forked from jiuyuan/InfiniTensor
Support kvcache (#134)
* add cmake bits about NCCL * move example to examples/NNmodel * impl NCCL communicator * add comm related function to Runtime * export runtime interface * add launch.py * use unique name to distingush the the NCCL ID file * add timeout to communicator init * expose communicator obj from runtime obj, add unit test for nccl communicator * reformat files * Add allReduce operator and cuda nccl allReduce kernel * impl model parallel for resnet * add allGather nccl kernel and operator * Add allreduce allgather operator tests, change allgather kernel to output list of tensor, fix shape infer, handle nullptr output * fix format of onnx.py * use concat following AllGather * get tensor parallel for resnet * fix format of graph_handler.cc * change BUILD_DIST default to OFF * polish code of communicator * update .gitignore * export min/max to python * fix MatMul * modify launch.py to run opt * hack to treat ReduceSum as AllReduceSum * throw exception in cuda error * fix parallel_opt.py * improve the error prompt and cuda error check * fix GatherObj::GatherObj member init * fix size calculation for scalar (rank = 0) tensor * MatMul supports bias * fix add bias for row parallel gemm * add --gen_std to launch.py * fix AllReduceNCCL * update launch.py * less log * update parallel_opt * update launch.py * add __eq__ for Placement sub-classes * less benchmark run * fix placement infer for matmul * fix vacabuary size * fix Exception * Add shard tensor with group to support gpt2 * Add find successor function to find split op at different depth * recover CommunicatorObj * improve error mesasge * optimize parallel_opt.py * optimize launch.py * recover docs for all_reduce and all_gather * - support concat for kvcache * - modify allocator * - add tensorType - modify allocator to support memory allocation based on tensorType * - fix allocator init * - support kvcache by running 2 stub distributively * - fix name * - remove unused flag * - fix wrong pb name * - fix as constroy suggessed * - fix launch.py format --------- Co-authored-by: constroy <constroy.li@gmail.com> Co-authored-by: panzezhong <panzezhong@qiyuanlab.com>
This commit is contained in:
parent
c6b82cfda0
commit
48ec730579
|
@ -0,0 +1,245 @@
|
|||
import argparse
|
||||
import os
|
||||
import time
|
||||
import multiprocessing as mp
|
||||
from pyinfinitensor.onnx import OnnxStub, backend
|
||||
import onnx
|
||||
from onnx.external_data_helper import convert_model_to_external_data
|
||||
import numpy as np
|
||||
from parallel_opt import parallel_model
|
||||
|
||||
|
||||
os.environ["NVIDIA_TF32_OVERRIDE"] = "0"
|
||||
|
||||
|
||||
def parse_args():
|
||||
parser = argparse.ArgumentParser(description="launch distributed infinitensor")
|
||||
parser.add_argument("--num_nodes", type=int, default=1, help="number of nodes")
|
||||
parser.add_argument(
|
||||
"--nproc_per_node", type=int, default=1, help="number of processes per node"
|
||||
)
|
||||
parser.add_argument(
|
||||
"--name", type=str, default="test", help="name of this instance."
|
||||
)
|
||||
parser.add_argument(
|
||||
"--model1", type=str, required=True, help="path to the ONNX model file."
|
||||
)
|
||||
parser.add_argument(
|
||||
"--model2", type=str, required=True, help="path to the ONNX model file."
|
||||
)
|
||||
parser.add_argument("--batch_size", type=int, default=1, help="batch size.")
|
||||
parser.add_argument("--length", type=int, default=1, help="sequence length.")
