C混合、D高阶、E大涡参数,文档更新

This commit is contained in:
hechao 2023-06-16 09:45:17 +08:00
parent e8c3ddafe4
commit 243058d1ec
33 changed files with 6301 additions and 5460 deletions

View File

@ -8,6 +8,7 @@
// Platform for Hybrid Engineering Simulation of Flows +
// China Aerodynamics Research and Development Center +
// (C) Copyright, Since 2010 +
// PHengLEI 2212 +
//+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
###########################################################################
# Default parameters for Grid conversion #
@ -46,19 +47,24 @@ int gridobj = 1;
int multiblock = 0;
int iadapt = 0;
int SymmetryFaceVector = 1;
int gridReorder = 0;
int faceReorderMethod = 0;
// axisup: Type of Cartisien coordinates system, used in grid conversion.
// 1 -- Y upward. (default)
// 2 -- Z upward.
int axisup = 1;
// nAxisRotateTimes: number of axis rotating times, zero (default) meaning without rotating.
// axisRotateOrder : axis rotating order.
// 1 -- X-axis.
// 2 -- Y-axis.
// 3 -- Z-axis.
// axisRotateAngles: axis rotating angles (degree), which are corresponding to the axis rotating order.
int nAxisRotateTimes = 0;
int axisRotateOrder[] = [1, 2, 3];
double axisRotateAngles[] = [0.0, 0.0, 0.0];
// omit_no_bound_bc: What's boundary condition for the type of "no_boundary_condition".
// 0 -- Interface. (default)
// 1 -- Physical boundary condition, used in Hybrid solver.
int omit_no_bound_bc = 0;
int omitRepeatInterface = 1;
//-----------------------------------------------------------------------
# Grid data type #
@ -89,7 +95,6 @@ int dumpOldGrid = 0;
int numberOfGridFile = 1;
string from_gfile = "./grid/rae2822_hybrid2d.cas";
string from_gfile1 = "";
string out_gfile = "./grid/flat_laminr_133_85_2d.fts";
// ----------------- some advanced choices ------------------------------
@ -178,7 +183,6 @@ double influencePara = 25.0;
which only support one direction.
// rotationAngle: The relative angle between two periodic face.
which is recorded in degrees.
int periodicType = 0;
double translationLength[] = [0.0, 0.0, 0.0];
double rotationAngle = 0.0;
@ -192,7 +196,6 @@ double rotationAngle = 0.0;
// 2 -- refine structured grid.
// maxproc: The number of partition zones that want to be divided into.
// numberOfMultifile: The number of partition grid files that want to be dumped out.
int pgridtype = 0;
int maxproc = 4;
int numberOfMultifile = 1;
@ -207,8 +210,8 @@ int blockIndexOfMark = 0;
int cellIndexOfMark[] = [185, 30, 1];
// parallelStrategy:
//! -# 0 : each zone is assigned to the one that defined in grid partition procedure.
//! -# 1 : random assigned for each zone or by some else ways.
// 0 -- each zone is assigned to the one that defined in grid partition procedure.
// 1 -- random assigned for each zone or by some else ways.
int parallelStrategy = 1;
//-----------------------------------------------------------------------
@ -232,7 +235,6 @@ string partition_grid_file = "./grid/sphere_mixed__4.fts";
// 1 -- perfect balance.
// maxproc -- perfect imbalance.
// 1.05 -- recommended.
int omit_no_bound_bc = 0;
int npartmethod = 1;
int parallelPartitionMethod = 2;
@ -253,24 +255,30 @@ int numberOfMultigrid = 1;
// intervalStepSample: The step intervals for monitored probes variables file 'sample.dat' saved.
// intervalStepForce: The step intervals for aerodynamics coefficients file 'aircoef.dat' saved.
// intervalStepRes: The step intervals for residual file 'res.dat' saved.
// ifLowSpeedPrecon: Precondition process to accelerate convergence for low speed flow.
// 0 -- no precondition process. (default, mach > 0.3)
// 1 -- carry out precondition process. (mach number <= 0.3)
int maxSimuStep = 20000;
int intervalStepFlow = 1000;
int intervalStepPlot = 1000;
int intervalStepSample = 1000;
int intervalStepForce = 100;
int intervalStepRes = 10;
int ifLowSpeedPrecon = 0;
// compressible:
// 0 -- incompressible flow.
// 1 -- compressible flow. (default)
int compressible = 1;
// ifLowSpeedPrecon: Precondition process to accelerate convergence for low speed flow.
// 0 -- no precondition process. (default, mach > 0.3)
// 1 -- carry out precondition process. (mach number <= 0.3)
// Kprec: The coefficient K for the cut-off velocity.
// 1.0~3.0 is suggested. (default, 3.0)
// preconFarfieldBCMethod: The precondition method for farfield boundary condition.
// 0 -- precondition far-field boundary based on riemann invariants.
// 1 -- Turkel's simplified far-field boundary condition.
int ifLowSpeedPrecon = 0;
double Kprec = 3.0;
int preconFarfieldBCMethod = 1;
//-----------------------------------------------------------------------
# CFD Control Parameter #
//-----------------------------------------------------------------------
@ -281,9 +289,12 @@ int compressible = 1;
// 0 -- the nondimensional conditions.
// 1 -- the flight conditions.
// 2 -- the experiment conditions.
// 3 -- the subsonic boundary conditions.
// 3 -- the subsonic boundary conditions. (Useless!)
// 4 -- the condition that the velocity, temperature and density are given.
// 5 -- the condition that the velocity, temperature and pressure are given.
//flowInitMethod: Flow field initialization method.
// 0 -- The entire flow field is initialized according to Infinite velocity.
// 1 -- The velocity near the wall is initialized according to the boundary layer of the plate.
// refReNumber: Reynolds number, which is based unit length, unit of 1/m.
// refDimensionalTemperature: Dimensional reference temperature, or the total temperature only for the experiment condition.
// freestream_vibration_temperature: Dimensional freestream vibration temperature.
@ -303,11 +314,11 @@ int compressible = 1;
// condition is radiation equilibrium temperature, and 0.8 is the default value.
// refMolecularWeight: the reference molecular weight of gas used for perfect gas. The unit is g/mol.
// Generally, the gas is air. Sometimes, it is experiment gas, such as Nitrogen, Argon, and so on.
int directionMethod = 0;
double refMachNumber = 0.73;
double attackd = 2.79;
double angleSlide = 0.00;
int flowInitMethod = 0;
int inflowParaType = 0;
double refReNumber = 6.5e6;
@ -321,14 +332,6 @@ double freestream_vibration_temperature = 300.00;
//double refDimensionalTemperature = 6051.024; // The total temperature, T*(1+(refGama-1)*M*M/2).
//double refDimensionalPressure = 4.299696E09; // The total pressure, p*(T0/T)^(refGama/(refGama-1)).
//int inflowParaType = 3;
//int nsubsonicInlet = 1;
//int nsubsonicOutlet = 1;
//string inLetFileName = "./bin/subsonicInlet.hypara";
//string outLetFileName = "./bin/subsonicOutlet.hypara";
//double refDimensionalTemperature = 288.144;
//double refDimensionalPressure = 1.01313E05;
// The velocity, temperature and density are fixed.
//int inflowParaType = 4;
//double refDimensionalVelocity = 1000.0;
@ -341,9 +344,15 @@ double freestream_vibration_temperature = 300.00;
// The MachNumber, temperature and pressure are fixed.
//int inflowParaType = 6;
//double refDimensionalTemperature = 293;
//double refDimensionalTemperature = 293.0;
//double refDimensionalPressure = 8886.06;
// The velocity, temperature and pressure are read from file.
//int inflowParaType = 7;
//string weatherDataFilePath = "./WRFData/";
//double longitude = 110.95
//double latitude = 19.61;
double wallTemperature = -1.0;
double radiationCoef = 0.8;
@ -357,35 +366,35 @@ double forceReferenceArea = 1.0; // unit of meter^2.
double TorqueRefX = 0.0; // unit of meter.
double TorqueRefY = 0.0; // unit of meter.
double TorqueRefZ = 0.0; // unit of meter.
double knudsenLength = 1.0; // unit of meter.
double refMolecularWeight = 28.9644; // unit of g/mol.
//-----------------------------------------------------------------------
# Spatial Discretisation #
//-----------------------------------------------------------------------
#*******************************************************************
#************************************************************************
# Struct Solver *
#*******************************************************************
#************************************************************************
// inviscidSchemeName: Spatial discretisation scheme of struct grid.
// Using this when solve structered grid or hybrid.
// -- "vanleer", "steger", "hlle", "lax_f".
// -- "roe", "modified_roe".
// -- "vanleer", "steger", "hlle", "lax_f",
// -- "roe", "modified_roe",
// -- "ausm+", "ausm+w", "ausm+up", "ausmdv", "ausmpw", "ausmpw+".
// isWennScheme: If using WENN Scheme of struct grid.
// 0 -- NO. (default)
// 1 -- Yes.
// str_limiter_name: Limiter of struct grid.
// -- "vanalbada", "vanleer", "minmod", "smooth", "minvan", "3rdsmooth", "3rd_minmod_smooth".
// -- "nolim", no limiter.
// -- "vanalbada_clz", clz supersonic version.
// -- "weno3_js", "wenn3_prm211", "wenn3_zm", "wenn3_zes2", "wenn3_zes3"
// -- "vanalbada", "vanleer", "minmod", "smooth", "minvan", "3rdsmooth", "3rd_minmod_smooth",
// -- "nolim", no limiter,
// -- "vanalbada_clz", clz supersonic version,
// -- "weno3_js", "wenn3_prm211", "wenn3_zm", "wenn3_zes2", "wenn3_zes3".
string inviscidSchemeName = "roe";
int isWennScheme = 0;
string str_limiter_name = "vanalbada";
#*******************************************************************
#************************************************************************
# UnStruct Solver or Common *
#*******************************************************************
#************************************************************************
// viscousType: Viscous model.
// 0 -- Euler.
// 1 -- Lamilar.
@ -410,11 +419,11 @@ string str_limiter_name = "vanalbada";
// 3 -- IDDES.
// uns_scheme_name: Spatial discretisation scheme of Unstruct grid.
// Using this when solve Unstructered grid or hybrid.
// -- "vanleer", "roe", "steger", "kfvs", "lax_f", "hlle".
// -- "vanleer", "roe", "GMRESRoe", "GMRESSteger", "steger", "kfvs", "lax_f", "hlle",
// -- "ausm+", "ausmdv", "ausm+w", "ausmpw", "ausmpw+".
// uns_limiter_name: Limiter of Unstruct grid.
// -- "barth", "vencat", "vanleer", "minmod".
// -- "vanalbada", "smooth", "nnd", "lpz", "1st".
// -- "barth", "vencat", "vanleer", "minmod",
// -- "vanalbada", "smooth", "nnd", "lpz", "1st",
// -- "nolim", no limiter.
// uns_vis_name: Discretisation method of viscous term.
// -- "std", "test", "aver", "new1", "new2".
@ -442,7 +451,7 @@ string str_limiter_name = "vanalbada";
// 3 -- Harten type, which is default used.
// roeEntropyScale: Entropy fix (correction) coefficient scale, default is 1.0.
// It is used to scale the default Roe entropy fix coefficients.
// AusmpwPlusLimiter: A Limiter to make "function w" not change acutely in AusmpwPlus scheme, default is 1.0
// AusmpwPlusLimiter: A Limiter to make "function w" not change acutely in AusmpwPlus scheme, default is 1.0.
//int viscousType = 0;
//string viscousName = "Euler";
@ -475,9 +484,9 @@ double roeEntropyScale = 1.0;
double AusmpwPlusLimiter = 1.0;
//-----------------------------------------------------------------------
# Temporal Discretisation #
//-----------------------------------------------------------------------
#************************************************************************
# Temporal Discretisation *
#************************************************************************
// iunsteady: Steady or unsteady.
// 0 -- steady.
// 1 -- unsteay.
@ -504,11 +513,18 @@ double AusmpwPlusLimiter = 1.0;
// 6 -- Jacobian iteration.
// 7 -- Line LU-SGS.
// 8 -- Matrix LU-SGS.
// 9 -- GMRES.
// iSimplifyViscousTerm: Simplify the computation of viscous term in the Block LU-SGS method. The default value assigns 1 that could speed up the computation.
// Otherwise, the viscous Jacobian matrix Mv should be computed that will increase the memory and time in iteration of the BLUSGS method.
// CFLStart: Started cfl number.
// CFLEnd: End cfl number.
// CFLVaryStep: The number of step when cfl increase from CFLStart to CFLEnd.
// GMRESCFLScale : CFL = CFLStart * GMRESCFLScal^iteration.
// OriginalTscheme : Used for LUSGS and GMres hybrid computing.
// useLUSGSprecond: Initialize flow field for GMRES.
// 0 --Initialize by first order Jacobian matrix.
// 1 --Initialize by LUSGS.
// GMRESInitStep : the number of iteration step of irst order Jacobian matrix or LUSGS for initialize flow field.
// ktmax: Dtratio. dt[i] = MIN(dt[i], ktmax * dtmin / vol[i])
// swapDq: Communication dq between forward/backward sweep of LUSGS or not, default is 0.
// nLUSGSSweeps: Sub iteration of LU-SGS or Block LU-SGS.
@ -533,7 +549,6 @@ double AusmpwPlusLimiter = 1.0;
// 2 -- Pab3D wall function.
// RKStage: The number of Runge-Kutta step.
// lamda: Cofficient of Runge-Kutta step.
int iunsteady = 0;
double physicalTimeStep = 0.01;
double physicalTimeStepDimensional = -0.001;
@ -543,7 +558,7 @@ int ifStaticsReynoldsStress = 0;
int startStatisticStep = 800000;
double statisticalTimePeriod = -1.0;
int statisticMethod = 0;
int linearTwoStepMethods = 1; // 1--BDF1; 2--C-N; 3--BDF2;
int linearTwoStepMethods = 1; // 1--BDF1; 2--C-N; 3--BDF2.
int methodOfDualTime = 3;
int min_sub_iter = 50;
@ -558,7 +573,10 @@ int isUsePreTwall = 0;
double CFLStart = 0.01;
double CFLEnd = 10.0;
int CFLVaryStep = 500;
double GMRESCFLScale = 1.0;
int OriginalTscheme = 9;
int useLUSGSprecond = 1;
int GMRESInitStep = 1000;
double pMaxForCFL = 0.2;
double pMinForCFL = 0.1;
double deltaMaxForCFL = 0.2;
@ -575,7 +593,7 @@ int order = 2;
double visl_min = 0.01;
double turbCFLScale = 1.0;
double csrv = 2.0;
double csrv = 1.0;
double timemax = 1.0e10;
double dtsave = -1.0;
int maxale = 10;
@ -591,10 +609,9 @@ double lamda[] = [0.5, 1.0];
//int RKStage = 4;
//double lamda[] = [0.25, 0.33333333333, 0.5, 1.0];
//-----------------------------------------------------------------------
# File In or Out #
//-----------------------------------------------------------------------
#************************************************************************
# File In or Out *
#************************************************************************
// numberOfGridGroups: The number of grid groups.
// gridfile: The partitioned Grid file path, using relative path,
// which is relative to the working directory.
@ -618,10 +635,8 @@ double lamda[] = [0.5, 1.0];
// nIsComputeWallDist: Whether to compute the wall distance.
// 0 -- Compute wall distance.
// 1 -- Not compute.
//
// protectionFile0 and protectionFile1: Two continuation file of the data protection mechanism.
// wall_heatfluxfile: The file to output the MaxHeatFlux of wall.
int numberOfGridGroups = 1;
string gridfile = "./grid/rae2822_hybrid2d__4.fts";
string wallTemperaturefile = "";
@ -632,10 +647,12 @@ int cellMethodOrNodeMethod = 0;
string resSaveFile = "results/res.dat";
string turbresfile = "results/turbres.dat";
string transitionResFile = "results/transitionRes.dat";
string aircoeffile = "results/aircoef.dat";
string restartNSFile = "results/flow.dat";
string turbfile = "results/turb.dat";
string transitionFile = "results/transition.dat";
string visualfile = "results/tecflow.plt";
string wall_aircoefile = "results/wall_aircoef.dat";
@ -645,11 +662,15 @@ string protectionFile0 = "results/flow0.dat";
string protectionFile1 = "results/flow1.dat";
string wall_heatfluxfile = "results/wall_heatflux.dat";
string protectionTurbFile0 = "results/turb0.dat";
string protectionTurbFile1 = "results/turb1.dat";
string protectionTransitionFile0 = "results/transition0.dat";
string protectionTransitionFile1 = "results/transition1.dat";
int nDumpSurfaceInfo = 0;
string wall_varfile = "";
string jetDefineFile = "bin/jet.hypara";
string sixDofFileName = "results/sixDofInfo.dat";
string derivativeFileName = "results/identify.dat";
string hysteresisFileName = "results/force_beta.plt";
@ -659,7 +680,8 @@ int plotFieldType = 0;
// visualfileType: The file type of visualfile.
// 0 -- Tecplot binary.
// 1 -- Tecplot ASCII.
// 2 -- Ensight binary.
// 3 -- Ensight ASCII.
int visualfileType = 1;
// samplefileMode: The dump mode of sample file.
@ -697,21 +719,21 @@ double upperPlotFieldBox[] = [1.0 1.0 1.0];
// -- vibration temperature(Tv, 33), electron temperature(Te, 34), vibrational energy(Ev, 35), electric energy(Ee, 36),
// -- number density of electron(Ne, 37), dimensioanl density(rho, 38), dimensioanl pressure(p, 39), dimensioanl temperature(T, 40),
// -- gradientUx(41), gradientUy(42), gradientVx(43), gradientVy(44), streamline_u(45), streamline_v(46), streamline_w(47),
// -- transition intermittency(intermittency, 51), -transition momentum thickness reynolds(MomentumThicknessReynolds, 52),
// -- overlap iblank(iblank, 81)
// -- specific heat ratio(gama, 56)
// -- transition intermittency(intermittency, 51), transition momentum thickness reynolds(MomentumThicknessReynolds, 52),
// -- local CFL Number(localCFL, 57), minimal CFL Number(minCFL, 58),
// -- overlap iblank(iblank, 81),
// -- specific heat ratio(gama, 56), Knudsen number(kn, 60), Damkohler number(Da, 61), vibrational nonequilibrium number(Vi, 62).
// Important Warning: Array size of visualVariables MUST be equal to nVisualVariables!!!
// Variables order must from small to big.
//-----------the optional parameters list for the wall boundary condition----------------
// nVisualWallVariables: The number of visual variables on wall.
// visualWallVariables : dumped variable types, listed as following:
// -coefficient of pressure(cp, 0), -coefficient of friction(cf, 1), yplus(2), -non-dimensional heat flux(Q_NonDim, 3), -dimensional heat flux(Q_Dim, 4),
// -pressure on wall(pw, 5), -temperature on wall(Tw, 6), -density on wall(rhow, 7), -heat flux of translational-rotational temperature term(Qtr, 8),
// -heat flux of species diffusion term(Qs, 9), -heat flux of vibrational temperature term(Qv, 10), -heat flux of electron temperature term(Qe, 11),
// -species mass fractions(Ns, 12), -x component of wall velocity(Vx, 13), -y component of wall velocity(Vy, 14), -z component of wall velocity(Vz, 15)
// -slip translational-rotational temperature(Tts, 16), -slip vibrational temperature(Tvs, 17), -slip electron temperature(Tes, 18), -absolute wall velocity(Vs, 19)
// -Stanton number(St, 20), -coefficient of heat rate(Ch, 21), -temperature jump(deltaT, 22), -Grid Reynolds number on wall(Re_w, 23)
// -- coefficient of pressure(cp, 0), coefficient of friction(cf, 1), yplus(2), non-dimensional heat flux(Q_NonDim, 3), dimensional heat flux(Q_Dim, 4),
// -- pressure on wall(pw, 5), temperature on wall(Tw, 6), density on wall(rhow, 7), heat flux of translational-rotational temperature term(Qtr, 8),
// -- heat flux of species diffusion term(Qs, 9), heat flux of vibrational temperature term(Qv, 10), heat flux of electron temperature term(Qe, 11),
// -- species mass fractions(Ns, 12), x component of wall velocity(Vx, 13), y component of wall velocity(Vy, 14), z component of wall velocity(Vz, 15),
// -- slip translational-rotational temperature(Tts, 16), slip vibrational temperature(Tvs, 17), slip electron temperature(Tes, 18), absolute wall velocity(Vs, 19),
// -- Stanton number(St, 20), coefficient of heat rate(Ch, 21), temperature jump(deltaT, 22), Grid Reynolds number on wall(Re_w, 23), Knudsen number(Kn_wall, 24).
int nVisualVariables = 8;
int visualVariables[] = [0, 1, 2, 3, 4, 5, 6, 15];
@ -739,7 +761,9 @@ int dumpStandardModel = 0;
// 1 -- Real cell where the probe is located.
// nProbeVariables: Number of variables want to be dumped for probes monitered.
// probeVariables : Variable types dumped, listed as following:
// -- density(0), u(1), v(2), w(3), pressure(4), temperature(5), mach(6).
// -- density(0), u(1), v(2), w(3), pressure(4), temperature(5), mach(6),
// -- dimensioanl_density(7), dimensioanl_u(8), dimensioanl_v(9),
// -- dimensioanl_w(10), dimensioanl_pressure(11), dimensioanl_temperature(12).
// Important Warning: Array size of probeVariables MUST be equal to nProbeVariables!!!
// probeVariables order must from small to big.
// probeVariablesInterpolationMethod: Interpolation method used to compute the probe variables.
@ -761,12 +785,13 @@ string probesDefineFile = "bin/probes_XYZ.dat";
int searchCellsMethod = 0;
int nProbeVariables = 7;
int probeVariables[] = [0, 1, 2, 3, 4, 5, 6];
int nProbeVariables = 14;
int probeVariables[] = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13];
int probeVariablesInterpolationMethod = 0;
//-----------------------------------------------------------------------
# Turbulence Parameter #
//-----------------------------------------------------------------------
#************************************************************************
# Turbulence Parameter *
#************************************************************************
// turbInterval: Iteration number of turbulence.
// kindOfTurbSource: Kinds of turbulent source.
// 0 -- Original.
@ -774,15 +799,12 @@ int probeVariablesInterpolationMethod = 0;
// transitionType: transition model type
// 0 -- none.
// 2 -- gama-re-theta.
// turbIntensity: (valid while greater than 0.0 ) turbulent intensity of free stream(*100) in transition
// freeturbIntensitySRModify: to use SR modify in free stream turbulent intensity decay or not
