
from transformers import GPT2Model, GPT2Config
from transformers import OPTModel, OPTConfig
from transformers import AlbertModel, AlbertConfig
from transformers import LlamaModel, LlamaConfig
import time
import numpy as np
import onnx
import sys
import os
from onnx.external_data_helper import convert_model_to_external_data
from onnxsim import simplify
def parse_args():
parser = argparse.ArgumentParser(description="Run pytorch gpt2/bert/opt and optionally export onnx.")
parser.add_argument(
"--model", type=str, choices=["gpt2", "bert", "opt", "llama", "albert"], required=True, help="model type"
)
parser.add_argument("--batch_size", type=int, default=1, help="batch size.")
parser.add_argument("--length", type=int, default=1, help="sequence length.")
parser.add_argument(
"--export_onnx",
type=str,
nargs="?",
default=None,
const="./",
help="whether and where to export onnx file",
)
parser.add_argument(
"--type", type=str, choices=["fp32", "fp16", "tf32"], required=True, help="model data type"
)
args = parser.parse_args()
print("arg setting: ", args)
return (
args.model,
args.batch_size,
args.length,
args.export_onnx,
args.type
)
def get_model(modelname):
match modelname:
case "albert":
model = AlbertModel.from_pretrained("albert/albert-base-v2")
voc_size = AlbertConfig().vocab_size
case "bert":
model = BertModel.from_pretrained("bert-base-uncased", add_pooling_layer=False, hidden_act="gelu_new") # erf is not impl by infini
voc_size = BertConfig().vocab_size
case "gpt2":
model = GPT2Model.from_pretrained("GPT2")
voc_size = GPT2Config().vocab_size
case "opt":
model = OPTModel.from_pretrained("facebook/opt-125m")
voc_size = OPTConfig().vocab_size
case "llama":
model = LlamaModel.from_pretrained("meta-llama/Llama-2-7b-hf")
voc_size = LlamaConfig().vocab_size
case _:
raise KeyError(modelname)
model = model.eval()
return model, voc_size
def run_pytorch(torch_model, voc_size, batchsize, len, dtype="fp32"):
data = np.random.randint(0, voc_size, (batchsize, len), dtype=np.int32)
os.makedirs(os.path.dirname("./data/"), exist_ok=True)
np.save("./data/input_0", data)
inputs = torch.from_numpy(data).to("mlu")
torch_model = torch_model.to("mlu")
if dtype == "fp16":
torch_model = torch_model.half()
n_iter = 20
with torch.no_grad():
for _ in range(10):
outputs = torch_model(inputs)
torch.mlu.synchronize()
begin = time.time()
with torch.no_grad():
for _ in range(n_iter):
torch.mlu.synchronize()
outputs = torch_model(inputs)
torch.mlu.synchronize()
torch.mlu.synchronize()
end = time.time()
avg_time = (end - begin) / n_iter
outputs = outputs.last_hidden_state.to("cpu")
print("outputs abs mean:", abs(np.array(outputs)).mean())
print(f"average time: {avg_time}")
# torch.mlu.memory.empty_cache()
np.save("./data/output", np.array(outputs))
print("Save input & output into ./data.")
def export_onnx(modelname, model, data, path, extern=False, dtype="fp32"):
data = data.to("mlu")
model = model.to("mlu")
if dtype == "fp16":
model = model.half()
torch.onnx.export(model, data, path, verbose=False, do_constant_folding=True)
if modelname != "llama":
# use onnxsim to simplify
onnx_model = onnx.load(path)
onnx_model, check = simplify(onnx_model, skipped_optimizers=['eliminate_duplicate_initializer'])
# onnx_model, check = simplify(onnx_model, skipped_optimizers=['fuse_qkv', 'eliminate_duplicate_initializer'])
assert check
add_value_info_for_constants(onnx_model)
onnx_model = onnx.shape_inference.infer_shapes(onnx_model)
if extern:
extern_path = path.replace('.onnx', '.pb')
if os.path.exists(extern_path):
os.remove(extern_path)
extern_path = extern_path.split("/")[-1]
convert_model_to_external_data(
onnx_model,
all_tensors_to_one_file=True,
location=extern_path,
size_threshold=1024,
convert_attribute=False,
)
onnx.save(onnx_model, path)
else:
# use third party tool to simplify llama
# reference: https://github.com/luchangli03/onnxsim_large_model/
sys.path.append("onnxsim_large_model")
from onnx_utils import set_onnx_input_shape
from compress_model import SIZE_1MB, compress_onnx_model, uncompress_onnx_model
in_model_path = path
out_model_path = path
if not out_model_path:
out_model_path = in_model_path[:-5] + ".sim.onnx"
if os.path.isdir(out_model_path):
out_model_path = os.path.join(out_model_path, os.path.basename(in_model_path))
onnx_model = onnx.load(in_model_path)
print(f"load model from {in_model_path} success")
size_th_bytes = 1024 * 1024
onnx_model, removed_inits = compress_onnx_model(onnx_model, size_th_bytes=size_th_bytes)
print(f"compress model success")
onnx_model = set_onnx_input_shape(onnx_model, "")
tensor_size_threshold = f"1024KB"
skipped_optimizers = []
skipped_optimizers.append("eliminate_duplicate_initializer")
onnx_model, check = simplify(onnx_model, skipped_optimizers=skipped_optimizers,
tensor_size_threshold=tensor_size_threshold)
if not check:
raise ValueError(f"simplify compressed model {in_model_path} failed")
print(f"simplify model success")
onnx_model = uncompress_onnx_model(onnx_model, removed_inits)
print(f"uncompress model success")
add_value_info_for_constants(onnx_model)
onnx.save(onnx_model, out_model_path, save_as_external_data=True)
def add_value_info_for_constants(model : onnx.ModelProto):
"""
Currently onnx.shape_inference doesn't use the shape of initializers, so add
that info explicitly as ValueInfoProtos.
Mutates the model.
Args:
model: The ModelProto to update.
"""
# All (top-level) constants will have ValueInfos before IRv4 as they are all inputs
if model.ir_version < 4:
return
def add_const_value_infos_to_graph(graph : onnx.GraphProto):
inputs = {i.name for i in graph.input}
existing_info = {vi.name: vi for vi in graph.value_info}
for init in graph.initializer:
# Check it really is a constant, not an input
if init.name in inputs:
continue
# The details we want to add
elem_type = init.data_type
shape = init.dims
# Get existing or create new value info for this constant
vi = existing_info.get(init.name)
if vi is None:
vi = graph.value_info.add()
vi.name = init.name
# Even though it would be weird, we will not overwrite info even if it doesn't match
tt = vi.type.tensor_type
if tt.elem_type == onnx.TensorProto.UNDEFINED:
tt.elem_type = elem_type
if not tt.HasField("shape"):
# Ensure we set an empty list if the const is scalar (zero dims)
tt.shape.dim.extend([])
for dim in shape:
tt.shape.dim.add().dim_value = dim
# Handle subgraphs
for node in graph.node:
for attr in node.attribute:
# Ref attrs refer to other attrs, so we don't need to do anything
if attr.ref_attr_name != "":
continue
if attr.type == onnx.AttributeProto.GRAPH:
add_const_value_infos_to_graph(attr.g)
if attr.type == onnx.AttributeProto.GRAPHS:
for g in attr.graphs:
add_const_value_infos_to_graph(g)
return add_const_value_infos_to_graph(model.graph)
def main():
torch.backends.mlu.matmul.allow_tf32 = False
torch.backends.cnnl.allow_tf32 = False
modelname, batchsize, seqlen, export_path, dtype = parse_args()
if dtype == "tf32":
torch.backends.mlu.matmul.allow_tf32 = True
else:
os.environ["CAMBRICON_TF32_OVERRIDE"] = "0"
model, voc_size = get_model(modelname)
if export_path is not None:
filename = "{}_{}_{}_{}.onnx".format(modelname, batchsize, seqlen, dtype)
path = os.path.join(export_path, filename)
if not os.path.exists(path):
param = torch.zeros((batchsize, seqlen), dtype=torch.int)
export_onnx(modelname, model, param, path, True, dtype)
else:
print("Onnx path exists, skipping export.")
run_pytorch(model, voc_size, batchsize, seqlen, dtype)
if __name__ == "__main__":
main()

View File

@ -1,161 +0,0 @@
import argparse
import os
import time
import multiprocessing as mp
from pyinfinitensor.onnx import OnnxStub, backend
import onnx
from onnx.external_data_helper import convert_model_to_external_data
from onnx.shape_inference import infer_shapes_path
import numpy as np
from parallel_opt import parallel_model
def parse_args():
parser = argparse.ArgumentParser(description="launch distributed infinitensor")
parser.add_argument("--num_nodes", type=int, default=1, help="number of nodes")
parser.add_argument(
"--nproc_per_node", type=int, default=1, help="number of processes per node"
)
parser.add_argument(
"--name", type=str, default="test", help="name of this instance."
)
parser.add_argument(
"--model", type=str, required=True, help="path to the ONNX model file."
)
parser.add_argument("--batch_size", type=int, default=1, help="batch size.")
parser.add_argument("--length", type=int, default=1, help="sequence length.")
parser.add_argument(
"--gen_std",
action="store_true",
help="whether to generate the standard results.",
)
parser.add_argument(
"--type", type=str, choices=["fp32", "fp16", "tf32"], default="fp32", help="data type"
)
args = parser.parse_args()
print("arg setting: ", args)
return (
args.num_nodes,
args.nproc_per_node,
args.name,
args.model,
args.batch_size,
args.length,
args.gen_std,
args.type,
)
def run_model(model, runtime, inputs, n=10, data_type = "default"):
stub = OnnxStub(model, runtime, matmul_compute_type=data_type)
for tensor, input in zip(stub.inputs.values(), inputs, strict=False):
tensor.copyin_numpy(input)
# stub.tune()
stub.run()
# get outputs
outputs = next(stub.outputs.values().__iter__()).copyout_numpy()
# bench
for tensor, input in zip(stub.inputs.values(), inputs, strict=False):
tensor.copyin_numpy(input)
begin = time.time()
for _ in range(n):
stub.run()
end = time.time()
avg_time = (end - begin) / n
print(f"average time: {avg_time}")
return outputs
def run_and_compare(name, model, runtime, data_type):
input_ids = np.load(f"{name}_inputs.npy")
position_ids = np.arange(input_ids.shape[-1])
results = np.load(f"{name}_results.npy")
outputs = run_model(model, runtime, (input_ids, position_ids), data_type=data_type)
print("outputs abs mean:", abs(outputs).mean())
print("max abs diff:", abs(outputs - results).max())
def start_worker(
name: str, world_size: int, rank: int, local_rank: int, model: onnx.ModelProto, data_type: str
):
dist_name = name + "_dist"
model = parallel_model(model, world_size, rank)
extern_path = f"./{dist_name}_rank{rank}.pb"
if os.path.exists(extern_path):
os.remove(extern_path)
onnx.save_model(
model,
f"./{dist_name}_rank{rank}.onnx",
save_as_external_data=True,
location=extern_path,
)
#infer_shapes_path(f"./{dist_name}_rank{rank}.onnx")
runtime = backend.CudaRuntime(local_rank)
# print("init comm")
runtime.init_comm(
dist_name,
world_size,
rank,
)
run_and_compare(name, model, runtime, data_type)
def start_single(name, model, data_type):
runtime = backend.CudaRuntime(0)
run_and_compare(name, model, runtime, data_type)
def gen_standard(name, model, voc_size, bs, len):
# generate standard results
input_ids = np.random.randint(0, voc_size, (bs, len))
position_ids = np.arange(len)
np.save(f"{name}_inputs", input_ids)
runtime = backend.CudaRuntime(0)
outputs = run_model(model, runtime, (input_ids, position_ids), 1)
print("outputs abs mean:", abs(outputs).mean())
np.save(f"{name}_results", outputs)
def main():
nnodes, nproc_per_node, name, model_path, bs, length, gen_std, data_type = parse_args()
data_type = "default" if data_type == "fp32" else data_type
if data_type != "tf32":
os.environ["NVIDIA_TF32_OVERRIDE"] = "0"
model = onnx.load(model_path)
# generate standart output
if gen_std:
print(f"generate standard data for {name}.")
# a small vocabulary size to fit all LLM.
voc_size = 1000
gen_standard(name, model, voc_size, bs, length)
return
# run single process.
# use standalone process to isolate cuda.
print("run model by single GPU.")
p = mp.Process(target=start_single, args=(name, model, data_type))
p.start()
p.join()
# run distributed parallel.
world_size = nnodes * nproc_per_node
print(f"run model by {world_size} GPU in parallel.")
workers = [
mp.Process(
target=start_worker,
args=(name, world_size, rank, rank % nproc_per_node, model, data_type),
)
for rank in range(world_size)
]
for w in workers:
w.start()
for w in workers:
w.join()
if __name__ == "__main__":
main()

View File

@ -1,245 +0,0 @@
import argparse
import os
import time
import multiprocessing as mp
from pyinfinitensor.onnx import OnnxStub, backend
import onnx
from onnx.external_data_helper import convert_model_to_external_data
import numpy as np
from parallel_opt import parallel_model
os.environ["NVIDIA_TF32_OVERRIDE"] = "0"
def parse_args():
parser = argparse.ArgumentParser(description="launch distributed infinitensor")
parser.add_argument("--num_nodes", type=int, default=1, help="number of nodes")
parser.add_argument(
"--nproc_per_node", type=int, default=1, help="number of processes per node"
)
parser.add_argument(
"--name", type=str, default="test", help="name of this instance."
)
parser.add_argument(
"--model1", type=str, required=True, help="path to the ONNX model file."
)
parser.add_argument(
"--model2", type=str, required=True, help="path to the ONNX model file."
)
parser.add_argument("--batch_size", type=int, default=1, help="batch size.")
parser.add_argument("--length", type=int, default=1, help="sequence length.")
parser.add_argument(
"--gen_std",
action="store_true",
help="whether to generate the standard results.",
)
args = parser.parse_args()
print("arg setting: ", args)
return (
args.num_nodes,
args.nproc_per_node,
args.name,
args.model1,
args.model2,
args.batch_size,
args.length,
args.gen_std,
)
def run_model(model1, model2, runtime1, runtime2, inputs1: np.array, inputs2: np.array, n=20):
####################################
# run the first graph without kvcache
####################################
stub1 = OnnxStub(model1, runtime1)
stub1.inputs['onnx::Reshape_0'].copyin_int32(inputs1.reshape(-1).tolist())
stub1.tune()
stub1.run()
kvcache_it1 = []
count = 0
for output in stub1.outputs.items().__iter__():
if count == 0:
logits_it1 = np.array(output[1].copyout_float(), dtype=np.float32)
else:
kvcache_it1.append(np.array(output[1].copyout_float(), dtype=np.float32))
count = count + 1
# bench for stub1
next(stub1.inputs.items().__iter__())[1].copyin_int32(inputs1.reshape(-1).tolist())
begin = time.time()
for _ in range(n):
stub1.run()
end = time.time()
avg_time = (end - begin) / n
print(f"stub1 average time: {avg_time}")
####################################
# run the second graph with kvcache
####################################
i = 0
batchsize = 1
stub2 = OnnxStub(model2, runtime2)
past_kvcache_length = (i+2)*np.ones((batchsize, 1), dtype=np.int32)
# copyin input
stub2.inputs['onnx::Reshape_0'].copyin_int32(inputs2.reshape(-1).tolist())
stub2.inputs['input.3'].copyin_int32(past_kvcache_length.reshape(-1).tolist())
count = -1
for input in stub2.inputs.items().__iter__():
if count in range(24):
# print(count, input[0])
# print(np.dtype(kvcache_it1[count][0]), kvcache_it1[count].shape)
input[1].copyin_float(kvcache_it1[count].reshape(-1).tolist())
count = count + 1
stub2.tune()
stub2.run()
# copyout output
count = 0
kvcache_it2 = []
for output in stub2.outputs.items().__iter__():
if count == 0:
logits_it2 = np.array(output[1].copyout_float(), dtype=np.float32)
else:
kvcache_it2.append(np.array(output[1].copyout_float(), dtype=np.float32))
count = count + 1
# bench for stub2
# copyin input
stub2.inputs['onnx::Reshape_0'].copyin_int32(inputs2.reshape(-1).tolist())
stub2.inputs['input.3'].copyin_int32(past_kvcache_length.reshape(-1).tolist())
count = -1
for input in stub2.inputs.items().__iter__():
if count in range(24):
input[1].copyin_float(kvcache_it1[count].reshape(-1).tolist())
count = count + 1
begin = time.time()
for _ in range(n):
stub2.run()
end = time.time()
avg_time = (end - begin) / n
print(f"stub2 average time: {avg_time}")
return logits_it2
def run_and_compare(name, model1, model2, runtime1, runtime2):
data1 = np.load(f"{name}_inputs1.npy")
data2 = np.load(f"{name}_inputs2.npy")
results = np.load(f"{name}_results.npy")
outputs = run_model(model1, model2, runtime1, runtime2, data1, data2)
print("outputs sum:", outputs.sum())
print("max abs diff:", abs(outputs - results).max())
print("max rel diff:", abs((outputs - results) / results).max())
# assert np.allclose(outputs, results, rtol=1e-3, atol=1e-6)
def start_worker(
name: str, world_size: int, rank: int, local_rank: int, model1: onnx.ModelProto, model2: onnx.ModelProto
):
dist_name = name + "_dist"
####################################
# shard the first graph
####################################
model1 = parallel_model(model1, world_size, rank)
extern_path = f"./{dist_name}_stub1_rank{rank}.pb"
if os.path.exists(extern_path):
os.remove(extern_path)
convert_model_to_external_data(
model1,
all_tensors_to_one_file=True,
location=extern_path,
size_threshold=1024,
convert_attribute=False,
)
onnx.save(model1, f"./{dist_name}_stub1_rank{rank}.onnx")
runtime1 = backend.CudaRuntime(local_rank)
runtime1.init_comm(
dist_name,
world_size,
rank,
)
####################################
# shard the second graph
####################################
model2 = parallel_model(model2, world_size, rank)
extern_path = f"./{dist_name}_stub2_rank{rank}.pb"
if os.path.exists(extern_path):
os.remove(extern_path)
convert_model_to_external_data(
model2,
all_tensors_to_one_file=True,
location=extern_path,
size_threshold=1024,
convert_attribute=False,
)
onnx.save(model2, f"./{dist_name}_stub2_rank{rank}.onnx")
runtime2 = backend.CudaRuntime(local_rank)
# print("init comm")
runtime2.init_comm(
dist_name,
world_size,
rank,
)
# run the two graphs
run_and_compare(name, model1, model2, runtime1, runtime2)
def start_single(name, model1, model2):
runtime1 = backend.CudaRuntime(0)
runtime2 = backend.CudaRuntime(0)
run_and_compare(name, model1, model2, runtime1, runtime2)
def gen_standard(name, model1, model2, voc_size, bs, len):
# generate standard results
data1 = np.random.randint(0, voc_size, (bs, len), dtype=np.int32)
data2 = np.random.randint(0, voc_size, (bs, len), dtype=np.int32)
np.save(f"{name}_inputs1", data1)
np.save(f"{name}_inputs2", data2)
runtime1 = backend.CudaRuntime(0)
runtime2 = backend.CudaRuntime(0)
outputs = run_model(model1, model2, runtime1, runtime2, data1, data2, 1)
np.save(f"{name}_results", outputs)
def main():
nnodes, nproc_per_node, name, model1_path, model2_path, bs, length, gen_std = parse_args()
model1 = onnx.load(model1_path)
model2 = onnx.load(model2_path)
# generate standart output
if gen_std:
print(f"generate standard data for {name}.")
# a small vocabulary size to fit all LLM.
voc_size = 1000
gen_standard(name, model1, model2, voc_size, bs, length)
return
# run single process.
# use standalone process to isolate cuda.
p = mp.Process(target=start_single, args=(name, model1, model2))
p.start()
p.join()
# run distributed parallel.
world_size = nnodes * nproc_per_node
workers = [
mp.Process(
target=start_worker,
args=(name, world_size, rank, rank % nproc_per_node, model1, model2),
)
for rank in range(world_size)
]
for w in workers:
w.start()
for w in workers:
w.join()
if __name__ == "__main__":
main()