|
||||
parser.add_argument(
|
||||
"--gen_std",
|
||||
action="store_true",
|
||||
help="whether to generate the standard results.",
|
||||
)
|
||||
args = parser.parse_args()
|
||||
print("arg setting: ", args)
|
||||
return (
|
||||
args.num_nodes,
|
||||
args.nproc_per_node,
|
||||
args.name,
|
||||
args.model1,
|
||||
args.model2,
|
||||
args.batch_size,
|
||||
args.length,
|
||||
args.gen_std,
|
||||
)
|
||||
|
||||
|
||||
def run_model(model1, model2, runtime1, runtime2, inputs1: np.array, inputs2: np.array, n=20):
|
||||
####################################
|
||||
# run the first graph without kvcache
|
||||
####################################
|
||||
stub1 = OnnxStub(model1, runtime1)
|
||||
stub1.inputs['onnx::Reshape_0'].copyin_int32(inputs1.reshape(-1).tolist())
|
||||
stub1.tune()
|
||||
stub1.run()
|
||||
kvcache_it1 = []
|
||||
count = 0
|
||||
for output in stub1.outputs.items().__iter__():
|
||||
if count == 0:
|
||||
logits_it1 = np.array(output[1].copyout_float(), dtype=np.float32)
|
||||
else:
|
||||
kvcache_it1.append(np.array(output[1].copyout_float(), dtype=np.float32))
|
||||
count = count + 1
|
||||
|
||||
# bench for stub1
|
||||
next(stub1.inputs.items().__iter__())[1].copyin_int32(inputs1.reshape(-1).tolist())
|
||||
begin = time.time()
|
||||
for _ in range(n):
|
||||
stub1.run()
|
||||
end = time.time()
|
||||
avg_time = (end - begin) / n
|
||||
print(f"stub1 average time: {avg_time}")
|
||||
|
||||
####################################
|
||||
# run the second graph with kvcache
|
||||
####################################
|
||||
i = 0
|
||||
batchsize = 1
|
||||
stub2 = OnnxStub(model2, runtime2)
|
||||
past_kvcache_length = (i+2)*np.ones((batchsize, 1), dtype=np.int32)
|
||||
# copyin input
|
||||
stub2.inputs['onnx::Reshape_0'].copyin_int32(inputs2.reshape(-1).tolist())
|
||||
stub2.inputs['input.3'].copyin_int32(past_kvcache_length.reshape(-1).tolist())
|
||||
count = -1
|
||||
for input in stub2.inputs.items().__iter__():
|
||||
if count in range(24):
|
||||
# print(count, input[0])
|
||||
# print(np.dtype(kvcache_it1[count][0]), kvcache_it1[count].shape)
|
||||
input[1].copyin_float(kvcache_it1[count].reshape(-1).tolist())
|
||||
count = count + 1
|
||||
stub2.tune()
|
||||
stub2.run()
|
||||
|
||||
# copyout output
|
||||
count = 0
|
||||
kvcache_it2 = []
|
||||
for output in stub2.outputs.items().__iter__():
|
||||
if count == 0:
|
||||
logits_it2 = np.array(output[1].copyout_float(), dtype=np.float32)
|
||||
else:
|
||||
kvcache_it2.append(np.array(output[1].copyout_float(), dtype=np.float32))
|
||||
count = count + 1
|
||||
|
||||
# bench for stub2
|
||||
# copyin input
|
||||
stub2.inputs['onnx::Reshape_0'].copyin_int32(inputs2.reshape(-1).tolist())
|
||||
stub2.inputs['input.3'].copyin_int32(past_kvcache_length.reshape(-1).tolist())
|
||||
count = -1
|
||||
for input in stub2.inputs.items().__iter__():
|
||||
if count in range(24):
|
||||
input[1].copyin_float(kvcache_it1[count].reshape(-1).tolist())
|
||||
count = count + 1
|
||||
begin = time.time()
|
||||
for _ in range(n):
|
||||
stub2.run()
|
||||
end = time.time()
|
||||
avg_time = (end - begin) / n
|
||||
print(f"stub2 average time: {avg_time}")
|
||||
return logits_it2
|
||||
|
||||
|
||||
def run_and_compare(name, model1, model2, runtime1, runtime2):
|
||||
data1 = np.load(f"{name}_inputs1.npy")
|
||||
data2 = np.load(f"{name}_inputs2.npy")
|
||||
results = np.load(f"{name}_results.npy")
|
||||