// turbIntensity: (valid while greater than 0.0 ) turbulent intensity of free stream(*100) in transition.
// freeturbIntensitySRModify: to use SR modify in free stream turbulent intensity decay or not.
int turbInterval = 1;
int turbOrderStruct = 2;
int kindOfTurbSource = 0;
int mod_turb_res = 0;
double turb_relax = 1.0;
double freeStreamViscosity = 1.0e-3;
double muoo = 3.0;
double kwoo = 5.0;
@ -791,28 +813,27 @@ double turbIntensity = -1.0;
int freeturbIntensitySRModify = 0;
double freeDecayXLocation = 0.0;
int compressibleCorrection = 0;
int prandtlNumberCorrection = 0;
int transitionMaFix = 1;
# maximum eddy viscosity (myt/my) max.
// maximum eddy viscosity (myt/my) max.
double eddyViscosityLimit = 1.0e10;
int monitor_vistmax = 0;
//-----------------------------------------------------------------------
# LES Parameter #
//-----------------------------------------------------------------------
#************************************************************************
# LES Parameter *
#************************************************************************
// iLES: Create LESSolver or not.
// = 1 - Create LESSolver;
// != 1 - not.
// = 1 -- Create LESSolver;
// != 1 -- not.
// amplitudeofDisturb: Amplitude of adding disturb.
// disturbstep: Unsteady time step or steady iteration of adding random disturb.
// iterdisturb: Add random disturb in every sub-iter or only first sub-iter.
// = 0 - in only first sub-iter;
// != 0 - in every sub-iter.
// = 0 -- in only first sub-iter;
// != 0 -- in every sub-iter.
// ipraddisturb: Add density and pressure disturb or not.
// ibodyforce: Add body force in source flux of NS equations or not.
// = 0 - not;
// != 0 - Add body force.
// = 0 -- not;
// != 0 -- Add body force.
// bodyforce: Body force in source flux of NS equations or not.
// utau: friction velocity, using in DNSDisturb.
// sgsmodel: subgrid scale model.
@ -820,23 +841,22 @@ int monitor_vistmax = 0;
// = "dsmCom";
// = "wale";
// = "sigma".
// deltaFunctionType: = 1 - MAX(deltai, deltaj, deltak);
// = 2 - pow(deltai * deltaj *deltak, 1/3);
// = 3 - Devloped by Scotti.
// wallDampingFunctionType: = 0 - no wall function;
// = 1 - van Driest;
// = 2 - developed by Dr. Deng Xiaobing;
// = 3 - developed by Piomelli.
// deltaFunctionType: = 1 -- MAX(deltai, deltaj, deltak);
// = 2 -- pow(deltai * deltaj *deltak, 1/3);
// = 3 -- Devloped by Scotti.
// wallDampingFunctionType: = 0 -- no wall function;
// = 1 -- van Driest;
// = 2 -- developed by Dr. Deng Xiaobing;
// = 3 -- developed by Piomelli.
// turbViscousCutType: turbulent viscosity cut type.
// = 0 - mu_total = mut + mul;
// = 1 - mu_total = max(mut-mul,0)+ mul;
// = 2 - mu_total = max(mut ,0)+ mul.
// = 0 -- mu_total = mut + mul;
// = 1 -- mu_total = max(mut-mul, 0) + mul;
// = 2 -- mu_total = max(mut , 0) + mul.
// smagConstant: constant of smagorinsky model.
// waleConstant: constant of wale model.
// filterDirection [3]: filter variables in i, j, k direction or not.
// averageDirection[3]: average variables in i, j, k direction or not.
// isotropicConstant: constant of isotropic part of SGS stress.
int iLES = 0;
string sgsmodel = "smagorinsky";
int deltaFunctionType = 2;
@ -852,9 +872,9 @@ double testFilterScale = 2.0;
int averageWidth = 1;
int monitorNegativeConstant = 0;
//-----------------------------------------------------------------------
# Other Parameters for Hypersonic Non-equilibrium Gas #
//-----------------------------------------------------------------------
#************************************************************************
# Other Parameters for Hypersonic Non-equilibrium Gas *
#************************************************************************
// dg_high_order:
// 0 -- generic order accuracy.
// 1 -- high order accuracy.
@ -862,9 +882,6 @@ int monitorNegativeConstant = 0;
// 0 -- gas model is fixed in the codes.
// 1 -- gas model is imported from library files.
// isAdaptiveSolver: isAdaptiveSolver = 0 indicates the generic Navier-Stokes solver,
// isAdaptiveSolver>0 indicates the HyFlow self-adaptive solver.
// 1 -- using HyFlow self-adaptive solver where the switch is controlled by the total iteration steps.
// 2 -- using HyFlow self-adaptive solver where the switch is controlled by variation of the key residual.
// nm: Equation number of the physics, but is out of commision now.
// 4 -- for 2D.
// 5 -- for 3D.
@ -886,14 +903,13 @@ int monitorNegativeConstant = 0;
// nEquilibriumGas: the variable is valid when the condition of nchem = 0 is satisfied.
// 0 -- perfect gas.
// 5, 7, 11 -- equilibrium gas, meanwhile, its value denotes the number of gas component.
// nPCWCycleStep: the maximum step number of iteration in the module of computing species mass fractions with the partial catalytic wall(PCW) condition.
// the value equals to or is greater than 1, and 3 is for default value.
// nRETCycleStep: the maximum step number of iteration in the module of computing radiation equilibrium temperature on wall.
// the value equals to or is greater than 1, and 3 is for default value.
// nSLIPCycleStep:the maximum step number of iteration in the module of computing slip temperature, slip velocity and slip species mass fraction.
// the value equals to or is greater than 1, and 3 is for default value.
// nPCWCycleStep: The maximum step number of iteration in the module of computing species mass fractions with the partial catalytic wall(PCW) condition.
// The value equals to or is greater than 1, and 3 is for default value.
// nRETCycleStep: The maximum step number of iteration in the module of computing radiation equilibrium temperature on wall.
// The value equals to or is greater than 1, and 3 is for default value.
// nSLIPCycleStep:The maximum step number of iteration in the module of computing slip temperature, slip velocity and slip species mass fraction.
// The value equals to or is greater than 1, and 3 is for default value.
// nSlipBCModel: The computational model of slip boundary conditions.
// 0 -- no slip.
// 1 -- the conventional Maxwell slip conditions.
// 2 -- the Gokcen slip conditions.
@ -913,10 +929,13 @@ int monitorNegativeConstant = 0;
// 1 -- One-temperature model.
// 2 -- Two-temperature model.
// 3 -- Three-temperature model.
// isUseNoneqCond:
// 0 -- compute the source terms without any conditions.
// 1 -- compute the source terms using the non-equilibrium condition.
// frozenCondition: the threshold value of frozen chemical flow condition, 0.1 is the default value.
// nIdealState: whether take all gas species as ideal gas for gas-mixture process.
// 0 -- No.
// 1 -- Yes.
// nTEnergyModel: the method to computing temperature energy model.
// 1 -- Yes. // nTEnergyModel: the method to computing temperature energy model.
// 0 -- the energy term is computed using the conventional method.
// 1 -- the energy term is computed using the polynomial fitting method.
// 2 -- the energy term is computed using the piecewise polynomial fitting method.
@ -946,14 +965,13 @@ int monitorNegativeConstant = 0;
// 1.0 -- proposed by Maxwell.
// sqrt(2/PI)~0.8 -- used for "micro-slip", namely the actual velocity slip at the wall.
// 1.146 -- proposed for an additional "fictitious" velocity slip.
// chemicalRelaxCorf: The value is in range of [0.001, 1.0].
// spectrumRadiusCoef: The value is in range of [0.0, 2.0].
// staticPressureRelaxCorf: The value is in range of [0.1, 1.0].
// nIsChemicalFreeze: the flag to freeze the chemical reactions.
// 0 -- not freeze, the chemical reaction sources will be calculated.
// 1 -- freezes the chemical reactions, the chemical reaction sources will not be calculated.// veTemperatureMin: The minimum of Tv and Te
// 1 -- freezes the chemical reactions, the chemical reaction sources will not be calculated.
// veTemperatureMin: The minimum of Tv and Te.
// maxViscous: the maximum of Viscous.
// trTemperatureMin: the minimum value of trTemperature.
// veTemperatureMin: the minimum value of veTemperature.
@ -965,36 +983,34 @@ int monitorNegativeConstant = 0;
// nSpeciesLimit: limitter of gas species
// 0 -- not used.
// 1 -- used.
// nTurblenceForChemical: the coupled mode of Turblence and Chemical reaction
// nTurblenceForChemical: the coupled mode of Turblence and Chemical reaction.
// 0 -- method 0.
// 1 -- method 1.
// nViscosityFluxSublevelModified: Modified for ViscosityFlux on Sublevel grid
// nViscosityFluxSublevelModified: Modified for ViscosityFlux on Sublevel grid.
// 0 -- not used.
// 1 -- used.
// nViscosityPeModified: Pe Modified for ViscosityCoef
// nViscosityPeModified: Pe Modified for ViscosityCoef.
// 0 -- not used.
// 1 -- used.
// nChemcalSourceModified: Modified on ChemcalSource
// nChemcalSourceModified: Modified on ChemcalSource.
// 0 -- not used.
// 1 -- used.
// nChemcalSourceEsMethod: Modified on ChemcalSource
// 0 -- approximation algorithm 1 (Ori.)
// 1 -- approximation algorithm 2 (New)
// nChemcalSourceEsMethod: Modified on ChemcalSource.
// 0 -- approximation algorithm 1 (Ori).
// 1 -- approximation algorithm 2 (New).
// nMaxStepTemperature: the iterative steps of temperature.
// veTemperatureMinModified: Modified on the minimum of Tve for Cvvs
// 0 -- not used
// 1 -- used
// nDiagonalModified: Modified on Diagonal
// 0 -- not used
// 1 -- Ori.
// 2 -- new
// veTemperatureMinModified: Modified on the minimum of Tve for Cvvs.
// 0 -- not used.
// 1 -- used.
// nDiagonalModified: Modified on Diagonal.
// 0 -- not used.
// 1 -- new.
// nDiagonalModifiedTurb: Modified on Diagonal for turbulence.
// 0 -- not used.
// 1 -- new.
// nGradPrimtiveMethod:
// 0 -- Ori.
// 1 -- new
// 1 -- new.
// nAblation:
// 0 -- The wall ablation is not computed.
// 1 -- The wall ablation is computed.
@ -1017,8 +1033,8 @@ int monitorNegativeConstant = 0;
// "Mars-Pa8" is for Park model of Mars gas, "Mars-Mc8" for McKenzie model of Mars gas.
// "Combustion-12" -- indicates the Combustion Chamber Gas Model which includes 12-species-20-reactions.
// "Gas-Mixture" -- indicates the process of mixing gas without reacting.
// for struct solver mixing two species£¨SpeciesA, SpeciesB£©.
// for unstruct solver mixing multi-species£¨O2 NO CO CO2 H2 N2 Air CH4£©.
// for struct solver mixing two species<65><73>SpeciesA, SpeciesB<73><42>.
// for unstruct solver mixing multi-species<65><73>O2 NO CO CO2 H2 N2 Air CH4<48><34>.
// For self-definition model, the gasfile is used to indicate the file path of the new gas model.
// speciesName: Used to list the names of each species, while each species name is separated by the symbol of comma.
// initMassFraction: Used to list the initial mass fractions of species in accordance with the sequence of names in the parameter speciesName.
@ -1040,13 +1056,16 @@ int monitorNegativeConstant = 0;
// firstStepError : the residual error of the first step iteration for the self-adaptive calculation.
// secondStepError : the residual error of the second step iteration for the self-adaptive calculation.
// thirdStepError : the residual error of the third step iteration for the self-adaptive calculation.
// useHyflowSetting : Setting for HyFLOW GUI.
// 0 -- PHengLEI
// 1 -- HyFLOW
// nProtectData: Use the continuation file data protection mechanism.
// 0 -- no
// 1 -- yes
// 0 -- no.
// 1 -- yes.
// nTvChange: Judge whether the Tv equals Ttr.
// 0 -- yes.
// 1 -- no.
// isMoleFractionType: 1 indicates the mass fractions, or else the mole fractions.
// nFraction: the initial fractions type of species.
// 0 -- mass fraction.
// 1 -- mole fraction.
int dg_high_order = 0;
int iapplication = 0;
int isAdaptiveSolver = 0;
@ -1114,6 +1133,7 @@ double densityMin = 1.0e-8;
double densityMinFactor = 0.1;
double tAdjustmentFactor = 10.0;
double iniSpeedCoef = 1.0;
int iniSpeedMode = 0;
int nDebug = 0;
int nSpeciesLimit = 1;
@ -1125,18 +1145,21 @@ int nChemcalSourceEsMethod = 1;
int nMaxStepTemperature = 5;
int veTemperatureMinModified = 1;
int nDiagonalModified = 0;
int nDiagonalModifiedTurb = 0;
int nGradPrimtiveMethod = 1;
int nInviscidFluxModify = 1;
int nQlLimitMethod = 2;
int nSpeciesForWallMethod = 1;
int nDensityForWallMethod = 0;
int wallMultiTemperature = 0;
int nProtectData = 0;
int useHyflowSetting = 0;
int nAblation = 0;
int isInjection = 0;
int nViscosityModel = 0;
int nMarsModel = 0;
int nTvChange = 0;
int isMoleFractionType = 0;
string gasfile = "DK5";
//string gasfile = "./chemical/Dunn-Kang_air5s11r.dat";
string speciesName = "O, O2, NO, N, N2";
@ -1173,9 +1196,17 @@ double molecularWeightSpeciesB = 30.0;
//string speciesName = "O2, N2";
//string initMassFraction = "1.0, 0.0";
int nFraction = 0;
int nContinueModel = 0;
int nChemicalFlowStep = 0;
int ifStartFromPerfectGasResults = 0;
int isUseNoneqCond = 0;
double frozenCondition = 0.01;
int nLeakageMonitor = 0;
double totalLeakageVolume = 1000.0;
double monitorThresholdValue = 0.05;
double sprayFactor = 0.0;
#########################################################################
// Multi-Grid parameters.
@ -1196,7 +1227,6 @@ int ifStartFromPerfectGasResults = 0;
// 1 -- zero order.
// 2 -- first-order. (default)
// mgCorrectionLimit: Multi-grid correction limit.
int nMGLevel = 1;
int MGCoarsestIteration = 1;
int MGPreIteration = 1;
@ -1226,9 +1256,9 @@ string holeFullFileName = "./grid/holeFullFile.dat";
string linkFileName = "./grid/topology.dat";
string zoneInverseFileName = "./grid/zoneInverseMapping.inp";
#########################################################################
# High Order Struct Solver #
#########################################################################
#************************************************************************
# High Order Struct Solver *
#************************************************************************
// isFVMOrFDM:
// 0 -- NSSolverStruct using Finite Volume Method.
// 1 -- NSSolverStruct using Finite Differ Method.
@ -1273,10 +1303,29 @@ int allReduceStep = 1;
// codeOfOversetGrid: Overlapping(overset) grid or not.
// 0 -- NON-overlapping grid.
// 1 -- Overlapping grid.
// oversetInterpolationMethod: the method of overset interpolation while field simulation
// oversetInterpolationMethod: the method of overset interpolation while field simulation.
// 0 -- set the acceptor cell value by donor cell value.
// 1 -- set the acceptor cell value by distance weight of donor cell value.
// readOversetFileOrNo: Whether to read overset-file(.ovs) that has been generated.
// 0 -- no.
// 1 -- yes.
// symetryOrNot: If there exist symetryplanes(XY plane, the coordinate of Z direction is 0) in
// the current overset grid(only for three dimension).
// 0 -- no.
// 1 -- yes.
// readInAuxiliaryInnerGrid: Whether to read auxiliary inner grid.
// 0 -- no.
// 1 -- yes.
// walldistMainZone: The initial value of background grid which does not exist wall boundary condition.
// toleranceForOversetSearch: The tolerance of overset searching zone to judge whether the obtained node is in the current computing cell.
// toleranceForOversetBox: The tolerance of building the minimum box of computing cells in the overlapping region.
// twoOrderInterpolationOrNot: The number of interpolated cell layers in the overlapping boundary.
// 0 -- one layer.
// 1 -- two layers.
// keyEnlargeOfActiveNodes: The number of enlarged overset-boundary layers in the buffer region.
// outTecplotOverset: Whether to dump out the flowfield data after the progress of overset configure.
// 0 -- no.
// 1 -- yes.
int codeOfOversetGrid = 0;
int oversetInterpolationMethod = 0;
int readOversetFileOrNot = 0;
@ -1295,7 +1344,6 @@ int twoOrderInterpolationOrNot = 0;
int keyEnlargeOfActiveNodes = 0;
int outTecplotOverset = 0;
int outPutOversetVisualization = 0;
int numberOfMovingBodies = 2;
// ----------------- ALE configuration ------------------------------
@ -1306,34 +1354,40 @@ double referenceLength = 1.0;
double referenceVelocity = 1.0;
double referenceDensity = 1.0;
int strategyForFaceNormalVelocity = 0; //0-By Sweeping volume; 1-By face center 1st; 2-By face center 2nd;
int strategyForGCLSource = 0; //0-present; 1-Ahn;
int strategyForFaceNormalVelocity = 0; // 0-By Sweeping volume; 1-By face center 1st; 2-By face center 2nd.
int strategyForGCLSource = 0; // 0-present; 1-Ahn.
//0:1st-Admas-Bashforth; 1:2nd-Admas-Bashforth; 2:1st-Implicit-Euler; 3:2nd-Implicit Euler; 4:2nd-Adams-Moulton; 5:3rd-Adams-Moulton
// 0: 1st-Admas-Bashforth; 1: 2nd-Admas-Bashforth; 2: 1st-Implicit-Euler; 3: 2nd-Implicit Euler; 4: 2nd-Adams-Moulton; 5: 3rd-Adams-Moulton.
int methodForKineticEquation = 0;
double relaxParameterOfKinetic = 1.0;
#########################################################################
# motive information #
#########################################################################
#************************************************************************
# motive information *
#************************************************************************
int numberOfMovingBodies = 1;
############################## body0 ##############################
//mass of parts
// mass of parts.
double mass_0 = 1.0;
//mass matrix of parts Ixx Iyy Izz Ixy Ixz Iyz
// gravity of parts (along negative direction in Y-axis, eg. 9.8).
double gravity_0 = 0.0;
// mass matrix of parts Ixx Iyy Izz Ixy Ixz Iyz.
double massMatrix_0[] = 1e-7, 1e-6, 1e-6, 0.0, 0.0, 0.0;
//initial six DOF position information of parts. xc yc zc
// initial six DOF position information of parts. xc yc zc.
double massCenter_0[] = 0.0, 0.0, 0.0;
//initial six DOF position information of parts. angleX angleY angleZ
// if reset mass center while restart.
int resetMassCenter_0 = 0;
// position offset of parts. dx dy dz.
double massCenterDxyz_0[] = 0.0, 0.0, 0.0;
// initial six DOF position information of parts. angleX angleY angleZ.
double attitudeAngle_0[] = 0.0, 0.0, 0.0;
//initial six DOF move information of parts. vc vy vz
// initial six DOF move information of parts. vc vy vz.
double massCenterVelocity_0[] = 0.0, 0.0, 0.0;
//initial six DOF move information of parts. omigX omigY omigZ
// initial six DOF move information of parts. omigX omigY omigZ.
double angularVelocity_0[] = 0.0, 0.0, 0.0;
// the object that the parts belong to.
int fartherIndex_0 = -1;
//the assembly position of the parts. xc yc zc angleX angleY angleZ
// the assembly position of the parts. xc yc zc angleX angleY angleZ.
double configPamameter_0[] = 0.0, 0.0, 0.0, 0.0, 0.0, 0.0;
// the move pattern of the parts.
// -1 given motion partten.
@ -1349,23 +1403,24 @@ double configPamameter_0[] = 0.0 ,0.0 ,0.0 ,0.0 ,0.0
int RBDMethod_0 = 0;
double amplitude_0 = 0.0;
double reduceFrequency_0 = 0.0;
//direction of rotation
// direction of rotation.
// 1 -- clockwise from the point of view along the positive x axis.
// -1 -- anticlockwise from the point of view along the positive x axis.
int direction_0 = -1;
double rotateFrequency_0 = 0.0;
//string uDFSixDofFileName_0 = "./Bin/UDFSixDof.Parameter";
//additional force (system axis) fX fY fZ
// dimensional physical time for additional force(s).
double addedForceTime_0[] = 0.0;
// additional force(inertia system) fX fY fZ.
double addedForce_0[] = 0.0, 0.0, 0.0;
//additional moment of Force (system axis) mX mY mZ
// additional moment(inertia system) mX mY mZ.
double addedMoment_0[] = 0.0, 0.0, 0.0;
// the deformation method of the parts.
int morphing_0 = 0;
// post indentify
// post indentify.
int integralOrder = 4;
// ---------------- ATP read --------------------------------------------
//@int inflowParaType = 0;
//@double refReNumber = 6.5e6;
@ -1379,18 +1434,34 @@ int integralOrder = 4;
//@string outLetFileName = "./bin/subsonicOutlet.hypara";
//@double refDimensionalVelocity = 0;
//@double refDimensionalDensity = 0;
#########################################################################
# Old Parameter #
#########################################################################
//@string weatherDataFilePath = "./WRFData/";
//@double longitude = 110.95
//@double latitude = 19.61;
#************************************************************************
# Old Parameter *
#************************************************************************
int isPlotVolumeField = 0;
#************************************************************************
# partial flow field setting Parameter *
#************************************************************************
//int nPartialParameter = 0; // 0/1/2
//int nNumberOfPartialField = 0; //
//int nStartGridIndex[] = [0];
//int nEndGridIndex[] = [0];
#########################################################################
# Incompressible Parameter #
#########################################################################
//double partialCFL[] = [0.0];
//double partialSpeedCoef[] = [0.0];
//double partialSpeed[] = [0.0];
//double partialAttackd[] = [0.0];
//double partialSlide[] = [0.0];
//double partialPressure[] = [0.0];
//double partialTemperature[] = [0.0];
//double partialMassFractions[] = [0.0];
#************************************************************************
# Incompressible Parameter *
#************************************************************************
int isSolveEnergyEquation = 0;
int isSolveTurbEquation = 0;
int isSolveSpeciesEquation = 0;