View File

@ -1,188 +0,0 @@
import argparse
import torch
from transformers import BertModel, BertConfig
from transformers import GPT2Model, GPT2Config
from transformers import OPTModel, OPTConfig
import time
import numpy as np
import onnx
import os
from onnx.external_data_helper import convert_model_to_external_data
from onnxsim import simplify
def parse_args():
parser = argparse.ArgumentParser(description="Run pytorch gpt2/bert/opt and optionally export onnx.")
parser.add_argument(
"--model", type=str, choices=["gpt2", "bert", "opt"], required=True, help="model type"
)
parser.add_argument("--batch_size", type=int, default=1, help="batch size.")
parser.add_argument("--length", type=int, default=1, help="sequence length.")
parser.add_argument(
"--export_onnx",
type=str,
nargs="?",
default=None,
const="./",
help="whether and where to export onnx file",
)
parser.add_argument(
"--type", type=str, choices=["fp32", "fp16", "tf32"], default="fp32", help="data type"
)
args = parser.parse_args()
print("arg setting: ", args)
return (
args.model,
args.batch_size,
args.length,
args.export_onnx,
args.type,
)
def get_model(modelname):
match modelname:
case "bert":
model = BertModel.from_pretrained("bert-base-uncased", add_pooling_layer=False, hidden_act="gelu_new") # erf is not impl by infini
voc_size = BertConfig().vocab_size
case "gpt2":
model = GPT2Model.from_pretrained("gpt2")
voc_size = GPT2Config().vocab_size
case "opt":
model = model = OPTModel.from_pretrained("./opt-125m")
voc_size = OPTConfig().vocab_size
case _:
raise KeyError(modelname)
model = model.eval()
return model, voc_size
def run_pytorch(torch_model, voc_size, batchsize, len):
data = np.random.randint(0, voc_size, (batchsize, len), dtype=np.int32)
np.save("test_inputs", data)
inputs = torch.from_numpy(data).to("cuda")
torch_model = torch_model.to("cuda")
n_iter = 20
with torch.no_grad():
for _ in range(10):
outputs = torch_model(inputs)
torch.cuda.synchronize()
begin = time.time()
with torch.no_grad():
for _ in range(n_iter):
torch.cuda.synchronize()
outputs = torch_model(inputs)
#
torch.cuda.synchronize()
torch.cuda.synchronize()
end = time.time()
avg_time = (end - begin) / n_iter
outputs = outputs.last_hidden_state.to("cpu")
print("outputs abs mean:", abs(np.array(outputs)).mean())
print(f"average time: {avg_time}")
torch.cuda.memory.empty_cache()
np.save("test_results", np.array(outputs, dtype=np.float32))
print("Save input & output as test_inputs.npy and test_results.npy")
def export_onnx(model, data, path, extern=False):
torch.onnx.export(model, data, path, verbose=False, do_constant_folding=True)
onnx_model = onnx.load(path)
onnx_model, check = simplify(onnx_model, skipped_optimizers=['eliminate_duplicate_initializer'])
#onnx_model, check = simplify(onnx_model, skipped_optimizers=['fuse_qkv', 'eliminate_duplicate_initializer'])
assert check
add_value_info_for_constants(onnx_model)
onnx_model = onnx.shape_inference.infer_shapes(onnx_model)
if extern:
extern_path = path.replace('.onnx', '.pb')
if os.path.exists(extern_path):
os.remove(extern_path)
convert_model_to_external_data(
onnx_model,
all_tensors_to_one_file=True,
location=extern_path,
size_threshold=1024,
convert_attribute=False,
)
onnx.save(onnx_model, path)
def add_value_info_for_constants(model : onnx.ModelProto):
"""
Currently onnx.shape_inference doesn't use the shape of initializers, so add
that info explicitly as ValueInfoProtos.
Mutates the model.
Args:
model: The ModelProto to update.
"""
# All (top-level) constants will have ValueInfos before IRv4 as they are all inputs
if model.ir_version < 4:
return
def add_const_value_infos_to_graph(graph : onnx.GraphProto):
inputs = {i.name for i in graph.input}
existing_info = {vi.name: vi for vi in graph.value_info}
for init in graph.initializer:
# Check it really is a constant, not an input
if init.name in inputs:
continue
# The details we want to add
elem_type = init.data_type
shape = init.dims
# Get existing or create new value info for this constant
vi = existing_info.get(init.name)
if vi is None:
vi = graph.value_info.add()
vi.name = init.name
# Even though it would be weird, we will not overwrite info even if it doesn't match
tt = vi.type.tensor_type
if tt.elem_type == onnx.TensorProto.UNDEFINED:
tt.elem_type = elem_type
if not tt.HasField("shape"):
# Ensure we set an empty list if the const is scalar (zero dims)
tt.shape.dim.extend([])
for dim in shape:
tt.shape.dim.add().dim_value = dim
# Handle subgraphs
for node in graph.node:
for attr in node.attribute:
# Ref attrs refer to other attrs, so we don't need to do anything
if attr.ref_attr_name != "":
continue
if attr.type == onnx.AttributeProto.GRAPH:
add_const_value_infos_to_graph(attr.g)
if attr.type == onnx.AttributeProto.GRAPHS:
for g in attr.graphs:
add_const_value_infos_to_graph(g)
return add_const_value_infos_to_graph(model.graph)
def main():
torch.backends.cuda.matmul.allow_tf32 = False
torch.backends.cudnn.allow_tf32 = False
modelname, batchsize, seqlen, export_path, data_type = parse_args()
if data_type == "tf32":
torch.backends.cuda.matmul.allow_tf32 = True
else:
os.environ["NVIDIA_TF32_OVERRIDE"] = "0"
model, voc_size = get_model(modelname)
if export_path is not None:
filename = "{}_{}_{}.onnx".format(modelname, batchsize, seqlen)
path = os.path.join(export_path, filename)
param = torch.zeros((batchsize, seqlen), dtype=torch.int)
export_onnx(model, param, path, True)
if data_type == "fp16":
model = model.half()
run_pytorch(model, voc_size, batchsize, seqlen)
if __name__ == "__main__":
main()

View File

@ -1,14 +0,0 @@
export HF_ENDPOINT=https://hf-mirror.com
models=("bert" "gpt2" "llama")
batch_size=(1 32)
seq_len=(100 500)
nproc=(1 2 4)
for model in "${models[@]}"; do
for bs in "${batch_size[@]}"; do
for len in "${seq_len[@]}"; do
python run_pytorch.py --model "$model" --batch_size "$bs" --length "$len" --export_onnx ../models/"$model" --export_only
done
done
done

View File

@ -1,280 +0,0 @@
import sys
sys.path.append('../')
import argparse
import os
import time
import multiprocessing as mp
from pyinfinitensor.onnx import OnnxStub, backend
import onnx
from onnx.external_data_helper import convert_model_to_external_data
from onnx.shape_inference import infer_shapes_path
import numpy as np
from parallel_opt import parallel_model
from functools import wraps
def parse_args():
parser = argparse.ArgumentParser(description="launch distributed infinitensor")
parser.add_argument("--num_nodes", type=int, default=1, help="number of nodes")
parser.add_argument(
"--nproc_per_node", type=int, default=2, help="number of processes per node"
)
parser.add_argument(
"--name", type=str, choices=["gpt2", "bert", "llama"], help="name of model."
)
parser.add_argument(
"--model", type=str, default="", help="path to the ONNX model file."
)
parser.add_argument(
"--gen_std",
default=False,
action="store_true",
help="whether to generate the standard results.",
)
parser.add_argument(
"--run_single",
default=False,
action="store_true",
help="whether run model with single process with standard inputs"
)
parser.add_argument(
"--input_dir",
default="./",
help="path to save model input data"
)
parser.add_argument(
"--result_dir",
default="./",
help="path to save model standard output"
)
parser.add_argument(
"--internal_model_dir",
default="./",
help="path to save internal onnx model for parallel run"
)
args = parser.parse_args()
# check path, mkdir if not exist
check_exists(args.input_dir)
check_exists(args.result_dir)
check_exists(args.internal_model_dir)
print("arg setting: ", args)
return (
args.num_nodes,
args.nproc_per_node,
args.name,
args.model,
args.gen_std,
args.run_single,
args.input_dir,
args.result_dir,
args.internal_model_dir
)
"""
utils function for this scripts
"""
def check_exists(path: str):
if not os.path.exists(path):
os.makedirs(path)
def np_assert(base, test, rtol=1e-2, atol=1e-1):
# np.testing.assert_allclose(test, base, rtol, atol)
print("max abs diff:", abs(base - test).max())
"""
Perf wrapper, run function n times
then average
"""
def perf_it(n):
def decorator(func):
@wraps(func)
def wrapper(*args, **kwargs):
# warmup
for _ in range(n):
func(*args, **kwargs)
t_total = 0
for _ in range(n):
t0 = time.time()
func(*args, **kwargs)
t1 = time.time()
t_total += t1 - t0
avg_time = (t_total) / n
print(f"Avg runtime of {n} time is {avg_time:.6f} seconds")
return avg_time
return wrapper
return decorator
"""
Run InfiniTensor model with Standard input
check=True: check with standard output gen by pytorch
perf=True: run n times to get avg time
"""
def run_model(task_name,
model,
runtime,
world_size=1,
rank=0,
n=10,
check=True,
perf=True):
stub = OnnxStub(model, runtime,
use_naive_allocator=True \
if task_name == "llama" else False)
# load in Onnx model inputs
def load_inputs(stub: OnnxStub):
# check exists
inputs = []
for i, (name, tensor) in enumerate(stub.inputs.items()):
input_path = os.path.join(input_dir, \
f"{task_name}_input_{i}.npy")
print(input_path)
if os.path.exists(input_path):
input = np.load(input_path)
else :
raise KeyError(f"{i} th input of model not exists")
# check shape
if all(x == y for x,y in zip(input.shape, tensor.shape())):
tensor.copyin_numpy(input)
else:
tensor.copyin_numpy(np.hsplit(input, world_size)[rank])
load_inputs(stub)
# stub.tune()
stub.run()
time.sleep(0.01)
output = next(stub.outputs.values().__iter__()).copyout_numpy()
# check output results with standard output
if check:
st_output_path = os.path.join(result_dir, \
f"{task_name}_output.npy")
assert os.path.exists(st_output_path) , \
"standard output not exists"
st_output = np.load(st_output_path)
if np.isnan(output).any():
print("Nan in output")
exit()
np_assert(st_output, output)
# perf
if perf:
@perf_it(n)
def perf_infinitensor(stub: OnnxStub):
stub.run()
perf_infinitensor(stub)
return output
"""
Start a worker in Parallel
"""
def start_worker(name: str,
world_size: int,
rank: int,
local_rank: int,
model: onnx.ModelProto):
dist_name = name + "_dist"
# partial a onnx model to world_size part
model = parallel_model(model, world_size, rank)
onnx.save(model, os.path.join(internal_model_dir, \
f"{dist_name}_rank{rank}.onnx"), save_as_external_data=True)
runtime = backend.KUNLUNRuntime(local_rank)
# print("init comm")
runtime.init_comm(
dist_name,
world_size,
rank,
)
run_model(name, model, runtime, world_size, rank)
"""
generate standard input/output with
sigle card run
"""
def gen_standard(task_name: str, model: onnx.ModelProto):
runtime = backend.KUNLUNRuntime(0)
stub = OnnxStub(model, runtime)
position_id = 0
# generate random input for model
for i, (name, tensor) in enumerate(stub.inputs.items()):
input = tensor.copyout_numpy()
if np.issubdtype(input.dtype, np.integer):
if input.size == 1:
input = np.random.randint(0,2,size=input.shape, dtype=input.dtype)
else:
input = np.random.randint(0,2,size=input.shape, dtype=input.dtype)
elif input.dtype == np.bool_:
input = np.random.randint(0,2,size=input.shape) > 0
else:
if i == 0:
input = np.ones(input.shape).astype(input.dtype)
position_id = input.shape[-1] - 1
else:
input = np.random.rand(*input.shape).astype(input.dtype)
tensor.copyin_numpy(input)
np.save(os.path.join(input_dir, \
f"{task_name}_input_{i}.npy"), input)
stub.run()
# print(stub.outputs)
output = next(stub.outputs.values().__iter__()).copyout_numpy()
if np.isnan(output).any():
print("Nan in output")
exit()
np.save(os.path.join(result_dir, f"{task_name}_output.npy"), output)
def main():
global input_dir, result_dir, internal_model_dir
nnodes, nproc_per_node, task_name, \
model_path, gen_std, run_single, \
input_dir, result_dir, internal_model_dir = parse_args()
# load input onnx model
model = onnx.load(model_path)
# generate standart output
if gen_std:
print("Generate inputs and outputs.")
gen_standard(task_name, model)
return
if run_single:
print("Run model by one GPU card.")
runtime = backend.KUNLUNRuntime(0)
run_model(task_name, model, runtime)
return
# run distributed parallel.
world_size = nnodes * nproc_per_node
print(f"Run model by {world_size} GPU in parallel.")
workers = [
mp.Process(
target=start_worker,
args=(task_name, world_size, rank, rank % nproc_per_node, model),
)
for rank in range(world_size)
]
for w in workers:
w.start()
for w in workers:
w.join()
if __name__ == "__main__":
main()

View File

@ -1,36 +0,0 @@
export HF_ENDPOINT=https://hf-mirror.com
# models=("bert" "gpt2" "llama")
models=("bert" "gpt2")
batch_size=(1 32)
seq_len=(100 500)
nproc=(1 2 4)
results_dir="results"
if [ -d "$results_dir" ]; then
echo "directory ./$results_dir exists"
else
mkdir -p "$results_dir"
echo "mkdir $results_dir, logs saved there"
fi
for model in "${models[@]}"; do
for bs in "${batch_size[@]}"; do
for len in "${seq_len[@]}"; do
# run pytorch model
echo "Run pytorch $model with batch_size=$bs length=$len ."
python run_pytorch.py --model "$model" --batch_size "$bs" --length "$len" #> results/"$model"_"$bs"_"$len"_pytorch
for n in "${nproc[@]}"; do
# run infinitensor
echo "Run $n parallel infinitensor "$model" with batch_size=$bs and length=$len ."
python kunlun_launch.py --name "$model" --model ../models/"$model"/"$model"_"$bs"_"$len".onnx --nproc_per_node=$n # >> results/"$model"_"$bs"_"$len"_infini
# delete internal files
find ./ -type f -name "*.onnx" -delete
find ./ -type f -name "*.pb" -delete
done
find ./ -type f -name "*.npy" -delete
done
done
done

View File

@ -1,35 +0,0 @@
export HF_ENDPOINT=https://hf-mirror.com
# models=("bert" "gpt2" "llama")
models=("llama")
batch_size=(1 )
seq_len=(100 500)
nproc=(1 2 4)
results_dir="results"
if [ -d "$results_dir" ]; then
echo "directory ./$results_dir exists"
else
mkdir -p "$results_dir"
echo "mkdir $results_dir, logs saved there"
fi
for model in "${models[@]}"; do
for bs in "${batch_size[@]}"; do
for len in "${seq_len[@]}"; do
echo "Run pytorch llama with batch_size="$bs" and length="$len""
python run_pytorch.py --model "$model" --batch_size "$bs" --length "$len"
for n in "${nproc[@]}"; do
# run pytorch model
echo "Run infinitensor llama with batch_size="$bs" and length="$len" and nproc="$n"."
python kunlun_launch.py --name llama --model ../models/llama/llama_"$bs"_"$len"_fp32.onnx --nproc_per_node=$n
# delete internal files
find ./ -type f -name "*.onnx" -delete
find ./ -type f -name "*0c" -delete
done
find ./ -type f -name "*.npy" -delete
done
done
done

View File

@ -1,245 +0,0 @@
import argparse
import torch
from transformers import BertModel, BertConfig
from transformers import GPT2Model, GPT2Config
from transformers import OPTModel, OPTConfig
from transformers import LlamaModel, LlamaConfig
import time
import numpy as np
import onnx
import os
import sys
from onnx.external_data_helper import convert_model_to_external_data
from onnxsim import simplify
torch.backends.cuda.matmul.allow_tf32 = False
torch.backends.cudnn.allow_tf32 = False
def parse_args():
parser = argparse.ArgumentParser(description="Run pytorch gpt2/bert/opt and optionally export onnx.")
parser.add_argument(
"--model", type=str, choices=["gpt2", "bert", "opt", "llama"], required=True, help="model type"
)
parser.add_argument("--batch_size", type=int, default=1, help="batch size.")
parser.add_argument("--length", type=int, default=1, help="sequence length.")
parser.add_argument(
"--export_onnx",
type=str,
nargs="?",
default=None,
const="./",
help="whether and where to export onnx file",
)
parser.add_argument(
"--input_dir",
type=str,
default="./",
help="path to save pytorch model input data"
)
parser.add_argument(
"--result_dir",
type=str,
default="./",
help="path to save pytorch model output data"
)
parser.add_argument(
"--export_only",
action="store_true"
)
args = parser.parse_args()
print("arg setting: ", args)
return (
args.model,
args.batch_size,
args.length,
args.export_onnx,
args.input_dir,
args.result_dir,
args.export_only
)
def get_model(modelname):
if modelname == "bert":
model = BertModel.from_pretrained("bert-base-uncased", add_pooling_layer=False, hidden_act="gelu_new") # erf is not impl by infini
voc_size = BertConfig().vocab_size
elif modelname == "gpt2":
model = GPT2Model.from_pretrained("gpt2")
voc_size = GPT2Config().vocab_size
elif modelname == "opt":
model = OPTModel.from_pretrained("./opt-125m")
voc_size = OPTConfig().vocab_size
elif modelname == "llama":
model = LlamaModel.from_pretrained("meta-llama/Llama-2-7b-hf")
voc_size = LlamaConfig().vocab_size
else :
raise KeyError(modelname)
model = model.eval()
return model, voc_size
def run_pytorch(torch_model, voc_size, batchsize, len, model_name):
data = np.random.randint(0, voc_size, (batchsize, len), dtype=np.int32)
np.save(os.path.join(input_dir, f"{model_name}_input_0.npy"), data)
inputs = torch.from_numpy(data).to("cuda")
torch_model = torch_model.to("cuda")
n_iter = 10
with torch.no_grad():
for _ in range(10):
outputs = torch_model(inputs)
torch.cuda.synchronize()
begin = time.time()
with torch.no_grad():
for _ in range(n_iter):
torch.cuda.synchronize()
outputs = torch_model(inputs)
#
torch.cuda.synchronize()
torch.cuda.synchronize()
end = time.time()
avg_time = (end - begin) / n_iter
outputs = outputs.last_hidden_state.to("cpu")
print("outputs abs mean:", abs(np.array(outputs)).mean())
print(f"average time: {avg_time}")
torch.cuda.memory.empty_cache()
np.save(os.path.join(result_dir, f"{model_name}_output.npy"), \
np.array(outputs))
print(f"Save input & output as {model_name}_input_0.npy and {model_name}_output.npy")
def export_onnx(model_name, model, data, path, extern=False):
# torch.onnx.export(model, data, path, verbose=False, do_constant_folding=True)
if model_name != "llama":
onnx_model = onnx.load(path)
onnx_model, check = simplify(onnx_model,
skipped_optimizers=['fuse_qkv', 'eliminate_duplicate_initializer'])
# skipped_optimizers=['fuse_qkv'])
assert check
add_value_info_for_constants(onnx_model)
onnx_model = onnx.shape_inference.infer_shapes(onnx_model)
if extern:
extern_path = path.replace('.onnx', '.pb')
if os.path.exists(extern_path):
os.remove(extern_path)
convert_model_to_external_data(
onnx_model,
all_tensors_to_one_file=True,
location=extern_path.split("/")[-1],
size_threshold=1024,
convert_attribute=False,
)
onnx.save(onnx_model, path)
else:
sys.path.append("onnxsim_large_model")
from onnx_utils import set_onnx_input_shape
from compress_model import SIZE_1MB, compress_onnx_model, uncompress_onnx_model
in_model_path = path
out_model_path = in_model_path[:-5] + ".sim.onnx"
onnx_model = onnx.load(in_model_path)
print(f"load model from {in_model_path} success")
size_th_bytes = 1024 * 1024
onnx_model, removed_inits = compress_onnx_model(onnx_model, size_th_bytes=size_th_bytes)
print("compress model success")
onnx_model = set_onnx_input_shape(onnx_model, "")
tensor_size_threshold = f"1024KB"
skipped_optimizers = []
skipped_optimizers.append("eliminate_duplicate_initializer")
onnx_model, check = simplify(onnx_model, skipped_optimizers=skipped_optimizers,
tensor_size_threshold=tensor_size_threshold)
if not check:
raise ValueError(f"simplify compressed model {in_model_path} failed")
print(f"simplify model success")
onnx_model = uncompress_onnx_model(onnx_model, removed_inits)
print(f"uncompress model success")
add_value_info_for_constants(onnx_model)
onnx.save(onnx_model, out_model_path, save_as_external_data=True)
def add_value_info_for_constants(model : onnx.ModelProto):
"""
Currently onnx.shape_inference doesn't use the shape of initializers, so add
that info explicitly as ValueInfoProtos.
Mutates the model.
Args:
model: The ModelProto to update.
"""
# All (top-level) constants will have ValueInfos before IRv4 as they are all inputs
if model.ir_version < 4:
return
def add_const_value_infos_to_graph(graph : onnx.GraphProto):
inputs = {i.name for i in graph.input}
existing_info = {vi.name: vi for vi in graph.value_info}
for init in graph.initializer:
# Check it really is a constant, not an input
if init.name in inputs:
continue
# The details we want to add
elem_type = init.data_type
shape = init.dims
# Get existing or create new value info for this constant
vi = existing_info.get(init.name)
if vi is None:
vi = graph.value_info.add()
vi.name = init.name
# Even though it would be weird, we will not overwrite info even if it doesn't match
tt = vi.type.tensor_type
if tt.elem_type == onnx.TensorProto.UNDEFINED:
tt.elem_type = elem_type
if not tt.HasField("shape"):
# Ensure we set an empty list if the const is scalar (zero dims)
tt.shape.dim.extend([])
for dim in shape:
tt.shape.dim.add().dim_value = dim
# Handle subgraphs
for node in graph.node:
for attr in node.attribute:
# Ref attrs refer to other attrs, so we don't need to do anything
if attr.ref_attr_name != "":
continue
if attr.type == onnx.AttributeProto.GRAPH:
add_const_value_infos_to_graph(attr.g)
if attr.type == onnx.AttributeProto.GRAPHS:
for g in attr.graphs:
add_const_value_infos_to_graph(g)
return add_const_value_infos_to_graph(model.graph)
def main():
global input_dir, result_dir
modelname, batchsize, seqlen, \
export_path, input_dir, result_dir, export_only = parse_args()
model, voc_size = get_model(modelname) # pytorch model
if export_path is not None:
os.makedirs(export_path, exist_ok=True)
filename = "{}_{}_{}.onnx".format(modelname, batchsize, seqlen)
path = os.path.join(export_path, filename)
param = torch.zeros((batchsize, seqlen), dtype=torch.int)
export_onnx(modelname, model, param, path, True) # export pytorch model to onnx model
if export_only:
return
run_pytorch(model, voc_size, batchsize, seqlen, modelname)
if __name__ == "__main__":
main()