outputs = run_model(model1, model2, runtime1, runtime2, data1, data2)
|
||||
print("outputs sum:", outputs.sum())
|
||||
print("max abs diff:", abs(outputs - results).max())
|
||||
print("max rel diff:", abs((outputs - results) / results).max())
|
||||
# assert np.allclose(outputs, results, rtol=1e-3, atol=1e-6)
|
||||
|
||||
|
||||
def start_worker(
|
||||
name: str, world_size: int, rank: int, local_rank: int, model1: onnx.ModelProto, model2: onnx.ModelProto
|
||||
):
|
||||
dist_name = name + "_dist"
|
||||
####################################
|
||||
# shard the first graph
|
||||
####################################
|
||||
model1 = parallel_model(model1, world_size, rank)
|
||||
extern_path = f"./{dist_name}_stub1_rank{rank}.pb"
|
||||
if os.path.exists(extern_path):
|
||||
os.remove(extern_path)
|
||||
convert_model_to_external_data(
|
||||
model1,
|
||||
all_tensors_to_one_file=True,
|
||||
location=extern_path,
|
||||
size_threshold=1024,
|
||||
convert_attribute=False,
|
||||
)
|
||||
onnx.save(model1, f"./{dist_name}_stub1_rank{rank}.onnx")
|
||||
runtime1 = backend.CudaRuntime(local_rank)
|
||||
runtime1.init_comm(
|
||||
dist_name,
|
||||
world_size,
|
||||
rank,
|
||||
)
|
||||
|
||||
####################################
|
||||
# shard the second graph
|
||||
####################################
|
||||
model2 = parallel_model(model2, world_size, rank)
|
||||
extern_path = f"./{dist_name}_stub2_rank{rank}.pb"
|
||||
if os.path.exists(extern_path):
|
||||
os.remove(extern_path)
|
||||
convert_model_to_external_data(
|
||||
model2,
|
||||
all_tensors_to_one_file=True,
|
||||
location=extern_path,
|
||||
size_threshold=1024,
|
||||
convert_attribute=False,
|
||||
)
|
||||
onnx.save(model2, f"./{dist_name}_stub2_rank{rank}.onnx")
|
||||
runtime2 = backend.CudaRuntime(local_rank)
|
||||
# print("init comm")
|
||||
runtime2.init_comm(
|
||||
dist_name,
|
||||
world_size,
|
||||
rank,
|
||||
)
|
||||
|
||||
# run the two graphs
|
||||
run_and_compare(name, model1, model2, runtime1, runtime2)
|
||||
|
||||
|
||||
def start_single(name, model1, model2):
|
||||
runtime1 = backend.CudaRuntime(0)
|
||||
runtime2 = backend.CudaRuntime(0)
|
||||
run_and_compare(name, model1, model2, runtime1, runtime2)
|
||||
|
||||
|
||||
def gen_standard(name, model1, model2, voc_size, bs, len):
|
||||
# generate standard results
|
||||
data1 = np.random.randint(0, voc_size, (bs, len), dtype=np.int32)
|
||||
data2 = np.random.randint(0, voc_size, (bs, len), dtype=np.int32)
|
||||
np.save(f"{name}_inputs1", data1)
|
||||
np.save(f"{name}_inputs2", data2)
|
||||
runtime1 = backend.CudaRuntime(0)
|
||||
runtime2 = backend.CudaRuntime(0)
|
||||
outputs = run_model(model1, model2, runtime1, runtime2, data1, data2, 1)
|
||||
np.save(f"{name}_results", outputs)
|
||||
|
||||
|
||||
def main():
|
||||
nnodes, nproc_per_node, name, model1_path, model2_path, bs, length, gen_std = parse_args()
|
||||
|
||||
model1 = onnx.load(model1_path)
|
||||
model2 = onnx.load(model2_path)
|
||||
|
||||
# generate standart output
|
||||
if gen_std:
|
||||
print(f"generate standard data for {name}.")
|
||||
# a small vocabulary size to fit all LLM.
|
||||
voc_size = 1000
|
||||
gen_standard(name, model1, model2, voc_size, bs, length)
|
||||
return
|
||||
|
||||
# run single process.
|
||||
# use standalone process to isolate cuda.
|
||||
p = mp.Process(target=start_single, args=(name, model1, model2))
|
||||
p.start()
|
||||
p.join()
