forked from jiuyuan/InfiniTensor
ADD: batch norm operator and cuda kernel. (#44)
fix numInputs of batchNorm, add new line in file ending. ADD: batch norm operator and cuda kernel. add training remove comments. fix compile error. add batch norm operator and cuda kernel.
This commit is contained in:
parent
1152adc94a
commit
a4d6426589
|
@ -0,0 +1,28 @@
|
||||||
|
#pragma once
|
||||||
|
#include "core/operator.h"
|
||||||
|
|
||||||
|
namespace infini {
|
||||||
|
class BatchNormObj : public OperatorObj {
|
||||||
|
float momentum, eps;
|
||||||
|
bool training;
|
||||||
|
|
||||||
|
public:
|
||||||
|
BatchNormObj(GraphObj *graph, Tensor input, Tensor output, Tensor mean,
|
||||||
|
Tensor var, Tensor scale, Tensor bias, float momentum = 0.9,
|
||||||
|
float eps = 1e-5, bool training = false);
|
||||||
|
optional<vector<Shape>> inferShape(const TensorVec &inputs) const override;
|
||||||
|
|
||||||
|
std::string toString() const override;
|
||||||
|
|
||||||
|
// output size will be 3 when training
|
||||||
|
int numInputs() const override { return 5; }
|
||||||
|
int numOutputs() const override { return outputs.size(); }
|
||||||
|
float getEps() const { return eps; }
|
||||||
|
|
||||||
|
private:
|
||||||
|
vector<int> getWorkloadVector() const override;
|
||||||
|
vector<int> getOpAttrVector() const override;
|
||||||
|
|
||||||
|
vector<DataType> inferDataType(const TensorVec &inputs) const override;
|
||||||
|
};
|
||||||
|
} // namespace infini
|
|
@ -38,14 +38,14 @@ class IncrementalGenerator : public DataGenerator {
|
||||||
void fill(float *data, size_t size) override { fill<float>(data, size); }
|
void fill(float *data, size_t size) override { fill<float>(data, size); }
|
||||||
};
|
};
|
||||||
|
|
||||||
class OneGenerator : public DataGenerator {
|
template <int val> class ValGenerator : public DataGenerator {
|
||||||
public:
|
public:
|
||||||
virtual ~OneGenerator() {}
|
virtual ~ValGenerator() {}
|
||||||
|
|
||||||
private:
|
private:
|
||||||
template <typename T> void fill(T *data, size_t size) {
|
template <typename T> void fill(T *data, size_t size) {
|
||||||
for (size_t i = 0; i < size; i++) {
|
for (size_t i = 0; i < size; i++) {
|
||||||
data[i] = 1;
|
data[i] = val;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -54,4 +54,6 @@ class OneGenerator : public DataGenerator {
|
||||||
}
|
}
|
||||||
void fill(float *data, size_t size) override { fill<float>(data, size); }
|
void fill(float *data, size_t size) override { fill<float>(data, size); }
|
||||||
};
|
};
|
||||||
|
typedef ValGenerator<1> OneGenerator;
|
||||||
|
typedef ValGenerator<0> ZeroGenerator;
|
||||||
} // namespace infini
|
} // namespace infini
|
|
@ -0,0 +1,64 @@
|
||||||
|
#include "operators/batch_norm.h"
|
||||||
|
#include "core/kernel.h"
