InfiniTensor/test/kernels/kunlun/test_kunlun_unary.cc

191 lines
7.0 KiB
C++

#include "core/graph.h"
#include "core/kernel.h"
#include "core/runtime.h"
#include "kunlun/kunlun_runtime.h"
#include "operators/unary.h"
#include "test.h"
namespace infini {
template <class T>
void testUnary(const std::function<void(void *, size_t, DataType)> &generator,
const Shape &shape) {
// Runtime
Runtime cpuRuntime = NativeCpuRuntimeObj::getInstance();
auto xpuRuntime = make_ref<KUNLUNRuntimeObj>();
// Build input data on CPU
Tensor inputCpu = make_ref<TensorObj>(shape, DataType::Float32, cpuRuntime);
// GPU
Graph xpuGraph = make_ref<GraphObj>(xpuRuntime);
auto inputGpu = xpuGraph->cloneTensor(inputCpu);
auto gpuOp = xpuGraph->addOp<T>(inputGpu, nullptr);
xpuGraph->dataMalloc();
inputGpu->setData(generator);
xpuRuntime->run(xpuGraph);
auto outputGpu = gpuOp->getOutput();
auto outputGpu2Cpu = outputGpu->clone(cpuRuntime);
// CPU
Graph cpuGraph = make_ref<GraphObj>(cpuRuntime);
auto cpuOp = cpuGraph->addOp<T>(inputCpu, nullptr);
cpuGraph->addTensor(inputCpu);
cpuGraph->dataMalloc();
inputCpu->setData(generator);
cpuRuntime->run(cpuGraph);
auto outputCpu = cpuOp->getOutput();
// Check
EXPECT_TRUE(outputCpu->equalData(outputGpu2Cpu, 1e-6));
}
void testClip(const std::function<void(void *, size_t, DataType)> &generator,
const Shape &shape) {
// Runtime
Runtime cpuRuntime = NativeCpuRuntimeObj::getInstance();
auto xpuRuntime = make_ref<KUNLUNRuntimeObj>();
// Build input data on CPU
Tensor inputCpu = make_ref<TensorObj>(shape, DataType::Float32, cpuRuntime);
float min = 1.0;
float max = 5.0;
// GPU
Graph xpuGraph = make_ref<GraphObj>(xpuRuntime);
auto inputGpu = xpuGraph->cloneTensor(inputCpu);
auto gpuOp = xpuGraph->addOp<ClipObj>(inputGpu, nullptr, min, max);
xpuGraph->dataMalloc();
inputGpu->setData(generator);
xpuRuntime->run(xpuGraph);
auto outputGpu = gpuOp->getOutput();
auto outputGpu2Cpu = outputGpu->clone(cpuRuntime);
// CPU
Graph cpuGraph = make_ref<GraphObj>(cpuRuntime);
auto cpuOp = cpuGraph->addOp<ClipObj>(inputCpu, nullptr, min, max);
cpuGraph->addTensor(inputCpu);
cpuGraph->dataMalloc();
inputCpu->setData(generator);
cpuRuntime->run(cpuGraph);
auto outputCpu = cpuOp->getOutput();
// Check
EXPECT_TRUE(outputCpu->equalData(outputGpu2Cpu));
}
void testCast(const std::function<void(void *, size_t, DataType)> &generator,
const Shape &shape) {
// Runtime
Runtime cpuRuntime = NativeCpuRuntimeObj::getInstance();
auto xpuRuntime = make_ref<KUNLUNRuntimeObj>();
// Build input data on CPU
Tensor inputCpu = make_ref<TensorObj>(shape, DataType::Float32, cpuRuntime);
// GPU
Graph xpuGraph = make_ref<GraphObj>(xpuRuntime);
auto inputGpu = xpuGraph->cloneTensor(inputCpu);
auto gpuOp =
xpuGraph->addOp<CastObj>(inputGpu, nullptr, CastType::Float2Int32);
xpuGraph->dataMalloc();
inputGpu->setData(generator);
xpuRuntime->run(xpuGraph);
auto outputGpu = gpuOp->getOutput();
auto outputGpu2Cpu = outputGpu->clone(cpuRuntime);
// CPU
Graph cpuGraph = make_ref<GraphObj>(cpuRuntime);
auto cpuOp =
cpuGraph->addOp<CastObj>(inputCpu, nullptr, CastType::Float2Int32);
cpuGraph->addTensor(inputCpu);
cpuGraph->dataMalloc();
inputCpu->setData(generator);
cpuRuntime->run(cpuGraph);
auto outputCpu = cpuOp->getOutput();
// Check