@ -1 +0,0 @@
Subproject commit cbcf3fbf985a00494b0f136c92eaccd42031bf65

View File

@ -1,103 +0,0 @@
import onnx
from onnx import (
ModelProto,
TensorProto,
NodeProto,
AttributeProto,
)
from onnx import helper, numpy_helper
from typing import Dict, Any
def parse_attribute(node: NodeProto, attrs: Dict[str, Any] = dict()) -> Dict[str, Any]:
for attr in node.attribute:
if attr.name in attrs:
if attr.type == AttributeProto.INT:
attrs[attr.name] = attr.i
elif attr.type == AttributeProto.INTS:
attrs[attr.name] = attr.ints
elif attr.type == AttributeProto.FLOAT:
attrs[attr.name] = attr.f
elif attr.type == AttributeProto.STRING:
attrs[attr.name] = attr.s
elif attr.type == AttributeProto.TENSOR:
attrs[attr.name] = attr.t
else:
assert False, "Unsupported Attribute Type: {}".format(attr.type)
return attrs
def parallel_model(model: ModelProto, tp_world_size: int = 1, tp_rank: int = 0):
data = {init.name: init for init in model.graph.initializer}
nodes = list(model.graph.node)
def shard_tensor(tensor: TensorProto, dim: int):
array = numpy_helper.to_array(tensor)
if dim >= array.ndim:
dim = array.ndim - 1
assert array.shape[dim] % tp_world_size == 0
seg = array.shape[dim] // tp_world_size
array = array[tp_rank * seg : (tp_rank + 1) * seg]
return numpy_helper.from_array(array, name=tensor.name + f":sharded({dim})")
def shard_gemm(node: NodeProto):
attrs = parse_attribute(
node, {"alpha": 1.0, "beta": 1.0, "transA": 0, "transB": 0}
)
trans = [attrs["transA"], attrs["transB"]]
dim = 0
for i, (input, t) in enumerate(zip(node.input, trans)):
if input in data:
dim = i
sharded = shard_tensor(data[input], dim ^ t)
node.input[i] = sharded.name
data[input] = sharded
if len(node.input) > 2:
input = node.input[2]
sharded = shard_tensor(data[input], dim)
node.input[2] = sharded.name
data[input] = sharded
node.output[0] += f":sharded({dim})"
return dim
for i, node in enumerate(nodes):
if node.op_type == "Gemm":
output = node.output[0]
dim = shard_gemm(node)
gathered = [node.output[0] + f".{i}" for i in range(tp_world_size)]
# all_gather
nodes.insert(
i + 1,
helper.make_node(
op_type="AllGather",
inputs=[node.output[0]],
outputs=gathered,
name=node.name + "/allgather",
# domain="infini", # shape inference fails for custom domain
),
)
# concat
nodes.insert(
i + 2,
helper.make_node(
op_type="Concat",
inputs=gathered,
outputs=[output],
name=node.name + "/concat",
axis=dim,
),
)
graph = helper.make_graph(
nodes,
model.graph.name + f"_{tp_rank}",
model.graph.input,
model.graph.output,
data.values(),
doc_string=model.graph.doc_string,
value_info=model.graph.value_info,
)
model = helper.make_model(graph)
onnx.shape_inference.infer_shapes(model)
return model

View File

@ -1,247 +0,0 @@
import onnx
from onnx import ModelProto, NodeProto, TensorProto, ValueInfoProto
from onnx import helper, numpy_helper
from typing import Dict, List
from placement import Placement, Replicate, Shard, _Partial
import numpy as np
def parallel_model(model: ModelProto, tp_world_size: int = 1, tp_rank: int = 0):
data = {init.name: init for init in model.graph.initializer}
vinfo = {info.name: info for info in model.graph.value_info}
vinfo.update({info.name: info for info in model.graph.input})
vinfo.update({info.name: info for info in model.graph.output})
output = {info.name: info for info in model.graph.output}
place: Dict[str, Placement] = {}
nodes: List[NodeProto] = []
def is_sharded(name: str):
return place[name].is_shard()
def shard_tensor(tensor: TensorProto, plc: Shard, groups: int = 1):
# print(f"shard {tensor.name} at dim {dim}")
assert plc.is_shard(), plc
ndim = len(tensor.dims)
if plc.dim < 0:
plc.dim += ndim
if tensor.dims[plc.dim] == 1: # broadcast dim, no need to shard.
return tensor
array = numpy_helper.to_array(tensor)
assert array.shape[plc.dim] % tp_world_size == 0, array.shape[plc.dim]
dims = list(tensor.dims)
dims.insert(plc.dim, groups)
dims[plc.dim + 1] //= groups
array = array.reshape(dims)
seg = array.shape[plc.dim + 1] // tp_world_size
array = array.take(
indices=range(tp_rank * seg, (tp_rank + 1) * seg), axis=plc.dim + 1
)
dims = list(tensor.dims)
dims[plc.dim] //= tp_world_size
array = array.reshape(dims)
tensor = numpy_helper.from_array(array, name=tensor.name)
place[tensor.name] = plc
return tensor
def shard_gemm(node: NodeProto, groups: int = 1):
# print("gemm", node.name)
in_plc = place[node.input[0]]
w_plc = Shard(-1) if in_plc.is_replicate() else Shard(0)
transB = next((attr.i for attr in node.attribute if attr.name == "transB"), 0)
if transB:
w_plc.dim = ~w_plc.dim
input = node.input[1]
data[input] = shard_tensor(data[input], w_plc, groups)
output = node.output[0]
ndim = len(vinfo[output].type.tensor_type.shape.dim)
out_plc = Shard(ndim - 1) if in_plc.is_replicate() else _Partial()
place[node.output[0]] = out_plc
def shard_concat(node: NodeProto):
# hack for kvcache
in_plc = place[node.input[1]]
if in_plc.is_shard():
seq_len_dim = vinfo[node.input[0]].type.tensor_type.shape.dim.pop(1)
seq_len_dim.dim_value //= tp_world_size
vinfo[node.input[0]].type.tensor_type.shape.dim.insert(1, seq_len_dim)
place[node.input[0]] = in_plc
place[node.output[0]] = in_plc
def shard_binary(node: NodeProto, groups: int = 1):
# print("binary", node.name, node.input[0], place[node.input[0]])
a = node.input[0]
b = node.input[1]
if a in data:
a, b = b, a
place[node.output[0]] = place[a]
if is_sharded(a) and b in data and len(data[b].dims) == 1: # broadcast
data[b] = shard_tensor(data[b], Shard(0), groups)
def shard_reshape(node: NodeProto):
# print("reshape", node.name, node.input[0], place[node.input[0]])
if not is_sharded(node.input[0]):
return
in_plc = place[node.input[0]]
s_dim = -1
in_dims = [d.dim_value for d in vinfo[node.input[0]].type.tensor_type.shape.dim]
tensor = data[node.input[1]]
out_dims = numpy_helper.to_array(tensor).copy()
if len(in_dims) == 3 and len(out_dims) == 4:
if in_plc.dim == 0:
s_dim = 1
elif in_plc.dim == 2:
s_dim = 2
if len(in_dims) == 4 and len(out_dims) == 3:
if in_plc.dim == 1:
s_dim = 0
elif in_plc.dim == 2:
s_dim = 2
if len(in_dims) == 2 and len(out_dims) == 3:
if in_plc.dim == 1:
s_dim = 2
if len(in_dims) == 4 and len(out_dims) == 2:
if in_plc.dim == 1:
s_dim = 0
elif in_plc.dim == 2:
s_dim = 1
if len(in_dims) == 3 and len(out_dims) == 2:
if in_plc.dim == 1:
s_dim = 0
elif in_plc.dim == 2:
s_dim = 1
assert s_dim != -1
assert out_dims[s_dim] % tp_world_size == 0, out_dims
out_dims[s_dim] //= tp_world_size
# if ONNX uses the same tensor for multiple Reshape Nodes, then rename it to distingush from others.
node.input[1] = node.output[0] + "_shape"
data[node.input[1]] = numpy_helper.from_array(out_dims, name=node.input[1])
place[node.output[0]] = Shard(s_dim)
def shard_split(node: NodeProto):
if not is_sharded(node.input[0]):
return
in_plc = place[node.input[0]]
split_tensor = data[node.input[1]]
split = numpy_helper.to_array(split_tensor).copy()
split //= tp_world_size
data[node.input[1]] = numpy_helper.from_array(split, name=node.input[1])
for output in node.output:
place[output] = in_plc
def shard_transpose(node: NodeProto):
plc = place[node.input[0]]
if plc.is_shard():
perm = next(attr.ints for attr in node.attribute if attr.name == "perm")
place[node.output[0]] = Shard(list(perm).index(plc.dim))
def shard_node(node: NodeProto):
if node.op_type in ["Relu", "Tanh", "Softmax", "Cast"]:
place[node.output[0]] = place[node.input[0]]
elif node.op_type in ["Where"]:
place[node.output[0]] = place[node.input[1]]
if node.op_type in {"Add", "Mul", "Div", "Max"}:
shard_binary(node)
elif node.op_type == "Reshape":
shard_reshape(node)
elif node.op_type == "Transpose":
shard_transpose(node)
elif node.op_type == "Split":
shard_split(node)
elif node.op_type == "MatMul":
assert (
place[node.input[0]] == place[node.input[1]]
), f"{place[node.input[0]]} != {place[node.input[1]]}"
place[node.output[0]] = place[node.input[0]]
elif node.op_type == "Concat":
shard_concat(node)
def find_successor(op_type: str, idx: int, search_limit: int = 1):
for node in model.graph.node[idx + 1 : idx + 1 + search_limit]:
if node.op_type == op_type:
return node
return None
# all tensors are initially replicated.
for v in vinfo:
place[v] = Replicate()
for t in data:
place[t] = Replicate()
for index, node in enumerate(model.graph.node):
nodes.append(node)
# linear
if (node.op_type == "MatMul" or node.op_type == "Gemm") and any(
input in data for input in node.input
):
# FIXME(constroy): the last MatMul should not be sharded as TP.
if (
node.output[0] in output
or (
index + 1 < len(model.graph.node)
and model.graph.node[index + 1].output[0]
)
in output
):
continue
groups = 1
# If the Gemm or Matmul is followed by a split, then the inputs are concatinated by groups
split_node = find_successor("Split", index, search_limit=2)
if split_node is not None:
groups = len(split_node.output)
shard_gemm(node, groups)
plc = place[node.output[0]]
if plc.is_partial():
new_name = node.output[0] + f":{plc}"
place[new_name] = place[node.output[0]]
# insert all_reduce
nodes.append(
helper.make_node(
op_type="ReduceSum",
inputs=[new_name],
outputs=[node.output[0]],
name=node.name + "/all_reduce",
noop_with_empty_axes=1,
communicator=0, # hack to treat ReduceSum as AllReduceSum
)
)
place[node.output[0]] = Replicate()
node.output[0] = new_name
if len(node.input) > 2: # split bias to add
prev = nodes[-1]
new_name = prev.output[0] + "_no_bias"
place[new_name] = place[node.output[0]]
bias = helper.make_node(
op_type="Add",
inputs=[new_name, node.input[2]],
outputs=[prev.output[0]],
name=node.name + "/bias",
)
node.input.pop()
prev.output[0] = new_name
shard_binary(bias, groups)
nodes.append(bias)
continue
shard_node(node)
new_input = []
for info in model.graph.input:
new_input.append(vinfo[info.name])
graph = helper.make_graph(
nodes,
model.graph.name + f"_{tp_rank}",
new_input,
model.graph.output,
data.values(),
doc_string=model.graph.doc_string,
# value_info=vinfo.values(),
)
for output in graph.output:
tt = output.type.tensor_type
if tt.HasField("shape"):
tt.ClearField("shape")
model = helper.make_model(graph)
#model = onnx.shape_inference.infer_shapes(model)
return model

View File

@ -1,64 +0,0 @@
from typing import Optional
class Placement:
# base class Placement type
# convenient utils to check for placement types
def is_shard(self, dim: Optional[int] = None) -> bool:
if dim is not None and isinstance(self, Shard):
return self.dim == dim
else:
return isinstance(self, Shard)
def is_replicate(self) -> bool:
return isinstance(self, Replicate)
def is_partial(self) -> bool:
return isinstance(self, _Partial)
class Replicate(Placement):
def __eq__(self, other: object) -> bool:
if not isinstance(other, Replicate):
return False
return True
def __repr__(self) -> str:
"""
machine readable representation of the Replicate placement
"""
return "Replicate()"
class Shard(Placement):
# shard placement, shard on a dim
def __init__(self, dim):
self.dim = dim
def __eq__(self, other: object) -> bool:
if not isinstance(other, Shard):
return False
return self.dim == other.dim
def __repr__(self) -> str:
"""
machine readable representation of the Shard placement
"""
return f"Shard(dim={self.dim})"
class _Partial(Placement):
def __init__(self, reduce_op: str = "sum"):
self.reduce_op: str = reduce_op
def __eq__(self, other: object) -> bool:
if not isinstance(other, _Partial):
return False
return self.reduce_op == other.reduce_op
def __repr__(self) -> str:
"""
machine readable representation of the Partial placement
"""
return f"_Partial(reduce_op={self.reduce_op})"

View File

@ -1,145 +0,0 @@
import os
from pyinfinitensor.onnx import OnnxStub, backend
import numpy as np
import onnx
import torch
from transformers import LlamaModel, LlamaForCausalLM
from tqdm import tqdm
import onnx_graphsurgeon as gs
from onnxsim import simplify
import argparse
parser = argparse.ArgumentParser(description='')
parser.add_argument('--batchsize', dest='batchsize', type=int, default=1)
parser.add_argument('--layer', dest='n_layers', type=int, default=2)
parser.add_argument('--iter', dest='n_iter', type=int, default=1)
parser.add_argument('--n_max_length', dest='n_max_length', type=int, default=1024)
parser.add_argument('--pretrained_llama_path', dest='pretrained_llama_path', type=str,
default="/data0/shared/data/public/opensource_models/meta-llama/Llama-2-7b-hf/")
parser.add_argument('--onnx_model_path', dest='onnx_model_path', type=str,
default="/data1/shared/llama")
args = parser.parse_args()
ONNX_MODEL_PATH = "{}/llama_bs{}_layer{}.onnx".format(args.onnx_model_path, args.batchsize, args.n_layers)
ONNX_WEIGHT_PATH = "./llama_bs{}_layer{}.pb".format(args.batchsize, args.n_layers)
def export_onnx(model: LlamaModel, ONNX_MODEL_PATH):
param = torch.zeros(
(args.batchsize, 1024), dtype=torch.long)
logits = model(param, past_key_values=None)
param_kvcache = torch.zeros((args.batchsize, 1), dtype=torch.long)
torch.onnx.export(model, (param_kvcache, {"past_key_values": logits.past_key_values,
"position_ids": param_kvcache}), ONNX_MODEL_PATH, verbose=False,
do_constant_folding=True,)
onnx_model = onnx.load(ONNX_MODEL_PATH)
print("simplifing onnx model")
onnx_model, check = simplify(onnx_model, skipped_optimizers=[
'eliminate_duplicate_initializer'])
assert check
onnx.save(onnx_model, ONNX_MODEL_PATH, save_as_external_data=True, location=ONNX_WEIGHT_PATH)
print("simlifing finished.")
@gs.Graph.register()
def replace_with_attention(self, inputs, outputs, inputs_added, outputs_removed):
for inp in inputs:
inp.outputs.clear()
for out in outputs:
out.inputs.clear()
for inp in inputs_added:
inputs.append(inp)
for out in outputs_removed:
out.inputs.clear()
return self.layer(op="AttentionKVCache", inputs=inputs, outputs=outputs)
def replace_onnx_with_attention_op():
graph = gs.import_onnx(
onnx.load(ONNX_MODEL_PATH))
tmap = graph.tensors()
for i in range(args.n_layers):
inputs = [
tmap["onnx::Concat_" + str((i+1)*2)],
tmap["onnx::Concat_" + str((i+1)*2+1)],
tmap["/model/layers." + str(i) + "/self_attn/Add_output_0"],
tmap["/model/layers." + str(i) + "/self_attn/Add_1_output_0"],
tmap["/model/layers." + str(i) + "/self_attn/Transpose_2_output_0"]]
outputs = [
tmap["/model/layers." + str(i) + "/self_attn/MatMul_1_output_0"]]
inputs_added = [graph.inputs[1]]
outputs_removed = []
graph.replace_with_attention(
inputs, outputs, inputs_added, outputs_removed)
graph.outputs = [tmap[graph.outputs[0].name]]
graph.cleanup(True).toposort()
onnx.save(gs.export_onnx(graph), ONNX_MODEL_PATH, save_as_external_data=True)
if __name__ == "__main__":
kvcache_torch = None
torch_model = LlamaForCausalLM.from_pretrained(
args.pretrained_llama_path, num_hidden_layers=int(args.n_layers)).eval()
n_heads = torch_model.config.num_attention_heads
n_dims = torch_model.config.hidden_size // n_heads
if not os.path.exists(ONNX_MODEL_PATH):
print("exporting onnx graph")
export_onnx(torch_model, ONNX_MODEL_PATH)
replace_onnx_with_attention_op()
else:
print("will use exsiting onnx graph")
onnx_model = onnx.load(ONNX_MODEL_PATH)
stub = OnnxStub(onnx_model, backend.cuda_runtime())
count_wrong = 0
for i in tqdm(range(0, args.n_max_length)):
query = np.random.randint(
torch_model.config.vocab_size, size=(args.batchsize, 1), dtype=np.int32)
position_id = i*np.ones((args.batchsize, 1), dtype=np.int32)
####################################
# pytorch
####################################
outputs_torch = torch_model(
torch.tensor(query), past_key_values=kvcache_torch)
logit_torch = outputs_torch['logits']
kvcache_torch = outputs_torch['past_key_values']
####################################
# infinitensor
####################################
# copyin input
(list(stub.inputs.items()))[0][1].copyin_int64(
query.reshape(-1).tolist())
(list(stub.inputs.items()))[1][1].copyin_int64(
position_id.reshape(-1).tolist())
stub.run()
####################################
# validation
####################################
# copyout output
logits_it = np.array((list(stub.outputs.items()))
[0][1].copyout_float())
try:
np.testing.assert_allclose(
logit_torch[:, -1, :].detach().cpu().numpy().flatten(), logits_it, rtol=1e-3, atol=1e-3)
except Exception as e:
try:
np.testing.assert_allclose(
np.argmax(logit_torch[:, -1, :].detach().cpu().numpy().flatten()), np.argmax(logits_it), rtol=1e-3, atol=1e-3)
except:
count_wrong = count_wrong + 1
result = "{}/{} failed.".format(count_wrong, args.n_max_length)
print(result)
del stub

View File

@ -1,29 +0,0 @@
import sys
import onnx
import torch
import numpy as np
from pyinfinitensor.onnx import OnnxStub, backend
if __name__ == '__main__':
args = sys.argv
if len(sys.argv) != 2:
print("Usage: python onnx_inference.py model_name.onnx")
exit()
model_path = sys.argv[1]
# print(model_path)
onnx_model = onnx.load(model_path)
onnx_input = onnx_model.graph.input[0]
input_shape = [[d.dim_value for d in _input.type.tensor_type.shape.dim]
for _input in onnx_model.graph.input]
# Assume that there is only one input tensor
input_shape = input_shape[0]
# print(input_shape)
input_data = np.random.random(input_shape).astype(np.float32)
model = OnnxStub(onnx_model, backend.cuda_runtime())
next(iter(model.inputs.values())).copyin_numpy(input_data)
model.run()
outputs = next(iter(model.outputs.values())).copyout_numpy()
outputs = torch.tensor(outputs)
print(outputs.shape)

