feat: 前端支持 flatten 及单元测试

Signed-off-by: YdrMaster <ydrml@hotmail.com>
This commit is contained in:
YdrMaster 2023-02-13 13:50:07 +08:00
parent e4ec9c4230
commit e194dd943b
5 changed files with 44 additions and 50 deletions

View File

@ -52,6 +52,7 @@ class GraphHandlerObj {
Tensor softmax(Tensor x, Tensor y); Tensor softmax(Tensor x, Tensor y);
Tensor abs(Tensor x, Tensor y); Tensor abs(Tensor x, Tensor y);
Tensor identity(Tensor x, Tensor y); Tensor identity(Tensor x, Tensor y);
Tensor flatten(Tensor s, Tensor y);
}; };
} // namespace infini } // namespace infini

View File

@ -88,6 +88,16 @@ def from_onnx(model: onnx.ModelProto):
tensors[node.input[0]], tensors[node.input[0]],
tensors.get(node.output[0], None), tensors.get(node.output[0], None),
) )
elif node.op_type == "Flatten":
# TODO 后端算子不支持沿任意轴展开
axis = next(
(attr.i for attr in node.attribute if attr.name == "axis"), None
)
assert axis == None or axis == 1
tensors[node.output[0]] = handler.flatten(
tensors[node.input[0]],
tensors.get(node.output[0], None),
)
else: else:
raise Exception('Unsupported operator "{}"'.format(node.op_type)) raise Exception('Unsupported operator "{}"'.format(node.op_type))