View File

@ -5,9 +5,12 @@
// 0 -- Unstructured grid.
// 1 -- Structured grid.
// 2 -- Hybrid grid, include both of unstructured and structured grid.
// axisup: Type of Cartisien coordinates system, used in grid conversion.
// 1 -- Y upward. (default)
// 2 -- Z upward.
// nAxisRotateTimes: number of axis rotating times, zero (default) meaning without rotating.
// axisRotateOrder : axis rotating order.
// 1 -- X-axis.
// 2 -- Y-axis.
// 3 -- Z-axis.
// axisRotateAngles: axis rotating angles (degree), which are corresponding to the axis rotating order.
// from_gtype: Type of grid data type in grid conversion process.
// -1 -- MULTI_TYPE.
// 1 -- PHengLEI, *.fts.
@ -35,7 +38,9 @@
int gridtype = 2;
// default
int axisup = 1;
int nAxisRotateTimes = 0;
int axisRotateOrder[] = [1, 2, 3];
double axisRotateAngles[] = [0.0, 0.0, 0.0];
int from_gtype = 2;
int omit_no_bound_bc = 1;

View File

@ -8,6 +8,7 @@
// Platform for Hybrid Engineering Simulation of Flows +
// China Aerodynamics Research and Development Center +
// (C) Copyright, Since 2010 +
// PHengLEI 2212 +
//+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
###########################################################################
# Default parameters for Grid conversion #
@ -46,19 +47,24 @@ int gridobj = 1;
int multiblock = 0;
int iadapt = 0;
int SymmetryFaceVector = 1;
int gridReorder = 0;
int faceReorderMethod = 0;
// axisup: Type of Cartisien coordinates system, used in grid conversion.
// 1 -- Y upward. (default)
// 2 -- Z upward.
int axisup = 1;
// nAxisRotateTimes: number of axis rotating times, zero (default) meaning without rotating.
// axisRotateOrder : axis rotating order.
// 1 -- X-axis.
// 2 -- Y-axis.
// 3 -- Z-axis.
// axisRotateAngles: axis rotating angles (degree), which are corresponding to the axis rotating order.
int nAxisRotateTimes = 0;
int axisRotateOrder[] = [1, 2, 3];
double axisRotateAngles[] = [0.0, 0.0, 0.0];
// omit_no_bound_bc: What's boundary condition for the type of "no_boundary_condition".
// 0 -- Interface. (default)
// 1 -- Physical boundary condition, used in Hybrid solver.
int omit_no_bound_bc = 0;
int omitRepeatInterface = 1;
//-----------------------------------------------------------------------
# Grid data type #
@ -89,7 +95,6 @@ int dumpOldGrid = 0;
int numberOfGridFile = 1;
string from_gfile = "./grid/rae2822_hybrid2d.cas";
string from_gfile1 = "";
string out_gfile = "./grid/flat_laminr_133_85_2d.fts";
// ----------------- some advanced choices ------------------------------
@ -178,7 +183,6 @@ double influencePara = 25.0;
which only support one direction.
// rotationAngle: The relative angle between two periodic face.
which is recorded in degrees.
int periodicType = 0;
double translationLength[] = [0.0, 0.0, 0.0];
double rotationAngle = 0.0;
@ -192,7 +196,6 @@ double rotationAngle = 0.0;
// 2 -- refine structured grid.
// maxproc: The number of partition zones that want to be divided into.
// numberOfMultifile: The number of partition grid files that want to be dumped out.
int pgridtype = 0;
int maxproc = 4;
int numberOfMultifile = 1;
@ -207,8 +210,8 @@ int blockIndexOfMark = 0;
int cellIndexOfMark[] = [185, 30, 1];
// parallelStrategy:
//! -# 0 : each zone is assigned to the one that defined in grid partition procedure.
//! -# 1 : random assigned for each zone or by some else ways.
// 0 -- each zone is assigned to the one that defined in grid partition procedure.
// 1 -- random assigned for each zone or by some else ways.
int parallelStrategy = 1;
//-----------------------------------------------------------------------
@ -232,7 +235,6 @@ string partition_grid_file = "./grid/sphere_mixed__4.fts";
// 1 -- perfect balance.
// maxproc -- perfect imbalance.
// 1.05 -- recommended.
int omit_no_bound_bc = 0;
int npartmethod = 1;
int parallelPartitionMethod = 2;
@ -253,24 +255,30 @@ int numberOfMultigrid = 1;
// intervalStepSample: The step intervals for monitored probes variables file 'sample.dat' saved.
// intervalStepForce: The step intervals for aerodynamics coefficients file 'aircoef.dat' saved.
// intervalStepRes: The step intervals for residual file 'res.dat' saved.
// ifLowSpeedPrecon: Precondition process to accelerate convergence for low speed flow.
// 0 -- no precondition process. (default, mach > 0.3)
// 1 -- carry out precondition process. (mach number <= 0.3)
int maxSimuStep = 20000;
int intervalStepFlow = 1000;
int intervalStepPlot = 1000;
int intervalStepSample = 1000;
int intervalStepForce = 100;
int intervalStepRes = 10;
int ifLowSpeedPrecon = 0;
// compressible:
// 0 -- incompressible flow.
// 1 -- compressible flow. (default)
int compressible = 1;
// ifLowSpeedPrecon: Precondition process to accelerate convergence for low speed flow.
// 0 -- no precondition process. (default, mach > 0.3)
// 1 -- carry out precondition process. (mach number <= 0.3)
// Kprec: The coefficient K for the cut-off velocity.
// 1.0~3.0 is suggested. (default, 3.0)
// preconFarfieldBCMethod: The precondition method for farfield boundary condition.
// 0 -- precondition far-field boundary based on riemann invariants.
// 1 -- Turkel's simplified far-field boundary condition.
int ifLowSpeedPrecon = 0;
double Kprec = 3.0;
int preconFarfieldBCMethod = 1;
//-----------------------------------------------------------------------
# CFD Control Parameter #
//-----------------------------------------------------------------------
@ -281,9 +289,12 @@ int compressible = 1;
// 0 -- the nondimensional conditions.
// 1 -- the flight conditions.
// 2 -- the experiment conditions.
// 3 -- the subsonic boundary conditions.
// 3 -- the subsonic boundary conditions. (Useless!)
// 4 -- the condition that the velocity, temperature and density are given.
// 5 -- the condition that the velocity, temperature and pressure are given.
//flowInitMethod: Flow field initialization method.
// 0 -- The entire flow field is initialized according to Infinite velocity.
// 1 -- The velocity near the wall is initialized according to the boundary layer of the plate.
// refReNumber: Reynolds number, which is based unit length, unit of 1/m.
// refDimensionalTemperature: Dimensional reference temperature, or the total temperature only for the experiment condition.
// freestream_vibration_temperature: Dimensional freestream vibration temperature.
@ -303,11 +314,11 @@ int compressible = 1;
// condition is radiation equilibrium temperature, and 0.8 is the default value.
// refMolecularWeight: the reference molecular weight of gas used for perfect gas. The unit is g/mol.
// Generally, the gas is air. Sometimes, it is experiment gas, such as Nitrogen, Argon, and so on.
int directionMethod = 0;
double refMachNumber = 0.73;
double attackd = 2.79;
double angleSlide = 0.00;
int flowInitMethod = 0;
int inflowParaType = 0;
double refReNumber = 6.5e6;
@ -321,14 +332,6 @@ double freestream_vibration_temperature = 300.00;
//double refDimensionalTemperature = 6051.024; // The total temperature, T*(1+(refGama-1)*M*M/2).
//double refDimensionalPressure = 4.299696E09; // The total pressure, p*(T0/T)^(refGama/(refGama-1)).
//int inflowParaType = 3;
//int nsubsonicInlet = 1;
//int nsubsonicOutlet = 1;
//string inLetFileName = "./bin/subsonicInlet.hypara";
//string outLetFileName = "./bin/subsonicOutlet.hypara";
//double refDimensionalTemperature = 288.144;
//double refDimensionalPressure = 1.01313E05;
// The velocity, temperature and density are fixed.
//int inflowParaType = 4;
//double refDimensionalVelocity = 1000.0;
@ -341,9 +344,15 @@ double freestream_vibration_temperature = 300.00;
// The MachNumber, temperature and pressure are fixed.
//int inflowParaType = 6;
//double refDimensionalTemperature = 293;
//double refDimensionalTemperature = 293.0;
//double refDimensionalPressure = 8886.06;
// The velocity, temperature and pressure are read from file.
//int inflowParaType = 7;
//string weatherDataFilePath = "./WRFData/";
//double longitude = 110.95
//double latitude = 19.61;
double wallTemperature = -1.0;
double radiationCoef = 0.8;
@ -357,35 +366,35 @@ double forceReferenceArea = 1.0; // unit of meter^2.
double TorqueRefX = 0.0; // unit of meter.
double TorqueRefY = 0.0; // unit of meter.
double TorqueRefZ = 0.0; // unit of meter.
double knudsenLength = 1.0; // unit of meter.
double refMolecularWeight = 28.9644; // unit of g/mol.
//-----------------------------------------------------------------------
# Spatial Discretisation #
//-----------------------------------------------------------------------
#*******************************************************************
#************************************************************************
# Struct Solver *
#*******************************************************************
#************************************************************************
// inviscidSchemeName: Spatial discretisation scheme of struct grid.
// Using this when solve structered grid or hybrid.
// -- "vanleer", "steger", "hlle", "lax_f".
// -- "roe", "modified_roe".
// -- "vanleer", "steger", "hlle", "lax_f",
// -- "roe", "modified_roe",
// -- "ausm+", "ausm+w", "ausm+up", "ausmdv", "ausmpw", "ausmpw+".
// isWennScheme: If using WENN Scheme of struct grid.
// 0 -- NO. (default)
// 1 -- Yes.
// str_limiter_name: Limiter of struct grid.
// -- "vanalbada", "vanleer", "minmod", "smooth", "minvan", "3rdsmooth", "3rd_minmod_smooth".
// -- "nolim", no limiter.
// -- "vanalbada_clz", clz supersonic version.
// -- "weno3_js", "wenn3_prm211", "wenn3_zm", "wenn3_zes2", "wenn3_zes3"
// -- "vanalbada", "vanleer", "minmod", "smooth", "minvan", "3rdsmooth", "3rd_minmod_smooth",
// -- "nolim", no limiter,
// -- "vanalbada_clz", clz supersonic version,
// -- "weno3_js", "wenn3_prm211", "wenn3_zm", "wenn3_zes2", "wenn3_zes3".
string inviscidSchemeName = "roe";
int isWennScheme = 0;
string str_limiter_name = "vanalbada";
#*******************************************************************
#************************************************************************
# UnStruct Solver or Common *
#*******************************************************************
#************************************************************************
// viscousType: Viscous model.
// 0 -- Euler.
// 1 -- Lamilar.
@ -410,11 +419,11 @@ string str_limiter_name = "vanalbada";
// 3 -- IDDES.
// uns_scheme_name: Spatial discretisation scheme of Unstruct grid.
// Using this when solve Unstructered grid or hybrid.
// -- "vanleer", "roe", "steger", "kfvs", "lax_f", "hlle".
// -- "vanleer", "roe", "GMRESRoe", "GMRESSteger", "steger", "kfvs", "lax_f", "hlle",
// -- "ausm+", "ausmdv", "ausm+w", "ausmpw", "ausmpw+".
// uns_limiter_name: Limiter of Unstruct grid.
// -- "barth", "vencat", "vanleer", "minmod".
// -- "vanalbada", "smooth", "nnd", "lpz", "1st".
// -- "barth", "vencat", "vanleer", "minmod",
// -- "vanalbada", "smooth", "nnd", "lpz", "1st",
// -- "nolim", no limiter.
// uns_vis_name: Discretisation method of viscous term.
// -- "std", "test", "aver", "new1", "new2".
@ -442,7 +451,7 @@ string str_limiter_name = "vanalbada";
// 3 -- Harten type, which is default used.
// roeEntropyScale: Entropy fix (correction) coefficient scale, default is 1.0.
// It is used to scale the default Roe entropy fix coefficients.
// AusmpwPlusLimiter: A Limiter to make "function w" not change acutely in AusmpwPlus scheme, default is 1.0
// AusmpwPlusLimiter: A Limiter to make "function w" not change acutely in AusmpwPlus scheme, default is 1.0.
//int viscousType = 0;
//string viscousName = "Euler";
@ -475,9 +484,9 @@ double roeEntropyScale = 1.0;
double AusmpwPlusLimiter = 1.0;
//-----------------------------------------------------------------------
# Temporal Discretisation #
//-----------------------------------------------------------------------
#************************************************************************
# Temporal Discretisation *
#************************************************************************
// iunsteady: Steady or unsteady.
// 0 -- steady.
// 1 -- unsteay.
@ -504,11 +513,18 @@ double AusmpwPlusLimiter = 1.0;
// 6 -- Jacobian iteration.
// 7 -- Line LU-SGS.
// 8 -- Matrix LU-SGS.
// 9 -- GMRES.
// iSimplifyViscousTerm: Simplify the computation of viscous term in the Block LU-SGS method. The default value assigns 1 that could speed up the computation.
// Otherwise, the viscous Jacobian matrix Mv should be computed that will increase the memory and time in iteration of the BLUSGS method.
// CFLStart: Started cfl number.
// CFLEnd: End cfl number.
// CFLVaryStep: The number of step when cfl increase from CFLStart to CFLEnd.
// GMRESCFLScale : CFL = CFLStart * GMRESCFLScal^iteration.
// OriginalTscheme : Used for LUSGS and GMres hybrid computing.
// useLUSGSprecond: Initialize flow field for GMRES.
// 0 --Initialize by first order Jacobian matrix.
// 1 --Initialize by LUSGS.
// GMRESInitStep : the number of iteration step of irst order Jacobian matrix or LUSGS for initialize flow field.
// ktmax: Dtratio. dt[i] = MIN(dt[i], ktmax * dtmin / vol[i])
// swapDq: Communication dq between forward/backward sweep of LUSGS or not, default is 0.
// nLUSGSSweeps: Sub iteration of LU-SGS or Block LU-SGS.
@ -533,7 +549,6 @@ double AusmpwPlusLimiter = 1.0;
// 2 -- Pab3D wall function.
// RKStage: The number of Runge-Kutta step.
// lamda: Cofficient of Runge-Kutta step.
int iunsteady = 0;
double physicalTimeStep = 0.01;
double physicalTimeStepDimensional = -0.001;
@ -543,7 +558,7 @@ int ifStaticsReynoldsStress = 0;
int startStatisticStep = 800000;
double statisticalTimePeriod = -1.0;
int statisticMethod = 0;
int linearTwoStepMethods = 1; // 1--BDF1; 2--C-N; 3--BDF2;
int linearTwoStepMethods = 1; // 1--BDF1; 2--C-N; 3--BDF2.
int methodOfDualTime = 3;
int min_sub_iter = 50;
@ -558,7 +573,10 @@ int isUsePreTwall = 0;
double CFLStart = 0.01;
double CFLEnd = 10.0;
int CFLVaryStep = 500;
double GMRESCFLScale = 1.0;
int OriginalTscheme = 9;
int useLUSGSprecond = 1;
int GMRESInitStep = 1000;
double pMaxForCFL = 0.2;
double pMinForCFL = 0.1;
double deltaMaxForCFL = 0.2;
@ -575,7 +593,7 @@ int order = 2;
double visl_min = 0.01;
double turbCFLScale = 1.0;
double csrv = 2.0;
double csrv = 1.0;
double timemax = 1.0e10;
double dtsave = -1.0;
int maxale = 10;
@ -591,10 +609,9 @@ double lamda[] = [0.5, 1.0];
//int RKStage = 4;
//double lamda[] = [0.25, 0.33333333333, 0.5, 1.0];
//-----------------------------------------------------------------------
# File In or Out #
//-----------------------------------------------------------------------
#************************************************************************
# File In or Out *
#************************************************************************
// numberOfGridGroups: The number of grid groups.
// gridfile: The partitioned Grid file path, using relative path,
// which is relative to the working directory.
@ -618,10 +635,8 @@ double lamda[] = [0.5, 1.0];
// nIsComputeWallDist: Whether to compute the wall distance.
// 0 -- Compute wall distance.
// 1 -- Not compute.
//
// protectionFile0 and protectionFile1: Two continuation file of the data protection mechanism.
// wall_heatfluxfile: The file to output the MaxHeatFlux of wall.
int numberOfGridGroups = 1;
string gridfile = "./grid/rae2822_hybrid2d__4.fts";
string wallTemperaturefile = "";
@ -632,10 +647,12 @@ int cellMethodOrNodeMethod = 0;
string resSaveFile = "results/res.dat";
string turbresfile = "results/turbres.dat";
string transitionResFile = "results/transitionRes.dat";
string aircoeffile = "results/aircoef.dat";
string restartNSFile = "results/flow.dat";
string turbfile = "results/turb.dat";
string transitionFile = "results/transition.dat";
string visualfile = "results/tecflow.plt";
string wall_aircoefile = "results/wall_aircoef.dat";
@ -645,11 +662,15 @@ string protectionFile0 = "results/flow0.dat";
string protectionFile1 = "results/flow1.dat";
string wall_heatfluxfile = "results/wall_heatflux.dat";
string protectionTurbFile0 = "results/turb0.dat";
string protectionTurbFile1 = "results/turb1.dat";
string protectionTransitionFile0 = "results/transition0.dat";
string protectionTransitionFile1 = "results/transition1.dat";
int nDumpSurfaceInfo = 0;
string wall_varfile = "";
string jetDefineFile = "bin/jet.hypara";
string sixDofFileName = "results/sixDofInfo.dat";
string derivativeFileName = "results/identify.dat";
string hysteresisFileName = "results/force_beta.plt";
@ -659,7 +680,8 @@ int plotFieldType = 0;
// visualfileType: The file type of visualfile.
// 0 -- Tecplot binary.
// 1 -- Tecplot ASCII.
// 2 -- Ensight binary.
// 3 -- Ensight ASCII.
int visualfileType = 1;
// samplefileMode: The dump mode of sample file.
@ -697,21 +719,21 @@ double upperPlotFieldBox[] = [1.0 1.0 1.0];
// -- vibration temperature(Tv, 33), electron temperature(Te, 34), vibrational energy(Ev, 35), electric energy(Ee, 36),
// -- number density of electron(Ne, 37), dimensioanl density(rho, 38), dimensioanl pressure(p, 39), dimensioanl temperature(T, 40),
// -- gradientUx(41), gradientUy(42), gradientVx(43), gradientVy(44), streamline_u(45), streamline_v(46), streamline_w(47),
// -- transition intermittency(intermittency, 51), -transition momentum thickness reynolds(MomentumThicknessReynolds, 52),
// -- overlap iblank(iblank, 81)
// -- specific heat ratio(gama, 56)
// -- transition intermittency(intermittency, 51), transition momentum thickness reynolds(MomentumThicknessReynolds, 52),
// -- local CFL Number(localCFL, 57), minimal CFL Number(minCFL, 58),
// -- overlap iblank(iblank, 81),
// -- specific heat ratio(gama, 56), Knudsen number(kn, 60), Damkohler number(Da, 61), vibrational nonequilibrium number(Vi, 62).
// Important Warning: Array size of visualVariables MUST be equal to nVisualVariables!!!
// Variables order must from small to big.
//-----------the optional parameters list for the wall boundary condition----------------
// nVisualWallVariables: The number of visual variables on wall.
// visualWallVariables : dumped variable types, listed as following:
// -coefficient of pressure(cp, 0), -coefficient of friction(cf, 1), yplus(2), -non-dimensional heat flux(Q_NonDim, 3), -dimensional heat flux(Q_Dim, 4),
// -pressure on wall(pw, 5), -temperature on wall(Tw, 6), -density on wall(rhow, 7), -heat flux of translational-rotational temperature term(Qtr, 8),
// -heat flux of species diffusion term(Qs, 9), -heat flux of vibrational temperature term(Qv, 10), -heat flux of electron temperature term(Qe, 11),
// -species mass fractions(Ns, 12), -x component of wall velocity(Vx, 13), -y component of wall velocity(Vy, 14), -z component of wall velocity(Vz, 15)
// -slip translational-rotational temperature(Tts, 16), -slip vibrational temperature(Tvs, 17), -slip electron temperature(Tes, 18), -absolute wall velocity(Vs, 19)
// -Stanton number(St, 20), -coefficient of heat rate(Ch, 21), -temperature jump(deltaT, 22), -Grid Reynolds number on wall(Re_w, 23)
// -- coefficient of pressure(cp, 0), coefficient of friction(cf, 1), yplus(2), non-dimensional heat flux(Q_NonDim, 3), dimensional heat flux(Q_Dim, 4),
// -- pressure on wall(pw, 5), temperature on wall(Tw, 6), density on wall(rhow, 7), heat flux of translational-rotational temperature term(Qtr, 8),
// -- heat flux of species diffusion term(Qs, 9), heat flux of vibrational temperature term(Qv, 10), heat flux of electron temperature term(Qe, 11),
// -- species mass fractions(Ns, 12), x component of wall velocity(Vx, 13), y component of wall velocity(Vy, 14), z component of wall velocity(Vz, 15),
// -- slip translational-rotational temperature(Tts, 16), slip vibrational temperature(Tvs, 17), slip electron temperature(Tes, 18), absolute wall velocity(Vs, 19),
// -- Stanton number(St, 20), coefficient of heat rate(Ch, 21), temperature jump(deltaT, 22), Grid Reynolds number on wall(Re_w, 23), Knudsen number(Kn_wall, 24).
int nVisualVariables = 8;
int visualVariables[] = [0, 1, 2, 3, 4, 5, 6, 15];
@ -739,7 +761,9 @@ int dumpStandardModel = 0;
// 1 -- Real cell where the probe is located.
// nProbeVariables: Number of variables want to be dumped for probes monitered.
// probeVariables : Variable types dumped, listed as following:
// -- density(0), u(1), v(2), w(3), pressure(4), temperature(5), mach(6).
// -- density(0), u(1), v(2), w(3), pressure(4), temperature(5), mach(6),
// -- dimensioanl_density(7), dimensioanl_u(8), dimensioanl_v(9),
// -- dimensioanl_w(10), dimensioanl_pressure(11), dimensioanl_temperature(12).
// Important Warning: Array size of probeVariables MUST be equal to nProbeVariables!!!
// probeVariables order must from small to big.
// probeVariablesInterpolationMethod: Interpolation method used to compute the probe variables.
@ -761,12 +785,13 @@ string probesDefineFile = "bin/probes_XYZ.dat";
int searchCellsMethod = 0;
int nProbeVariables = 7;
int probeVariables[] = [0, 1, 2, 3, 4, 5, 6];
int nProbeVariables = 14;
int probeVariables[] = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13];
int probeVariablesInterpolationMethod = 0;
//-----------------------------------------------------------------------
# Turbulence Parameter #
//-----------------------------------------------------------------------
#************************************************************************
# Turbulence Parameter *
#************************************************************************
// turbInterval: Iteration number of turbulence.
// kindOfTurbSource: Kinds of turbulent source.
// 0 -- Original.