View File

@ -1,80 +0,0 @@
import paddle
import paddle.vision.transforms as T
from paddle.vision.datasets import Cifar10
from pyinfinitensor.onnx import OnnxStub, backend
import onnx
import itertools
def run_cifar_train_and_infer():
paddle.device.set_device("gpu")
transform = T.Compose(
[
T.Resize(224),
T.ToTensor(),
T.Normalize(
mean=[0.5, 0.5, 0.5],
std=[0.5, 0.5, 0.5],
to_rgb=True,
),
]
)
# 下载数据集并初始化 DataSet
train_dataset = paddle.vision.datasets.Cifar10(mode='train', transform=transform)
test_dataset = paddle.vision.datasets.Cifar10(mode='test', transform=transform)
# 模型组网并初始化网络
densenet = paddle.vision.models.DenseNet(num_classes=10)
model = paddle.Model(densenet)
# 模型训练的配置准备,准备损失函数,优化器和评价指标
model.prepare(paddle.optimizer.Adam(parameters=model.parameters()),
paddle.nn.CrossEntropyLoss(),
paddle.metric.Accuracy())
# 模型训练
model.fit(train_dataset, epochs=5, batch_size=64, verbose=1)
# 模型评估
model.evaluate(test_dataset, batch_size=64, verbose=1)
# export to ONNX
save_path = 'onnx.save/densenet' # 需要保存的路径
x_spec = paddle.static.InputSpec([1, 3, 224, 224], 'float32', 'x') # 为模型指定输入的形状和数据类型,支持持 Tensor 或 InputSpec InputSpec 支持动态的 shape。
paddle.onnx.export(densenet, save_path, input_spec=[x_spec], opset_version=11)
# 加载onnx模型并放到Infinitensor中
model_path = save_path + ".onnx"
onnx_model = onnx.load(model_path)
gofusion_model = OnnxStub(onnx_model, backend.cuda_runtime())
model = gofusion_model
model.init()
# 启动推理
cifar10_test = Cifar10(
mode="test",
transform=transform, # apply transform to every image
backend="cv2", # use OpenCV as image transform backend
)
batch_size = 1
total_size = 0
total_acc = 0.0
for data in itertools.islice(iter(cifar10_test), 10000):
images, labels = data
next(model.inputs.items().__iter__())[1].copyin_float(images.reshape([3*224*224]).tolist())
model.run()
outputs = next(model.outputs.items().__iter__())[1].copyout_float()
outputs = paddle.to_tensor(outputs)
outputs = paddle.reshape(outputs, (1, 10))
labels = paddle.to_tensor(labels)
labels = paddle.reshape(labels, (1,1))
acc = paddle.metric.accuracy(outputs, labels)
total_acc += acc
total_size += batch_size
print("test acc: {}".format(total_acc.numpy() / total_size))
if __name__ == "__main__":
run_cifar_train_and_infer()

View File

@ -1,80 +0,0 @@
import paddle
import paddle.vision.transforms as T
from paddle.vision.datasets import Cifar10
from pyinfinitensor.onnx import OnnxStub, backend
import onnx
import itertools
def run_cifar_train_and_infer():
paddle.device.set_device("gpu")
transform = T.Compose(
[
T.Resize(224),
T.ToTensor(),
T.Normalize(
mean=[0.5, 0.5, 0.5],
std=[0.5, 0.5, 0.5],
to_rgb=True,
),
]
)
# 下载数据集并初始化 DataSet
train_dataset = paddle.vision.datasets.Cifar10(mode='train', transform=transform)
test_dataset = paddle.vision.datasets.Cifar10(mode='test', transform=transform)
# 模型组网并初始化网络
inception = paddle.vision.models.InceptionV3(num_classes=10)
model = paddle.Model(inception)
# 模型训练的配置准备,准备损失函数,优化器和评价指标
model.prepare(paddle.optimizer.Adam(parameters=model.parameters()),
paddle.nn.CrossEntropyLoss(),
paddle.metric.Accuracy())
# 模型训练
model.fit(train_dataset, epochs=5, batch_size=64, verbose=1)
# 模型评估
model.evaluate(test_dataset, batch_size=64, verbose=1)
# export to ONNX
save_path = 'onnx.save/inception' # 需要保存的路径
x_spec = paddle.static.InputSpec([1, 3, 224, 224], 'float32', 'x') # 为模型指定输入的形状和数据类型,支持持 Tensor 或 InputSpec InputSpec 支持动态的 shape。
paddle.onnx.export(inception, save_path, input_spec=[x_spec], opset_version=11)
# 加载onnx模型并放到Infinitensor中
model_path = save_path + ".onnx"
onnx_model = onnx.load(model_path)
gofusion_model = OnnxStub(onnx_model, backend.cuda_runtime())
model = gofusion_model
model.init()
# 启动推理
cifar10_test = Cifar10(
mode="test",
transform=transform, # apply transform to every image
backend="cv2", # use OpenCV as image transform backend
)
batch_size = 1
total_size = 0
total_acc = 0.0
for data in itertools.islice(iter(cifar10_test), 10000):
images, labels = data
next(model.inputs.items().__iter__())[1].copyin_float(images.reshape([3*224*224]).tolist())
model.run()
outputs = next(model.outputs.items().__iter__())[1].copyout_float()
outputs = paddle.to_tensor(outputs)
outputs = paddle.reshape(outputs, (1, 10))
labels = paddle.to_tensor(labels)
labels = paddle.reshape(labels, (1,1))
acc = paddle.metric.accuracy(outputs, labels)
total_acc += acc
total_size += batch_size
print("test acc: {}".format(total_acc.numpy() / total_size))
if __name__ == "__main__":
run_cifar_train_and_infer()