|
||||
|
||||
# run distributed parallel.
|
||||
world_size = nnodes * nproc_per_node
|
||||
workers = [
|
||||
mp.Process(
|
||||
target=start_worker,
|
||||
args=(name, world_size, rank, rank % nproc_per_node, model1, model2),
|
||||
)
|
||||
for rank in range(world_size)
|
||||
]
|
||||
|
||||
for w in workers:
|
||||
w.start()
|
||||
|
||||
for w in workers:
|
||||
w.join()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
|
@ -56,6 +56,16 @@ def parallel_model(model: ModelProto, tp_world_size: int = 1, tp_rank: int = 0):
|
|||
ndim = len(vinfo[output].type.tensor_type.shape.dim)
|
||||
out_plc = Shard(ndim - 1) if in_plc.is_replicate() else _Partial()
|
||||
place[node.output[0]] = out_plc
|
||||
|
||||
def shard_concat(node: NodeProto):
|
||||
# hack for kvcache
|
||||
in_plc = place[node.input[1]]
|
||||
if in_plc.is_sharded():
|
||||
seq_len_dim = vinfo[node.input[0]].type.tensor_type.shape.dim.pop(1)
|
||||
seq_len_dim.dim_value //= tp_world_size
|
||||
vinfo[node.input[0]].type.tensor_type.shape.dim.insert(1, seq_len_dim)
|
||||
place[node.input[0]] = in_plc
|
||||
place[node.output[0]] = in_plc
|
||||
|
||||
def shard_binary(node: NodeProto, groups: int = 1):
|
||||
# print("binary", node.name, node.input[0], place[node.input[0]])
|
||||
|
@ -143,6 +153,8 @@ def parallel_model(model: ModelProto, tp_world_size: int = 1, tp_rank: int = 0):
|
|||
place[node.input[0]] == place[node.input[1]]
|
||||
), f"{place[node.input[0]]} != {place[node.input[1]]}"
|
||||
place[node.output[0]] = place[node.input[0]]
|
||||
elif node.op_type == "Concat":
|
||||
shard_concat(node)
|
||||
|
||||
def find_successor(op_type: str, idx: int, search_limit: int = 1):
|
||||
for node in model.graph.node[idx + 1 : idx + 1 + search_limit]:
|
||||
|
@ -203,10 +215,14 @@ def parallel_model(model: ModelProto, tp_world_size: int = 1, tp_rank: int = 0):
|
|||
continue
|
||||
shard_node(node)
|
||||
|
||||
new_input = []
|
||||
for info in model.graph.input:
|
||||
new_input.append(vinfo[info.name])
|
||||
|
||||
graph = helper.make_graph(
|
||||
nodes,
|
||||
model.graph.name + f"_{tp_rank}",
|
||||
model.graph.input,
|
||||
new_input,
|
||||
model.graph.output,
|
||||
data.values(),
|
||||
doc_string=model.graph.doc_string,
|
||||
|
|
|
@ -120,6 +120,11 @@ class GraphObj : public Object {
|
|||
* @brief If the nodes is sorted in topological order.
|
||||
*/
|
||||
bool sorted;
|
||||
|
||||
/**
|
||||
* @brief If the weight tensors are allocated.
|
||||
*/
|
||||
bool weightAllocated = false;
|
||||
};
|
||||
|
||||
} // namespace infini
|
||||
|
|
|
@ -20,14 +20,23 @@ class LazyAllocator {
|
|||
|
||||
Runtime runtime;
|
||||
|
||||
size_t used;
|
||||
size_t used = 0;
|
||||
|
||||
size_t peak;
|
||||
size_t peak = 0;
|
||||
|
||||
size_t weightPeak = 0;
|
||||
|
||||
size_t alignment;
|
||||
|
||||
// pointer to the memory actually allocated
|
||||
void *ptr;
|
||||
void *ptr = nullptr;
|
||||
|
||||
// pointer to the weight memory space
|
||||
void *weightPtr = nullptr;
|
||||
|
||||
// // a cache designed for a batch size that has already occurred
|
||||
// std::unordered_map<size_t, std::unordered_map<TensorObj *, size_t>>
|
||||
// batchsizeToTensorOffset;
|
||||
|
||||
struct freeBlockInfo {
|
||||
size_t addr;
|
||||
|
@ -57,12 +66,16 @@ class LazyAllocator {
|
|||
|
||||
virtual ~LazyAllocator();
|
||||
|
||||
void init();
|
||||
|
||||
// function: simulate memory allocation
|
||||
// arguments:
|
||||
// size: size of memory block to be allocated
|
||||
// return: head address offset of the allocated memory block
|
||||
size_t alloc(size_t size);
|
||||
|
||||
size_t allocWeight(size_t size);
|
||||
|
||||
// function: simulate memory free
|
||||
// arguments:
|
||||
// addr: head address offset of memory block to be free
|
||||
|
@ -73,6 +86,12 @@ class LazyAllocator {
|
|||
// return: pointer to the head address of the allocated memory
|
||||
void *getPtr();
|
||||
|
||||
// void addCache(size_t batchsize, std::unordered_map<TensorObj *, size_t>);
|
||||
|
||||
// std::unordered_map<TensorObj *, size_t> getCache(size_t batchsize);
|
||||
|
||||
void *getWeightPtr();
|
||||
|
||||
void info();
|
||||
|
||||
private:
|
||||
|
|
|
@ -1,5 +1,6 @@
|
|||
#pragma once
|
||||
#include "core/tensor_base.h"
|
||||
#include "core/tensor_type.h"
|
||||
#include "utils/data_convert.h"
|
||||
#include <cmath>
|
||||
#include <cstring>
|
||||
|
@ -19,6 +20,8 @@ class TensorObj : public TensorBaseObj {
|
|||
size_t _size; // Cache of Π(shape).