@ -774,15 +799,12 @@ int probeVariablesInterpolationMethod = 0;
// transitionType: transition model type
// 0 -- none.
// 2 -- gama-re-theta.
// turbIntensity: (valid while greater than 0.0 ) turbulent intensity of free stream(*100) in transition
// freeturbIntensitySRModify: to use SR modify in free stream turbulent intensity decay or not
// turbIntensity: (valid while greater than 0.0 ) turbulent intensity of free stream(*100) in transition.
// freeturbIntensitySRModify: to use SR modify in free stream turbulent intensity decay or not.
int turbInterval = 1;
int turbOrderStruct = 2;
int kindOfTurbSource = 0;
int mod_turb_res = 0;
double turb_relax = 1.0;
double freeStreamViscosity = 1.0e-3;
double muoo = 3.0;
double kwoo = 5.0;
@ -791,28 +813,27 @@ double turbIntensity = -1.0;
int freeturbIntensitySRModify = 0;
double freeDecayXLocation = 0.0;
int compressibleCorrection = 0;
int prandtlNumberCorrection = 0;
int transitionMaFix = 1;
# maximum eddy viscosity (myt/my) max.
// maximum eddy viscosity (myt/my) max.
double eddyViscosityLimit = 1.0e10;
int monitor_vistmax = 0;
//-----------------------------------------------------------------------
# LES Parameter #
//-----------------------------------------------------------------------
#************************************************************************
# LES Parameter *
#************************************************************************
// iLES: Create LESSolver or not.
// = 1 - Create LESSolver;
// != 1 - not.
// = 1 -- Create LESSolver;
// != 1 -- not.
// amplitudeofDisturb: Amplitude of adding disturb.
// disturbstep: Unsteady time step or steady iteration of adding random disturb.
// iterdisturb: Add random disturb in every sub-iter or only first sub-iter.
// = 0 - in only first sub-iter;
// != 0 - in every sub-iter.
// = 0 -- in only first sub-iter;
// != 0 -- in every sub-iter.
// ipraddisturb: Add density and pressure disturb or not.
// ibodyforce: Add body force in source flux of NS equations or not.
// = 0 - not;
// != 0 - Add body force.
// = 0 -- not;
// != 0 -- Add body force.
// bodyforce: Body force in source flux of NS equations or not.
// utau: friction velocity, using in DNSDisturb.
// sgsmodel: subgrid scale model.
@ -820,23 +841,22 @@ int monitor_vistmax = 0;
// = "dsmCom";
// = "wale";
// = "sigma".
// deltaFunctionType: = 1 - MAX(deltai, deltaj, deltak);
// = 2 - pow(deltai * deltaj *deltak, 1/3);
// = 3 - Devloped by Scotti.
// wallDampingFunctionType: = 0 - no wall function;
// = 1 - van Driest;
// = 2 - developed by Dr. Deng Xiaobing;
// = 3 - developed by Piomelli.
// deltaFunctionType: = 1 -- MAX(deltai, deltaj, deltak);
// = 2 -- pow(deltai * deltaj *deltak, 1/3);
// = 3 -- Devloped by Scotti.
// wallDampingFunctionType: = 0 -- no wall function;
// = 1 -- van Driest;
// = 2 -- developed by Dr. Deng Xiaobing;
// = 3 -- developed by Piomelli.
// turbViscousCutType: turbulent viscosity cut type.
// = 0 - mu_total = mut + mul;
// = 1 - mu_total = max(mut-mul,0)+ mul;
// = 2 - mu_total = max(mut ,0)+ mul.
// = 0 -- mu_total = mut + mul;
// = 1 -- mu_total = max(mut-mul, 0) + mul;
// = 2 -- mu_total = max(mut , 0) + mul.
// smagConstant: constant of smagorinsky model.
// waleConstant: constant of wale model.
// filterDirection [3]: filter variables in i, j, k direction or not.
// averageDirection[3]: average variables in i, j, k direction or not.
// isotropicConstant: constant of isotropic part of SGS stress.
int iLES = 0;
string sgsmodel = "smagorinsky";
int deltaFunctionType = 2;
@ -852,9 +872,9 @@ double testFilterScale = 2.0;
int averageWidth = 1;
int monitorNegativeConstant = 0;
//-----------------------------------------------------------------------
# Other Parameters for Hypersonic Non-equilibrium Gas #
//-----------------------------------------------------------------------
#************************************************************************
# Other Parameters for Hypersonic Non-equilibrium Gas *
#************************************************************************
// dg_high_order:
// 0 -- generic order accuracy.
// 1 -- high order accuracy.
@ -862,9 +882,6 @@ int monitorNegativeConstant = 0;
// 0 -- gas model is fixed in the codes.
// 1 -- gas model is imported from library files.
// isAdaptiveSolver: isAdaptiveSolver = 0 indicates the generic Navier-Stokes solver,
// isAdaptiveSolver>0 indicates the HyFlow self-adaptive solver.
// 1 -- using HyFlow self-adaptive solver where the switch is controlled by the total iteration steps.
// 2 -- using HyFlow self-adaptive solver where the switch is controlled by variation of the key residual.
// nm: Equation number of the physics, but is out of commision now.
// 4 -- for 2D.
// 5 -- for 3D.
@ -886,14 +903,13 @@ int monitorNegativeConstant = 0;
// nEquilibriumGas: the variable is valid when the condition of nchem = 0 is satisfied.
// 0 -- perfect gas.
// 5, 7, 11 -- equilibrium gas, meanwhile, its value denotes the number of gas component.
// nPCWCycleStep: the maximum step number of iteration in the module of computing species mass fractions with the partial catalytic wall(PCW) condition.
// the value equals to or is greater than 1, and 3 is for default value.
// nRETCycleStep: the maximum step number of iteration in the module of computing radiation equilibrium temperature on wall.
// the value equals to or is greater than 1, and 3 is for default value.
// nSLIPCycleStep:the maximum step number of iteration in the module of computing slip temperature, slip velocity and slip species mass fraction.
// the value equals to or is greater than 1, and 3 is for default value.
// nPCWCycleStep: The maximum step number of iteration in the module of computing species mass fractions with the partial catalytic wall(PCW) condition.
// The value equals to or is greater than 1, and 3 is for default value.
// nRETCycleStep: The maximum step number of iteration in the module of computing radiation equilibrium temperature on wall.
// The value equals to or is greater than 1, and 3 is for default value.
// nSLIPCycleStep:The maximum step number of iteration in the module of computing slip temperature, slip velocity and slip species mass fraction.
// The value equals to or is greater than 1, and 3 is for default value.
// nSlipBCModel: The computational model of slip boundary conditions.
// 0 -- no slip.
// 1 -- the conventional Maxwell slip conditions.
// 2 -- the Gokcen slip conditions.
@ -913,10 +929,13 @@ int monitorNegativeConstant = 0;
// 1 -- One-temperature model.
// 2 -- Two-temperature model.
// 3 -- Three-temperature model.
// isUseNoneqCond:
// 0 -- compute the source terms without any conditions.
// 1 -- compute the source terms using the non-equilibrium condition.
// frozenCondition: the threshold value of frozen chemical flow condition, 0.1 is the default value.
// nIdealState: whether take all gas species as ideal gas for gas-mixture process.
// 0 -- No.
// 1 -- Yes.
// nTEnergyModel: the method to computing temperature energy model.
// 1 -- Yes. // nTEnergyModel: the method to computing temperature energy model.
// 0 -- the energy term is computed using the conventional method.
// 1 -- the energy term is computed using the polynomial fitting method.
// 2 -- the energy term is computed using the piecewise polynomial fitting method.
@ -946,14 +965,13 @@ int monitorNegativeConstant = 0;
// 1.0 -- proposed by Maxwell.
// sqrt(2/PI)~0.8 -- used for "micro-slip", namely the actual velocity slip at the wall.
// 1.146 -- proposed for an additional "fictitious" velocity slip.
// chemicalRelaxCorf: The value is in range of [0.001, 1.0].
// spectrumRadiusCoef: The value is in range of [0.0, 2.0].
// staticPressureRelaxCorf: The value is in range of [0.1, 1.0].
// nIsChemicalFreeze: the flag to freeze the chemical reactions.
// 0 -- not freeze, the chemical reaction sources will be calculated.
// 1 -- freezes the chemical reactions, the chemical reaction sources will not be calculated.// veTemperatureMin: The minimum of Tv and Te
// 1 -- freezes the chemical reactions, the chemical reaction sources will not be calculated.
// veTemperatureMin: The minimum of Tv and Te.
// maxViscous: the maximum of Viscous.
// trTemperatureMin: the minimum value of trTemperature.
// veTemperatureMin: the minimum value of veTemperature.
@ -965,36 +983,34 @@ int monitorNegativeConstant = 0;
// nSpeciesLimit: limitter of gas species
// 0 -- not used.
// 1 -- used.
// nTurblenceForChemical: the coupled mode of Turblence and Chemical reaction
// nTurblenceForChemical: the coupled mode of Turblence and Chemical reaction.
// 0 -- method 0.
// 1 -- method 1.
// nViscosityFluxSublevelModified: Modified for ViscosityFlux on Sublevel grid
// nViscosityFluxSublevelModified: Modified for ViscosityFlux on Sublevel grid.
// 0 -- not used.
// 1 -- used.
// nViscosityPeModified: Pe Modified for ViscosityCoef
// nViscosityPeModified: Pe Modified for ViscosityCoef.
// 0 -- not used.
// 1 -- used.
// nChemcalSourceModified: Modified on ChemcalSource
// nChemcalSourceModified: Modified on ChemcalSource.
// 0 -- not used.
// 1 -- used.
// nChemcalSourceEsMethod: Modified on ChemcalSource
// 0 -- approximation algorithm 1 (Ori.)
// 1 -- approximation algorithm 2 (New)
// nChemcalSourceEsMethod: Modified on ChemcalSource.
// 0 -- approximation algorithm 1 (Ori).
// 1 -- approximation algorithm 2 (New).
// nMaxStepTemperature: the iterative steps of temperature.
// veTemperatureMinModified: Modified on the minimum of Tve for Cvvs
// 0 -- not used
// 1 -- used
// nDiagonalModified: Modified on Diagonal
// 0 -- not used
// 1 -- Ori.
// 2 -- new
// veTemperatureMinModified: Modified on the minimum of Tve for Cvvs.
// 0 -- not used.
// 1 -- used.
// nDiagonalModified: Modified on Diagonal.
// 0 -- not used.
// 1 -- new.
// nDiagonalModifiedTurb: Modified on Diagonal for turbulence.
// 0 -- not used.
// 1 -- new.
// nGradPrimtiveMethod:
// 0 -- Ori.
// 1 -- new
// 1 -- new.
// nAblation:
// 0 -- The wall ablation is not computed.
// 1 -- The wall ablation is computed.
@ -1017,8 +1033,8 @@ int monitorNegativeConstant = 0;
// "Mars-Pa8" is for Park model of Mars gas, "Mars-Mc8" for McKenzie model of Mars gas.
// "Combustion-12" -- indicates the Combustion Chamber Gas Model which includes 12-species-20-reactions.
// "Gas-Mixture" -- indicates the process of mixing gas without reacting.
// for struct solver mixing two species£¨SpeciesA, SpeciesB£©.
// for unstruct solver mixing multi-species£¨O2 NO CO CO2 H2 N2 Air CH4£©.
// for struct solver mixing two species<65><73>SpeciesA, SpeciesB<73><42>.
// for unstruct solver mixing multi-species<65><73>O2 NO CO CO2 H2 N2 Air CH4<48><34>.
// For self-definition model, the gasfile is used to indicate the file path of the new gas model.
// speciesName: Used to list the names of each species, while each species name is separated by the symbol of comma.
// initMassFraction: Used to list the initial mass fractions of species in accordance with the sequence of names in the parameter speciesName.
@ -1040,13 +1056,16 @@ int monitorNegativeConstant = 0;
// firstStepError : the residual error of the first step iteration for the self-adaptive calculation.
// secondStepError : the residual error of the second step iteration for the self-adaptive calculation.
// thirdStepError : the residual error of the third step iteration for the self-adaptive calculation.
// useHyflowSetting : Setting for HyFLOW GUI.
// 0 -- PHengLEI
// 1 -- HyFLOW
// nProtectData: Use the continuation file data protection mechanism.
// 0 -- no
// 1 -- yes
// 0 -- no.
// 1 -- yes.
// nTvChange: Judge whether the Tv equals Ttr.
// 0 -- yes.
// 1 -- no.
// isMoleFractionType: 1 indicates the mass fractions, or else the mole fractions.
// nFraction: the initial fractions type of species.
// 0 -- mass fraction.
// 1 -- mole fraction.
int dg_high_order = 0;
int iapplication = 0;
int isAdaptiveSolver = 0;
@ -1114,6 +1133,7 @@ double densityMin = 1.0e-8;
double densityMinFactor = 0.1;
double tAdjustmentFactor = 10.0;
double iniSpeedCoef = 1.0;
int iniSpeedMode = 0;
int nDebug = 0;
int nSpeciesLimit = 1;
@ -1125,18 +1145,21 @@ int nChemcalSourceEsMethod = 1;
int nMaxStepTemperature = 5;
int veTemperatureMinModified = 1;
int nDiagonalModified = 0;
int nDiagonalModifiedTurb = 0;
int nGradPrimtiveMethod = 1;
int nInviscidFluxModify = 1;
int nQlLimitMethod = 2;
int nSpeciesForWallMethod = 1;
int nDensityForWallMethod = 0;
int wallMultiTemperature = 0;
int nProtectData = 0;
int useHyflowSetting = 0;
int nAblation = 0;
int isInjection = 0;
int nViscosityModel = 0;
int nMarsModel = 0;
int nTvChange = 0;
int isMoleFractionType = 0;
string gasfile = "DK5";
//string gasfile = "./chemical/Dunn-Kang_air5s11r.dat";
string speciesName = "O, O2, NO, N, N2";
@ -1173,9 +1196,17 @@ double molecularWeightSpeciesB = 30.0;
//string speciesName = "O2, N2";
//string initMassFraction = "1.0, 0.0";
int nFraction = 0;
int nContinueModel = 0;
int nChemicalFlowStep = 0;
int ifStartFromPerfectGasResults = 0;
int isUseNoneqCond = 0;
double frozenCondition = 0.01;
int nLeakageMonitor = 0;
double totalLeakageVolume = 1000.0;
double monitorThresholdValue = 0.05;
double sprayFactor = 0.0;
#########################################################################
// Multi-Grid parameters.
@ -1196,7 +1227,6 @@ int ifStartFromPerfectGasResults = 0;
// 1 -- zero order.
// 2 -- first-order. (default)
// mgCorrectionLimit: Multi-grid correction limit.
int nMGLevel = 1;
int MGCoarsestIteration = 1;
int MGPreIteration = 1;
@ -1226,9 +1256,9 @@ string holeFullFileName = "./grid/holeFullFile.dat";
string linkFileName = "./grid/topology.dat";
string zoneInverseFileName = "./grid/zoneInverseMapping.inp";
#########################################################################
# High Order Struct Solver #
#########################################################################
#************************************************************************
# High Order Struct Solver *
#************************************************************************
// isFVMOrFDM:
// 0 -- NSSolverStruct using Finite Volume Method.
// 1 -- NSSolverStruct using Finite Differ Method.
@ -1273,10 +1303,29 @@ int allReduceStep = 1;
// codeOfOversetGrid: Overlapping(overset) grid or not.
// 0 -- NON-overlapping grid.
// 1 -- Overlapping grid.
// oversetInterpolationMethod: the method of overset interpolation while field simulation
// oversetInterpolationMethod: the method of overset interpolation while field simulation.
// 0 -- set the acceptor cell value by donor cell value.
// 1 -- set the acceptor cell value by distance weight of donor cell value.
// readOversetFileOrNo: Whether to read overset-file(.ovs) that has been generated.
// 0 -- no.
// 1 -- yes.
// symetryOrNot: If there exist symetryplanes(XY plane, the coordinate of Z direction is 0) in
// the current overset grid(only for three dimension).
// 0 -- no.
// 1 -- yes.
// readInAuxiliaryInnerGrid: Whether to read auxiliary inner grid.
// 0 -- no.
// 1 -- yes.
// walldistMainZone: The initial value of background grid which does not exist wall boundary condition.
// toleranceForOversetSearch: The tolerance of overset searching zone to judge whether the obtained node is in the current computing cell.
// toleranceForOversetBox: The tolerance of building the minimum box of computing cells in the overlapping region.
// twoOrderInterpolationOrNot: The number of interpolated cell layers in the overlapping boundary.
// 0 -- one layer.
// 1 -- two layers.
// keyEnlargeOfActiveNodes: The number of enlarged overset-boundary layers in the buffer region.
// outTecplotOverset: Whether to dump out the flowfield data after the progress of overset configure.
// 0 -- no.
// 1 -- yes.
int codeOfOversetGrid = 0;
int oversetInterpolationMethod = 0;
int readOversetFileOrNot = 0;
@ -1295,7 +1344,6 @@ int twoOrderInterpolationOrNot = 0;
int keyEnlargeOfActiveNodes = 0;
int outTecplotOverset = 0;
int outPutOversetVisualization = 0;
int numberOfMovingBodies = 2;
// ----------------- ALE configuration ------------------------------
@ -1306,34 +1354,40 @@ double referenceLength = 1.0;
double referenceVelocity = 1.0;
double referenceDensity = 1.0;
int strategyForFaceNormalVelocity = 0; //0-By Sweeping volume; 1-By face center 1st; 2-By face center 2nd;
int strategyForGCLSource = 0; //0-present; 1-Ahn;
int strategyForFaceNormalVelocity = 0; // 0-By Sweeping volume; 1-By face center 1st; 2-By face center 2nd.
int strategyForGCLSource = 0; // 0-present; 1-Ahn.
//0:1st-Admas-Bashforth; 1:2nd-Admas-Bashforth; 2:1st-Implicit-Euler; 3:2nd-Implicit Euler; 4:2nd-Adams-Moulton; 5:3rd-Adams-Moulton
// 0: 1st-Admas-Bashforth; 1: 2nd-Admas-Bashforth; 2: 1st-Implicit-Euler; 3: 2nd-Implicit Euler; 4: 2nd-Adams-Moulton; 5: 3rd-Adams-Moulton.
int methodForKineticEquation = 0;
double relaxParameterOfKinetic = 1.0;
#########################################################################
# motive information #
#########################################################################
#************************************************************************
# motive information *
#************************************************************************
int numberOfMovingBodies = 1;
############################## body0 ##############################
//mass of parts
// mass of parts.
double mass_0 = 1.0;
//mass matrix of parts Ixx Iyy Izz Ixy Ixz Iyz
// gravity of parts (along negative direction in Y-axis, eg. 9.8).
double gravity_0 = 0.0;
// mass matrix of parts Ixx Iyy Izz Ixy Ixz Iyz.
double massMatrix_0[] = 1e-7, 1e-6, 1e-6, 0.0, 0.0, 0.0;
//initial six DOF position information of parts. xc yc zc
// initial six DOF position information of parts. xc yc zc.
double massCenter_0[] = 0.0, 0.0, 0.0;
//initial six DOF position information of parts. angleX angleY angleZ
// if reset mass center while restart.
int resetMassCenter_0 = 0;
// position offset of parts. dx dy dz.
double massCenterDxyz_0[] = 0.0, 0.0, 0.0;
// initial six DOF position information of parts. angleX angleY angleZ.
double attitudeAngle_0[] = 0.0, 0.0, 0.0;
//initial six DOF move information of parts. vc vy vz
// initial six DOF move information of parts. vc vy vz.
double massCenterVelocity_0[] = 0.0, 0.0, 0.0;
//initial six DOF move information of parts. omigX omigY omigZ
// initial six DOF move information of parts. omigX omigY omigZ.
double angularVelocity_0[] = 0.0, 0.0, 0.0;
// the object that the parts belong to.
int fartherIndex_0 = -1;
//the assembly position of the parts. xc yc zc angleX angleY angleZ
// the assembly position of the parts. xc yc zc angleX angleY angleZ.
double configPamameter_0[] = 0.0, 0.0, 0.0, 0.0, 0.0, 0.0;
// the move pattern of the parts.
// -1 given motion partten.
@ -1349,23 +1403,24 @@ double configPamameter_0[] = 0.0 ,0.0 ,0.0 ,0.0 ,0.0
int RBDMethod_0 = 0;
double amplitude_0 = 0.0;
double reduceFrequency_0 = 0.0;
//direction of rotation
// direction of rotation.
// 1 -- clockwise from the point of view along the positive x axis.
// -1 -- anticlockwise from the point of view along the positive x axis.
int direction_0 = -1;
double rotateFrequency_0 = 0.0;
//string uDFSixDofFileName_0 = "./Bin/UDFSixDof.Parameter";
//additional force (system axis) fX fY fZ
// dimensional physical time for additional force(s).
double addedForceTime_0[] = 0.0;
// additional force(inertia system) fX fY fZ.
double addedForce_0[] = 0.0, 0.0, 0.0;
//additional moment of Force (system axis) mX mY mZ
// additional moment(inertia system) mX mY mZ.
double addedMoment_0[] = 0.0, 0.0, 0.0;
// the deformation method of the parts.
int morphing_0 = 0;
// post indentify
// post indentify.
int integralOrder = 4;
// ---------------- ATP read --------------------------------------------
//@int inflowParaType = 0;
//@double refReNumber = 6.5e6;
@ -1379,18 +1434,34 @@ int integralOrder = 4;
//@string outLetFileName = "./bin/subsonicOutlet.hypara";
//@double refDimensionalVelocity = 0;
//@double refDimensionalDensity = 0;
#########################################################################
# Old Parameter #
#########################################################################
//@string weatherDataFilePath = "./WRFData/";
//@double longitude = 110.95
//@double latitude = 19.61;
#************************************************************************
# Old Parameter *
#************************************************************************
int isPlotVolumeField = 0;
#************************************************************************
# partial flow field setting Parameter *
#************************************************************************
//int nPartialParameter = 0; // 0/1/2
//int nNumberOfPartialField = 0; //
//int nStartGridIndex[] = [0];
//int nEndGridIndex[] = [0];
#########################################################################
# Incompressible Parameter #
#########################################################################
//double partialCFL[] = [0.0];
//double partialSpeedCoef[] = [0.0];
//double partialSpeed[] = [0.0];
//double partialAttackd[] = [0.0];
//double partialSlide[] = [0.0];
//double partialPressure[] = [0.0];
//double partialTemperature[] = [0.0];
//double partialMassFractions[] = [0.0];
#************************************************************************
# Incompressible Parameter *
#************************************************************************
int isSolveEnergyEquation = 0;
int isSolveTurbEquation = 0;
int isSolveSpeciesEquation = 0;