View File

@ -1,31 +0,0 @@
## Description
This is a doc to tell you how to run paddle*.py in your machine. If your model run on other machines except Nvidia, you may need to make some change.
## What do we do in paddle*.py files?
1. Train model and evalute model with Cifar10 dataset
2. Export paddle model to onnx model
3. Load onnx model, infer with InfiniTensor and calculate the inference accuracy
## Command
1. Go to `/examples/python` folder
2. Run the following command
1. ```
python paddle_resnet.py
python paddle_densenet.py
python paddle_inception.py
```
## What should I do if I use other device(MLU, XPU, NPU)?
You need to change this code:
```
paddle.device.set_device("gpu") # Change gpu to mlu, xpu or npu
```

View File

@ -1,81 +0,0 @@
import paddle
import paddle.vision.transforms as T
from paddle.vision.datasets import Cifar10
from pyinfinitensor.onnx import OnnxStub, backend
import onnx
import itertools
from paddle.vision.models.resnet import BasicBlock
def run_cifar_train_and_infer():
paddle.device.set_device("gpu")
transform = T.Compose(
[
T.Resize(224),
T.ToTensor(),
T.Normalize(
mean=[0.5, 0.5, 0.5],
std=[0.5, 0.5, 0.5],
to_rgb=True,
),
]
)
# 下载数据集并初始化 DataSet
train_dataset = paddle.vision.datasets.Cifar10(mode='train', transform=transform)
test_dataset = paddle.vision.datasets.Cifar10(mode='test', transform=transform)
# 模型组网并初始化网络
resnet = paddle.vision.models.ResNet(BasicBlock, depth=18, num_classes=10)
model = paddle.Model(resnet)
# 模型训练的配置准备,准备损失函数,优化器和评价指标
model.prepare(paddle.optimizer.Adam(parameters=model.parameters()),
paddle.nn.CrossEntropyLoss(),
paddle.metric.Accuracy())
# 模型训练
model.fit(train_dataset, epochs=5, batch_size=64, verbose=1)
# 模型评估
model.evaluate(test_dataset, batch_size=64, verbose=1)
# export to ONNX
save_path = 'onnx.save/resnet' # 需要保存的路径
x_spec = paddle.static.InputSpec([1, 3, 224, 224], 'float32', 'x') # 为模型指定输入的形状和数据类型,支持持 Tensor 或 InputSpec InputSpec 支持动态的 shape。
paddle.onnx.export(resnet, save_path, input_spec=[x_spec], opset_version=11)
# 加载onnx模型并放到Infinitensor中
model_path = save_path + ".onnx"
onnx_model = onnx.load(model_path)
gofusion_model = OnnxStub(onnx_model, backend.cuda_runtime())
model = gofusion_model
model.init()
# 启动推理
cifar10_test = Cifar10(
mode="test",
transform=transform, # apply transform to every image
backend="cv2", # use OpenCV as image transform backend
)
batch_size = 1
total_size = 0
total_acc = 0.0
for data in itertools.islice(iter(cifar10_test), 10000):
images, labels = data
next(model.inputs.items().__iter__())[1].copyin_float(images.reshape([3*224*224]).tolist())
model.run()
outputs = next(model.outputs.items().__iter__())[1].copyout_float()
outputs = paddle.to_tensor(outputs)
outputs = paddle.reshape(outputs, (1, 10))
labels = paddle.to_tensor(labels)
labels = paddle.reshape(labels, (1,1))
acc = paddle.metric.accuracy(outputs, labels)
total_acc += acc
total_size += batch_size
print("test acc: {}".format(total_acc.numpy() / total_size))
if __name__ == "__main__":
run_cifar_train_and_infer()

View File

@ -1,24 +0,0 @@
import sys
import onnx
import torch
import numpy as np
from pyinfinitensor.onnx import OnnxStub, backend
import torchvision.models as models
if __name__ == '__main__':
model_path = './resnet18.onnx'
tv_model = models.resnet50(weights=None)
input_shape = (1, 3, 224, 224)
param = torch.rand(input_shape)
torch.onnx.export(tv_model, param, model_path, verbose=False)
onnx_model = onnx.load(model_path)
model = OnnxStub(onnx_model, backend.cuda_runtime())
images = np.random.random(input_shape).astype(np.float32)
next(iter(model.inputs.values())).copyin_numpy(images)
model.run()
outputs = next(iter(model.outputs.values())).copyout_numpy()
outputs = torch.tensor(outputs)
outputs = torch.reshape(outputs, (1, 1000))
_, predicted = torch.max(outputs, 1)
print(predicted)

View File

@ -2,10 +2,6 @@
#include "cnnl.h"
#include "cnrt.h"
#include "core/common.h"
#include "core/data_type.h"
#ifdef INFINI_USE_CNCL
#include "cncl.h"
#endif
#define checkBangError(call) \
{ \
@ -31,70 +27,4 @@ namespace infini {
using BangPtr = void *;
inline cnnlDataType_t cnnlDataTypeConvert(DataType dataType) {
if (dataType == DataType::Float32) {
return CNNL_DTYPE_FLOAT;
}
if (dataType == DataType::Float16) {
return CNNL_DTYPE_HALF;
}
if (dataType == DataType::Double) {
return CNNL_DTYPE_DOUBLE;
}
if (dataType == DataType::Int8) {
return CNNL_DTYPE_INT8;
}
if (dataType == DataType::Int32) {
return CNNL_DTYPE_INT32;
}
if (dataType == DataType::UInt8) {
return CNNL_DTYPE_UINT8;
}
if (dataType == DataType::BFloat16) {
return CNNL_DTYPE_BFLOAT16;
}
if (dataType == DataType::Int64) {
return CNNL_DTYPE_INT64;
}
if (dataType == DataType::Bool) {
return CNNL_DTYPE_BOOL;
}
IT_TODO_HALT_MSG("Data type " + dataType.toString() +
" not supported in CNNL.");
}
#ifdef INFINI_USE_CNCL
inline cnclDataType_t cnclDataTypeConvert(DataType dataType) {
if (dataType == DataType::Float32) {
return cnclFloat32;
}
if (dataType == DataType::Float16) {
return cnclHalf;
}
if (dataType == DataType::Int8) {
return cnclInt8;
}
if (dataType == DataType::Int16) {
return cnclInt16;
}
if (dataType == DataType::Int32) {
return cnclInt32;
}
if (dataType == DataType::UInt8) {
return cnclUint8;
}
if (dataType == DataType::UInt16) {
return cnclUint16;
}
if (dataType == DataType::UInt32) {
return cnclUint32;
}
if (dataType == DataType::BFloat16) {
return cnclBfloat16;
}
IT_TODO_HALT_MSG("Data type " + dataType.toString() +
" not supported in CNCL.");
}
#endif
} // namespace infini

View File

@ -7,19 +7,16 @@ namespace infini {
class BangRuntimeObj : public RuntimeObj {
private:
cnnlHandle_t cnnl;
cnrtQueue_t queue;
std::unique_ptr<CommunicatorObj> comm;
BangPtr workspace;
size_t workspaceSize;
mutable size_t cursor;
public:
explicit BangRuntimeObj(int deviceId = 0)
: RuntimeObj(Device::BANG, deviceId) {
BangRuntimeObj() : RuntimeObj(Device::BANG) {
cnInit(0);
CNdev dev;
cnDeviceGet(&dev, deviceId);
cnDeviceGet(&dev, 0);
checkBangError(cnrtSetDevice(dev));
cnrtQueue_t queue;
checkBangError(cnrtQueueCreate(&queue));
checkCnnlError(cnnlCreate(&cnnl));
@ -27,12 +24,10 @@ class BangRuntimeObj : public RuntimeObj {
// 10GB for Longformer
// size_t longformerNum = 3lu * (1 << 30);
workspaceSize = 7ll << 30; // 7 GB
cursor = 0;
workspace = alloc(workspaceSize);
}
virtual ~BangRuntimeObj() {
dealloc(workspace);
checkBangError(cnrtQueueDestroy(queue));
checkCnnlError(cnnlDestroy(cnnl));
}
string toString() const override;
@ -50,15 +45,10 @@ class BangRuntimeObj : public RuntimeObj {
void dealloc(void *ptr) override { checkBangError(cnrtFree(ptr)); }
cnnlHandle_t cnnlHandle() const { return cnnl; }
BangPtr getWorkspace(size_t size) const {
IT_ASSERT((cursor + size) <= workspaceSize);
cursor += size;
void *temp = workspace;
temp += (cursor - size);
return temp;
IT_ASSERT(size <= workspaceSize);
return workspace;
}
void resetWorkspace() const { cursor = 0; }
void copyBlobFromCPU(void *dst, const void *src,
size_t bytes) const override {
checkBangError(cnrtMemcpy(dst, const_cast<void *>(src), bytes,
@ -76,9 +66,6 @@ class BangRuntimeObj : public RuntimeObj {
checkBangError(cnrtMemcpy(dst, const_cast<void *>(src), bytes,
CNRT_MEM_TRANS_DIR_PEER2PEER));
}
void initComm(const string &name, int worldSize, int rank) final;
CommunicatorObj &getCommunicator() const override { return *comm; }
cnrtQueue_t getBangQueue() const { return queue; }
private:
void runWithoutSync(const Graph &graph, bool tune, bool profiling) const;

View File

@ -1,79 +0,0 @@
#pragma once
#include "bang_common.h"
#include "core/communicator.h"
#include <chrono>
#include <cncl.h>
#include <cnrt.h>
#include <cstdlib>
#include <filesystem>
#include <fstream>
#include <mutex>
#include <thread>
namespace infini {
class CnclCommunicatorObj final : public CommunicatorObj {
private:
cnclComm_t *comms;
public:
CnclCommunicatorObj(const string &name, int worldSize, int rank)
: CommunicatorObj(worldSize, rank) {
const std::string filePath("./" + name + "_cncl_id.bin");
cnclCliqueId clique_id;
if (rank == 0) {
CNCL_CHECK(cnclGetCliqueId(&clique_id));
std::ofstream ofs(filePath, std::ios::binary);
ofs.write((char *)&clique_id, sizeof(cnclCliqueId));
} else {
auto begin = std::chrono::steady_clock::now();
while (!std::filesystem::exists(filePath)) {
auto now = std::chrono::steady_clock::now();
_IT_ASSERT_2(now < begin + std::chrono::seconds(10),
"time limit (10s) exceeded.");
std::this_thread::sleep_for(std::chrono::milliseconds(100));
}
std::ifstream ifs(filePath, std::ios::binary);
ifs.read((char *)&clique_id, sizeof(cnclCliqueId));
}
int num_comms = 1;
int *dev_list = new int[num_comms];
int *rank_list = new int[num_comms];
comms = new cnclComm_t[num_comms];
uint32_t num_dev = 0;
checkBangError(cnrtGetDeviceCount(&num_dev));
for (int i = 0; i < num_comms; i++) {
rank_list[i] = rank;
dev_list[i] = rank_list[i] % num_dev;
}
CNCL_CHECK(cnclInitComms(comms, num_comms, dev_list, rank_list,
worldSize, &clique_id));
if (rank == 0) {
std::filesystem::remove(filePath);
}
delete[] dev_list;
delete[] rank_list;
}
~CnclCommunicatorObj() {
CNCL_CHECK(cnclDestroyComms(comms, 1));
delete[] comms;
}
// Get the actual cnclComm_t
cnclComm_t getCnclComm() { return comms[0]; }
virtual string toString() const final {
std::ostringstream oss;
oss << "CNCL communicator";
return oss.str();
}
};
} // namespace infini

4
include/benchmark.h Normal file
View File

@ -0,0 +1,4 @@
#pragma once
#include "core/common.h"
#include "core/tensor_base.h"
#include "utils/data_generator.h"

View File

@ -40,12 +40,12 @@ using HashType = uint64_t; // compatible with std::hash
// Assert: conditions should have no side effect
#define _IT_ASSERT_2(condition, info) \
static_cast<bool>(condition) \
? void(0) \
: throw ::infini::Exception( \
std::string("[") + __FILE__ + ":" + std::to_string(__LINE__) + \
"] Assertion failed (" + #condition + "): " + info)
#define _IT_ASSERT_1(condition) _IT_ASSERT_2(condition, "")
(static_cast<bool>(condition) \
? void(0) \
: throw ::infini::Exception( \
std::string("[") + __FILE__ + ":" + std::to_string(__LINE__) + \
"] Assertion failed (" + #condition + "): " + info))
#define _IT_ASSERT_1(condition) _IT_ASSERT_2(condition, "");
#define IT_ASSERT(...) _VA_SELECT(_IT_ASSERT, __VA_ARGS__)
#define IT_TODO_HALT() _IT_ASSERT_2(false, "Unimplemented")
@ -61,35 +61,21 @@ template <typename T> auto enum_to_underlying(T e) {
}
template <typename T> std::string vecToString(const std::vector<T> &vec) {
std::stringstream ss;
ss << "[";
for (size_t i = 0; i < vec.size(); ++i) {
ss << vec.at(i);
if (i < vec.size() - 1) {
ss << ",";
}
std::string ret;
ret.append("[");
for (auto d : vec) {
ret.append(std::to_string(d));
ret.append(",");
}
ss << "]";
return ss.str();
}
template <typename T> std::string vecToString(const T *st, size_t length) {
std::stringstream ss;
ss << "[";
size_t i = 0;
for (i = 0; i < length; i++) {
ss << *(st + i);
if (i < length - 1) {
ss << ",";
}
}
ss << "]";
return ss.str();
if (!vec.empty())
ret.pop_back();
ret.append("]");
return ret;
}
double timeit(
const std::function<void()> &func,
const std::function<void(void)> &sync = []() {}, int warmupRounds = 10,
int timingRounds = 10);
const std::function<void(void)> &sync = []() {}, int warmupRounds = 200,
int timingRounds = 200);
} // namespace infini

View File

@ -1,22 +0,0 @@
#pragma once
#include "object.h"
#include "ref.h"
namespace infini {
// base class
class CommunicatorObj : public Object {
protected:
int worldSize;
int rank;
public:
CommunicatorObj(int worldSize, int rank)
: worldSize(worldSize), rank(rank) {}
virtual ~CommunicatorObj() = default;
virtual int getWorldSize() const { return worldSize; }
virtual int getRank() const { return rank; }
};
} // namespace infini

View File

@ -1,54 +1,22 @@
#pragma once
#include "core/common.h"
namespace infini {
class DataType {
public:
// <https://onnx.ai/onnx/intro/concepts.html#element-type>
static const DataType Undefine;
// legacy
static const DataType Float32;
static const DataType UInt8;
static const DataType Int8;
static const DataType UInt16;
static const DataType Int16;
static const DataType Int32;
static const DataType Int64;
static const DataType String;
static const DataType Bool;
static const DataType Float16;
static const DataType Double;
static const DataType UInt32;
static const DataType UInt64;
static const DataType BFloat16;
// "sizePerElement" show the DType to cpu_type
// DataType::Bool -> int8_t DataType::Float16 -> uint16_t
static constexpr size_t sizePerElement[]{0,
sizeof(float),
sizeof(uint8_t),
sizeof(int8_t),
sizeof(uint16_t),
sizeof(int16_t),
sizeof(int32_t),
sizeof(int64_t),
sizeof(std::string),
sizeof(int8_t),
sizeof(uint16_t),
sizeof(double),
sizeof(uint32_t),
sizeof(uint64_t),
0,
0,
sizeof(uint16_t)};
// These are just aligned with the type and index of onnx:
// <https://onnx.ai/onnx/intro/concepts.html#element-type>
static const DataType UInt8, Int8, UInt16, Int16, Int32, Int64;
static constexpr size_t sizePerElement[]{
sizeof(float), sizeof(uint32_t), sizeof(uint8_t), sizeof(int8_t),
sizeof(uint16_t), sizeof(int16_t), sizeof(int32_t), sizeof(int64_t)};
static constexpr std::string_view names[]{
"Undefine", "Float32", "UInt8", "Int8", "UInt16",
"Int16", "Int32", "Int64", "String", "Bool",
"Float16", "Double", "UInt32", "UInt64", "PlaceHolder",
"PlaceHolder", "BFloat16"};
static constexpr int cpuType[]{-1, 0, 2, 3, 4, 5, 6, 7, -1,
3, 4, 9, 1, 8, -1, -1, 4};
static constexpr std::string_view names[]{"Float32", "UInt32", "UInt8",
"Int8", "UInt16", "Int16",
"Int32", "Int64"};
private:
int index;
@ -61,43 +29,37 @@ class DataType {
bool operator==(const DataType &rhs) const { return index == rhs.index; }
bool operator<(const DataType &rhs) const { return index < rhs.index; }
template <typename T> static int get() {
template <typename T> static DataType get() {
IT_TODO_HALT_MSG("Unsupported data type");
}
size_t getSize() const { return sizePerElement[index]; }
string toString() const { return string(names[index]); }
int cpuTypeInt() const { return cpuType[index]; }
int getIndex() const { return index; }
};
inline const DataType DataType::Float32(0);
inline const DataType DataType::UInt32(1);
inline const DataType DataType::UInt8(2), DataType::Int8(3),
DataType::UInt16(4), DataType::Int16(5), DataType::Int32(6),
DataType::Int64(7);
// Method definitions are out of the declaration due to GCC bug:
// https://stackoverflow.com/questions/49707184/explicit-specialization-in-non-namespace-scope-does-not-compile-in-gcc
template <> inline int DataType::get<float>() { return 0; }
template <> inline int DataType::get<uint32_t>() { return 1; }
template <> inline int DataType::get<uint8_t>() { return 2; }
template <> inline int DataType::get<int8_t>() { return 3; }
template <> inline int DataType::get<uint16_t>() { return 4; }
template <> inline int DataType::get<int16_t>() { return 5; }
template <> inline int DataType::get<int32_t>() { return 6; }
template <> inline int DataType::get<int64_t>() { return 7; }
template <> inline int DataType::get<uint64_t>() { return 8; }
template <> inline int DataType::get<double>() { return 9; }
template <> inline DataType DataType::get<float>() { return Float32; }
template <> inline DataType DataType::get<uint32_t>() { return UInt32; }
template <> inline DataType DataType::get<uint8_t>() { return UInt8; }
template <> inline DataType DataType::get<int8_t>() { return Int8; }
template <> inline DataType DataType::get<uint16_t>() { return UInt16; }
template <> inline DataType DataType::get<int16_t>() { return Int16; }
template <> inline DataType DataType::get<int32_t>() { return Int32; }
template <> inline DataType DataType::get<int64_t>() { return Int64; }
template <int index> struct DT {};
template <> struct DT<0> { using t = bool; };
template <> struct DT<1> { using t = float; };
template <> struct DT<0> { using t = float; };
template <> struct DT<1> { using t = uint32_t; };
template <> struct DT<2> { using t = uint8_t; };
template <> struct DT<3> { using t = int8_t; };
template <> struct DT<4> { using t = uint16_t; };
template <> struct DT<5> { using t = int16_t; };
template <> struct DT<6> { using t = int32_t; };
template <> struct DT<7> { using t = int64_t; };
template <> struct DT<8> { using t = char; };
template <> struct DT<9> { using t = int8_t; };
template <> struct DT<10> { using t = uint16_t; };
template <> struct DT<11> { using t = double; };
template <> struct DT<12> { using t = uint32_t; };
template <> struct DT<13> { using t = uint64_t; };
template <> struct DT<16> { using t = uint16_t; };
} // namespace infini

View File

@ -1,5 +1,4 @@
#pragma once
#include "core/lazy_allocator.h"
#include "core/operator.h"
#include "core/tensor.h"
@ -10,11 +9,9 @@ class GraphObj : public Object {
Runtime runtime;
TensorVec tensors;
OpVec ops;
LazyAllocator allocator;
public:
explicit GraphObj(Runtime runtime)
: runtime(runtime), allocator(runtime), sorted(false){};
explicit GraphObj(Runtime runtime) : runtime(runtime), sorted(false){};
GraphObj(Runtime runtime, OpVec ops_in);
string toString() const override;
Runtime getRuntime() const { return runtime; }
@ -53,7 +50,6 @@ class GraphObj : public Object {
const TensorVec &getTensors() const { return tensors; }
const OpVec &getOperators() const { return ops; }
OpVec getComputeOps() const;
Tensor getTensor(int) const;
/**
* Sort the nodes in topological order.
@ -65,13 +61,7 @@ class GraphObj : public Object {
void optimize();
void shape_infer();
void dataMalloc(bool useNaiveAllocator = false, size_t memPoolSize = 0);
Tensor cloneKV(Tensor &tensor);
void freeHeap();
void dataMalloc();
/**
* @brief Add an operator and create its outputs. Output tensor arguments
@ -127,11 +117,6 @@ class GraphObj : public Object {
* @brief If the nodes is sorted in topological order.
*/
bool sorted;
/**
* @brief If the weight tensors are allocated.
*/
bool weightAllocated = false;
};
} // namespace infini

View File

@ -5,12 +5,32 @@
#include <cstdint>
#include <iostream>
#ifdef USE_CUDA
#include "cuda/cuda_runtime.h"
#endif
namespace infini {
// Use the indices from onnx to reduce delivery overhead,
// which comes from onnx but may be not only used for onnx.
//
// see https://onnx.ai/onnx/intro/concepts.html#element-type
enum OnnxDType : int {
UNDEFINED = 0,
FLOAT,
UINT8,
INT8,
UINT16,
INT16,
INT32,
INT64,
STRING,
BOOL,
FLOAT16,
DOUBLE,
UINT32,
UINT64,
COMPLEX64,
COMPLEX128,
BFLOAT16,
};
class GraphHandlerObj {
Graph g;
@ -30,40 +50,27 @@ class GraphHandlerObj {
int pw, int sh, int sw, int dh, int dw, int oph,
int opw);
Tensor matmul(Tensor a, Tensor b, Tensor y, bool transA, bool transB,
Tensor bias, ActType act,
std::string matmul_compute_type = "default");
Tensor batchNormalization(Tensor input, Tensor output, Tensor mean,
Tensor var, Tensor scale, Tensor bias,
float momentum, float eps, bool training);
Tensor layerNormalization(Tensor input, Tensor scale, Tensor output,
Tensor bias, float eps, int axis, int stash_type);
Tensor rmsNorm(Tensor input, Tensor weight, Tensor output);
Tensor bias, ActType act);
Tensor batchNorm(Tensor input, Tensor output, Tensor mean, Tensor var,
Tensor scale, Tensor bias, float momentum, float eps,
bool training);
Tensor maxPool(Tensor input, Tensor output, int kh, int kw, int dh, int dw,
int ph, int pw, int sh, int sw, int ceilMode);
int ph, int pw, int sh, int sw);
Tensor avgPool(Tensor input, Tensor output, int kh, int kw, int dh, int dw,
int ph, int pw, int sh, int sw, int ceilMode);
int ph, int pw, int sh, int sw);
Tensor add(Tensor a, Tensor b, Tensor c);
Tensor sub(Tensor a, Tensor b, Tensor c);
Tensor mul(Tensor a, Tensor b, Tensor c);
Tensor div(Tensor a, Tensor b, Tensor c);
Tensor pow(Tensor a, Tensor b, Tensor c);
Tensor min(Tensor a, Tensor b, Tensor c);
Tensor max(Tensor a, Tensor b, Tensor c);
Tensor relu(Tensor x, Tensor y);
Tensor silu(Tensor x, Tensor y);
Tensor gelu(Tensor x, Tensor y);
Tensor sigmoid(Tensor x, Tensor y);
Tensor hardSigmoid(Tensor x, Tensor y);
Tensor hardSwish(Tensor x, Tensor y);
Tensor tanh(Tensor x, Tensor y);
Tensor erf(Tensor x, Tensor y);
Tensor softmax(Tensor x, Tensor y, int axis);
Tensor abs(Tensor x, Tensor y);
Tensor sqrt(Tensor x, Tensor y);
Tensor neg(Tensor x, Tensor y);
Tensor shape(Tensor x, Tensor y);
Tensor identity(Tensor x, Tensor y);
Tensor flatten(Tensor s, Tensor y, int axis);
@ -72,51 +79,17 @@ class GraphHandlerObj {
std::optional<float> max);
Tensor transpose(Tensor data, Tensor transposed, Shape perm);
Tensor reshape(Tensor data, Tensor reshaped, Shape shape);
Tensor resize(Tensor input, Tensor output,
const std::optional<vector<int>> &axes, Tensor sizes,
Tensor scales, Tensor roi, vector<uint32_t> sizes_,
vector<float> scales_, vector<float> roi_, string mode,
string ratioPolicy, string nearestMode,
string coordTransMode);
Tensor squeeze(Tensor input, Tensor output, Shape axes);
Tensor unsqueeze(Tensor input, Tensor output, Shape axes);
Tensor concat(TensorVec inputs, Tensor output, int dim);
Tensor attentionKVCache(Tensor input_k_cache, Tensor input_v_cache,
Tensor input_q, Tensor input_k, Tensor input_v,
Tensor position_id, Tensor output_matmul);
Tensor RoPE(Tensor pos, Tensor input, Tensor output);
TensorVec split(Tensor input, std::optional<TensorVec> outputs, int axis,
std::variant<int, vector<int>> numOrRatio);
int num_outputs);
Tensor gather(Tensor data, Tensor indices, Tensor output, int axis);
Tensor gatherElements(Tensor data, Tensor indices, Tensor output, int axis);
Tensor reduceMean(Tensor data, Tensor reduced,
const optional<vector<int>> &axes, bool keepdims);
Tensor reduceSum(Tensor data, Tensor reduced,
const optional<vector<int>> &axes, bool keepdims);