EXPECT_TRUE(outputCpu->equalData(outputGpu2Cpu));
}
template <LogObj::LogType T>
void testLog(const std::function<void(void *, size_t, DataType)> &generator,
const Shape &shape) {
// Runtime
Runtime cpuRuntime = NativeCpuRuntimeObj::getInstance();
auto xpuRuntime = make_ref<KUNLUNRuntimeObj>();
// Build input data on CPU
Tensor inputCpu = make_ref<TensorObj>(shape, DataType::Float32, cpuRuntime);
// GPU
Graph xpuGraph = make_ref<GraphObj>(xpuRuntime);
auto inputGpu = xpuGraph->cloneTensor(inputCpu);
auto gpuOp = xpuGraph->addOp<LogObj>(inputGpu, nullptr, T);
xpuGraph->dataMalloc();
inputGpu->setData(generator);
xpuRuntime->run(xpuGraph);
auto outputGpu = gpuOp->getOutput();
auto outputGpu2Cpu = outputGpu->clone(cpuRuntime);
// CPU
Graph cpuGraph = make_ref<GraphObj>(cpuRuntime);
auto cpuOp = cpuGraph->addOp<LogObj>(inputCpu, nullptr, T);
cpuGraph->addTensor(inputCpu);
cpuGraph->dataMalloc();
inputCpu->setData(generator);
cpuRuntime->run(cpuGraph);
auto outputCpu = cpuOp->getOutput();
// Check
EXPECT_TRUE(outputCpu->equalData(outputGpu2Cpu));
}
template <class T>
void testTrigon(const std::function<void(void *, size_t, DataType)> &generator,
const Shape &shape) {
// Runtime
Runtime cpuRuntime = NativeCpuRuntimeObj::getInstance();
auto xpuRuntime = make_ref<KUNLUNRuntimeObj>();
// Build input data on CPU
Tensor inputCpu = make_ref<TensorObj>(shape, DataType::Float32, cpuRuntime);
// GPU
Graph xpuGraph = make_ref<GraphObj>(xpuRuntime);
auto inputGpu = xpuGraph->cloneTensor(inputCpu);
auto gpuOp = xpuGraph->addOp<T>(inputGpu, nullptr);
xpuGraph->dataMalloc();
inputGpu->setData(generator);
xpuRuntime->run(xpuGraph);
auto outputGpu = gpuOp->getOutput();
auto outputGpu2Cpu = outputGpu->clone(cpuRuntime);
// CPU
Graph cpuGraph = make_ref<GraphObj>(cpuRuntime);
auto cpuOp = cpuGraph->addOp<T>(inputCpu, nullptr);
cpuGraph->addTensor(inputCpu);
cpuGraph->dataMalloc();
inputCpu->setData(generator);
cpuRuntime->run(cpuGraph);
auto outputCpu = cpuOp->getOutput();
// Check
EXPECT_TRUE(outputCpu->equalData(outputGpu2Cpu, 1e-3));
}
TEST(xdnn_Unary, run) {
testUnary<ReluObj>(IncrementalGenerator(), Shape{1, 2, 2, 3});
testUnary<SigmoidObj>(IncrementalGenerator(), Shape{1, 2, 2, 3});
testUnary<TanhObj>(IncrementalGenerator(), Shape{1, 2, 2, 3});
testUnary<AbsObj>(ValGenerator<-1>(), Shape{1, 2, 2, 3});
testUnary<ATanObj>(OneGenerator(), Shape{1, 2, 2, 3});
testLog<LogObj::Log10>(ValGenerator<2>(), Shape{1, 2, 2, 3});
testLog<LogObj::Log2>(ValGenerator<2>(), Shape{1, 2, 2, 3});
testLog<LogObj::LogE>(ValGenerator<2>(), Shape{1, 2, 2, 3});
testTrigon<CosObj>(IncrementalGenerator(), Shape{1, 2, 2, 3});
testTrigon<SinObj>(IncrementalGenerator(), Shape{1, 2, 2, 3});
testTrigon<TanObj>(IncrementalGenerator(), Shape{1, 2, 2, 3});
testTrigon<SinHObj>(IncrementalGenerator(), Shape{1, 2, 2, 3});
testTrigon<CosHObj>(IncrementalGenerator(), Shape{1, 2, 2, 3});
testUnary<ErfObj>(IncrementalGenerator(), Shape{1, 2, 2, 3});
testTrigon<ACosObj>(IncrementalGenerator(), Shape{1, 2, 2, 3});
testTrigon<ACosHObj>(IncrementalGenerator(), Shape{1, 2, 2, 3});
testTrigon<ASinObj>(IncrementalGenerator(), Shape{1, 2, 2, 3});
testTrigon<ASinHObj>(IncrementalGenerator(), Shape{1, 2, 2, 3});
testTrigon<ATanHObj>(IncrementalGenerator(), Shape{1, 2, 2, 3});
}
} // namespace infini