View File

@ -5,9 +5,12 @@
// 0 -- Unstructured grid.
// 1 -- Structured grid.
// 2 -- Hybrid grid, include both of unstructured and structured grid.
// axisup: Type of Cartisien coordinates system, used in grid conversion.
// 1 -- Y upward. (default)
// 2 -- Z upward.
// nAxisRotateTimes: number of axis rotating times, zero (default) meaning without rotating.
// axisRotateOrder : axis rotating order.
// 1 -- X-axis.
// 2 -- Y-axis.
// 3 -- Z-axis.
// axisRotateAngles: axis rotating angles (degree), which are corresponding to the axis rotating order.
// from_gtype: Type of grid data type in grid conversion process.
// -1 -- MULTI_TYPE.
// 1 -- PHengLEI, *.fts.
@ -35,7 +38,9 @@
int gridtype = 2;
// default
int axisup = 1;
int nAxisRotateTimes = 0;
int axisRotateOrder[] = [1, 2, 3];
double axisRotateAngles[] = [0.0, 0.0, 0.0];
int from_gtype = 2;
int omit_no_bound_bc = 1;

View File

@ -8,6 +8,7 @@
// Platform for Hybrid Engineering Simulation of Flows +
// China Aerodynamics Research and Development Center +
// (C) Copyright, Since 2010 +
// PHengLEI 2212 +
//+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
###########################################################################
# Default parameters for Grid conversion #
@ -46,19 +47,24 @@ int gridobj = 1;
int multiblock = 0;
int iadapt = 0;
int SymmetryFaceVector = 1;
int gridReorder = 0;
int faceReorderMethod = 0;
// axisup: Type of Cartisien coordinates system, used in grid conversion.
// 1 -- Y upward. (default)
// 2 -- Z upward.
int axisup = 1;
// nAxisRotateTimes: number of axis rotating times, zero (default) meaning without rotating.
// axisRotateOrder : axis rotating order.
// 1 -- X-axis.
// 2 -- Y-axis.
// 3 -- Z-axis.
// axisRotateAngles: axis rotating angles (degree), which are corresponding to the axis rotating order.
int nAxisRotateTimes = 0;
int axisRotateOrder[] = [1, 2, 3];
double axisRotateAngles[] = [0.0, 0.0, 0.0];
// omit_no_bound_bc: What's boundary condition for the type of "no_boundary_condition".
// 0 -- Interface. (default)
// 1 -- Physical boundary condition, used in Hybrid solver.
int omit_no_bound_bc = 0;
int omitRepeatInterface = 1;
//-----------------------------------------------------------------------
# Grid data type #
@ -89,7 +95,6 @@ int dumpOldGrid = 0;
int numberOfGridFile = 1;
string from_gfile = "./grid/rae2822_hybrid2d.cas";
string from_gfile1 = "";
string out_gfile = "./grid/flat_laminr_133_85_2d.fts";
// ----------------- some advanced choices ------------------------------
@ -178,7 +183,6 @@ double influencePara = 25.0;
which only support one direction.
// rotationAngle: The relative angle between two periodic face.
which is recorded in degrees.
int periodicType = 0;
double translationLength[] = [0.0, 0.0, 0.0];
double rotationAngle = 0.0;
@ -192,7 +196,6 @@ double rotationAngle = 0.0;
// 2 -- refine structured grid.
// maxproc: The number of partition zones that want to be divided into.
// numberOfMultifile: The number of partition grid files that want to be dumped out.
int pgridtype = 0;
int maxproc = 4;
int numberOfMultifile = 1;
@ -207,8 +210,8 @@ int blockIndexOfMark = 0;
int cellIndexOfMark[] = [185, 30, 1];
// parallelStrategy:
//! -# 0 : each zone is assigned to the one that defined in grid partition procedure.
//! -# 1 : random assigned for each zone or by some else ways.
// 0 -- each zone is assigned to the one that defined in grid partition procedure.
// 1 -- random assigned for each zone or by some else ways.
int parallelStrategy = 1;
//-----------------------------------------------------------------------
@ -232,7 +235,6 @@ string partition_grid_file = "./grid/sphere_mixed__4.fts";
// 1 -- perfect balance.
// maxproc -- perfect imbalance.
// 1.05 -- recommended.
int omit_no_bound_bc = 0;
int npartmethod = 1;
int parallelPartitionMethod = 2;
@ -253,24 +255,30 @@ int numberOfMultigrid = 1;
// intervalStepSample: The step intervals for monitored probes variables file 'sample.dat' saved.
// intervalStepForce: The step intervals for aerodynamics coefficients file 'aircoef.dat' saved.
// intervalStepRes: The step intervals for residual file 'res.dat' saved.
// ifLowSpeedPrecon: Precondition process to accelerate convergence for low speed flow.
// 0 -- no precondition process. (default, mach > 0.3)
// 1 -- carry out precondition process. (mach number <= 0.3)
int maxSimuStep = 20000;
int intervalStepFlow = 1000;
int intervalStepPlot = 1000;
int intervalStepSample = 1000;
int intervalStepForce = 100;
int intervalStepRes = 10;
int ifLowSpeedPrecon = 0;
// compressible:
// 0 -- incompressible flow.
// 1 -- compressible flow. (default)
int compressible = 1;
// ifLowSpeedPrecon: Precondition process to accelerate convergence for low speed flow.
// 0 -- no precondition process. (default, mach > 0.3)
// 1 -- carry out precondition process. (mach number <= 0.3)
// Kprec: The coefficient K for the cut-off velocity.
// 1.0~3.0 is suggested. (default, 3.0)
// preconFarfieldBCMethod: The precondition method for farfield boundary condition.
// 0 -- precondition far-field boundary based on riemann invariants.
// 1 -- Turkel's simplified far-field boundary condition.
int ifLowSpeedPrecon = 0;
double Kprec = 3.0;
int preconFarfieldBCMethod = 1;
//-----------------------------------------------------------------------
# CFD Control Parameter #
//-----------------------------------------------------------------------
@ -281,9 +289,12 @@ int compressible = 1;
// 0 -- the nondimensional conditions.
// 1 -- the flight conditions.
// 2 -- the experiment conditions.
// 3 -- the subsonic boundary conditions.
// 3 -- the subsonic boundary conditions. (Useless!)
// 4 -- the condition that the velocity, temperature and density are given.
// 5 -- the condition that the velocity, temperature and pressure are given.
//flowInitMethod: Flow field initialization method.
// 0 -- The entire flow field is initialized according to Infinite velocity.
// 1 -- The velocity near the wall is initialized according to the boundary layer of the plate.
// refReNumber: Reynolds number, which is based unit length, unit of 1/m.
// refDimensionalTemperature: Dimensional reference temperature, or the total temperature only for the experiment condition.
// freestream_vibration_temperature: Dimensional freestream vibration temperature.
@ -303,11 +314,11 @@ int compressible = 1;
// condition is radiation equilibrium temperature, and 0.8 is the default value.
// refMolecularWeight: the reference molecular weight of gas used for perfect gas. The unit is g/mol.
// Generally, the gas is air. Sometimes, it is experiment gas, such as Nitrogen, Argon, and so on.
int directionMethod = 0;
double refMachNumber = 0.73;
double attackd = 2.79;
double angleSlide = 0.00;
int flowInitMethod = 0;
int inflowParaType = 0;
double refReNumber = 6.5e6;
@ -321,14 +332,6 @@ double freestream_vibration_temperature = 300.00;
//double refDimensionalTemperature = 6051.024; // The total temperature, T*(1+(refGama-1)*M*M/2).
//double refDimensionalPressure = 4.299696E09; // The total pressure, p*(T0/T)^(refGama/(refGama-1)).
//int inflowParaType = 3;
//int nsubsonicInlet = 1;
//int nsubsonicOutlet = 1;
//string inLetFileName = "./bin/subsonicInlet.hypara";
//string outLetFileName = "./bin/subsonicOutlet.hypara";
//double refDimensionalTemperature = 288.144;
//double refDimensionalPressure = 1.01313E05;
// The velocity, temperature and density are fixed.
//int inflowParaType = 4;
//double refDimensionalVelocity = 1000.0;
@ -341,9 +344,15 @@ double freestream_vibration_temperature = 300.00;
// The MachNumber, temperature and pressure are fixed.
//int inflowParaType = 6;
//double refDimensionalTemperature = 293;
//double refDimensionalTemperature = 293.0;
//double refDimensionalPressure = 8886.06;
// The velocity, temperature and pressure are read from file.
//int inflowParaType = 7;
//string weatherDataFilePath = "./WRFData/";
//double longitude = 110.95
//double latitude = 19.61;
double wallTemperature = -1.0;
double radiationCoef = 0.8;
@ -357,35 +366,35 @@ double forceReferenceArea = 1.0; // unit of meter^2.
double TorqueRefX = 0.0; // unit of meter.
double TorqueRefY = 0.0; // unit of meter.
double TorqueRefZ = 0.0; // unit of meter.
double knudsenLength = 1.0; // unit of meter.
double refMolecularWeight = 28.9644; // unit of g/mol.
//-----------------------------------------------------------------------
# Spatial Discretisation #
//-----------------------------------------------------------------------
#*******************************************************************
#************************************************************************
# Struct Solver *
#*******************************************************************
#************************************************************************
// inviscidSchemeName: Spatial discretisation scheme of struct grid.
// Using this when solve structered grid or hybrid.
// -- "vanleer", "steger", "hlle", "lax_f".
// -- "roe", "modified_roe".
// -- "vanleer", "steger", "hlle", "lax_f",
// -- "roe", "modified_roe",
// -- "ausm+", "ausm+w", "ausm+up", "ausmdv", "ausmpw", "ausmpw+".
// isWennScheme: If using WENN Scheme of struct grid.
// 0 -- NO. (default)
// 1 -- Yes.
// str_limiter_name: Limiter of struct grid.
// -- "vanalbada", "vanleer", "minmod", "smooth", "minvan", "3rdsmooth", "3rd_minmod_smooth".
// -- "nolim", no limiter.
// -- "vanalbada_clz", clz supersonic version.
// -- "weno3_js", "wenn3_prm211", "wenn3_zm", "wenn3_zes2", "wenn3_zes3"
// -- "vanalbada", "vanleer", "minmod", "smooth", "minvan", "3rdsmooth", "3rd_minmod_smooth",
// -- "nolim", no limiter,
// -- "vanalbada_clz", clz supersonic version,
// -- "weno3_js", "wenn3_prm211", "wenn3_zm", "wenn3_zes2", "wenn3_zes3".
string inviscidSchemeName = "roe";
int isWennScheme = 0;
string str_limiter_name = "vanalbada";
#*******************************************************************
#************************************************************************
# UnStruct Solver or Common *
#*******************************************************************
#************************************************************************
// viscousType: Viscous model.
// 0 -- Euler.
// 1 -- Lamilar.
@ -410,11 +419,11 @@ string str_limiter_name = "vanalbada";
// 3 -- IDDES.
// uns_scheme_name: Spatial discretisation scheme of Unstruct grid.
// Using this when solve Unstructered grid or hybrid.
// -- "vanleer", "roe", "steger", "kfvs", "lax_f", "hlle".
// -- "vanleer", "roe", "GMRESRoe", "GMRESSteger", "steger", "kfvs", "lax_f", "hlle",
// -- "ausm+", "ausmdv", "ausm+w", "ausmpw", "ausmpw+".
// uns_limiter_name: Limiter of Unstruct grid.
// -- "barth", "vencat", "vanleer", "minmod".
// -- "vanalbada", "smooth", "nnd", "lpz", "1st".
// -- "barth", "vencat", "vanleer", "minmod",
// -- "vanalbada", "smooth", "nnd", "lpz", "1st",
// -- "nolim", no limiter.
// uns_vis_name: Discretisation method of viscous term.
// -- "std", "test", "aver", "new1", "new2".
@ -442,7 +451,7 @@ string str_limiter_name = "vanalbada";
// 3 -- Harten type, which is default used.
// roeEntropyScale: Entropy fix (correction) coefficient scale, default is 1.0.
// It is used to scale the default Roe entropy fix coefficients.
// AusmpwPlusLimiter: A Limiter to make "function w" not change acutely in AusmpwPlus scheme, default is 1.0
// AusmpwPlusLimiter: A Limiter to make "function w" not change acutely in AusmpwPlus scheme, default is 1.0.
//int viscousType = 0;
//string viscousName = "Euler";
@ -475,9 +484,9 @@ double roeEntropyScale = 1.0;
double AusmpwPlusLimiter = 1.0;
//-----------------------------------------------------------------------
# Temporal Discretisation #
//-----------------------------------------------------------------------
#************************************************************************
# Temporal Discretisation *
#************************************************************************
// iunsteady: Steady or unsteady.
// 0 -- steady.
// 1 -- unsteay.
@ -504,11 +513,18 @@ double AusmpwPlusLimiter = 1.0;
// 6 -- Jacobian iteration.
// 7 -- Line LU-SGS.
// 8 -- Matrix LU-SGS.
// 9 -- GMRES.
// iSimplifyViscousTerm: Simplify the computation of viscous term in the Block LU-SGS method. The default value assigns 1 that could speed up the computation.
// Otherwise, the viscous Jacobian matrix Mv should be computed that will increase the memory and time in iteration of the BLUSGS method.
// CFLStart: Started cfl number.
// CFLEnd: End cfl number.
// CFLVaryStep: The number of step when cfl increase from CFLStart to CFLEnd.
// GMRESCFLScale : CFL = CFLStart * GMRESCFLScal^iteration.
// OriginalTscheme : Used for LUSGS and GMres hybrid computing.
// useLUSGSprecond: Initialize flow field for GMRES.
// 0 --Initialize by first order Jacobian matrix.
// 1 --Initialize by LUSGS.
// GMRESInitStep : the number of iteration step of irst order Jacobian matrix or LUSGS for initialize flow field.
// ktmax: Dtratio. dt[i] = MIN(dt[i], ktmax * dtmin / vol[i])
// swapDq: Communication dq between forward/backward sweep of LUSGS or not, default is 0.
// nLUSGSSweeps: Sub iteration of LU-SGS or Block LU-SGS.
@ -533,7 +549,6 @@ double AusmpwPlusLimiter = 1.0;
// 2 -- Pab3D wall function.
// RKStage: The number of Runge-Kutta step.
// lamda: Cofficient of Runge-Kutta step.
int iunsteady = 0;
double physicalTimeStep = 0.01;
double physicalTimeStepDimensional = -0.001;
@ -543,7 +558,7 @@ int ifStaticsReynoldsStress = 0;
int startStatisticStep = 800000;
double statisticalTimePeriod = -1.0;
int statisticMethod = 0;
int linearTwoStepMethods = 1; // 1--BDF1; 2--C-N; 3--BDF2;
int linearTwoStepMethods = 1; // 1--BDF1; 2--C-N; 3--BDF2.
int methodOfDualTime = 3;
int min_sub_iter = 50;
@ -558,7 +573,10 @@ int isUsePreTwall = 0;
double CFLStart = 0.01;
double CFLEnd = 10.0;
int CFLVaryStep = 500;
double GMRESCFLScale = 1.0;
int OriginalTscheme = 9;
int useLUSGSprecond = 1;
int GMRESInitStep = 1000;
double pMaxForCFL = 0.2;
double pMinForCFL = 0.1;
double deltaMaxForCFL = 0.2;
@ -575,7 +593,7 @@ int order = 2;
double visl_min = 0.01;
double turbCFLScale = 1.0;
double csrv = 2.0;
double csrv = 1.0;
double timemax = 1.0e10;
double dtsave = -1.0;
int maxale = 10;
@ -591,10 +609,9 @@ double lamda[] = [0.5, 1.0];
//int RKStage = 4;