Tensor slice(Tensor input, Tensor output, const vector<int> &starts,
const vector<int> &ends, const optional<vector<int>> &axes,
const optional<vector<int>> &steps);
Tensor pad(Tensor input, Tensor output, const vector<int> &pads,
const optional<vector<int>> &axes);
Tensor cast(Tensor input, Tensor output, int to);
Tensor expand(Tensor input, Tensor output, Shape dims);
Tensor where(Tensor inputX, Tensor inputY, Tensor condition, Tensor output);
std::vector<int> getDims(Tensor x) { return x->getDims(); }
Tensor allReduceSum(Tensor input, Tensor output);
Tensor allReduceProd(Tensor input, Tensor output);
Tensor allReduceMin(Tensor input, Tensor output);
Tensor allReduceMax(Tensor input, Tensor output);
Tensor allReduceAvg(Tensor input, Tensor output);
TensorVec allGather(Tensor input, std::optional<TensorVec> outputs, int n);
Tensor broadcast(Tensor input, Tensor output, int root);
Tensor send(Tensor input, int source, int destination, Tensor output);
Tensor recv(Tensor output, int source, int destination, Shape dims,
int outputType, Tensor input);
Tensor depthToSpace(Tensor input, Tensor output, int blocksize,
std::string mode);
Tensor lrn(Tensor input, Tensor output, float alpha, float beta, float bias,
int size);
//------ modifiers
@ -124,31 +97,15 @@ class GraphHandlerObj {
inline void optimize() { g->optimize(); }
inline void shape_infer() { g->shape_infer(); }
void change_shape(const vector<int> &shape, int tensorId);
//------ runtime
inline void data_malloc(bool useNaiveAllocator = false,
size_t memPoolSize = 0) {
g->dataMalloc(useNaiveAllocator, memPoolSize);
}
inline Tensor clone_KV(Tensor &tensor) { return g->cloneKV(tensor); }
inline void free_heap() { g->freeHeap(); }
inline void data_malloc() { g->dataMalloc(); }
inline void tune() { g->getRuntime()->run(g, true); }
inline void run() { g->getRuntime()->run(g); }
inline double get_perf_time() { return g->getRuntime()->getPerfTime(g); }
#ifdef USE_CUDA
inline void run_with_cudagraph() {
(as<CudaRuntimeObj>(g->getRuntime()))->runWithCudaGraph(g);
}
#endif
};
} // namespace infini

View File

@ -2,11 +2,10 @@
#include "core/common.h"
#include "core/operator.h"
#include "core/tensor.h"
#include "utils/operator_utils.h"
#include <functional>
#include <nlohmann/json.hpp>
namespace infini {
using json = nlohmann::json;
namespace infini {
class RuntimeObj; // Forward declaration for Kernel::compute
@ -30,6 +29,7 @@ class Kernel {
public:
Kernel() {}
virtual ~Kernel() {}
/**
* @param op The operator to be executed.
* @param record The parameters for kernel execution. If extra parameters
@ -102,9 +102,11 @@ class KernelRegistry {
}
Kernel *getKernel(const KernelAttrs &kernelAttrs) const {
auto it = kernels.find(kernelAttrs);
IT_ASSERT(it != kernels.end(), "Kernel not found for key {" +
get_kernel_attrs_str(kernelAttrs) +
"}");
IT_ASSERT(it != kernels.end(),
"Kernel not found for key {" +
to_string(enum_to_underlying(std::get<0>(kernelAttrs))) +
", " + OpRegistry::getOpName(std::get<1>(kernelAttrs)) +
", " + std::get<2>(kernelAttrs).toString() + "}");
return std::get<0>(it->second);
}
const KernelRecord &getKernelItem(const KernelAttrs &kernelAttrs) const {
@ -129,16 +131,15 @@ class CpuKernelWithoutConfig : public Kernel {
} // namespace infini
#define _REGISTER_KERNEL_1(device, opType, kernel, name, cnt) \
#define _REGISTER_KERNEL_1(device, opType, dataType, kernel, name, cnt) \
namespace infini { \
static const bool _CAT(_register_kernel_, cnt) = \
KernelRegistry::getInstance().registerKernel(KernelAttrs{device, \
opType}, \
new kernel(), name); \
KernelRegistry::getInstance().registerKernel( \
KernelAttrs{device, opType, dataType}, new kernel(), name); \
}
#define REGISTER_KERNEL(device, opType, kernel, name) \
_REGISTER_KERNEL_1(device, opType, kernel, name, __COUNTER__)
#define REGISTER_KERNEL(device, opType, dataType, kernel, name) \
_REGISTER_KERNEL_1(device, opType, dataType, kernel, name, __COUNTER__)
#define _REGISTER_CONSTRUCTOR_1(type, constructor, cnt) \
namespace infini { \

View File

@ -1,122 +0,0 @@
#pragma once
#include "core/runtime.h"
#include "core/tensor.h"
#ifdef BUILD_TEST
#include "gtest/gtest.h"
#endif
#include <cstddef>
#include <map>
#include <unordered_set>
namespace infini {
class LazyAllocator {
private:
#ifdef BUILD_TEST
FRIEND_TEST(LazyAllocator, testMergeFreeBlocks);
FRIEND_TEST(LazyAllocator, testAllocWithEndFreeBlock);
#endif
Runtime runtime;
size_t used = 0;
size_t peak = 0;
size_t weightPeak = 0;
size_t heapPeak = 0;
size_t alignment;
bool hasMemPool = false;
size_t memPoolSize = 0;
// pointer to the memory actually allocated
void *ptr = nullptr;
// pointer to the weight memory space
void *weightPtr = nullptr;
// memory pool ptr
void *memPoolPtr = nullptr;
// // a cache designed for a batch size that has already occurred
// std::unordered_map<size_t, std::unordered_map<TensorObj *, size_t>>
// batchsizeToTensorOffset;
struct freeBlockInfo {
size_t addr;
size_t blockSize;
};
struct cmpFreeBlockInfo {
bool operator()(const freeBlockInfo &a, const freeBlockInfo &b) const {
return (a.blockSize != b.blockSize) ? (a.blockSize < b.blockSize)
: (a.addr < b.addr);
}
};
// free balanced tree, maintains all free memory blocks
std::set<freeBlockInfo, cmpFreeBlockInfo> freeBlocks;
// key: head address offset of the free memory block
// value: blockSize of the block
std::unordered_map<size_t, size_t> headAddrToBlockSize;
// key: tail address offset of the free memory block
// value: blockSize of the block
std::unordered_map<size_t, size_t> tailAddrToBlockSize;
public:
LazyAllocator(Runtime runtime);
virtual ~LazyAllocator();
void init();
void setMemPool(size_t memPoolSize);
bool getMemPoolStatus();
// function: simulate memory allocation
// arguments
// size: size of memory block to be allocated
// return: head address offset of the allocated memory block
size_t alloc(size_t size);
size_t allocWeight(size_t size);
size_t heapAlloc(size_t size);
void freeHeap();
// function: simulate memory free
// arguments:
// addr: head address offset of memory block to be free
// size: size of memory block to be freed
void free(size_t addr, size_t size);
// function: perform actual memory allocation
// return: pointer to the head address of the allocated memory
void *getPtr();
// void addCache(size_t batchsize, std::unordered_map<TensorObj *, size_t>);
// std::unordered_map<TensorObj *, size_t> getCache(size_t batchsize);
void *getWeightPtr();
void *getHeapPtr();
void info();
private:
// function: memory alignment, rouned up
// return: size of the aligned memory block
size_t getAlignedSize(size_t size);
};
} // namespace infini

View File

@ -1,269 +0,0 @@
#pragma once
#ifndef OP_TYPE_H
#define OP_TYPE_H
#include <string>
#include <unordered_set>
namespace infini {
struct OpType {
using underlying_t = uint16_t;
// Clang-format is ambiguous in formating of comment alignment.
// In order to disambiguate, it is necessary to comment all enum
// elements.
enum : underlying_t {
Unknown,
Abs, // Unary
Acos, // Unary
Acosh, // Unary
Add, // Binary
And, // Binary
ArgMax, //
Asin, // Unary
Asinh, // Unary
Atan, // Unary
Atanh, // Unary
AttentionKVCache, // Fusion
AveragePool, // Pool
BatchNormalization, //
Bernoulli, //
BitShift, // Binary
BitwiseAnd, // Binary
BitwiseNot, // Binary
BitwiseOr, // Binary
BitwiseXor, // Binary
BlackmanWindow, //
Cast, // Unary
CastLike, //
Ceil, // Unary
Celu, //
CenterCropPad, //
Clip, // Unary
Col2lm,
Compress,
Concat,
ConcatFromSequence,
ConstantOfShape,
Conv, // ComputationIntensive
ConvInteger, // ComputationIntensive
ConvTranspose, // ComputationIntensive
Cos, // Unary
Cosh, // Unary
CumSum,
DFT,
DeformConv, // ComputationIntensive
DepthToSpace,
DequantizeLinear,
Det,
Div, // Binary
Dropout,
DynamicQuantizeLinear,
Einsum,
Elu,
Equal, // Compair
Erf, // Unary
Exp, // Unary
Expand,
EyeLike,
Flatten,
Floor, // Unary
GRU,
Gather,
GatherElements,
GatherND,
Gemm,
Gelu, // Unary
GlobalAveragePool, // GlobalPool
GlobalLpPool, // GlobalPool
GlobalMaxPool, // GlobalPool
Greater, // Compair
GreaterOrEqual, // Compair
GridSample,
GroupNormalization,
HammingWindow,
HannWindow,
HardSigmoid,
HardSwish,
Hardmax,
Identity,
If,
InstanceNormalization,
IsInf,
IsNaN,
LRN,
LSTM,
LayerNormalization,
LeakyRelu,
Less, // Compair
LessOrEqual, // Compair
Log, // Unary
LogSoftmax,
Loop,
LpNormalization,
LpPool,
MatMul, // ComputationIntensive
MatMulInteger, // ComputationIntensive
Max,
MaxPool,
MaxRoiPool,
MaxUnpool,
Mean,
MeanVarianceNormalization,
MelWeightMatrix,
Min,
Mish,
Mod, // Binary
Mul, // Binary
Multinomial, //
Neg, // Unary
NegativeLogLikelihoodLoss,
NonMaxSuppression,
NonZero,
Not, // Unary
OneHot,
Optional,
OptionalGetElement,
OptionalHasElement,
Or, // Binary
PRelu, //
Pad, //
Pow, // Binary
QLinearConv, // ComputationIntensive
QLinearMatMul, // ComputationIntensive
QuantizeLinear,
RNN,
RandomNormal,
RandomNormalLike,
RandomUniform,
RandomUniformLike,
Range,
Reciprocal,
ReduceL1, // Reduce
ReduceL2, // Reduce
ReduceLogSum, // Reduce
ReduceLogSumExp, // Reduce
ReduceMax, // Reduce
ReduceMean, // Reduce
ReduceMin, // Reduce
ReduceProd, // Reduce
ReduceSum, // Reduce
ReduceSumSquare, // Reduce
Relu, // Unary
Silu, // Unary
Reshape,
Resize,
ReverseSequence,
RoiAlign,
RoPE, // Fusion
Round, // Unary
RMSNorm, // Fusion
STFT,
Scan,
Scatter,
ScatterElements,
ScatterND,
Selu,
SequenceAt,
SequenceConstruct,
SequenceEmpty,
SequenceErase,
SequenceInsert,
SequenceLength,
SequenceMap,
Shape,
Shrink,
Sigmoid,
Sign,
Sin, // Unary
Sinh, // Unary
Size,
Slice,
Softmax,
SoftmaxCrossEntropyLoss,
Softplus,
Softsign,
SpaceToDepth,
Split,
SplitToSequence,
Sqrt,
Squeeze,
StringNormalizer,
Sub, // Binary
Sum, //
Tan, // Unary
Tanh, // unary
TfIdfVectorizer,
ThresholdedRelu,
Tile,
TopK,
Transpose,
Trilu,
Unique,
Unsqueeze,
Upsample,
Where,
Xor, // Binary
// CUSTOM DEFINED
G2BMM,
GBMM,
MemBound,
// TODO
ConvTransNHWC,
ConvBackwardFilter,
ReluBackward,
SigmoidBackward,
TanhBackward,
Fill,
Extend,
MSELoss,
Hardtanh,
L2Loss,
Rsqrt,
FloorDiv,
FloorMod,
Square,
SquaredDifference,
// Communication Ops
AllReduceSum,
AllReduceProd,
AllReduceMin,
AllReduceMax,
AllReduceAvg,
AllGather,
Broadcast,
Send,
Recv,
} type;
constexpr OpType(decltype(type) t) : type(t) {}
constexpr explicit OpType(underlying_t val) : type((decltype(type))val) {}
constexpr underlying_t underlying() const { return type; }
bool operator==(OpType others) const { return type == others.type; }
bool operator!=(OpType others) const { return type != others.type; }
bool operator<(OpType others) const { return type < others.type; }
const char *toString() const;
bool isUnary() const;
bool isBinary() const;
bool isElementWise() const;
bool isCompair() const;
bool isPool() const;
bool isGlobalPool() const;
bool isMatMulOrConv() const;
};
enum class ActType {
None,
Relu,
Sigmoid,
Tanh,
};
} // namespace infini
#endif // OP_TYPE_H

View File

@ -1,14 +1,231 @@
#pragma once
#include "core/op_type.h"
#include "core/tensor.h"
namespace infini {
using KernelAttrs = std::tuple<Device, OpType::underlying_t>;
enum class OpType {
Unknown = 0,
// linear
Conv = 100,
ConvBackwardFilter,
ConvBackwardData,
Matmul,
ConvTrans,
ConvTransNHWC,
G2BMM,
GBMM,
Pad,
Slice,
Concat,
Split,
Transpose,
Extend,
MaxPool,
AvgPool,
Add,
Sub,
Mul,
Div,
Pow,
Gather,
ReduceMean,
Reshape,
Flatten,
Identity,
// element wise
BatchNorm = 200,
Softmax,
Activation,
Relu,
ReluBackward,
PRelu,
Sigmoid,
SigmoidBackward,
Tanh,
TanhBackward,
Abs,
Sin,
Cos,
Tan,
ASin,
ACos,
ATan,
SinH,
CosH,
TanH,
ASinH,
ACosH,
ATanH,
Resize,
Arange,
Shape,
Copy,
Ceil,
Floor,
Clip,
Erf,
Exp,
Fill,
Log,
L2Loss,
Maximum,
Minimum,
MSELoss,
Neg,
Power,
Reciprocal,
Sqrt,
Rsqrt,
Cast,
FloorDiv,
FloorMod,
Det,
Round,
Square,
SquaredDifference,
Hardtanh,
Equal,
NotEqual,
GreaterThan,
GreaterEqual,
LessThan,
LessEqual,
And,
Or,
Xor,
Not,
BitAnd,
BitOr,
BitXor,
BitNot,
BitLeftShift,
BitRightShift,
Dropout,
//
MemBound = 300,
};
using KernelAttrs = std::tuple<Device, OpType, DataType>;
class OpRegistry {
public:
static std::string getOpName(OpType opType) {
#define FOP(op) \
case OpType::op: \
return #op
switch (opType) {
FOP(Unknown);
// linear
FOP(Conv);
FOP(ConvBackwardFilter);
FOP(ConvBackwardData);
FOP(Matmul);
FOP(ConvTrans);
FOP(G2BMM);
FOP(GBMM);
FOP(Pad);
FOP(Slice);
FOP(Concat);
FOP(Split);
FOP(Transpose);
FOP(Extend);
FOP(MaxPool);
FOP(AvgPool);
FOP(Add);
FOP(Sub);
FOP(Mul);
FOP(Div);
FOP(Pow);
FOP(Gather);
FOP(ReduceMean);
FOP(Reshape);
FOP(Identity);
FOP(Shape);
// element wise
FOP(BatchNorm);
FOP(Softmax);
FOP(Activation);
FOP(Relu);
FOP(ReluBackward);
FOP(PRelu);
FOP(Sigmoid);
FOP(SigmoidBackward);
FOP(Tanh);
FOP(TanhBackward);
FOP(Abs);
FOP(Sin);
FOP(Cos);
FOP(Tan);
FOP(ASin);
FOP(ACos);
FOP(ATan);
FOP(SinH);
FOP(CosH);
FOP(TanH);
FOP(ASinH);
FOP(ACosH);
FOP(ATanH);
FOP(Copy);
FOP(Ceil);
FOP(Floor);
FOP(Clip);
FOP(Erf);
FOP(Exp);
FOP(Fill);
FOP(Log);
FOP(L2Loss);
FOP(Maximum);
FOP(Minimum);
FOP(MSELoss);
FOP(Neg);
FOP(Power);
FOP(Reciprocal);
FOP(Sqrt);
FOP(Rsqrt);
FOP(Cast);
FOP(FloorDiv);
FOP(FloorMod);
FOP(Det);
FOP(Round);
FOP(Square);
FOP(SquaredDifference);
FOP(Hardtanh);
FOP(Equal);
FOP(NotEqual);
FOP(GreaterThan);
FOP(GreaterEqual);
FOP(LessThan);
FOP(LessEqual);
FOP(And);
FOP(Or);
FOP(Xor);
FOP(Not);
FOP(BitAnd);
FOP(BitOr);
FOP(BitXor);
FOP(BitNot);
FOP(BitLeftShift);
FOP(BitRightShift);
//
FOP(MemBound);
default:
IT_ASSERT(false);
break;
}
#undef FOP
}
};
enum class ActType {
None,
Relu,
Sigmoid,
Tanh,
};
struct OpPerfKey {
HashType hash;
OpType::underlying_t opType;
OpType opType;
vector<int> attrs;
public:
@ -16,7 +233,7 @@ struct OpPerfKey {
// https://github.com/nlohmann/json#how-can-i-use-get-for-non-default-constructiblenon-copyable-types
OpPerfKey() = default;
OpPerfKey(HashType hash, OpType opType, vector<int> attrs = {})
: hash(hash), opType(opType.underlying()), attrs(attrs) {}
: hash(hash), opType(opType), attrs(attrs) {}
bool operator==(const OpPerfKey &rhs) const {
if (hash != rhs.hash)
return false;
@ -55,7 +272,8 @@ class OperatorObj : public Object {
public:
OperatorObj(OpType opType, TensorVec inputs, TensorVec outputs);
virtual optional<vector<Shape>> inferShape(const TensorVec &inputs) = 0;
virtual optional<vector<Shape>>
inferShape(const TensorVec &inputs) const = 0;
virtual vector<DataType> inferDataType(const TensorVec &inputs) const;
/**
* @brief Constructs outputs (if requried) and check whether the operator is
@ -72,7 +290,16 @@ class OperatorObj : public Object {
*/
HashType hash() const;
public:
public: // check Op type
bool isLinearOp() const;
bool isElementWiseOp() const;
bool isSplitOp() const;
bool isConcatOp() const;
bool isComputeOp() const;
bool isTransposeOp() const;
bool isReshapeOp() const;
bool isMemBoundOp() const;
public: // getter and setter
const TensorVec &getInputs() const { return inputs; }
const TensorVec &getOutputs() const { return outputs; }
@ -90,7 +317,6 @@ class OperatorObj : public Object {
OpType getOpType() const { return type; }
// HACK: set correct data type
DataType getDType() const { return getInputs(0)->getDType(); }
DataType getOutDType() const { return getOutput()->getDType(); }
virtual int numInputs() const = 0;
virtual int numOutputs() const = 0;
@ -105,7 +331,7 @@ class OperatorObj : public Object {
const TensorVec &newOutputs) const = 0;
protected:
optional<vector<Shape>> inferShape();
optional<vector<Shape>> inferShape() const;
vector<DataType> inferDataType() const;
private:

View File

@ -2,8 +2,8 @@
#include "core/graph.h"
#include "core/kernel.h"
#include <nlohmann/json_fwd.hpp>
namespace infini {
using json = nlohmann::json;
namespace infini {
class PerfEngine {
public:

View File

@ -1,7 +1,5 @@
#pragma once
#include "core/common.h"
#include "core/communicator.h"
#include "core/op_type.h"
#include "core/ref.h"
#include <memory>
@ -15,7 +13,6 @@ class GraphObj;
class GraphHandlerObj;
class RuntimeObj;
class BlobObj;
template <typename T> class WorkspaceObj;
using TensorBase = Ref<TensorBaseObj>;
using Tensor = Ref<TensorObj>;
@ -24,7 +21,7 @@ using Graph = Ref<GraphObj>;
using GraphHandler = Ref<GraphHandlerObj>;
using Runtime = Ref<RuntimeObj>;
using Blob = Ref<BlobObj>;
template <typename T> using Workspace = Ref<WorkspaceObj<T>>;
enum class OpType;
using TensorVec = vector<Tensor>;
using OpVec = vector<Operator>;
@ -32,17 +29,15 @@ using OpLists = list<Operator>;
using VType = uint32_t;
enum class Device { CPU = 1, CUDA, BANG, INTELCPU, KUNLUN };
enum class Device { CPU = 1, CUDA, BANG, INTELCPU };
/***************** Forward declaration end *****************/
class RuntimeObj : public std::enable_shared_from_this<RuntimeObj> {
protected:
Device device;
int deviceId;
public:
explicit RuntimeObj(Device device, int deviceId = 0)
: device(device), deviceId(deviceId) {}
RuntimeObj(Device device) : device(device) {}
RuntimeObj(RuntimeObj &other) = delete;
RuntimeObj &operator=(RuntimeObj const &) = delete;
virtual ~RuntimeObj() {}
@ -74,7 +69,6 @@ class RuntimeObj : public std::enable_shared_from_this<RuntimeObj> {
}
bool isCuda() const { return device == Device::CUDA; }
bool isBang() const { return device == Device::BANG; }
bool isKUNLUN() const { return device == Device::KUNLUN; }
void copyBlob(const TensorObj *dst, const TensorObj *src) const;
// TODO: unify these copy APIs
virtual void copyBlobFromCPU(void *dst, const void *src,
@ -83,12 +77,6 @@ class RuntimeObj : public std::enable_shared_from_this<RuntimeObj> {
size_t bytes) const = 0;
virtual string toString() const = 0;
int getDeviceId() const { return deviceId; }
virtual void initComm(const string &name, int worldSize, int rank) = 0;
virtual CommunicatorObj &getCommunicator() const = 0;
protected:
void printProfilingData(double totTime,
const std::map<OpType, double> &opTime,
@ -109,9 +97,6 @@ class CpuRuntimeObj : public RuntimeObj {
void copyBlobToCPU(void *dst, const void *src, size_t bytes) const override;
void copyBlobInsideRuntime(void *dst, const void *src,
size_t bytes) const override;
void initComm(const string &, int, int) override { IT_TODO_HALT(); }
CommunicatorObj &getCommunicator() const override { IT_TODO_HALT(); }
};
class NativeCpuRuntimeObj : public CpuRuntimeObj {

View File

@ -1,17 +1,12 @@
#pragma once
#include "core/tensor_base.h"
#include "core/tensor_type.h"
#include "utils/data_convert.h"
#include <cmath>
#include <cstring>
#include <fstream>
#if USE_CUDA
#include "cuda/cuda_runtime.h"
#endif
#if USE_BANG
#include "bang/bang_runtime.h"
#endif
namespace infini {
// TODO: how to deal with this
@ -23,7 +18,13 @@ class TensorObj : public TensorBaseObj {
size_t _size; // Cache of Π(shape).
Fuid fuid; // Cloned tensors share the same id. Tensors constructed from
// scratch have a new id.
TensorType tensorType = TensorType::others;
void copyin(const void *ptr, size_t size) {
runtime->copyBlobFromCPU(getRawDataPtr<void *>(), ptr, size);
}
void copyout(void *ptr, size_t size) const {
runtime->copyBlobToCPU(ptr, getRawDataPtr<void *>(), size);
}
public:
TensorObj(Shape shape, DataType dtype, Runtime runtime);
@ -34,74 +35,30 @@ class TensorObj : public TensorBaseObj {
size_t getBytes() const { return _size * dtype.getSize(); }
Shape getDims() const { return shape; }
void setShape(Shape shape_);
size_t getRank() const { return shape.size(); }
Shape getStride() const;
vector<size_t> getStride() const;
size_t getOffset(const vector<int> &ds) const;
void dataMalloc();
UidBaseType getFuid() const { return fuid; }
bool isWeight() const { return tensorType == TensorType::weight; }
bool isInput() const { return tensorType == TensorType::input; }
bool isOutput() const { return tensorType == TensorType::output; }
bool isOthers() const { return tensorType == TensorType::others; }
void setWeight() { tensorType = TensorType::weight; }
void setInput() {
if (!this->isWeight()) {
tensorType = TensorType::input;
}
}
void setOutput() {
if (!this->isWeight()) {
tensorType = TensorType::output;
}
}
string tensorTypeToString() const {
switch (tensorType) {
case TensorType::weight:
return "weight";
break;
case TensorType::input:
return "input";
break;
case TensorType::output:
return "output";
break;
case TensorType::others:
return "others";
break;
default:
return "unknown tensor type";
break;
}
}
void load(std::string file_path);
void save(std::string file_path);
void copyin(const void *ptr, size_t size) {
runtime->copyBlobFromCPU(getRawDataPtr<void *>(), ptr, size);
}
void copyout(void *ptr, size_t size) const {
runtime->copyBlobToCPU(ptr, getRawDataPtr<void *>(), size);
}
// Copy elements from `data`.
template <typename T> void copyin(const vector<T> &data) {
IT_ASSERT(DataType::get<T>() == dtype.cpuTypeInt());
IT_ASSERT(data.size() == _size);
IT_ASSERT(DataType::get<T>() == dtype);
IT_ASSERT(data.size() >= _size);
copyin(data.data(), getBytes());
}
// Copy all the elements to a vector.
template <typename T> auto copyout() const {
IT_ASSERT(DataType::get<T>() == dtype.cpuTypeInt());
IT_ASSERT(DataType::get<T>() == dtype);
std::vector<T> ans(_size);
copyout(ans.data(), getBytes());
return ans;
}
// Copy the element at `pos`.
template <typename T> auto copyOne(const vector<int> &pos) const {
IT_ASSERT(DataType::get<T>() == dtype.cpuTypeInt());
IT_ASSERT(DataType::get<T>() == dtype);
auto offset = getOffset(pos);
auto bytes = dtype.getSize();
T ans;
@ -113,16 +70,10 @@ class TensorObj : public TensorBaseObj {
void copyData(const TensorObj *src);
void copyData(const Tensor &src) { copyData(src.get()); }
// TODO: Rename this function later, because it is confused that it will
// change the field data, but actually it generates data and maybe copy to
// device.