|
||||||
|
#include "cuda/cuda_kernel_wihtout_config.h"
|
||||||
|
#include "cuda/cuda_runtime.h"
|
||||||
|
namespace infini {
|
||||||
|
class BatchNormCudnn : public CudaKernelWithoutConfig {
|
||||||
|
void compute(const Operator &_op,
|
||||||
|
const RuntimeObj *_context) const override {
|
||||||
|
auto op = as<BatchNormObj>(_op);
|
||||||
|
auto context = dynamic_cast<const CudaRuntimeObj *>(_context);
|
||||||
|
cudnnStatus_t stat;
|
||||||
|
void *const inData = (op->getInputs(0)->getRawDataPtr<void *>());
|
||||||
|
void *const outData = (op->getOutput()->getRawDataPtr<void *>());
|
||||||
|
void *const meanData = (op->getInputs(1)->getRawDataPtr<void *>());
|
||||||
|
void *const varData = (op->getInputs(2)->getRawDataPtr<void *>());
|
||||||
|
void *const scaleData = (op->getInputs(3)->getRawDataPtr<void *>());
|
||||||
|
void *const biasData = (op->getInputs(4)->getRawDataPtr<void *>());
|
||||||
|
|
||||||
|
auto dims = op->getInputs(0)->getDims();
|
||||||
|
if (dims.size() == 2)
|
||||||
|
IT_TODO_HALT();
|
||||||
|
// Only 4D and 5D tensors are supported by
|
||||||
|
// cudnnBatchNormalizationForwardInference
|
||||||
|
IT_ASSERT(dims.size() == 4 || dims.size() == 5);
|
||||||
|
|
||||||
|
int dimArray[CUDNN_DIM_MAX], strideArray[CUDNN_DIM_MAX],
|
||||||
|
dimPArray[CUDNN_DIM_MAX], stridePArray[CUDNN_DIM_MAX];
|
||||||
|
for (size_t i = 0; i < dims.size(); ++i) {
|
||||||
|
dimArray[i] = dims[i];
|
||||||
|
strideArray[i] = op->getInputs(0)->getStride()[i];
|
||||||
|
dimPArray[i] = op->getInputs(1)->getDims()[i];
|
||||||
|
stridePArray[i] = op->getInputs(1)->getStride()[i];
|
||||||
|
}
|
||||||
|
// get inputs
|
||||||
|
cudnnTensorDescriptor_t inDesc;
|
||||||
|
checkCudnnError(cudnnCreateTensorDescriptor(&inDesc));
|
||||||
|
checkCudnnError(cudnnSetTensorNdDescriptor(
|
||||||
|
inDesc, CUDNN_DATA_FLOAT, dims.size(), dimArray, strideArray));
|
||||||
|
|
||||||
|
// get bnScaleBiasMeanVarDesc
|
||||||
|
cudnnTensorDescriptor_t paraDesc;
|
||||||
|
checkCudnnError(cudnnCreateTensorDescriptor(¶Desc));
|
||||||
|
checkCudnnError(cudnnSetTensorNdDescriptor(
|
||||||
|
paraDesc, CUDNN_DATA_FLOAT, dims.size(), dimPArray, stridePArray));
|
||||||
|
|
||||||
|
float alpha = 1.f, beta = 0.f;
|
||||||
|
// This mode is intended for use after convolutional layers
|
||||||
|
stat = cudnnBatchNormalizationForwardInference(
|
||||||
|
context->cudnnHandle(), CUDNN_BATCHNORM_SPATIAL, &alpha, &beta,
|
||||||
|
inDesc, inData, inDesc, outData, paraDesc, scaleData, biasData,
|
||||||
|
meanData, varData, op->getEps());
|
||||||
|
if (stat != CUDNN_STATUS_SUCCESS)
|
||||||
|
return;
|
||||||
|
|
||||||
|
// Destories in CUDA does not require sync. But cuDNN does not state
|
||||||
|
// whether sync is required before destories.