//double lamda[] = [0.25, 0.33333333333, 0.5, 1.0];
//-----------------------------------------------------------------------
# File In or Out #
//-----------------------------------------------------------------------
#************************************************************************
# File In or Out *
#************************************************************************
// numberOfGridGroups: The number of grid groups.
// gridfile: The partitioned Grid file path, using relative path,
// which is relative to the working directory.
@ -618,10 +635,8 @@ double lamda[] = [0.5, 1.0];
// nIsComputeWallDist: Whether to compute the wall distance.
// 0 -- Compute wall distance.
// 1 -- Not compute.
//
// protectionFile0 and protectionFile1: Two continuation file of the data protection mechanism.
// wall_heatfluxfile: The file to output the MaxHeatFlux of wall.
int numberOfGridGroups = 1;
string gridfile = "./grid/rae2822_hybrid2d__4.fts";
string wallTemperaturefile = "";
@ -632,10 +647,12 @@ int cellMethodOrNodeMethod = 0;
string resSaveFile = "results/res.dat";
string turbresfile = "results/turbres.dat";
string transitionResFile = "results/transitionRes.dat";
string aircoeffile = "results/aircoef.dat";
string restartNSFile = "results/flow.dat";
string turbfile = "results/turb.dat";
string transitionFile = "results/transition.dat";
string visualfile = "results/tecflow.plt";
string wall_aircoefile = "results/wall_aircoef.dat";
@ -645,11 +662,15 @@ string protectionFile0 = "results/flow0.dat";
string protectionFile1 = "results/flow1.dat";
string wall_heatfluxfile = "results/wall_heatflux.dat";
string protectionTurbFile0 = "results/turb0.dat";
string protectionTurbFile1 = "results/turb1.dat";
string protectionTransitionFile0 = "results/transition0.dat";
string protectionTransitionFile1 = "results/transition1.dat";
int nDumpSurfaceInfo = 0;
string wall_varfile = "";
string jetDefineFile = "bin/jet.hypara";
string sixDofFileName = "results/sixDofInfo.dat";
string derivativeFileName = "results/identify.dat";
string hysteresisFileName = "results/force_beta.plt";
@ -659,7 +680,8 @@ int plotFieldType = 0;
// visualfileType: The file type of visualfile.
// 0 -- Tecplot binary.
// 1 -- Tecplot ASCII.
// 2 -- Ensight binary.
// 3 -- Ensight ASCII.
int visualfileType = 1;
// samplefileMode: The dump mode of sample file.
@ -697,21 +719,21 @@ double upperPlotFieldBox[] = [1.0 1.0 1.0];
// -- vibration temperature(Tv, 33), electron temperature(Te, 34), vibrational energy(Ev, 35), electric energy(Ee, 36),
// -- number density of electron(Ne, 37), dimensioanl density(rho, 38), dimensioanl pressure(p, 39), dimensioanl temperature(T, 40),
// -- gradientUx(41), gradientUy(42), gradientVx(43), gradientVy(44), streamline_u(45), streamline_v(46), streamline_w(47),
// -- transition intermittency(intermittency, 51), -transition momentum thickness reynolds(MomentumThicknessReynolds, 52),
// -- overlap iblank(iblank, 81)
// -- specific heat ratio(gama, 56)
// -- transition intermittency(intermittency, 51), transition momentum thickness reynolds(MomentumThicknessReynolds, 52),
// -- local CFL Number(localCFL, 57), minimal CFL Number(minCFL, 58),
// -- overlap iblank(iblank, 81),
// -- specific heat ratio(gama, 56), Knudsen number(kn, 60), Damkohler number(Da, 61), vibrational nonequilibrium number(Vi, 62).
// Important Warning: Array size of visualVariables MUST be equal to nVisualVariables!!!
// Variables order must from small to big.
//-----------the optional parameters list for the wall boundary condition----------------
// nVisualWallVariables: The number of visual variables on wall.
// visualWallVariables : dumped variable types, listed as following:
// -coefficient of pressure(cp, 0), -coefficient of friction(cf, 1), yplus(2), -non-dimensional heat flux(Q_NonDim, 3), -dimensional heat flux(Q_Dim, 4),
// -pressure on wall(pw, 5), -temperature on wall(Tw, 6), -density on wall(rhow, 7), -heat flux of translational-rotational temperature term(Qtr, 8),
// -heat flux of species diffusion term(Qs, 9), -heat flux of vibrational temperature term(Qv, 10), -heat flux of electron temperature term(Qe, 11),
// -species mass fractions(Ns, 12), -x component of wall velocity(Vx, 13), -y component of wall velocity(Vy, 14), -z component of wall velocity(Vz, 15)
// -slip translational-rotational temperature(Tts, 16), -slip vibrational temperature(Tvs, 17), -slip electron temperature(Tes, 18), -absolute wall velocity(Vs, 19)
// -Stanton number(St, 20), -coefficient of heat rate(Ch, 21), -temperature jump(deltaT, 22), -Grid Reynolds number on wall(Re_w, 23)
// -- coefficient of pressure(cp, 0), coefficient of friction(cf, 1), yplus(2), non-dimensional heat flux(Q_NonDim, 3), dimensional heat flux(Q_Dim, 4),
// -- pressure on wall(pw, 5), temperature on wall(Tw, 6), density on wall(rhow, 7), heat flux of translational-rotational temperature term(Qtr, 8),
// -- heat flux of species diffusion term(Qs, 9), heat flux of vibrational temperature term(Qv, 10), heat flux of electron temperature term(Qe, 11),
// -- species mass fractions(Ns, 12), x component of wall velocity(Vx, 13), y component of wall velocity(Vy, 14), z component of wall velocity(Vz, 15),
// -- slip translational-rotational temperature(Tts, 16), slip vibrational temperature(Tvs, 17), slip electron temperature(Tes, 18), absolute wall velocity(Vs, 19),
// -- Stanton number(St, 20), coefficient of heat rate(Ch, 21), temperature jump(deltaT, 22), Grid Reynolds number on wall(Re_w, 23), Knudsen number(Kn_wall, 24).
int nVisualVariables = 8;
int visualVariables[] = [0, 1, 2, 3, 4, 5, 6, 15];
@ -739,7 +761,9 @@ int dumpStandardModel = 0;
// 1 -- Real cell where the probe is located.
// nProbeVariables: Number of variables want to be dumped for probes monitered.
// probeVariables : Variable types dumped, listed as following:
// -- density(0), u(1), v(2), w(3), pressure(4), temperature(5), mach(6).
// -- density(0), u(1), v(2), w(3), pressure(4), temperature(5), mach(6),
// -- dimensioanl_density(7), dimensioanl_u(8), dimensioanl_v(9),
// -- dimensioanl_w(10), dimensioanl_pressure(11), dimensioanl_temperature(12).
// Important Warning: Array size of probeVariables MUST be equal to nProbeVariables!!!
// probeVariables order must from small to big.
// probeVariablesInterpolationMethod: Interpolation method used to compute the probe variables.
@ -761,12 +785,13 @@ string probesDefineFile = "bin/probes_XYZ.dat";
int searchCellsMethod = 0;
int nProbeVariables = 7;
int probeVariables[] = [0, 1, 2, 3, 4, 5, 6];
int nProbeVariables = 14;
int probeVariables[] = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13];
int probeVariablesInterpolationMethod = 0;
//-----------------------------------------------------------------------
# Turbulence Parameter #
//-----------------------------------------------------------------------
#************************************************************************
# Turbulence Parameter *
#************************************************************************
// turbInterval: Iteration number of turbulence.
// kindOfTurbSource: Kinds of turbulent source.
// 0 -- Original.
@ -774,15 +799,12 @@ int probeVariablesInterpolationMethod = 0;
// transitionType: transition model type
// 0 -- none.
// 2 -- gama-re-theta.
// turbIntensity: (valid while greater than 0.0 ) turbulent intensity of free stream(*100) in transition
// freeturbIntensitySRModify: to use SR modify in free stream turbulent intensity decay or not
// turbIntensity: (valid while greater than 0.0 ) turbulent intensity of free stream(*100) in transition.
// freeturbIntensitySRModify: to use SR modify in free stream turbulent intensity decay or not.
int turbInterval = 1;
int turbOrderStruct = 2;
int kindOfTurbSource = 0;
int mod_turb_res = 0;
double turb_relax = 1.0;
double freeStreamViscosity = 1.0e-3;
double muoo = 3.0;
double kwoo = 5.0;
@ -791,28 +813,27 @@ double turbIntensity = -1.0;
int freeturbIntensitySRModify = 0;
double freeDecayXLocation = 0.0;
int compressibleCorrection = 0;
int prandtlNumberCorrection = 0;
int transitionMaFix = 1;
# maximum eddy viscosity (myt/my) max.
// maximum eddy viscosity (myt/my) max.
double eddyViscosityLimit = 1.0e10;
int monitor_vistmax = 0;
//-----------------------------------------------------------------------
# LES Parameter #
//-----------------------------------------------------------------------
#************************************************************************
# LES Parameter *
#************************************************************************
// iLES: Create LESSolver or not.
// = 1 - Create LESSolver;
// != 1 - not.
// = 1 -- Create LESSolver;
// != 1 -- not.
// amplitudeofDisturb: Amplitude of adding disturb.
// disturbstep: Unsteady time step or steady iteration of adding random disturb.
// iterdisturb: Add random disturb in every sub-iter or only first sub-iter.
// = 0 - in only first sub-iter;
// != 0 - in every sub-iter.
// = 0 -- in only first sub-iter;
// != 0 -- in every sub-iter.
// ipraddisturb: Add density and pressure disturb or not.
// ibodyforce: Add body force in source flux of NS equations or not.
// = 0 - not;
// != 0 - Add body force.
// = 0 -- not;
// != 0 -- Add body force.
// bodyforce: Body force in source flux of NS equations or not.
// utau: friction velocity, using in DNSDisturb.
// sgsmodel: subgrid scale model.
@ -820,23 +841,22 @@ int monitor_vistmax = 0;
// = "dsmCom";
// = "wale";
// = "sigma".
// deltaFunctionType: = 1 - MAX(deltai, deltaj, deltak);
// = 2 - pow(deltai * deltaj *deltak, 1/3);
// = 3 - Devloped by Scotti.
// wallDampingFunctionType: = 0 - no wall function;
// = 1 - van Driest;
// = 2 - developed by Dr. Deng Xiaobing;
// = 3 - developed by Piomelli.
// deltaFunctionType: = 1 -- MAX(deltai, deltaj, deltak);
// = 2 -- pow(deltai * deltaj *deltak, 1/3);
// = 3 -- Devloped by Scotti.
// wallDampingFunctionType: = 0 -- no wall function;
// = 1 -- van Driest;
// = 2 -- developed by Dr. Deng Xiaobing;
// = 3 -- developed by Piomelli.
// turbViscousCutType: turbulent viscosity cut type.
// = 0 - mu_total = mut + mul;
// = 1 - mu_total = max(mut-mul,0)+ mul;
// = 2 - mu_total = max(mut ,0)+ mul.
// = 0 -- mu_total = mut + mul;
// = 1 -- mu_total = max(mut-mul, 0) + mul;
// = 2 -- mu_total = max(mut , 0) + mul.
// smagConstant: constant of smagorinsky model.
// waleConstant: constant of wale model.
// filterDirection [3]: filter variables in i, j, k direction or not.
// averageDirection[3]: average variables in i, j, k direction or not.
// isotropicConstant: constant of isotropic part of SGS stress.
int iLES = 0;
string sgsmodel = "smagorinsky";
int deltaFunctionType = 2;
@ -852,9 +872,9 @@ double testFilterScale = 2.0;
int averageWidth = 1;
int monitorNegativeConstant = 0;
//-----------------------------------------------------------------------
# Other Parameters for Hypersonic Non-equilibrium Gas #
//-----------------------------------------------------------------------
#************************************************************************
# Other Parameters for Hypersonic Non-equilibrium Gas *
#************************************************************************
// dg_high_order:
// 0 -- generic order accuracy.
// 1 -- high order accuracy.
@ -862,9 +882,6 @@ int monitorNegativeConstant = 0;
// 0 -- gas model is fixed in the codes.
// 1 -- gas model is imported from library files.
// isAdaptiveSolver: isAdaptiveSolver = 0 indicates the generic Navier-Stokes solver,
// isAdaptiveSolver>0 indicates the HyFlow self-adaptive solver.
// 1 -- using HyFlow self-adaptive solver where the switch is controlled by the total iteration steps.
// 2 -- using HyFlow self-adaptive solver where the switch is controlled by variation of the key residual.
// nm: Equation number of the physics, but is out of commision now.
// 4 -- for 2D.
// 5 -- for 3D.
@ -886,14 +903,13 @@ int monitorNegativeConstant = 0;
// nEquilibriumGas: the variable is valid when the condition of nchem = 0 is satisfied.
// 0 -- perfect gas.
// 5, 7, 11 -- equilibrium gas, meanwhile, its value denotes the number of gas component.
// nPCWCycleStep: the maximum step number of iteration in the module of computing species mass fractions with the partial catalytic wall(PCW) condition.
// the value equals to or is greater than 1, and 3 is for default value.
// nRETCycleStep: the maximum step number of iteration in the module of computing radiation equilibrium temperature on wall.
// the value equals to or is greater than 1, and 3 is for default value.
// nSLIPCycleStep:the maximum step number of iteration in the module of computing slip temperature, slip velocity and slip species mass fraction.
// the value equals to or is greater than 1, and 3 is for default value.
// nPCWCycleStep: The maximum step number of iteration in the module of computing species mass fractions with the partial catalytic wall(PCW) condition.
// The value equals to or is greater than 1, and 3 is for default value.
// nRETCycleStep: The maximum step number of iteration in the module of computing radiation equilibrium temperature on wall.
// The value equals to or is greater than 1, and 3 is for default value.
// nSLIPCycleStep:The maximum step number of iteration in the module of computing slip temperature, slip velocity and slip species mass fraction.
// The value equals to or is greater than 1, and 3 is for default value.
// nSlipBCModel: The computational model of slip boundary conditions.
// 0 -- no slip.
// 1 -- the conventional Maxwell slip conditions.
// 2 -- the Gokcen slip conditions.
@ -913,10 +929,13 @@ int monitorNegativeConstant = 0;
// 1 -- One-temperature model.
// 2 -- Two-temperature model.
// 3 -- Three-temperature model.
// isUseNoneqCond:
// 0 -- compute the source terms without any conditions.
// 1 -- compute the source terms using the non-equilibrium condition.
// frozenCondition: the threshold value of frozen chemical flow condition, 0.1 is the default value.
// nIdealState: whether take all gas species as ideal gas for gas-mixture process.
// 0 -- No.
// 1 -- Yes.
// nTEnergyModel: the method to computing temperature energy model.
// 1 -- Yes. // nTEnergyModel: the method to computing temperature energy model.
// 0 -- the energy term is computed using the conventional method.