// FIXME: std::fucntion copies the generator instead of passing it by ref.
// Thus the internal state of generator cannot be updated.
void setData(
std::function<void(void *, size_t, DataType)> const &generator) const;
void setDataBlob(const Blob &blob);
Tensor clone() const {
auto obj = make_ref<TensorObj>(*this);
obj->freeData();
@ -144,16 +95,11 @@ class TensorObj : public TensorBaseObj {
}
void printData() const;
void dumpData(std::ofstream &ofs) const;
bool equalData(const Tensor &rhs, double relativeError = 1e-6) const;
template <typename T> bool equalData(const vector<T> &dataVector) {
IT_ASSERT(DataType::get<T>() == dtype);
IT_ASSERT(size() == dataVector.size());
if (dtype == DataType::Float16) {
return equalDataImpl_fp16(getRawDataPtr<uint16_t *>(),
(float *)dataVector.data(), size());
}
IT_ASSERT(DataType::get<T>() == dtype.cpuTypeInt());
return equalDataImpl(getRawDataPtr<T *>(), dataVector.data(), size());
}
@ -193,41 +139,19 @@ class TensorObj : public TensorBaseObj {
}
template <typename T>
bool equalDataImpl(const T *a, const T *b, size_t size,
double relativeError = 1e-6) const {
bool equalDataImpl(const T *a, const T *b, size_t size) const {
for (size_t i = 0; i < size; ++i) {
if constexpr (std::is_integral_v<T>) {
if (a[i] != b[i])
return false;
} else if constexpr (std::is_floating_point_v<T>) {
if (std::min(fabs(a[i]), fabs(b[i])) == 0. &&
fabs(a[i] - b[i]) > relativeError) {
printf("Error on %lu: %f %f\n", i, a[i], b[i]);
return false;
} else if (std::min(fabs(a[i]), fabs(b[i])) != 0. &&
fabs(a[i] - b[i]) /
std::max(fabs(a[i]), fabs(b[i])) >
relativeError) {
if (fabs(a[i] - b[i]) / std::max(fabs(a[i]), fabs(b[i])) >
1e-6) {
printf("Error on %lu: %f %f\n", i, a[i], b[i]);
return false;
}
} else {
} else
static_assert(!sizeof(T), "Unsupported data type");
}
}
return true;
}
bool equalDataImpl_fp16(const uint16_t *a, const float *b,
size_t size) const {
for (size_t i = 0; i < size; ++i) {
auto a_fp32 = fp16_to_float(a[i]);
auto b_fp32 = b[i];
if (fabs(a_fp32 - b_fp32) / std::max(fabs(a_fp32), fabs(b_fp32)) >
1e-6) {
printf("Error on %lu: %f %f\n", i, a_fp32, b_fp32);
return false;
}
}
return true;
}
@ -248,8 +172,8 @@ class TensorObj : public TensorBaseObj {
// // std::cerr << "Init beginned " << std::endl;
// #pragma omp parallel for
// for (size_t i = 0; i < iEnd; ++i)
// data[i] = fastrand(random_seed[omp_get_thread_num() *
// 16]) % 10000;
// data[i] = fastrand(random_seed[omp_get_thread_num() * 16]) %
// 10000;
// // std::cerr << "Init finished" << std::endl;
// computed = ComputedFull;
// return true;
@ -294,8 +218,8 @@ class TensorObj : public TensorBaseObj {
// auto nDim = dims.size();
// auto nBroadcastDim = ds.size() - nDim;
// for (size_t i = 0; i < nDim; ++i)
// if (ds[nBroadcastDim + i] < 0 || ds[nBroadcastDim +
// i] >= dims[i])
// if (ds[nBroadcastDim + i] < 0 || ds[nBroadcastDim + i] >=
// dims[i])
// return (size_t)-1;
// size_t idx = 0;
// for (size_t i = 0; i < nDim; ++i)
@ -354,14 +278,12 @@ class TensorObj : public TensorBaseObj {
// return (g_seed >> 16) & 0x7FFF;
// }
// std::vector<std::vector<int>> const *getSplittingPoints()
// const {
// std::vector<std::vector<int>> const *getSplittingPoints() const {
// assert(!splittingPoints.empty());
// return &splittingPoints;
// }
// bool setSplittingPoints(std::vector<std::vector<int>> value)
// {
// bool setSplittingPoints(std::vector<std::vector<int>> value) {
// assert(!value.empty());
// splittingPoints = value;
// return true;
@ -383,7 +305,7 @@ class TensorObj : public TensorBaseObj {
// }
// void initSplittingPoints() {
// splittingPoints.resize(getRank()); }
// splittingPoints.resize(getDims().size()); }
// void printShape();
};

View File

@ -44,7 +44,6 @@ class TensorBaseObj : public Object {
}
DataType getDType() const { return dtype; }
int getDTypeIndex() const { return dtype.getIndex(); }
Runtime getRuntime() const { return runtime; }
// std::pair<Operator *, int> getOutputOfWithIndex();

View File

@ -1,7 +0,0 @@
#pragma once
namespace infini {
enum class TensorType { weight, input, output, others };
} // namespace infini

View File

@ -1,42 +0,0 @@
#pragma once
#include "core/runtime.h"
namespace infini {
template <class T> class WorkspaceObj {
private:
T workspace; // workspace pointer
size_t workspaceSize; // Size of workspace
size_t workspaceAlloc; // currently use workspace size
public:
WorkspaceObj(T workspace_, size_t workspaceSize_)
: workspace(workspace_), workspaceSize(workspaceSize_) {
workspaceAlloc = 0;
}
virtual ~WorkspaceObj() {
// Dealloc workspace in RuntimeObj
// Set workspace = nullptr here
workspace = nullptr;
}
size_t getWorkspaceSize() const { return workspaceSize; }
T getWorkspace(size_t size) {
// Get unused workspace
IT_ASSERT(size + workspaceAlloc <= workspaceSize);
auto ret = (T)(static_cast<uint8_t *>(workspace) + workspaceAlloc);
workspaceAlloc += size;
return ret;
}
T getWorkspace() {
// Override getWorkspace in order to dealloc in runtime
return workspace;
}
void resetWorkspace() {
// Reset workspaceAlloc every time end kernel
workspaceAlloc = 0;
}
size_t getWorkspaceAlloc() const { return workspaceAlloc; }
};
} // namespace infini

View File

@ -1,17 +0,0 @@
#pragma once
#include "core/common.h"
#include <cstdio>
struct AttentionKVCacheMetadata {
int dimSize[4];
int stride[4];
};
namespace infini {
void attention_kvcache_kernel(float *input_k_cache, float *input_v_cache,
float *input_q, float *input_k, float *input_v,
int *position_id, float *output_matmul,
const AttentionKVCacheMetadata &compMeta,
float *output_O_temp, float *output_sum_temp);
} // namespace infini

View File

@ -5,13 +5,17 @@
#include <cuda_profiler_api.h>
#include <cudnn.h>
#include <curand.h>
#include <memory>
// TODO: replace with Exception (IT_ASSERT)
#define checkCudaError(call) \
if (auto err = call; err != cudaSuccess) \
throw ::infini::Exception(std::string("[") + __FILE__ + ":" + \
std::to_string(__LINE__) + "] CUDA error (" + \
#call + "): " + cudaGetErrorString(err))
{ \
auto err = call; \
if (cudaSuccess != err) { \
fprintf(stderr, "Cuda error in %s:%i : %s.\n", __FILE__, __LINE__, \
cudaGetErrorString(err)); \
exit(EXIT_FAILURE); \
} \
}
#define checkCUresult(call) \
{ \
@ -35,10 +39,14 @@
}
#define checkCudnnError(call) \
if (auto err = call; err != CUDNN_STATUS_SUCCESS) \
throw ::infini::Exception(std::string("[") + __FILE__ + ":" + \
std::to_string(__LINE__) + "] cuDNN error (" + \
#call + "): " + cudnnGetErrorString(err))
{ \
auto err = call; \
if (CUDNN_STATUS_SUCCESS != err) { \
fprintf(stderr, "cuDNN error in %s:%i : %s.\n", __FILE__, \
__LINE__, cudnnGetErrorString(err)); \
exit(EXIT_FAILURE); \
} \
}
#define checkCurandError(call) \
{ \
@ -112,20 +120,4 @@ inline const char *curandGetErrorString(curandStatus_t error) {
using CudaPtr = void *;
class CUDAStream {
public:
CUDAStream(const CUDAStream &) = delete;
CUDAStream(CUDAStream &&) = delete;
void operator=(const CUDAStream &) = delete;
void operator=(CUDAStream &&) = delete;
static cudaStream_t getCurrentStream() { return _stream; }
static void Init() { CUDAStream::_stream = 0; };
static void createStream() { checkCudaError(cudaStreamCreate(&_stream)); }
static void destroyStream() { checkCudaError(cudaStreamDestroy(_stream)); }
private:
CUDAStream(){};
static cudaStream_t _stream;
};
} // namespace infini

View File

@ -1,20 +1,8 @@
#pragma once
namespace infini {
void div_kernel(int dtypeIndex, void *a, void *b, void *c, int a0, int a1,
int a2, int a3, int b0, int b1, int b2, int b3, int c0, int c1,
int c2, int c3);
void add_kernel(int dtypeIndex, void *a, void *b, void *c, int a0, int a1,
int a2, int a3, int b0, int b1, int b2, int b3, int c0, int c1,
int c2, int c3);
void pow_kernel(int dtypeIndex, void *a, void *b, void *c, int a0, int a1,
int a2, int a3, int b0, int b1, int b2, int b3, int c0, int c1,
int c2, int c3);
void less_kernel(int dtypeIndex, void *a, void *b, void *c, int a0, int a1,
int a2, int a3, int b0, int b1, int b2, int b3, int c0, int c1,
int c2, int c3);
void div_const_kernel(int dType, void *a, void *b, void *c, size_t n);
void pow_const_kernel(int dType, void *a, void *b, void *c, size_t n);
void div_kernel(float *a, float *b, float *c, int a0, int a1, int a2, int a3,
int b0, int b1, int b2, int b3, int c0, int c1, int c2, int c3);
void pow_kernel(float *a, float *b, float *c, int a0, int a1, int a2, int a3,
int b0, int b1, int b2, int b3, int c0, int c1, int c2, int c3);
}; // namespace infini

View File

@ -1,12 +0,0 @@
#pragma once
#include "operators/unary.h"
#include "utils/small_array.h"
namespace infini {
void expandKernel(int dType, void *input, void *output, int nDims,
int outputsize, SmallArray inputShape,
SmallArray outputShape);
void expandRowKernel(int dType, void *input, void *output, int n_rows,
int row_len);
}; // namespace infini

View File

@ -1,17 +0,0 @@
#pragma once
#include "operators/unary.h"
namespace infini {
void LaynormKernel(const float *input, const float *scale, const float eps,
int size, int scaleSize, const int dimsize, const int stride,
float *output, const float *bias, int biasSize);
void LaynormKernel(const float *input, const float *scale, const float eps,
int size, int scaleSize, const int dimsize, const int stride,
float *output);
void LaynormKernel(const half *input, const half *scale, const half eps,
int size, int scaleSize, const int dimsize, const int stride,
half *output, const half *bias, int biasSize);
void LaynormKernel(const half *input, const half *scale, const half eps,
int size, int scaleSize, const int dimsize, const int stride,
half *output);
}; // namespace infini

View File

@ -10,11 +10,10 @@ typedef struct {
int wholeNDim[MAX_DIM]; // dim size after padding or before slicing
int partNDim[MAX_DIM]; // dim size before padding or after slicing
int partStride[MAX_DIM]; // stride before padding or after slicing
int DType;
} TransMetaData;
namespace infini {
void pad_slice_kernel(void *partData, void *wholeData,
void pad_slice_kernel(float *partData, float *wholeData,
const TransMetaData &metadata, int nDims, int num,
bool isPad);
} // namespace infini

View File

@ -1,10 +0,0 @@
#pragma once
#include "operators/rms_norm.h"
namespace infini {
void rmsnorm_kernel(int dType, void *input, void *weight, void *output,
int num_tokens, int hidden_size);
}; // namespace infini

View File

@ -1,12 +0,0 @@
#pragma once
#include "operators/rope.h"
#include "utils/small_array.h"
namespace infini {
void rope_kernel(int dType, int *pos, void *input, void *output, int size,
int dim_model, int dim_head, int hidden_stride,
int pos_stride);
}; // namespace infini

View File

@ -1,9 +1,6 @@
#pragma once
#include "core/runtime.h"
#include "cuda/cuda_common.h"
#ifdef INFINI_USE_NCCL
#include "cuda/nccl_communicator.h"
#endif
namespace infini {
@ -11,34 +8,21 @@ class CudaRuntimeObj : public RuntimeObj {
private:
cudnnHandle_t cudnn;
cublasHandle_t cublas;
std::unique_ptr<CommunicatorObj> comm;
CudaPtr workspace;
size_t workspaceSize;
bool isCudaGraphCreated;
cudaGraph_t cudaGraph;
cudaGraphExec_t cudaGraphInstance;
public:
explicit CudaRuntimeObj(int deviceId = 0)
: RuntimeObj(Device::CUDA, deviceId) {
CudaRuntimeObj() : RuntimeObj(Device::CUDA) {
checkCudaError(cudaSetDevice(deviceId));
checkCudnnError(cudnnCreate(&cudnn));
checkCublasError(cublasCreate(&cublas));
// 10GB for Longformer
// size_t longformerNum = 3lu * (1 << 30);
workspaceSize = 7ll << 30; // 7 GB
workspace = alloc(workspaceSize);
isCudaGraphCreated = false;
CUDAStream::Init();
}
virtual ~CudaRuntimeObj() {
try {
if (isCudaGraphCreated) {
checkCudaError(cudaGraphExecDestroy(cudaGraphInstance));
checkCudaError(cudaGraphDestroy(cudaGraph));
CUDAStream::destroyStream();
}
dealloc(workspace);
checkCudnnError(cudnnDestroy(cudnn));
checkCublasError(cublasDestroy(cublas));
@ -85,13 +69,6 @@ class CudaRuntimeObj : public RuntimeObj {
void runWithoutSync(const Graph &graph) const;
void runWithCudaGraph(const Graph &graph);
// init communicator
void initComm(const string &name, int worldSize, int rank) final;
CommunicatorObj &getCommunicator() const final { return *comm; }
private:
void tune(const Graph &graph, bool profiling) const;
};

View File

@ -1,8 +0,0 @@
#pragma once
#include "utils/small_array.h"
namespace infini {
void softmax_kernel(int num_blocks, float *input, float *output, int size,
int dimsize, int stride);
void softmax_kernel(int num_blocks, half *input, half *output, int size,
int dimsize, int stride);
} // namespace infini

View File

@ -3,13 +3,13 @@
#include <cstdio>
const int BATCH_SIZE = 32; // parallel tensor number.
const int DIM_MAX_SIZE = 8;
const int DIM_MAX_SIZE = 4;
// Concat operator acts like element tensors composing to one big tensor,and
// split operator acts like one big tensor being composed by element
// tensors.
template <typename T> struct ElementTensorMetadata {
T *data[BATCH_SIZE];
struct ElementTensorMetadata {
float *data[BATCH_SIZE];
int dimBgNo[BATCH_SIZE]; // the dimention begin no of the element tensor in
// the composed tensor.
int dimSize[BATCH_SIZE]; // the dimention size of the element tensor.
@ -20,17 +20,16 @@ template <typename T> struct ElementTensorMetadata {
data[i], dimBgNo[i], dimSize[i], nElements[i]);
}
};
template <typename T> struct ComposedTensorMetadata {
struct ComposedTensorMetadata {
int dimSize[DIM_MAX_SIZE];
int stride[DIM_MAX_SIZE];
T *data;
float *data;
};
namespace infini {
void split_concat_kernel(const ElementTensorMetadata<float> &eleMeta,
const ComposedTensorMetadata<float> &compMeta, int dim,
int batchSize, int nDims, bool isSplit);
void split_concat_kernel(const ElementTensorMetadata<half> &eleMeta,
const ComposedTensorMetadata<half> &compMeta, int dim,
void split_concat_kernel(const ElementTensorMetadata &eleMeta,
const ComposedTensorMetadata &compMeta, int dim,
int batchSize, int nDims, bool isSplit);
} // namespace infini

View File

@ -1,11 +0,0 @@
#pragma once
#include "operators/transpose.h"
#include "utils/small_array.h"
namespace infini {
void transpose_kernel(int dType, void *input, void *output, int nDims, int size,
SmallArray strides, SmallArray outputShape);
}; // namespace infini

View File

@ -3,22 +3,31 @@
#include "operators/unary.h"
namespace infini {
template <typename T> void softmax_kernel(T *input, T *output, size_t num);
template <typename T> void relu_kernel(T *input, T *output, size_t num);
template <typename T> void silu_kernel(T *input, T *output, size_t num);
template <typename T> void sigmoid_kernel(T *input, T *output, size_t num);
template <typename T> void tanh_kernel(T *input, T *output, size_t num);
template <typename T> void abs_kernel(T *input, T *output, size_t num);
template <typename T> void sqrt_kernel(T *input, T *output, size_t num);
template <typename T> void neg_kernel(T *input, T *output, size_t num);
template <typename T> void gelu_kernel(T *input, T *output, size_t num);
template <typename T> void erf_kernel(T *input, T *output, size_t num);
template <typename T> void hard_sigmoid_kernel(T *input, T *output, size_t num);
template <typename T> void hard_swish_kernel(T *input, T *output, size_t num);
void softmax_kernel(float *input, float *output, int num);
void relu_kernel(float *input, float *output, int num);
void sigmoid_kernel(float *input, float *output, int num);
void tanh_kernel(float *input, float *output, int num);
void abs_kernel(float *input, float *output, int num);
template <typename INPUT, typename OUTPUT>
void cast_kernel(INPUT *input, OUTPUT *output, size_t num);
void unary_kernel(const Operator &_op) {
auto op = as<UnaryObj>(_op);
float *const inputData = (op->getInputs(0)->getRawDataPtr<float *>());
float *const outputData = (op->getOutput()->getRawDataPtr<float *>());
void unary_kernel(const Operator &_op);
auto dim = op->getInputs(0)->getDims();
int n = dim[0], c = dim[1], h = dim[2], w = dim[3];
if (op->getOpType() == OpType::Softmax)
softmax_kernel(inputData, outputData, n * c * h * w);
else if (op->getOpType() == OpType::Relu)
relu_kernel(inputData, outputData, n * c * h * w);
else if (op->getOpType() == OpType::Sigmoid)
sigmoid_kernel(inputData, outputData, n * c * h * w);
else if (op->getOpType() == OpType::Tanh)
tanh_kernel(inputData, outputData, n * c * h * w);
else if (op->getOpType() == OpType::Abs)
abs_kernel(inputData, outputData, n * c * h * w);
else
IT_TODO_HALT();
}
}; // namespace infini

View File

@ -1,29 +1,11 @@
#pragma once
#include "core/tensor.h"
#include "cuda/cuda_common.h"
namespace infini {
void cudaPrintFloat(float *x, int len);
void cudaPrintTensor(const Tensor &tensor);
void cudaPrintTensor(const Tensor &tensor) {
cudaPrintFloat(tensor->getRawDataPtr<float *>(), tensor->size());
}
cudnnDataType_t cudnnDataTypeConvert(DataType dataType);
cudaDataType cublasDataTypeConvert(DataType);
template <int index> struct DT_CUDA {};
template <> struct DT_CUDA<0> { using t = bool; };
template <> struct DT_CUDA<1> { using t = float; };
template <> struct DT_CUDA<2> { using t = unsigned char; };
template <> struct DT_CUDA<3> { using t = char; };
template <> struct DT_CUDA<4> { using t = unsigned short; };
template <> struct DT_CUDA<5> { using t = short; };
template <> struct DT_CUDA<6> { using t = int; };
template <> struct DT_CUDA<7> { using t = long long; };
template <> struct DT_CUDA<9> { using t = bool; };
template <> struct DT_CUDA<10> { using t = half; };
template <> struct DT_CUDA<11> { using t = double; };
template <> struct DT_CUDA<12> { using t = unsigned int; };
template <> struct DT_CUDA<13> { using t = unsigned long long; };
template <> struct DT_CUDA<16> { using t = nv_bfloat16; };
} // namespace infini
} // namespace infini

View File

@ -1,17 +0,0 @@
#pragma once
#include "operators/unary.h"
#include "utils/small_array.h"
namespace infini {
void whereKernel(const float *inputX, const float *inputY,
const uint8_t *condition, float *output, int nDims,
int outputsize, SmallArray inputXShape, SmallArray inputYShape,
SmallArray conditionShape, SmallArray outputShape, int xSize,
int ySize, int cSize);
void whereKernel(const half *inputX, const half *inputY,
const uint8_t *condition, half *output, int nDims,
int outputsize, SmallArray inputXShape, SmallArray inputYShape,
SmallArray conditionShape, SmallArray outputShape, int xSize,
int ySize, int cSize);
}; // namespace infini

View File

@ -1,61 +1,17 @@
#pragma once
#include "core/data_type.h"
#include "core/operator.h"
#include "operators/gather.h"
typedef struct {
int *indexValue;
int axis;
int inNDim;
int outNDim;
int idxNDim;
int outDim[4];
int idxDim[4];
int idxStride[4];
int inStride[4];
} GatherMetaData;
namespace infini {
struct GatherMetaData {
// Pointer to indices
void *indexValue;
// Type of index values
DataType indexType;
// Type of input and output data
DataType dataType;
// Axis of the gather operation
int axis;
// Rank of input
int inNDim;
// Rank of output
int outNDim;
// Rank of indices
int idxNDim;
// Shape of output
int outDim[4];
// Shape of indices
int idxDim[4];
// Strides of indices
int idxStride[4];
// Strides of input
int inStride[4];
};
inline void initGatherMetaData(GatherMetaData &metaData,
const Ref<OperatorObj> &_op) {
memset(&metaData, 0, sizeof(metaData));
auto op = as<GatherBaseObj>(_op);
Ref<TensorObj> in = op->getInputs(0);
Ref<TensorObj> index = op->getInputs(1);
Ref<TensorObj> out = op->getOutput();
metaData.indexValue = index->getRawDataPtr<void *>();
metaData.indexType = index->getDType();
metaData.dataType = in->getDType();
metaData.axis = op->getAxis();
metaData.inNDim = in->getRank();
metaData.outNDim = out->getRank();
metaData.idxNDim = index->getRank();
for (int i = 0; i < metaData.outNDim; ++i)
metaData.outDim[i] = out->getDims()[i];
for (int i = 0; i < metaData.idxNDim; ++i) {
metaData.idxDim[i] = index->getDims()[i];
metaData.idxStride[i] = index->getStride()[i];
}
for (int i = 0; i < metaData.inNDim; ++i) {
metaData.inStride[i] = in->getStride()[i];
}
void gather_kernel(float *in, float *out, GatherMetaData metaData, int num);
}
template <typename T>
void gather_kernel(T *in, T *out, GatherMetaData metaData, size_t num);
void gather_elements_kernel(void *in, void *out, GatherMetaData metaData,
size_t num);
} // namespace infini

View File

@ -1,70 +0,0 @@
#pragma once
#include "core/communicator.h"
#include <chrono>
#include <cstdlib>
#include <filesystem>
#include <fstream>
#include <nccl.h>
#include <thread>
#define checkNcclError(call) \
{ \
auto err = call; \
if (ncclSuccess != err) { \
fprintf(stderr, "NCCL error in %s:%i : %s.\n", __FILE__, __LINE__, \
ncclGetErrorString(err)); \
exit(EXIT_FAILURE); \
} \
}
namespace infini {
class NcclCommunicatorObj final : public CommunicatorObj {
private:
ncclComm_t comm;
public:
NcclCommunicatorObj(const string &name, int worldSize, int rank)
: CommunicatorObj(worldSize, rank) {
const std::string filePath("./" + name + "_nccl_id.bin");
ncclUniqueId commId;
if (rank == 0) {
checkNcclError(ncclGetUniqueId(&commId));
std::ofstream ofs(filePath, std::ios::binary);
ofs.write((char *)&commId, sizeof(ncclUniqueId));
} else {
auto begin = std::chrono::steady_clock::now();
while (!std::filesystem::exists(filePath)) {
auto now = std::chrono::steady_clock::now();
_IT_ASSERT_2(now < begin + std::chrono::seconds(10),
"time limit (10s) exceeded.");
std::this_thread::sleep_for(std::chrono::milliseconds(100));
}
std::ifstream ifs(filePath, std::ios::binary);
ifs.read((char *)&commId, sizeof(ncclUniqueId));
}
checkNcclError(ncclCommInitRank(&comm, worldSize, commId, rank));
if (rank == 0) {
std::filesystem::remove(filePath);
}
}
// Get the actual ncclComm_t
ncclComm_t getNcclComm() { return comm; }