|
||||
Fuid fuid; // Cloned tensors share the same id. Tensors constructed from
|
||||
// scratch have a new id.
|
||||
TensorType tensorType = TensorType::others;
|
||||
|
||||
public:
|
||||
TensorObj(Shape shape, DataType dtype, Runtime runtime);
|
||||
virtual ~TensorObj() {}
|
||||
|
@ -33,6 +36,33 @@ class TensorObj : public TensorBaseObj {
|
|||
size_t getOffset(const vector<int> &ds) const;
|
||||
void dataMalloc();
|
||||
UidBaseType getFuid() const { return fuid; }
|
||||
bool isWeight() const { return tensorType == TensorType::weight; }
|
||||
bool isInput() const { return tensorType == TensorType::input; }
|
||||
bool isOutput() const { return tensorType == TensorType::output; }
|
||||
bool isOthers() const { return tensorType == TensorType::others; }
|
||||
void setWeight() { tensorType = TensorType::weight; }
|
||||
void setInput() { tensorType = TensorType::input; }
|
||||
void setOutput() { tensorType = TensorType::output; }
|
||||
string tensorTypeToString() const {
|
||||
switch (tensorType) {
|
||||
case TensorType::weight:
|
||||
return "weight";
|
||||
break;
|
||||
case TensorType::input:
|
||||
return "input";
|
||||
break;
|
||||
case TensorType::output:
|
||||
return "output";
|
||||
break;
|
||||
case TensorType::others:
|
||||
return "others";
|
||||
break;
|
||||
|
||||
default:
|
||||
return "unknown tensor type";
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
void load(std::string file_path);
|
||||
void save(std::string file_path);
|
||||
|
|
|
@ -0,0 +1,7 @@
|
|||
#pragma once
|
||||
|
||||
namespace infini {
|
||||
|
||||
enum class TensorType { weight, input, output, others };
|
||||
|
||||
} // namespace infini
|
|
@ -32,24 +32,27 @@ class OnnxStub:
|
|||
The Onnx model imported into infinitensor.
|
||||
It can be generated from an Onnx model object.