// 1 -- the energy term is computed using the polynomial fitting method.
// 2 -- the energy term is computed using the piecewise polynomial fitting method.
@ -946,14 +965,13 @@ int monitorNegativeConstant = 0;
// 1.0 -- proposed by Maxwell.
// sqrt(2/PI)~0.8 -- used for "micro-slip", namely the actual velocity slip at the wall.
// 1.146 -- proposed for an additional "fictitious" velocity slip.
// chemicalRelaxCorf: The value is in range of [0.001, 1.0].
// spectrumRadiusCoef: The value is in range of [0.0, 2.0].
// staticPressureRelaxCorf: The value is in range of [0.1, 1.0].
// nIsChemicalFreeze: the flag to freeze the chemical reactions.
// 0 -- not freeze, the chemical reaction sources will be calculated.
// 1 -- freezes the chemical reactions, the chemical reaction sources will not be calculated.// veTemperatureMin: The minimum of Tv and Te
// 1 -- freezes the chemical reactions, the chemical reaction sources will not be calculated.
// veTemperatureMin: The minimum of Tv and Te.
// maxViscous: the maximum of Viscous.
// trTemperatureMin: the minimum value of trTemperature.
// veTemperatureMin: the minimum value of veTemperature.
@ -965,36 +983,34 @@ int monitorNegativeConstant = 0;
// nSpeciesLimit: limitter of gas species
// 0 -- not used.
// 1 -- used.
// nTurblenceForChemical: the coupled mode of Turblence and Chemical reaction
// nTurblenceForChemical: the coupled mode of Turblence and Chemical reaction.
// 0 -- method 0.
// 1 -- method 1.
// nViscosityFluxSublevelModified: Modified for ViscosityFlux on Sublevel grid
// nViscosityFluxSublevelModified: Modified for ViscosityFlux on Sublevel grid.
// 0 -- not used.
// 1 -- used.
// nViscosityPeModified: Pe Modified for ViscosityCoef
// nViscosityPeModified: Pe Modified for ViscosityCoef.
// 0 -- not used.
// 1 -- used.
// nChemcalSourceModified: Modified on ChemcalSource
// nChemcalSourceModified: Modified on ChemcalSource.
// 0 -- not used.
// 1 -- used.
// nChemcalSourceEsMethod: Modified on ChemcalSource
// 0 -- approximation algorithm 1 (Ori.)
// 1 -- approximation algorithm 2 (New)
// nChemcalSourceEsMethod: Modified on ChemcalSource.
// 0 -- approximation algorithm 1 (Ori).
// 1 -- approximation algorithm 2 (New).
// nMaxStepTemperature: the iterative steps of temperature.
// veTemperatureMinModified: Modified on the minimum of Tve for Cvvs
// 0 -- not used
// 1 -- used
// nDiagonalModified: Modified on Diagonal
// 0 -- not used
// 1 -- Ori.
// 2 -- new
// veTemperatureMinModified: Modified on the minimum of Tve for Cvvs.
// 0 -- not used.
// 1 -- used.
// nDiagonalModified: Modified on Diagonal.
// 0 -- not used.
// 1 -- new.
// nDiagonalModifiedTurb: Modified on Diagonal for turbulence.
// 0 -- not used.
// 1 -- new.
// nGradPrimtiveMethod:
// 0 -- Ori.
// 1 -- new
// 1 -- new.
// nAblation:
// 0 -- The wall ablation is not computed.
// 1 -- The wall ablation is computed.
@ -1017,8 +1033,8 @@ int monitorNegativeConstant = 0;
// "Mars-Pa8" is for Park model of Mars gas, "Mars-Mc8" for McKenzie model of Mars gas.
// "Combustion-12" -- indicates the Combustion Chamber Gas Model which includes 12-species-20-reactions.
// "Gas-Mixture" -- indicates the process of mixing gas without reacting.
// for struct solver mixing two species£¨SpeciesA, SpeciesB£©.
// for unstruct solver mixing multi-species£¨O2 NO CO CO2 H2 N2 Air CH4£©.
// for struct solver mixing two species<65><73>SpeciesA, SpeciesB<73><42>.
// for unstruct solver mixing multi-species<65><73>O2 NO CO CO2 H2 N2 Air CH4<48><34>.
// For self-definition model, the gasfile is used to indicate the file path of the new gas model.
// speciesName: Used to list the names of each species, while each species name is separated by the symbol of comma.
// initMassFraction: Used to list the initial mass fractions of species in accordance with the sequence of names in the parameter speciesName.
@ -1040,13 +1056,16 @@ int monitorNegativeConstant = 0;
// firstStepError : the residual error of the first step iteration for the self-adaptive calculation.
// secondStepError : the residual error of the second step iteration for the self-adaptive calculation.
// thirdStepError : the residual error of the third step iteration for the self-adaptive calculation.
// useHyflowSetting : Setting for HyFLOW GUI.
// 0 -- PHengLEI
// 1 -- HyFLOW
// nProtectData: Use the continuation file data protection mechanism.
// 0 -- no
// 1 -- yes
// 0 -- no.
// 1 -- yes.
// nTvChange: Judge whether the Tv equals Ttr.
// 0 -- yes.
// 1 -- no.
// isMoleFractionType: 1 indicates the mass fractions, or else the mole fractions.
// nFraction: the initial fractions type of species.
// 0 -- mass fraction.
// 1 -- mole fraction.
int dg_high_order = 0;
int iapplication = 0;
int isAdaptiveSolver = 0;
@ -1114,6 +1133,7 @@ double densityMin = 1.0e-8;
double densityMinFactor = 0.1;
double tAdjustmentFactor = 10.0;
double iniSpeedCoef = 1.0;
int iniSpeedMode = 0;
int nDebug = 0;
int nSpeciesLimit = 1;
@ -1125,18 +1145,21 @@ int nChemcalSourceEsMethod = 1;
int nMaxStepTemperature = 5;
int veTemperatureMinModified = 1;
int nDiagonalModified = 0;
int nDiagonalModifiedTurb = 0;
int nGradPrimtiveMethod = 1;
int nInviscidFluxModify = 1;
int nQlLimitMethod = 2;
int nSpeciesForWallMethod = 1;
int nDensityForWallMethod = 0;
int wallMultiTemperature = 0;
int nProtectData = 0;
int useHyflowSetting = 0;
int nAblation = 0;
int isInjection = 0;
int nViscosityModel = 0;
int nMarsModel = 0;
int nTvChange = 0;
int isMoleFractionType = 0;
string gasfile = "DK5";
//string gasfile = "./chemical/Dunn-Kang_air5s11r.dat";
string speciesName = "O, O2, NO, N, N2";
@ -1173,9 +1196,17 @@ double molecularWeightSpeciesB = 30.0;
//string speciesName = "O2, N2";
//string initMassFraction = "1.0, 0.0";
int nFraction = 0;
int nContinueModel = 0;
int nChemicalFlowStep = 0;
int ifStartFromPerfectGasResults = 0;
int isUseNoneqCond = 0;
double frozenCondition = 0.01;
int nLeakageMonitor = 0;
double totalLeakageVolume = 1000.0;
double monitorThresholdValue = 0.05;
double sprayFactor = 0.0;
#########################################################################
// Multi-Grid parameters.
@ -1196,7 +1227,6 @@ int ifStartFromPerfectGasResults = 0;
// 1 -- zero order.
// 2 -- first-order. (default)
// mgCorrectionLimit: Multi-grid correction limit.
int nMGLevel = 1;
int MGCoarsestIteration = 1;
int MGPreIteration = 1;
@ -1226,9 +1256,9 @@ string holeFullFileName = "./grid/holeFullFile.dat";
string linkFileName = "./grid/topology.dat";
string zoneInverseFileName = "./grid/zoneInverseMapping.inp";
#########################################################################
# High Order Struct Solver #
#########################################################################
#************************************************************************
# High Order Struct Solver *
#************************************************************************
// isFVMOrFDM:
// 0 -- NSSolverStruct using Finite Volume Method.
// 1 -- NSSolverStruct using Finite Differ Method.
@ -1273,10 +1303,29 @@ int allReduceStep = 1;
// codeOfOversetGrid: Overlapping(overset) grid or not.
// 0 -- NON-overlapping grid.
// 1 -- Overlapping grid.
// oversetInterpolationMethod: the method of overset interpolation while field simulation
// oversetInterpolationMethod: the method of overset interpolation while field simulation.
// 0 -- set the acceptor cell value by donor cell value.
// 1 -- set the acceptor cell value by distance weight of donor cell value.
// readOversetFileOrNo: Whether to read overset-file(.ovs) that has been generated.
// 0 -- no.
// 1 -- yes.
// symetryOrNot: If there exist symetryplanes(XY plane, the coordinate of Z direction is 0) in
// the current overset grid(only for three dimension).
// 0 -- no.
// 1 -- yes.
// readInAuxiliaryInnerGrid: Whether to read auxiliary inner grid.
// 0 -- no.
// 1 -- yes.
// walldistMainZone: The initial value of background grid which does not exist wall boundary condition.
// toleranceForOversetSearch: The tolerance of overset searching zone to judge whether the obtained node is in the current computing cell.
// toleranceForOversetBox: The tolerance of building the minimum box of computing cells in the overlapping region.
// twoOrderInterpolationOrNot: The number of interpolated cell layers in the overlapping boundary.
// 0 -- one layer.
// 1 -- two layers.
// keyEnlargeOfActiveNodes: The number of enlarged overset-boundary layers in the buffer region.
// outTecplotOverset: Whether to dump out the flowfield data after the progress of overset configure.
// 0 -- no.
// 1 -- yes.
int codeOfOversetGrid = 0;
int oversetInterpolationMethod = 0;
int readOversetFileOrNot = 0;
@ -1295,7 +1344,6 @@ int twoOrderInterpolationOrNot = 0;
int keyEnlargeOfActiveNodes = 0;
int outTecplotOverset = 0;
int outPutOversetVisualization = 0;
int numberOfMovingBodies = 2;
// ----------------- ALE configuration ------------------------------
@ -1306,34 +1354,40 @@ double referenceLength = 1.0;
double referenceVelocity = 1.0;
double referenceDensity = 1.0;
int strategyForFaceNormalVelocity = 0; //0-By Sweeping volume; 1-By face center 1st; 2-By face center 2nd;
int strategyForGCLSource = 0; //0-present; 1-Ahn;
int strategyForFaceNormalVelocity = 0; // 0-By Sweeping volume; 1-By face center 1st; 2-By face center 2nd.
int strategyForGCLSource = 0; // 0-present; 1-Ahn.
//0:1st-Admas-Bashforth; 1:2nd-Admas-Bashforth; 2:1st-Implicit-Euler; 3:2nd-Implicit Euler; 4:2nd-Adams-Moulton; 5:3rd-Adams-Moulton
// 0: 1st-Admas-Bashforth; 1: 2nd-Admas-Bashforth; 2: 1st-Implicit-Euler; 3: 2nd-Implicit Euler; 4: 2nd-Adams-Moulton; 5: 3rd-Adams-Moulton.
int methodForKineticEquation = 0;
double relaxParameterOfKinetic = 1.0;
#########################################################################
# motive information #
#########################################################################
#************************************************************************
# motive information *
#************************************************************************
int numberOfMovingBodies = 1;
############################## body0 ##############################
//mass of parts
// mass of parts.
double mass_0 = 1.0;
//mass matrix of parts Ixx Iyy Izz Ixy Ixz Iyz
// gravity of parts (along negative direction in Y-axis, eg. 9.8).
double gravity_0 = 0.0;
// mass matrix of parts Ixx Iyy Izz Ixy Ixz Iyz.
double massMatrix_0[] = 1e-7, 1e-6, 1e-6, 0.0, 0.0, 0.0;
//initial six DOF position information of parts. xc yc zc
// initial six DOF position information of parts. xc yc zc.
double massCenter_0[] = 0.0, 0.0, 0.0;
//initial six DOF position information of parts. angleX angleY angleZ
// if reset mass center while restart.
int resetMassCenter_0 = 0;
// position offset of parts. dx dy dz.
double massCenterDxyz_0[] = 0.0, 0.0, 0.0;
// initial six DOF position information of parts. angleX angleY angleZ.
double attitudeAngle_0[] = 0.0, 0.0, 0.0;
//initial six DOF move information of parts. vc vy vz
// initial six DOF move information of parts. vc vy vz.
double massCenterVelocity_0[] = 0.0, 0.0, 0.0;
//initial six DOF move information of parts. omigX omigY omigZ
// initial six DOF move information of parts. omigX omigY omigZ.
double angularVelocity_0[] = 0.0, 0.0, 0.0;
// the object that the parts belong to.
int fartherIndex_0 = -1;
//the assembly position of the parts. xc yc zc angleX angleY angleZ
// the assembly position of the parts. xc yc zc angleX angleY angleZ.
double configPamameter_0[] = 0.0, 0.0, 0.0, 0.0, 0.0, 0.0;
// the move pattern of the parts.
// -1 given motion partten.
@ -1349,23 +1403,24 @@ double configPamameter_0[] = 0.0 ,0.0 ,0.0 ,0.0 ,0.0
int RBDMethod_0 = 0;
double amplitude_0 = 0.0;
double reduceFrequency_0 = 0.0;
//direction of rotation
// direction of rotation.
// 1 -- clockwise from the point of view along the positive x axis.
// -1 -- anticlockwise from the point of view along the positive x axis.
int direction_0 = -1;
double rotateFrequency_0 = 0.0;
//string uDFSixDofFileName_0 = "./Bin/UDFSixDof.Parameter";
//additional force (system axis) fX fY fZ
// dimensional physical time for additional force(s).
double addedForceTime_0[] = 0.0;
// additional force(inertia system) fX fY fZ.
double addedForce_0[] = 0.0, 0.0, 0.0;
//additional moment of Force (system axis) mX mY mZ
// additional moment(inertia system) mX mY mZ.
double addedMoment_0[] = 0.0, 0.0, 0.0;
// the deformation method of the parts.
int morphing_0 = 0;
// post indentify
// post indentify.
int integralOrder = 4;
// ---------------- ATP read --------------------------------------------
//@int inflowParaType = 0;
//@double refReNumber = 6.5e6;
@ -1379,18 +1434,34 @@ int integralOrder = 4;
//@string outLetFileName = "./bin/subsonicOutlet.hypara";
//@double refDimensionalVelocity = 0;
//@double refDimensionalDensity = 0;
#########################################################################
# Old Parameter #
#########################################################################
//@string weatherDataFilePath = "./WRFData/";
//@double longitude = 110.95
//@double latitude = 19.61;
#************************************************************************
# Old Parameter *
#************************************************************************
int isPlotVolumeField = 0;
#************************************************************************
# partial flow field setting Parameter *
#************************************************************************
//int nPartialParameter = 0; // 0/1/2
//int nNumberOfPartialField = 0; //
//int nStartGridIndex[] = [0];
//int nEndGridIndex[] = [0];
#########################################################################
# Incompressible Parameter #
#########################################################################
//double partialCFL[] = [0.0];
//double partialSpeedCoef[] = [0.0];
//double partialSpeed[] = [0.0];
//double partialAttackd[] = [0.0];
//double partialSlide[] = [0.0];
//double partialPressure[] = [0.0];
//double partialTemperature[] = [0.0];
//double partialMassFractions[] = [0.0];
#************************************************************************
# Incompressible Parameter *
#************************************************************************
int isSolveEnergyEquation = 0;
int isSolveTurbEquation = 0;
int isSolveSpeciesEquation = 0;