|
||||||
|
checkCudnnError(cudnnDestroyTensorDescriptor(inDesc));
|
||||||
|
checkCudnnError(cudnnDestroyTensorDescriptor(paraDesc));
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
REGISTER_KERNEL(Device::CUDA, OpType::BatchNorm, DataType::Float32,
|
||||||
|
BatchNormCudnn, "BatchNorm_cuDNN_CUDA_Float32");
|
||||||
|
} // namespace infini
|
|
@ -4,8 +4,9 @@
|
||||||
#include "cuda/gather.h"
|
#include "cuda/gather.h"
|
||||||
|
|
||||||
namespace infini {
|
namespace infini {
|
||||||
|
class GatherCuda : public CudaKernelWithoutConfig {
|
||||||
void initGatherMetaData(GatherMetaData &metaData, const Operator &_op) {
|
void initGatherMetaData(GatherMetaData &metaData,
|
||||||
|
const Operator &_op) const {
|
||||||
memset(&metaData, 0, sizeof(metaData));
|
memset(&metaData, 0, sizeof(metaData));
|
||||||
auto op = as<GatherObj>(_op);
|
auto op = as<GatherObj>(_op);
|
||||||
auto in = op->getInputs(0);
|
auto in = op->getInputs(0);
|
||||||
|
@ -25,9 +26,8 @@ void initGatherMetaData(GatherMetaData &metaData, const Operator &_op) {
|
||||||
for (int i = 0; i < metaData.inNDim; ++i) {
|
for (int i = 0; i < metaData.inNDim; ++i) {
|
||||||
metaData.inStride[i] = in->getStride()[i];
|
metaData.inStride[i] = in->getStride()[i];
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
class GatherCuda : public CudaKernelWithoutConfig {
|
|
||||||
void compute(const Operator &op,
|
void compute(const Operator &op,
|
||||||
const RuntimeObj *_context) const override {
|
const RuntimeObj *_context) const override {
|
||||||
|
|
||||||
|
|
|
@ -14,4 +14,3 @@ void _sgbmml(float *__restrict__ q, float *__restrict__ k,
|
||||||
}
|
}
|
||||||
|
|
||||||
} // namespace infini
|
} // namespace infini
|
||||||
|
|
||||||
|
|
|
@ -6,8 +6,9 @@
|
||||||
|
|
||||||
namespace infini {
|
namespace infini {
|
||||||
|
|
||||||
void initComposedTensorMetadata(ComposedTensorMetadata &metadata,
|
class CudaCompute {
|
||||||
Tensor tensor) {
|
void initComposedTensorMetadata(ComposedTensorMetadata &metadata,
|
||||||
|
Tensor tensor) const {
|
||||||
int nDims = tensor->getDims().size();
|
int nDims = tensor->getDims().size();
|
||||||
auto strides = tensor->getStride();
|
auto strides = tensor->getStride();
|
||||||
IT_ASSERT(strides.size() == (size_t)nDims);
|
IT_ASSERT(strides.size() == (size_t)nDims);
|
||||||
|
@ -16,11 +17,11 @@ void initComposedTensorMetadata(ComposedTensorMetadata &metadata,
|
||||||
metadata.stride[i] = strides.at(i);
|
metadata.stride[i] = strides.at(i);
|
||||||
}
|
}
|
||||||
metadata.data = tensor->getRawDataPtr<float *>();
|
metadata.data = tensor->getRawDataPtr<float *>();
|
||||||
}
|
}
|
||||||
|
|
||||||
void initElementTensorMetadata(ElementTensorMetadata &metadata,
|
void initElementTensorMetadata(ElementTensorMetadata &metadata,
|
||||||
TensorVec tensors, int idx, int dim,
|
TensorVec tensors, int idx, int dim,
|
||||||
int &dimBgIdx, int &batchCounter) {
|
int &dimBgIdx, int &batchCounter) const {
|
||||||
int nTensors = tensors.size();
|
int nTensors = tensors.size();
|
||||||
for (; batchCounter < BATCH_SIZE && idx + batchCounter < nTensors;
|
for (; batchCounter < BATCH_SIZE && idx + batchCounter < nTensors;
|
||||||
++batchCounter) {
|
++batchCounter) {
|
||||||
|
@ -32,9 +33,8 @@ void initElementTensorMetadata(ElementTensorMetadata &metadata,
