InfiniTensor/test/kernels/cuda/test_cuda_broadcast.cc

57 lines
1.7 KiB
C++

#ifdef INFINI_USE_NCCL
#include "core/graph.h"
#include "core/runtime.h"
#include "cuda/cuda_runtime.h"
#include "cuda/cuda_utility.h"
#include "operators/broadcast.h"
#include "test.h"
#include <nccl.h>
#include <thread>
static int WORLD_SIZE = 2;
static int root = 0;
namespace infini {
void broadcast(const string taskName, int deviceID, vector<float> data,
vector<float> ans) {
// Create Runtimes and initiate communication
Runtime cpuRuntime = NativeCpuRuntimeObj::getInstance();
Runtime cudaRuntime = make_ref<CudaRuntimeObj>(deviceID);
cudaRuntime->initComm(taskName, WORLD_SIZE, deviceID);
// Create Graph and insert allReduce operation
Graph g = make_ref<GraphObj>(cudaRuntime);
auto input =
g->addTensor(Shape{static_cast<int>(data.size())}, DataType::Float32);
auto op = g->addOp<BroadcastObj>(input, nullptr, root);
// Copy data from CPU to GPU
g->dataMalloc();
// Only rank 0 has the data
if (deviceID == root) {
input->copyin(data);
}
// Run broadcast operation
cudaRuntime->run(g);
// Copy output from GPU to CPU
auto result = op->getOutput()->clone(cpuRuntime);
EXPECT_TRUE(result->equalData(ans));
}
TEST(CUDA_Broadcast, run) {
// Only 1 device gets data. Every rank should have the same data after
// broadcast.
vector<float> data = {2., 3., 5., 6.};
vector<float> ans = {2., 3., 5., 6.};
std::vector<std::thread> threads;
for (int gpu = 0; gpu < WORLD_SIZE; ++gpu) {
threads.emplace_back(broadcast, "test_broadcast", gpu, data, ans);
}
for (auto &thread : threads) {
thread.join();
}
}
} // namespace infini
#endif