|
||||
"""
|
||||
|
||||
inputs: Dict[str, backend.Tensor] = {}
|
||||
outputs: Dict[str, backend.Tensor] = {}
|
||||
initializer: Dict[int, TensorProto] = {}
|
||||
handler: backend.GraphHandler
|
||||
|
||||
def __init__(self, model: ModelProto, runtime):
|
||||
self.inputs: Dict[str, backend.Tensor] = {}
|
||||
self.outputs: Dict[str, backend.Tensor] = {}
|
||||
self.initializer: Dict[int, TensorProto] = {}
|
||||
model = infer_shapes(model)
|
||||
self.handler = backend.GraphHandler(runtime)
|
||||
|
||||
tensors: Dict[str, backend.Tensor] = dict()
|
||||
data: Dict[str, TensorProto] = dict()
|
||||
|
||||
for initializer in model.graph.initializer:
|
||||
dims = [d for d in initializer.dims]
|
||||
tensors[initializer.name] = self.handler.tensor(dims, initializer.data_type)
|
||||
data[initializer.name] = initializer
|
||||
|
||||
for input in model.graph.input:
|
||||
dims = _take_shape_dim(input.type.tensor_type.shape)
|
||||
tensors[input.name] = self.handler.tensor(
|
||||
dims, input.type.tensor_type.elem_type
|
||||
)
|
||||
if input.name not in tensors.keys():
|
||||
tensors[input.name] = self.handler.tensor(
|
||||
dims, input.type.tensor_type.elem_type
|
||||
)
|
||||
|
||||
for output in model.graph.output:
|
||||
dims = _take_shape_dim(output.type.tensor_type.shape)
|
||||
|
@ -57,10 +60,6 @@ class OnnxStub:
|
|||
dims, output.type.tensor_type.elem_type
|
||||
)
|
||||
|
||||
for initializer in model.graph.initializer:
|
||||
dims = [d for d in initializer.dims]
|
||||
tensors[initializer.name] = self.handler.tensor(dims, initializer.data_type)
|
||||
data[initializer.name] = initializer
|
||||
|
||||
node_name = []
|
||||
new_node_name = []
|
||||
|
@ -667,6 +666,19 @@ class OnnxStub:
|
|||
# update the node_list
|
||||
node_list = list(set(node_name) - set(new_node_name))
|
||||
|
||||
################################
|
||||
# Set tensor type
|
||||
################################
|
||||
for initializer in model.graph.initializer:
|
||||
tensors[initializer.name].set_weight()
|
||||
|
||||
for input in model.graph.input:
|
||||
tensors[input.name].set_input()
|
||||
|
||||
for output in model.graph.output:
|
||||
tensors[output.name].set_output()
|
||||
|
||||
|
||||
################################
|
||||
# Allocate memory space for data
|
||||
################################
|
||||
|
|
|
@ -131,30 +131,63 @@ void GraphObj::dataMalloc() {
|
|||
// record the memory address offsets of all tensors to be allocated
|
||||
std::unordered_map<TensorObj *, size_t> tensorToOffset;
|
||||
|
||||
// record all constant tensors, including weight tensors and input tensors
|
||||
std::unordered_set<TensorObj *> constTensor;
|
||||
// reinit allocator
|
||||
allocator.init();
|
||||
|
||||
// record all weight tensors, including weight tensors and kvcache
|
||||
// tensors
|
||||
std::unordered_set<TensorObj *> weightTensors;
|
||||
for (auto &tensor : tensors) {
|
||||
if (tensor.get()->getSource() == nullptr) {
|
||||
// allocate memory for all constant tensors first, and this memory
|
||||
if (tensor->isWeight()) {
|
||||
// allocate memory for all weight tensors first, and this memory
|
||||
// will not be freed until the graph is destroyed
|
||||
weightTensors.insert(tensor.get());
|
||||
if (!this->weightAllocated) {
|
||||
tensorToOffset[tensor.get()] =
|
||||
allocator.allocWeight(tensor->getBytes());
|
||||
}
|
||||
} else if (tensor->isInput() || tensor->isOutput()) {
|
||||
// allocate memory for all input and output tensors, and this memory
|
||||
// will not be reused later
|
||||
constTensor.insert(tensor.get());
|
||||
tensorToOffset[tensor.get()] = allocator.alloc(tensor->getBytes());
|
||||
} else {
|
||||
tensorToRefCount[tensor.get()] = tensor->getTargets().size();
|
||||
// allocate memory for all user-created tensors
|
||||
if (tensor.get()->getSource() == nullptr) {
|
||||
tensorToOffset[tensor.get()] =
|
||||
allocator.alloc(tensor->getBytes());
|
||||
}
|
||||
}
|
||||
}
|
||||
// if memory has not yet been allocated for weight tensors,
|
||||
// allocate memory now and do not allocate again in the future.