View File

@ -5,6 +5,12 @@ from onnx.checker import check_model
from pyinfinitensor.onnx import from_onnx, parse_onnx, backend, runtime from pyinfinitensor.onnx import from_onnx, parse_onnx, backend, runtime
def make_and_import_model(graph: onnx.GraphProto):
model = make_model(graph)
check_model(model)
from_onnx(model)
class TestStringMethods(unittest.TestCase): class TestStringMethods(unittest.TestCase):
def test_load(self): def test_load(self):
model_file = next( model_file = next(
@ -20,115 +26,91 @@ class TestStringMethods(unittest.TestCase):
def test_tensor(self): def test_tensor(self):
x = make_tensor_value_info("x", TensorProto.FLOAT, [1, 2, 3]) x = make_tensor_value_info("x", TensorProto.FLOAT, [1, 2, 3])
graph = make_graph([], "tensor", [x], [x]) make_and_import_model(make_graph([], "tensor", [x], [x]))
model = make_model(graph)
check_model(model)
from_onnx(model)
def test_matmul(self): def test_matmul(self):
x = make_tensor_value_info("x", TensorProto.FLOAT, [1, 2, 3]) x = make_tensor_value_info("x", TensorProto.FLOAT, [1, 2, 3])
a = make_tensor_value_info("a", TensorProto.FLOAT, [1, 3, 4]) a = make_tensor_value_info("a", TensorProto.FLOAT, [1, 3, 4])
xa = make_tensor_value_info("b", TensorProto.FLOAT, [1, 2, 4]) xa = make_tensor_value_info("b", TensorProto.FLOAT, [1, 2, 4])
matmul = make_node("MatMul", ["x", "a"], ["xa"], name="matmul") matmul = make_node("MatMul", ["x", "a"], ["xa"], name="matmul")
graph = make_graph([matmul], "matmul", [x, a], [xa]) make_and_import_model(make_graph([matmul], "matmul", [x, a], [xa]))
model = make_model(graph)
check_model(model)
from_onnx(model)
def test_add(self): def test_add(self):
a = make_tensor_value_info("a", TensorProto.FLOAT, [1, 3, 5, 7]) a = make_tensor_value_info("a", TensorProto.FLOAT, [1, 3, 5, 7])
b = make_tensor_value_info("b", TensorProto.FLOAT, [1, 3, 5, 7]) b = make_tensor_value_info("b", TensorProto.FLOAT, [1, 3, 5, 7])
c = make_tensor_value_info("c", TensorProto.FLOAT, [1, 3, 5, 7]) c = make_tensor_value_info("c", TensorProto.FLOAT, [1, 3, 5, 7])
add = make_node("Add", ["a", "b"], ["c"], name="add") add = make_node("Add", ["a", "b"], ["c"], name="add")
graph = make_graph([add], "add", [a, b], [c]) make_and_import_model(make_graph([add], "add", [a, b], [c]))
model = make_model(graph)
check_model(model)
from_onnx(model)
def test_sub(self): def test_sub(self):
a = make_tensor_value_info("a", TensorProto.FLOAT, [1, 3, 5, 7]) a = make_tensor_value_info("a", TensorProto.FLOAT, [1, 3, 5, 7])
b = make_tensor_value_info("b", TensorProto.FLOAT, [1, 3, 5, 7]) b = make_tensor_value_info("b", TensorProto.FLOAT, [1, 3, 5, 7])
c = make_tensor_value_info("c", TensorProto.FLOAT, [1, 3, 5, 7]) c = make_tensor_value_info("c", TensorProto.FLOAT, [1, 3, 5, 7])
sub = make_node("Sub", ["a", "b"], ["c"], name="sub") sub = make_node("Sub", ["a", "b"], ["c"], name="sub")
graph = make_graph([sub], "sub", [a, b], [c]) make_and_import_model(make_graph([sub], "sub", [a, b], [c]))
model = make_model(graph)
check_model(model)
from_onnx(model)
def test_mul(self): def test_mul(self):
a = make_tensor_value_info("a", TensorProto.FLOAT, [1, 3, 5, 7]) a = make_tensor_value_info("a", TensorProto.FLOAT, [1, 3, 5, 7])
b = make_tensor_value_info("b", TensorProto.FLOAT, [1, 3, 5, 7]) b = make_tensor_value_info("b", TensorProto.FLOAT, [1, 3, 5, 7])
c = make_tensor_value_info("c", TensorProto.FLOAT, [1, 3, 5, 7]) c = make_tensor_value_info("c", TensorProto.FLOAT, [1, 3, 5, 7])
mul = make_node("Mul", ["a", "b"], ["c"], name="mul") mul = make_node("Mul", ["a", "b"], ["c"], name="mul")
graph = make_graph([mul], "mul", [a, b], [c]) make_and_import_model(make_graph([mul], "mul", [a, b], [c]))
model = make_model(graph)
check_model(model)
from_onnx(model)
def test_div(self): def test_div(self):
a = make_tensor_value_info("a", TensorProto.FLOAT, [1, 3, 5, 7]) a = make_tensor_value_info("a", TensorProto.FLOAT, [1, 3, 5, 7])
b = make_tensor_value_info("b", TensorProto.FLOAT, [1, 3, 5, 7]) b = make_tensor_value_info("b", TensorProto.FLOAT, [1, 3, 5, 7])
c = make_tensor_value_info("c", TensorProto.FLOAT, [1, 3, 5, 7]) c = make_tensor_value_info("c", TensorProto.FLOAT, [1, 3, 5, 7])
div = make_node("Div", ["a", "b"], ["c"], name="div") div = make_node("Div", ["a", "b"], ["c"], name="div")
graph = make_graph([div], "div", [a, b], [c]) make_and_import_model(make_graph([div], "div", [a, b], [c]))
model = make_model(graph)
check_model(model)
from_onnx(model)
def test_pow(self): def test_pow(self):
a = make_tensor_value_info("a", TensorProto.FLOAT, [1, 3, 5, 7]) a = make_tensor_value_info("a", TensorProto.FLOAT, [1, 3, 5, 7])
b = make_tensor_value_info("b", TensorProto.FLOAT, [1, 3, 5, 7]) b = make_tensor_value_info("b", TensorProto.FLOAT, [1, 3, 5, 7])
c = make_tensor_value_info("c", TensorProto.FLOAT, [1, 3, 5, 7]) c = make_tensor_value_info("c", TensorProto.FLOAT, [1, 3, 5, 7])
pow = make_node("Pow", ["a", "b"], ["c"], name="pow") pow = make_node("Pow", ["a", "b"], ["c"], name="pow")
graph = make_graph([pow], "pow", [a, b], [c]) make_and_import_model(make_graph([pow], "pow", [a, b], [c]))