|
||||||
metadata.nElements[batchCounter] = tensor->size();
|
metadata.nElements[batchCounter] = tensor->size();
|
||||||
dimBgIdx += dimSize;
|
dimBgIdx += dimSize;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
class CudaCompute {
|
|
||||||
public:
|
public:
|
||||||
void do_compute(Tensor composedTensor, TensorVec elementsTensor, int dim,
|
void do_compute(Tensor composedTensor, TensorVec elementsTensor, int dim,
|
||||||
int nDims, bool isSplit) const {
|
int nDims, bool isSplit) const {
|
||||||
|
|
|
@ -0,0 +1,72 @@
|
||||||
|
#include "operators/batch_norm.h"
|
||||||
|
|
||||||
|
namespace infini {
|
||||||
|
BatchNormObj::BatchNormObj(GraphObj *graph, Tensor input, Tensor output,
|
||||||
|
Tensor mean, Tensor var, Tensor scale, Tensor bias,
|
||||||
|
float momentum, float eps, bool training)
|
||||||
|
: OperatorObj(OpType::BatchNorm, {input, mean, var, scale, bias}, {output}),
|
||||||
|
momentum(momentum), eps(eps), training(training) {
|
||||||
|
if (training)
|
||||||
|
IT_TODO_HALT();
|
||||||
|
|
||||||
|
IT_ASSERT(checkValid(graph));
|
||||||
|
}
|
||||||
|
|
||||||
|
optional<vector<Shape>>
|
||||||
|
BatchNormObj::inferShape(const TensorVec &inputs) const {
|
||||||
|
auto input = inputs[0];
|
||||||
|
auto mean = inputs[1];
|
||||||
|
auto var = inputs[2];
|
||||||
|
auto scale = inputs[3];
|
||||||
|
auto bias = inputs[4];
|
||||||
|
if (input->getDims().size() < 2)
|
||||||
|
return {};
|
||||||
|
Shape dims(input->getDims().size(), 1);
|
||||||
|
dims[1] = input->getDims()[1]; //
|
||||||
|
if (mean->getDims() != dims || var->getDims() != dims ||
|
||||||
|
scale->getDims() != dims || bias->getDims() != dims)
|
||||||
|
return {};
|
||||||
|
return {{input->getDims()}};
|
||||||
|
}
|
||||||
|
|
||||||
|
vector<DataType> BatchNormObj::inferDataType(const TensorVec &inputs) const {
|
||||||
|
IT_ASSERT(inputs.size() == 5);
|
||||||
|
auto index = inputs[1];
|
||||||
|
IT_ASSERT(inputs[1]->getDType() == DataType::Float32);
|
||||||
|
IT_ASSERT(inputs[2]->getDType() == DataType::Float32);
|
||||||
|
IT_ASSERT(inputs[3]->getDType() == DataType::Float32);
|
||||||
|
IT_ASSERT(inputs[4]->getDType() == DataType::Float32);
|
||||||
|
return {inputs[0]->getDType()};
|
||||||
|
}
|
||||||
|
|
||||||
|
std::string BatchNormObj::toString() const {
|
||||||
|
std::ostringstream os;
|
||||||
|
os << "BatchNorm[" << getGuid() << "]";
|
||||||
|
os << "(";
|
||||||
|
os << vecToString(inputs[0]->getDims()) << ",";
|
||||||
|
os << "momentum=" << momentum << ",";
|
||||||
|
os << "eps=" << eps << ",";
|
||||||
|
os << "input=" << inputs[0]->getGuid() << ",";
|
||||||
|
os << "mean=" << inputs[1]->getGuid() << ",";
|
||||||
|
os << "var=" << inputs[2]->getGuid() << ",";
|
||||||
|
os << "scale=" << inputs[3]->getGuid() << ",";
|
||||||
|
os << "bias=" << inputs[4]->getGuid() << ",";
|
||||||
|
os << "output=";
|
||||||
|
for (auto output : outputs)
|
||||||
|
os << output->getGuid() << ",";
|
||||||
|
return os.str();
|
||||||
|
}
|
||||||
|
|
||||||
|
// need eps and momentum?
|
||||||
|
vector<int> BatchNormObj::getWorkloadVector() const {
|
||||||
|
vector<int> ret = inputs[0]->getDims();
|
||||||
|
ret.emplace(ret.begin(), enum_to_underlying(type));
|
||||||
|
return ret;
|
||||||
|
}
|
||||||
|
|
||||||
|
// need eps and momentum?
