forked from jiuyuan/InfiniTensor
52 lines
1.6 KiB
C++
52 lines
1.6 KiB
C++
#ifdef INFINI_USE_NCCL
|
|
#include "core/graph.h"
|
|
#include "core/runtime.h"
|
|
#include "cuda/cuda_runtime.h"
|
|
#include "cuda/cuda_utility.h"
|
|
#include "operators/all_gather.h"
|
|
#include "test.h"
|
|
#include <nccl.h>
|
|
#include <thread>
|
|
|
|
static int WORLD_SIZE = 2;
|
|
|
|
namespace infini {
|
|
|
|
void allGather(const string taskName, int deviceID, vector<float> data,
|
|
vector<vector<float>> ans) {
|
|
// Create Runtimes and initiate communication
|
|
Runtime cpuRuntime = NativeCpuRuntimeObj::getInstance();
|
|
Runtime cudaRuntime = make_ref<CudaRuntimeObj>(deviceID);
|
|
cudaRuntime->initComm(taskName, WORLD_SIZE, deviceID);
|
|
// Create Graph and insert allReduce operation
|
|
Graph g = make_ref<GraphObj>(cudaRuntime);
|
|
auto input =
|
|
g->addTensor(Shape{static_cast<int>(data.size())}, DataType::Float32);
|
|
auto op = g->addOp<AllGatherObj>(input, std::nullopt, WORLD_SIZE);
|
|
// Copy data from CPU to GPU
|
|
g->dataMalloc();
|
|
input->copyin(data);
|
|
// Run operation
|
|
cudaRuntime->run(g);
|
|
// Copy output from GPU to CPU
|
|
for (int i = 0; i < WORLD_SIZE; ++i) {
|
|
auto result = op->getOutputs()[i]->clone(cpuRuntime);
|
|
EXPECT_TRUE(result->equalData(ans[i]));
|
|
}
|
|
}
|
|
|
|
TEST(CUDA_AllGather, run) {
|
|
vector<float> data[2] = {{2., 3.}, {5., 6.}};
|
|
vector<vector<float>> ans = {{2., 3.}, {5., 6.}};
|
|
|
|
std::vector<std::thread> threads;
|
|
for (int gpu = 0; gpu < WORLD_SIZE; ++gpu) {
|
|
threads.emplace_back(allGather, "test_all_gather", gpu, data[gpu], ans);
|
|
}
|
|
for (auto &thread : threads) {
|
|
thread.join();
|
|
}
|
|
}
|
|
} // namespace infini
|
|
#endif
|