|
||||
if (!this->weightAllocated) {
|
||||
this->weightAllocated = true;
|
||||
// only allocate once for weight tensors
|
||||
for (auto &tensor : weightTensors) {
|
||||
IT_ASSERT(tensorToOffset.find(tensor) != tensorToOffset.end());
|
||||
tensor->setDataBlob(make_ref<BlobObj>(
|
||||
tensor->runtime,
|
||||
static_cast<uint8_t *>(allocator.getWeightPtr()) +
|
||||
tensorToOffset[tensor]));
|
||||
}
|
||||
}
|
||||
// traverse in topological order and simulate memory allocation
|
||||
for (auto &op : ops) {
|
||||
// memory should be allocated for the output first
|
||||
// memory should be allocated for the op's output first
|
||||
auto outputs = op->getOutputs();
|
||||
for (auto &tensor : outputs) {
|
||||
tensorToOffset[tensor.get()] = allocator.alloc(tensor->getBytes());
|
||||
if (tensor->isOthers()) {
|
||||
tensorToOffset[tensor.get()] =
|
||||
allocator.alloc(tensor->getBytes());
|
||||
}
|
||||
}
|
||||
auto inputs = op->getInputs();
|
||||
for (auto &tensor : inputs) {
|
||||
if (constTensor.find(tensor.get()) == constTensor.end()) {
|
||||
if (tensor->isOthers()) {
|
||||
auto tensorIter = tensorToRefCount.find(tensor.get());
|
||||
IT_ASSERT(tensorIter != tensorToRefCount.end());
|
||||
IT_ASSERT(tensorToRefCount[tensor.get()] > 0);
|
||||
tensorToRefCount[tensor.get()] -= 1;
|
||||
if (tensorToRefCount[tensor.get()] == 0) {
|
||||
// indicate that this tensor will no longer be used and
|
||||
|
@ -167,15 +200,20 @@ void GraphObj::dataMalloc() {
|
|||
}
|
||||
}
|
||||
|
||||
// perform actual memory allocation
|
||||
// perform actual memory allocation for non-weight tensors
|
||||
for (auto &tensor : tensors) {
|
||||
IT_ASSERT(tensorToOffset.find(tensor.get()) != tensorToOffset.end());
|
||||
tensor->setDataBlob(make_ref<BlobObj>(
|
||||
tensor->runtime, static_cast<uint8_t *>(allocator.getPtr()) +
|
||||
tensorToOffset[tensor.get()]));
|
||||
if (!tensor->isWeight()) {
|
||||
IT_ASSERT(tensorToOffset.find(tensor.get()) !=
|
||||
tensorToOffset.end());
|
||||
tensor->setDataBlob(make_ref<BlobObj>(
|
||||
tensor->runtime, static_cast<uint8_t *>(allocator.getPtr()) +
|
||||
tensorToOffset[tensor.get()]));
|
||||
}
|
||||
}
|
||||
|
||||
#ifdef DEBUG_MODE
|
||||
allocator.info();
|
||||
#endif
|
||||
}
|
||||
|
||||
Tensor GraphObj::addTensor(Shape dim, DataType dtype) {
|
||||
|
|
|
@ -11,9 +11,6 @@ namespace infini {
|
|||
constexpr size_t alignmentInBytesForCUDA = 256;
|
||||
|
||||
LazyAllocator::LazyAllocator(Runtime runtime) : runtime(runtime) {
|
||||
used = 0;
|
||||
peak = 0;
|
||||
ptr = nullptr;
|
||||
if (runtime->isCuda()) {
|
||||
// TODO: the alignment on cuda might need further discussion
|
||||
alignment = alignmentInBytesForCUDA;
|
||||
|
@ -30,10 +27,24 @@ LazyAllocator::~LazyAllocator() {
|
|||
if (this->ptr != nullptr) {
|
||||
runtime->dealloc(this->ptr);
|
||||
}
|
||||
if (this->weightPtr != nullptr) {
|
||||
runtime->dealloc(this->weightPtr);
|
||||
}
|
||||
}
|
||||
|
||||
void LazyAllocator::init() {
|
||||
used = 0;
|
||||
peak = 0;
|
||||
freeBlocks.clear();
|
||||
headAddrToBlockSize.clear();
|
||||
tailAddrToBlockSize.clear();
|
||||
if (this->ptr != nullptr) {
|
||||
runtime->dealloc(this->ptr);
|
||||
}
|
||||