model = make_model(graph)
check_model(model)
from_onnx(model)
def test_relu(self): def test_relu(self):
x = make_tensor_value_info("x", TensorProto.FLOAT, [1, 3, 5, 7]) x = make_tensor_value_info("x", TensorProto.FLOAT, [1, 3, 5, 7])
y = make_tensor_value_info("y", TensorProto.FLOAT, [1, 3, 5, 7]) y = make_tensor_value_info("y", TensorProto.FLOAT, [1, 3, 5, 7])
relu = make_node("Relu", ["x"], ["y"], name="relu") relu = make_node("Relu", ["x"], ["y"], name="relu")
graph = make_graph([relu], "relu", [x], [y]) make_and_import_model(make_graph([relu], "relu", [x], [y]))
model = make_model(graph)
check_model(model)
from_onnx(model)
def test_sigmoid(self): def test_sigmoid(self):
x = make_tensor_value_info("x", TensorProto.FLOAT, [1, 3, 5, 7]) x = make_tensor_value_info("x", TensorProto.FLOAT, [1, 3, 5, 7])
y = make_tensor_value_info("y", TensorProto.FLOAT, [1, 3, 5, 7]) y = make_tensor_value_info("y", TensorProto.FLOAT, [1, 3, 5, 7])
sigmoid = make_node("Sigmoid", ["x"], ["y"], name="sigmoid") sigmoid = make_node("Sigmoid", ["x"], ["y"], name="sigmoid")
graph = make_graph([sigmoid], "sigmoid", [x], [y]) make_and_import_model(make_graph([sigmoid], "sigmoid", [x], [y]))
model = make_model(graph)
check_model(model)
from_onnx(model)
def test_tanh(self): def test_tanh(self):
x = make_tensor_value_info("x", TensorProto.FLOAT, [1, 3, 5, 7]) x = make_tensor_value_info("x", TensorProto.FLOAT, [1, 3, 5, 7])
y = make_tensor_value_info("y", TensorProto.FLOAT, [1, 3, 5, 7]) y = make_tensor_value_info("y", TensorProto.FLOAT, [1, 3, 5, 7])
tanh = make_node("Tanh", ["x"], ["y"], name="tanh") tanh = make_node("Tanh", ["x"], ["y"], name="tanh")
graph = make_graph([tanh], "tanh", [x], [y]) make_and_import_model(make_graph([tanh], "tanh", [x], [y]))
model = make_model(graph)
check_model(model)
from_onnx(model)
def test_softmax(self): def test_softmax(self):
x = make_tensor_value_info("x", TensorProto.FLOAT, [1, 3, 5, 7]) x = make_tensor_value_info("x", TensorProto.FLOAT, [1, 3, 5, 7])
y = make_tensor_value_info("y", TensorProto.FLOAT, [1, 3, 5, 7]) y = make_tensor_value_info("y", TensorProto.FLOAT, [1, 3, 5, 7])
softmax = make_node("Softmax", ["x"], ["y"], name="softmax") softmax = make_node("Softmax", ["x"], ["y"], name="softmax")
graph = make_graph([softmax], "softmax", [x], [y]) make_and_import_model(make_graph([softmax], "softmax", [x], [y]))
model = make_model(graph)
check_model(model)
from_onnx(model)
def test_abs(self): def test_abs(self):
x = make_tensor_value_info("x", TensorProto.FLOAT, [1, 3, 5, 7]) x = make_tensor_value_info("x", TensorProto.FLOAT, [1, 3, 5, 7])
y = make_tensor_value_info("y", TensorProto.FLOAT, [1, 3, 5, 7]) y = make_tensor_value_info("y", TensorProto.FLOAT, [1, 3, 5, 7])
abs = make_node("Abs", ["x"], ["y"], name="abs") abs = make_node("Abs", ["x"], ["y"], name="abs")
graph = make_graph([abs], "abs", [x], [y]) make_and_import_model(make_graph([abs], "abs", [x], [y]))
model = make_model(graph)
check_model(model) def test_identity(self):
from_onnx(model) x = make_tensor_value_info("x", TensorProto.FLOAT, [1, 3, 5, 7])
y = make_tensor_value_info("y", TensorProto.FLOAT, [1, 3, 5, 7])
identity = make_node("Identity", ["x"], ["y"], name="identity")
make_and_import_model(make_graph([identity], "identity", [x], [y]))
def test_flatten(self):
x = make_tensor_value_info("x", TensorProto.FLOAT, [1, 3, 5, 7])
y = make_tensor_value_info("y", TensorProto.FLOAT, [1 * 3 * 5 * 7])
flatten = make_node("Flatten", ["x"], ["y"], name="flatten")
make_and_import_model(make_graph([flatten], "flatten", [x], [y]))
# see <https://onnx.ai/onnx/intro/python.html#a-simple-example-a-linear-regression> # see <https://onnx.ai/onnx/intro/python.html#a-simple-example-a-linear-regression>
def test_linear(self): def test_linear(self):
@ -141,8 +123,6 @@ class TestStringMethods(unittest.TestCase):
graph = make_graph([matmul, add], "lr", [x, a, b], [y]) graph = make_graph([matmul, add], "lr", [x, a, b], [y])
model = make_model(graph) model = make_model(graph)
check_model(model) check_model(model)
print(model)
from_onnx(model) from_onnx(model)
parse_onnx(model) parse_onnx(model)

View File

@ -61,6 +61,7 @@ DEFINE_UNARY_METHOD(softmax, Softmax)
DEFINE_UNARY_METHOD(abs, Abs) DEFINE_UNARY_METHOD(abs, Abs)
// see operators/reshape.h // see operators/reshape.h
DEFINE_UNARY_METHOD(identity, Identity) DEFINE_UNARY_METHOD(identity, Identity)
DEFINE_UNARY_METHOD(flatten, Flatten)
static DataType dtype_repr_convert(int dtype) { static DataType dtype_repr_convert(int dtype) {
switch ((OnnxDType)dtype) { switch ((OnnxDType)dtype) {

View File

@ -67,6 +67,8 @@ void init_graph_builder(py::module &m) {
.def("abs", py::overload_cast<Tensor, Tensor>(&Handler::abs), .def("abs", py::overload_cast<Tensor, Tensor>(&Handler::abs),
policy::move) policy::move)
.def("identity", py::overload_cast<Tensor, Tensor>(&Handler::identity), .def("identity", py::overload_cast<Tensor, Tensor>(&Handler::identity),
policy::move)
.def("flatten", py::overload_cast<Tensor, Tensor>(&Handler::flatten),
policy::move); policy::move);
} }