void finalize() { checkNcclError(ncclCommFinalize(comm)); }
~NcclCommunicatorObj() final {
finalize();
checkNcclError(ncclCommDestroy(comm));
}
virtual string toString() const final {
std::ostringstream oss;
oss << "NCCL communicator";
return oss.str();
}
};
} // namespace infini

6
include/cuda/softmax.h Normal file
View File

@ -0,0 +1,6 @@
#pragma once
namespace infini {
void softmax_kernel(int max_threadblock_size, int batch_size, float *x,
float *y, int dim, int stride);
}

View File

@ -1,23 +0,0 @@
#include "core/op_type.h"
#include "kunlun/kunlun_common.h"
namespace infini {
using KunlunActType = xdnn::Activation_t;
KunlunActType parseActType(ActType act) {
switch (act) {
case ActType::None:
return KunlunActType::LINEAR;
case ActType::Tanh:
return KunlunActType::TANH;
case ActType::Sigmoid:
return KunlunActType::SIGMOID;
case ActType::Relu:
return KunlunActType::RELU6;
default:
fprintf(stderr, "Activation Type not support yet!\n");
break;
}
return KunlunActType::LINEAR;
}
}; // namespace infini

View File

@ -1,22 +0,0 @@
#pragma once
#include "core/common.h"
#include "xpu/runtime_ex.h"
#include "xpu/xdnn.h"
namespace xdnn = baidu::xpu::api;
#define checkKUNLUNError(call) \
{ \
auto err = call; \
if (XPU_SUCCESS != err) { \
fprintf(stderr, "KUNLUN error in %s:%i : %s.\n", __FILE__, \
__LINE__, xpu_strerror(err)); \
exit(EXIT_FAILURE); \
} \
}
namespace infini {
using KUNLUNPtr = void *;
} // namespace infini

View File

@ -1,24 +0,0 @@
#pragma once
#include "core/kernel.h"
#include "kunlun/kunlun_runtime.h"
namespace infini {
class KUNLUNKernelWithoutConfig : public Kernel {
public:
virtual void compute(const Operator &op, const PerfRecord &record,
const RuntimeObj *context) const {
compute(op, context);
}
virtual void compute(const Operator &op,
const RuntimeObj *context) const = 0;
// Premise: op is idempotent since it is called multiple times.
virtual PerfRecord tune(const Operator &op,
const RuntimeObj *_context) const {
auto context = dynamic_cast<const KUNLUNRuntimeObj *>(_context);
return make_ref<PerfRecordObj>(timeit([&]() { compute(op, _context); },
[&]() { context->sync(); }));
}
};
} // namespace infini

View File

@ -1,81 +0,0 @@
#pragma once
#include "core/runtime.h"
#include "core/workspace.h"
#include "kunlun/kunlun_common.h"
#ifdef INFINI_USE_XCCL
#include "kunlun/xccl_communicator.h"
#endif
namespace infini {
class KUNLUNRuntimeObj : public RuntimeObj {
private:
xdnn::Context *ctx;
std::unique_ptr<CommunicatorObj> comm;
// KUNLUNPtr workspace;
// size_t workspaceSize;
Workspace<KUNLUNPtr> workspace;
public:
KUNLUNRuntimeObj(int deviceId = 0) : RuntimeObj(Device::KUNLUN) {
xpu_set_device(deviceId);
ctx = xdnn::create_context();
// 10GB for Longformer
// size_t longformerNum = 3lu * (1 << 30);
size_t workspaceSize = 2llu << 30; // 2 GB
KUNLUNPtr wkspacePtr = alloc(workspaceSize);
workspace =
make_ref<WorkspaceObj<KUNLUNPtr>>(wkspacePtr, workspaceSize);
}
virtual ~KUNLUNRuntimeObj() {
KUNLUNPtr wkspacePtr = workspace->getWorkspace();
dealloc(wkspacePtr);
xdnn::destroy_context(ctx);
}
string toString() const override;
void run(const Graph &graph, bool tune = false,
bool profiling = false) const;
// double runEvaluation(const Graph &graph, int nWarmups,
// int nEvaluations) const;
void sync() const;
KUNLUNPtr alloc(size_t size) override {
void *ptr;
checkKUNLUNError(
xpu_malloc((void **)&ptr, size, XPUMemoryKind::XPU_MEM_HBM));
return ptr;
}
void dealloc(void *ptr) override { xpu_free(ptr); }
xdnn::Context *KUNLUNHandle() const { return ctx; }
// Get $size workspace by bytes
KUNLUNPtr getWorkspace(size_t size) const {
auto ret = workspace->getWorkspace(size);
return ret;
}
Workspace<KUNLUNPtr> getWorkspaceObj() const { return workspace; }
void copyBlobFromCPU(void *dst, const void *src,
size_t bytes) const override {
xpu_memcpy(dst, const_cast<void *>(src), bytes,
XPUMemcpyKind::XPU_HOST_TO_DEVICE);
}
void copyBlobToCPU(void *dst, const void *src,
size_t bytes) const override {
xpu_memcpy(dst, const_cast<void *>(src), bytes,
XPUMemcpyKind::XPU_DEVICE_TO_HOST);
}
void copyBlobInsideRuntime(void *dst, const void *src,
size_t bytes) const override {
xpu_memcpy(dst, const_cast<void *>(src), bytes,
XPUMemcpyKind::XPU_DEVICE_TO_DEVICE);
}
void initComm(const string &name, int worldSize, int rank) final;
CommunicatorObj &getCommunicator() const final { return *comm; }
private:
void runWithoutSync(const Graph &graph, bool tune, bool profiling) const;
};
} // namespace infini

View File

@ -1,10 +0,0 @@
#pragma once
namespace infini {
namespace opTimer {
double getPerfConvXdnn(int n, int c, int h, int w, int f, int r, int s,
int padh, int padw, int strideh, int stridew,
int dilationh, int dilationw, int group,
const char *name);
double getPerfMatmulXdnn(int b, int m, int n, int k, const char *name);
} // namespace opTimer
} // namespace infini

View File

@ -1,60 +0,0 @@
#pragma once
#include "core/communicator.h"
#include "xpu/bkcl.h"
#include <chrono>
#include <filesystem>
#include <fstream>
#include <thread>
#define checkXcclError(call) \
{ \
auto err = call; \
if (BKCL_SUCCESS != err) { \
fprintf(stderr, "XCCL error in %s:%i.\n", __FILE__, __LINE__); \
exit(EXIT_FAILURE); \
} \
}
namespace infini {
class XcclCommunicatorObj final : public CommunicatorObj {
private:
BKCLContext_t comm;
public:
XcclCommunicatorObj(const string &name, int worldSize, int rank)
: CommunicatorObj(worldSize, rank) {
const std::string filePath("./" + name + "_xccl_id.bin");
BKCLUniqueId commId;
if (rank == 0) {
checkXcclError(bkcl_get_unique_id(&commId));
std::ofstream ofs(filePath, std::ios::binary);
ofs.write((char *)&commId, sizeof(BKCLUniqueId));
} else {
auto begin = std::chrono::steady_clock::now();
while (!std::filesystem::exists(filePath)) {
auto now = std::chrono::steady_clock::now();
_IT_ASSERT_2(now < begin + std::chrono::seconds(100),
"time limit (100s) exceeded.");
std::this_thread::sleep_for(std::chrono::milliseconds(100));
}
std::ifstream ifs(filePath, std::ios::binary);
ifs.read((char *)&commId, sizeof(BKCLUniqueId));
}
checkXcclError(bkcl_init_rank(&comm, rank, worldSize, &commId));
if (rank == 0) {
std::filesystem::remove(filePath);
}
}
BKCLContext_t getXcclComm() { return comm; }
~XcclCommunicatorObj() final { checkXcclError(bkcl_destroy_context(comm)); }
virtual string toString() const final {
std::ostringstream oss;
oss << "XCCL communicator";
return oss.str();
}
};
} // namespace infini

View File

@ -24,7 +24,7 @@
// clang-format on
namespace nnet {
int matchExprResult(Derivator &derivator, string pathRelativeToProjectHome);
bool checkExprLogSame(string pathRelativeToProjectHome, int start, int end);
int matchExprResult(Derivator &derivator, string fn);
bool checkExprLogSame(string fnPrefix, int start, int end);
bool checkExprsEquvivalence(VecExpr exprs);
} // namespace nnet

View File

@ -35,7 +35,7 @@ class G2BMMObj : public OperatorObj {
OP_CLONE(G2BMMObj);
std::string toString() const override;
optional<vector<Shape>> inferShape(const TensorVec &inputs) override;
optional<vector<Shape>> inferShape(const TensorVec &inputs) const override;
int numInputs() const override { return 2; }
int numOutputs() const override { return 1; }

View File

@ -33,7 +33,7 @@ class GBMMObj : public OperatorObj {
OP_CLONE(GBMMObj);
std::string toString() const override;
optional<vector<Shape>> inferShape(const TensorVec &inputs) override;
optional<vector<Shape>> inferShape(const TensorVec &inputs) const override;
int numInputs() const override { return 2; }
int numOutputs() const override { return 1; }

View File

@ -7,7 +7,7 @@ class ActivationBackwardObj : public OperatorObj {
ActivationBackwardObj(OpType type, GraphObj *graph, Tensor y, Tensor diff_y,
Tensor x, Tensor diff_x);
OP_CLONE(ActivationBackwardObj);
optional<vector<Shape>> inferShape(const TensorVec &inputs) override;
optional<vector<Shape>> inferShape(const TensorVec &inputs) const override;
std::string toString() const override;
int numInputs() const override { return 3; }

View File

@ -1,44 +0,0 @@
#pragma once
#include "core/operator.h"
namespace infini {
/**
* @brief The AllGather operation gathers N values from k ranks into
* an output of size k*N, and distributes that result to all ranks.
* The output is ordered by rank index.
*
* For more details:
* https://docs.nvidia.com/deeplearning/nccl/user-guide/docs/usage/collectives.html#allgather
*/
class AllGatherObj : public OperatorObj {
public:
/**
* @brief Construct a new AllGather object
*
* @param graph The computation graph that this operator belongs to.
* @param input The input tensor from this rank.
* @param outputs A list of output tensors collected from all ranks.
* @param world_size Total number of ranks.
*/
AllGatherObj(GraphObj *graph, Tensor input, std::optional<TensorVec>,
int world_size);
OP_CLONE(AllGatherObj);
int numInputs() const override { return 1; }
int numOutputs() const override { return world_size; }
optional<vector<Shape>> inferShape(const TensorVec &inputs) override;
std::string toString() const override;
int getWorldSize() const { return world_size; }
private:
vector<int> getWorkloadVector() const override;
vector<int> getOpAttrVector() const override;
vector<DataType> inferDataType(const TensorVec &inputs) const override;
protected:
int world_size;
};
} // namespace infini

View File

@ -1,75 +0,0 @@
#pragma once
#include "core/operator.h"
namespace infini {
/**
* @brief The AllReduce operation is performing reductions on data (sum, min,
* max, avg, or div) across devices and writing the result in the
* receive buffers of every rank. For example, in an allreduce operation between
* k ranks and performing a sum, each rank will provide an array Vk of N values,
* and receive an identical arrays S of N values, where S[i] =
* V0[i]+V1[i]++Vk-1[i].
*
* For more details:
* https://docs.nvidia.com/deeplearning/nccl/user-guide/docs/usage/collectives.html#allreduce
*/
class AllReduceBaseObj : public OperatorObj {
public:
/**
* @brief Construct a new AllReduce base object. Should be called by every
* child class constructor, but not directly.
*
* @param graph The computation graph that this operator belongs to.
* @param opType The operation type. This param is taken care of by child
* classes.
* @param input The input tensor from this rank.
* @param output The output tensor, same size as input.
*/
AllReduceBaseObj(GraphObj *graph, OpType opType, Tensor input,
Tensor output);
OP_CLONE(AllReduceBaseObj);
int numInputs() const override { return 1; }
int numOutputs() const override { return 1; }
optional<vector<Shape>> inferShape(const TensorVec &inputs) override {
return {{inputs[0]->getDims()}};
};
std::string toString() const override;
private:
vector<int> getWorkloadVector() const override;
vector<int> getOpAttrVector() const override;
vector<DataType> inferDataType(const TensorVec &inputs) const override {
return {inputs[0]->getDType()};
};
};
class AllReduceSumObj : public AllReduceBaseObj {
public:
AllReduceSumObj(GraphObj *graph, Tensor input, Tensor output);
};
class AllReduceProdObj : public AllReduceBaseObj {
public:
AllReduceProdObj(GraphObj *graph, Tensor input, Tensor output);
};
class AllReduceMinObj : public AllReduceBaseObj {
public:
AllReduceMinObj(GraphObj *graph, Tensor input, Tensor output);
};
class AllReduceMaxObj : public AllReduceBaseObj {
public:
AllReduceMaxObj(GraphObj *graph, Tensor input, Tensor output);
};
class AllReduceAvgObj : public AllReduceBaseObj {
public:
AllReduceAvgObj(GraphObj *graph, Tensor input, Tensor output);
};
} // namespace infini

View File

@ -1,43 +0,0 @@
#pragma once
#include "core/operator.h"
namespace infini {
/**
* @brief Fused Attention with KVCache input operator. All the input and output
* tensors should have the same rank except for the position_id.
*
*/
class AttentionKVCacheObj : public OperatorObj {
int dim;
public:
/**
* @brief Construct a new AttentionKVCache object.
*
* @param graph The computation graph that this operator belongs to.
* @param input_k_cache The k_cache input tensor.
* @param input_v_cache The v_cache input tensor.
* @param input_q The query input tensor.
* @param input_k The key input tensor.
* @param input_v The value input tensor.
* @param position_id The positon id of the query,
* @param output_matmul The query output tensor.
*/
AttentionKVCacheObj(GraphObj *graph, Tensor input_k_cache,
Tensor input_v_cache, Tensor input_q, Tensor input_k,
Tensor input_v, Tensor position_id,
Tensor output_matmul);
OP_CLONE(AttentionKVCacheObj);
optional<vector<Shape>> inferShape(const TensorVec &inputs) override;
std::string toString() const override;
int numInputs() const override { return 6; }
int numOutputs() const override { return 1; }
int getDim() const { return dim; }
private:
vector<int> getWorkloadVector() const override;
vector<int> getOpAttrVector() const override;
};
} // namespace infini

View File

@ -34,7 +34,7 @@ class BatchNormObj : public OperatorObj {
Tensor var, Tensor scale, Tensor bias, float momentum = 0.9,
float eps = 1e-5, bool trainingMode = false);
OP_CLONE(BatchNormObj);
optional<vector<Shape>> inferShape(const TensorVec &inputs) override;
optional<vector<Shape>> inferShape(const TensorVec &inputs) const override;
std::string toString() const override;
// output size will be 3 when training

View File

@ -1,49 +0,0 @@
#pragma once
#include "core/operator.h"
namespace infini {
/**
* @brief The Broadcast operation copies an N-element buffer on the root rank to
* all ranks.
*
* For more details:
* https://docs.nvidia.com/deeplearning/nccl/user-guide/docs/usage/collectives.html#broadcast
*/
class BroadcastObj : public OperatorObj {
public:
/**
* @brief Construct a new Broadcast object.
*
* @param graph The computation graph that this operator belongs to.
* @param input The input tensor. Only root needs to initialize it with
* data.
* @param output The output tensor, same size as input.
* @param root The root rank who performs the broadcast.
*/
BroadcastObj(GraphObj *graph, Tensor input, Tensor output, int root);
OP_CLONE(BroadcastObj);
int numInputs() const override { return 1; }
int numOutputs() const override { return 1; }
optional<vector<Shape>> inferShape(const TensorVec &inputs) override {
return {{inputs[0]->getDims()}};
};
std::string toString() const override;
int getRoot() const { return root; }
private:
vector<int> getWorkloadVector() const override;
vector<int> getOpAttrVector() const override;
vector<DataType> inferDataType(const TensorVec &inputs) const override {
return {inputs[0]->getDType()};
};
protected:
// The rank who broadcasts data among this communication group
int root;
};
} // namespace infini

View File

@ -22,7 +22,7 @@ class ConcatObj : public OperatorObj {
ConcatObj(GraphObj *graph, TensorVec inputs, Tensor output, int dim);
OP_CLONE(ConcatObj);
optional<vector<Shape>> inferShape(const TensorVec &inputs) override;
optional<vector<Shape>> inferShape(const TensorVec &inputs) const override;
std::string toString() const override;
int numInputs() const override { return inputs.size(); }

View File

@ -142,7 +142,7 @@ class ConvObj : public ConvBaseObj {
ActType act = ActType::None);
OP_CLONE(ConvObj);
optional<vector<Shape>> inferShape(const TensorVec &inputs) override;
optional<vector<Shape>> inferShape(const TensorVec &inputs) const override;
int getNumGroups() const override { return c / getChannelPerGroup(); }
private:
@ -164,7 +164,7 @@ class ConvBackwardFilterObj : public ConvBaseObj {
int sh = 1, int sw = 1, int dh = 1, int dw = 1,
Tensor bias = nullptr, ActType act = ActType::None);
optional<vector<Shape>> inferShape(const TensorVec &inputs) override;
optional<vector<Shape>> inferShape(const TensorVec &inputs) const override;
ActType getAct() const { return act; }
int getNumGroups() const override { return c / getChannelPerGroup(); }
@ -191,7 +191,7 @@ class ConvTransposed2dObj : public ConvBaseObj {
Tensor bias = nullptr, ActType act = ActType::None);
OP_CLONE(ConvTransposed2dObj);
optional<vector<Shape>> inferShape(const TensorVec &inputs) override;
optional<vector<Shape>> inferShape(const TensorVec &inputs) const override;
int getNumGroups() const override { return group; }
std::pair<int, int> getOutputPadding() const { return {oph, opw}; }
@ -218,7 +218,7 @@ class ConvTransposed2dNHWCObj : public ConvBaseObj {
Tensor bias = nullptr, ActType act = ActType::None);
OP_CLONE(ConvTransposed2dNHWCObj);
optional<vector<Shape>> inferShape(const TensorVec &inputs) override;
optional<vector<Shape>> inferShape(const TensorVec &inputs) const override;
int getNumGroups() const override { return group; }
private:

View File

@ -7,7 +7,7 @@ class DetObj : public OperatorObj {
enum Mode { NormalDet = 0, LogDet };
DetObj(GraphObj *graph, Tensor input, Tensor output, Mode mode);
OP_CLONE(DetObj);
optional<vector<Shape>> inferShape(const TensorVec &inputs) override;
optional<vector<Shape>> inferShape(const TensorVec &inputs) const override;
std::string toString() const override;
int numInputs() const override { return 1; }

View File

@ -37,7 +37,7 @@ class DropoutObj : public OperatorObj {
DropoutObj(GraphObj *graph, Tensor data, Tensor output, Tensor mask,
float ratio, bool training_mode);
OP_CLONE(DropoutObj);
optional<vector<Shape>> inferShape(const TensorVec &inputs) override;
optional<vector<Shape>> inferShape(const TensorVec &inputs) const override;
std::string toString() const override;
int numInputs() const override { return 1; }

View File

@ -21,7 +21,7 @@ class ElementWiseObj : public OperatorObj {
*/
ElementWiseObj(OpType type, GraphObj *graph, Tensor input0, Tensor input1,
Tensor output);
optional<vector<Shape>> inferShape(const TensorVec &inputs) override;
optional<vector<Shape>> inferShape(const TensorVec &inputs) const override;
std::string toString() const override;
int numInputs() const override { return 2; }
@ -38,7 +38,7 @@ class MSELossObj : public OperatorObj {
MSELossObj(GraphObj *graph, Tensor input0, Tensor input1,
Reduction reduction, Tensor output);
OP_CLONE(MSELossObj);
optional<vector<Shape>> inferShape(const TensorVec &inputs) override;
optional<vector<Shape>> inferShape(const TensorVec &inputs) const override;
Reduction getReduction() const { return reductionMode; }
std::string toString() const override;
@ -65,24 +65,26 @@ DEFINE_ELEMENT_WISE_OBJ(Sub, OpType::Sub)
DEFINE_ELEMENT_WISE_OBJ(Mul, OpType::Mul)
DEFINE_ELEMENT_WISE_OBJ(Div, OpType::Div)
DEFINE_ELEMENT_WISE_OBJ(Pow, OpType::Pow)
DEFINE_ELEMENT_WISE_OBJ(Maximum, OpType::Max)
DEFINE_ELEMENT_WISE_OBJ(Minimum, OpType::Min)
DEFINE_ELEMENT_WISE_OBJ(Power, OpType::Pow)
DEFINE_ELEMENT_WISE_OBJ(Maximum, OpType::Maximum)
DEFINE_ELEMENT_WISE_OBJ(Minimum, OpType::Minimum)
DEFINE_ELEMENT_WISE_OBJ(Power, OpType::Power)
DEFINE_ELEMENT_WISE_OBJ(FloorDiv, OpType::FloorDiv)
DEFINE_ELEMENT_WISE_OBJ(FloorMod, OpType::FloorMod)
DEFINE_ELEMENT_WISE_OBJ(SquaredDifference, OpType::SquaredDifference)
DEFINE_ELEMENT_WISE_OBJ(Equal, OpType::Equal)
DEFINE_ELEMENT_WISE_OBJ(GreaterThan, OpType::Greater)
DEFINE_ELEMENT_WISE_OBJ(GreaterEqual, OpType::GreaterOrEqual)
DEFINE_ELEMENT_WISE_OBJ(LessThan, OpType::Less)
DEFINE_ELEMENT_WISE_OBJ(LessEqual, OpType::LessOrEqual)
DEFINE_ELEMENT_WISE_OBJ(NotEqual, OpType::NotEqual)
DEFINE_ELEMENT_WISE_OBJ(GreaterThan, OpType::GreaterThan)
DEFINE_ELEMENT_WISE_OBJ(GreaterEqual, OpType::GreaterEqual)
DEFINE_ELEMENT_WISE_OBJ(LessThan, OpType::LessThan)
DEFINE_ELEMENT_WISE_OBJ(LessEqual, OpType::LessEqual)
DEFINE_ELEMENT_WISE_OBJ(And, OpType::And)
DEFINE_ELEMENT_WISE_OBJ(Or, OpType::Or)
DEFINE_ELEMENT_WISE_OBJ(Xor, OpType::Xor)
DEFINE_ELEMENT_WISE_OBJ(Not, OpType::Not)
DEFINE_ELEMENT_WISE_OBJ(BitAnd, OpType::BitwiseAnd)
DEFINE_ELEMENT_WISE_OBJ(BitOr, OpType::BitwiseOr)
DEFINE_ELEMENT_WISE_OBJ(BitXor, OpType::BitwiseXor)
DEFINE_ELEMENT_WISE_OBJ(BitNot, OpType::BitwiseNot)
DEFINE_ELEMENT_WISE_OBJ(BitLeftShift, OpType::BitShift)
DEFINE_ELEMENT_WISE_OBJ(BitAnd, OpType::BitAnd)
DEFINE_ELEMENT_WISE_OBJ(BitOr, OpType::BitOr)
DEFINE_ELEMENT_WISE_OBJ(BitXor, OpType::BitXor)
DEFINE_ELEMENT_WISE_OBJ(BitNot, OpType::BitNot)
DEFINE_ELEMENT_WISE_OBJ(BitLeftShift, OpType::BitLeftShift)
DEFINE_ELEMENT_WISE_OBJ(BitRightShift, OpType::BitRightShift)
}; // namespace infini

View File

@ -1,36 +0,0 @@
#pragma once
#include "core/operator.h"
namespace infini {
/**
* @brief Broadcast the input tensor following the given shape and the
* broadcast rule.
*
*/
class ExpandObj : public OperatorObj {
Shape dims;
public:
/**
* @brief Construct a new Expand object.
* @param graph The computation graph that this operator belongs to.
* @param input The input tensor.
* @param output The output tensor.
* @param dims The shape you want to expand to, following the broadcast
* rule.
*/
ExpandObj(GraphObj *graph, Tensor input, Tensor output, Shape dims);
OP_CLONE(ExpandObj);
optional<vector<Shape>> inferShape(const TensorVec &inputs) override;
std::string toString() const override;
int numInputs() const override { return 1; }
int numOutputs() const override { return 1; }
Shape getShape() const { return dims; }
private:
vector<int> getWorkloadVector() const override;
vector<int> getOpAttrVector() const override;
};
} // namespace infini

View File

@ -23,7 +23,7 @@ class ExtendObj : public OperatorObj {
ExtendObj(GraphObj *graph, Tensor input, Tensor output, int dim,
int num = 1);
OP_CLONE(ExtendObj);
optional<vector<Shape>> inferShape(const TensorVec &inputs) override;
optional<vector<Shape>> inferShape(const TensorVec &inputs) const override;
std::string toString() const override;
int numInputs() const override { return 1; }

Some files were not shown because too many files have changed in this diff Show More