this->ptr = nullptr;
|
||||
}
|
||||
|
||||
size_t LazyAllocator::alloc(size_t size) {
|
||||
IT_ASSERT(this->ptr == nullptr);
|
||||
// pad the size to the multiple of alignment
|
||||
size = this->getAlignedSize(size);
|
||||
auto it = this->freeBlocks.lower_bound(freeBlockInfo{(size_t)0, size});
|
||||
|
@ -83,6 +94,14 @@ size_t LazyAllocator::alloc(size_t size) {
|
|||
return retAddr;
|
||||
}
|
||||
|
||||
size_t LazyAllocator::allocWeight(size_t size) {
|
||||
IT_ASSERT(this->weightPtr == nullptr);
|
||||
size = this->getAlignedSize(size);
|
||||
size_t retAddr = this->weightPeak;
|
||||
this->weightPeak += size;
|
||||
return retAddr;
|
||||
}
|
||||
|
||||
void LazyAllocator::free(size_t addr, size_t size) {
|
||||
IT_ASSERT(this->ptr == nullptr);
|
||||
size = getAlignedSize(size);
|
||||
|
@ -126,18 +145,33 @@ void LazyAllocator::free(size_t addr, size_t size) {
|
|||
void *LazyAllocator::getPtr() {
|
||||
if (this->ptr == nullptr) {
|
||||
this->ptr = runtime->alloc(this->peak);
|
||||
printf("LazyAllocator really alloc: %p %lu bytes\n", this->ptr, peak);
|
||||
#ifdef DEBUG_MODE
|
||||
printf("LazyAllocator really alloc non-weight: %p %lu bytes\n",
|
||||
this->ptr, peak);
|
||||
#endif
|
||||
}
|
||||
return this->ptr;
|
||||
}
|
||||
|
||||
void *LazyAllocator::getWeightPtr() {
|
||||
if (this->weightPtr == nullptr) {
|
||||
this->weightPtr = runtime->alloc(this->weightPeak);
|
||||
#ifdef DEBUG_MODE
|
||||
printf("LazyAllocator really alloc weight: %p %lu bytes\n",
|
||||
this->weightPtr, weightPeak);
|
||||
#endif
|
||||
}
|
||||
return this->weightPtr;
|
||||
}
|
||||
|
||||
size_t LazyAllocator::getAlignedSize(size_t size) {
|
||||
return ((size - 1) / this->alignment + 1) * this->alignment;
|
||||
}
|
||||
|
||||
void LazyAllocator::info() {
|
||||
std::cout << "Used memory: " << this->used
|
||||
<< ", peak memory: " << this->peak << std::endl;
|
||||
std::cout << "Used memory: " << this->used + this->weightPeak
|
||||
<< ", peak memory: " << this->peak + this->weightPeak
|
||||
<< std::endl;
|
||||
}
|
||||
|
||||
} // namespace infini
|
||||
|
|
|
@ -23,7 +23,7 @@ string TensorObj::toString() const {
|
|||
string ret = "Tensor " + std::to_string(guid) + ", Fuid " +
|
||||
std::to_string(fuid) + ", shape " + vecToString(shape) +
|
||||
", dtype " + dtype.toString() + ", " + runtime->toString() +
|
||||
", " + ss.str() + "\n";
|
||||
", " + ss.str() + ", " + tensorTypeToString() + "\n";
|
||||
vector<UidBaseType> targetGuids;
|
||||
for (const auto &op : targets)
|
||||
targetGuids.emplace_back(op.lock()->getGuid());
|
||||
|
|
|
@ -364,6 +364,9 @@ void init_graph_builder(py::module &m) {
|
|||
py::buffer_protocol())
|
||||
.def("fuid", &TensorObj::getFuid, policy::automatic)
|
||||
.def("shape", &TensorObj::getDims, policy::move)
|
||||
.def("set_weight", &TensorObj::setWeight, policy::move)
|
||||
.def("set_input", &TensorObj::setInput, policy::move)
|
||||
.def("set_output", &TensorObj::setOutput, policy::move)
|
||||
.def("dtype", &TensorObj::getDTypeIndex, policy::automatic)
|
||||
.def("copyin_float", &TensorObj::copyin<float>, policy::move)
|
||||
.def("copyin_int32", &TensorObj::copyin<int32_t>, policy::move)
|
||||
|
|
Loading…
Reference in New Issue