|
||||||
|
vector<int> BatchNormObj::getOpAttrVector() const {
|
||||||
|
return {enum_to_underlying(type)};
|
||||||
|
}
|
||||||
|
|
||||||
|
} // namespace infini
|
|
@ -0,0 +1,54 @@
|
||||||
|
#include "core/graph.h"
|
||||||
|
#include "core/runtime.h"
|
||||||
|
#include "cuda/cuda_runtime.h"
|
||||||
|
#include "cuda/cuda_utility.h"
|
||||||
|
#include "operators/batch_norm.h"
|
||||||
|
#include "test.h"
|
||||||
|
|
||||||
|
namespace infini {
|
||||||
|
|
||||||
|
TEST(CUDA_BatchNorm, run) {
|
||||||
|
Runtime cpuRuntime = CpuRuntimeObj::getInstance();
|
||||||
|
auto cudaRuntime = make_ref<CudaRuntimeObj>();
|
||||||
|
|
||||||
|
// Build cpu graph
|
||||||
|
Graph gCpu = make_ref<GraphObj>(cpuRuntime);
|
||||||
|
auto iCpu = gCpu->addTensor(Shape{1, 3, 2, 2}, DataType::Float32);
|
||||||
|
auto meanCpu = gCpu->addTensor(Shape{1, 3, 1, 1}, DataType::Float32);
|
||||||
|
auto varCpu = gCpu->addTensor(Shape{1, 3, 1, 1}, DataType::Float32);
|
||||||
|
auto scaleCpu = gCpu->addTensor(Shape{1, 3, 1, 1}, DataType::Float32);
|
||||||
|
auto biasCpu = gCpu->addTensor(Shape{1, 3, 1, 1}, DataType::Float32);
|
||||||
|
|
||||||
|
// Build input data on CPU
|
||||||
|
gCpu->dataMalloc();
|
||||||
|
iCpu->setData(IncrementalGenerator());
|
||||||
|
meanCpu->copyData(vector<float>{1, 6, 9});
|
||||||
|
varCpu->copyData(vector<float>{4, 1, 9});
|
||||||
|
scaleCpu->setData(OneGenerator());
|
||||||
|
biasCpu->setData(ZeroGenerator());
|
||||||
|
|
||||||
|
// Build CUDA graph
|
||||||
|
Graph g = make_ref<GraphObj>(cudaRuntime);
|
||||||
|
auto i = g->cloneTensor(iCpu);
|
||||||
|
auto mean = g->cloneTensor(meanCpu);
|
||||||
|
auto var = g->cloneTensor(varCpu);
|
||||||
|
auto scale = g->cloneTensor(scaleCpu);
|
||||||
|
auto bias = g->cloneTensor(biasCpu);
|
||||||
|
auto op =
|
||||||
|
g->addOp<BatchNormObj>(i, nullptr, mean, var, scale, bias, 0.9, 0);
|
||||||
|
|
||||||
|
// allocate CUDA memory
|
||||||
|
g->dataMalloc();
|
||||||
|
|
||||||
|
// Execute on CUDA
|
||||||
|
cudaRuntime->run(g);
|
||||||
|
|
||||||
|
// clone CUDA output to CPU
|
||||||
|
auto o = op->getOutput();
|
||||||
|
auto ocpu = o->clone(cpuRuntime);
|
||||||
|
|
||||||
|
// check results on CPU
|
||||||
|
EXPECT_TRUE(ocpu->equalData(vector<float>{
|
||||||
|
-0.5, 0, 0.5, 1, -2, -1, 0, 1, -0.333333, 0, 0.333333, 0.666667}));
|
||||||
|
}
|
||||||
|
} // namespace infini
|
|
@ -0,0 +1,21 @@
|
||||||
|
#include "core/graph.h"
|
||||||
|
#include "core/runtime.h"
|
||||||
|
#include "operators/batch_norm.h"
|
||||||
|
#include "test.h"
|
||||||
|
|
||||||
|
namespace infini {
|
||||||
|
TEST(BatchNorm, ShapeInference) {
|
||||||
|
Runtime cpuRuntime = CpuRuntimeObj::getInstance();
|
||||||
|
{
|
||||||
|
Graph g = make_ref<GraphObj>(cpuRuntime);
|
||||||
|
Tensor i = g->addTensor({1, 3, 2, 2}, DataType::UInt32);
|
||||||
|
Tensor mean = g->addTensor({1, 3, 1, 1}, DataType::Float32);
|
||||||
|
Tensor var = g->addTensor({1, 3, 1, 1}, DataType::Float32);
|
||||||
|
Tensor scaler = g->addTensor({1, 3, 1, 1}, DataType::Float32);
|
||||||
|
Tensor bias = g->addTensor({1, 3, 1, 1}, DataType::Float32);
|
||||||
|
auto op = g->addOp<BatchNormObj>(i, nullptr, mean, var, scaler, bias,
|
||||||
|
0.9, 1e-5);
|
||||||
|
EXPECT_EQ(op->getOutput()->getDims(), (Shape{1, 3, 2, 2}));
|
||||||
|
}
|
||||||
|
}
|
||||||
|
} // namespace infini
|
Loading…
Reference in New Issue