View File

@ -5,9 +5,12 @@
// 0 -- Unstructured grid.
// 1 -- Structured grid.
// 2 -- Hybrid grid, include both of unstructured and structured grid.
// axisup: Type of Cartisien coordinates system, used in grid conversion.
// 1 -- Y upward. (default)
// 2 -- Z upward.
// nAxisRotateTimes: number of axis rotating times, zero (default) meaning without rotating.
// axisRotateOrder : axis rotating order.
// 1 -- X-axis.
// 2 -- Y-axis.
// 3 -- Z-axis.
// axisRotateAngles: axis rotating angles (degree), which are corresponding to the axis rotating order.
// from_gtype: Type of grid data type in grid conversion process.
// -1 -- MULTI_TYPE.
// 1 -- PHengLEI, *.fts.
@ -35,7 +38,9 @@
int gridtype = 2;
// default
int axisup = 1;
int nAxisRotateTimes = 0;
int axisRotateOrder[] = [1, 2, 3];
double axisRotateAngles[] = [0.0, 0.0, 0.0];
int from_gtype = 2;
int omit_no_bound_bc = 1;

View File

@ -8,6 +8,7 @@
// Platform for Hybrid Engineering Simulation of Flows +
// China Aerodynamics Research and Development Center +
// (C) Copyright, Since 2010 +
// PHengLEI 2212 +
//+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
###########################################################################
# Default parameters for Grid conversion #
@ -46,19 +47,24 @@ int gridobj = 1;
int multiblock = 0;
int iadapt = 0;
int SymmetryFaceVector = 1;
int gridReorder = 0;
int faceReorderMethod = 0;
// axisup: Type of Cartisien coordinates system, used in grid conversion.
// 1 -- Y upward. (default)
// 2 -- Z upward.
int axisup = 1;
// nAxisRotateTimes: number of axis rotating times, zero (default) meaning without rotating.
// axisRotateOrder : axis rotating order.
// 1 -- X-axis.
// 2 -- Y-axis.
// 3 -- Z-axis.
// axisRotateAngles: axis rotating angles (degree), which are corresponding to the axis rotating order.
int nAxisRotateTimes = 0;
int axisRotateOrder[] = [1, 2, 3];
double axisRotateAngles[] = [0.0, 0.0, 0.0];
// omit_no_bound_bc: What's boundary condition for the type of "no_boundary_condition".
// 0 -- Interface. (default)
// 1 -- Physical boundary condition, used in Hybrid solver.
int omit_no_bound_bc = 0;
int omitRepeatInterface = 1;
//-----------------------------------------------------------------------
# Grid data type #
@ -89,7 +95,6 @@ int dumpOldGrid = 0;
int numberOfGridFile = 1;
string from_gfile = "./grid/rae2822_hybrid2d.cas";
string from_gfile1 = "";
string out_gfile = "./grid/flat_laminr_133_85_2d.fts";
// ----------------- some advanced choices ------------------------------
@ -178,7 +183,6 @@ double influencePara = 25.0;
which only support one direction.
// rotationAngle: The relative angle between two periodic face.
which is recorded in degrees.
int periodicType = 0;
double translationLength[] = [0.0, 0.0, 0.0];
double rotationAngle = 0.0;
@ -192,7 +196,6 @@ double rotationAngle = 0.0;
// 2 -- refine structured grid.
// maxproc: The number of partition zones that want to be divided into.
// numberOfMultifile: The number of partition grid files that want to be dumped out.
int pgridtype = 0;
int maxproc = 4;
int numberOfMultifile = 1;
@ -207,8 +210,8 @@ int blockIndexOfMark = 0;
int cellIndexOfMark[] = [185, 30, 1];
// parallelStrategy:
//! -# 0 : each zone is assigned to the one that defined in grid partition procedure.
//! -# 1 : random assigned for each zone or by some else ways.
// 0 -- each zone is assigned to the one that defined in grid partition procedure.
// 1 -- random assigned for each zone or by some else ways.
int parallelStrategy = 1;
//-----------------------------------------------------------------------
@ -232,7 +235,6 @@ string partition_grid_file = "./grid/sphere_mixed__4.fts";
// 1 -- perfect balance.
// maxproc -- perfect imbalance.
// 1.05 -- recommended.
int omit_no_bound_bc = 0;
int npartmethod = 1;
int parallelPartitionMethod = 2;
@ -253,24 +255,30 @@ int numberOfMultigrid = 1;
// intervalStepSample: The step intervals for monitored probes variables file 'sample.dat' saved.
// intervalStepForce: The step intervals for aerodynamics coefficients file 'aircoef.dat' saved.
// intervalStepRes: The step intervals for residual file 'res.dat' saved.
// ifLowSpeedPrecon: Precondition process to accelerate convergence for low speed flow.
// 0 -- no precondition process. (default, mach > 0.3)
// 1 -- carry out precondition process. (mach number <= 0.3)
int maxSimuStep = 20000;
int intervalStepFlow = 1000;
int intervalStepPlot = 1000;
int intervalStepSample = 1000;
int intervalStepForce = 100;
int intervalStepRes = 10;
int ifLowSpeedPrecon = 0;
// compressible:
// 0 -- incompressible flow.
// 1 -- compressible flow. (default)
int compressible = 1;
// ifLowSpeedPrecon: Precondition process to accelerate convergence for low speed flow.
// 0 -- no precondition process. (default, mach > 0.3)
// 1 -- carry out precondition process. (mach number <= 0.3)
// Kprec: The coefficient K for the cut-off velocity.
// 1.0~3.0 is suggested. (default, 3.0)
// preconFarfieldBCMethod: The precondition method for farfield boundary condition.
// 0 -- precondition far-field boundary based on riemann invariants.
// 1 -- Turkel's simplified far-field boundary condition.
int ifLowSpeedPrecon = 0;
double Kprec = 3.0;
int preconFarfieldBCMethod = 1;
//-----------------------------------------------------------------------
# CFD Control Parameter #
//-----------------------------------------------------------------------
@ -281,9 +289,12 @@ int compressible = 1;
// 0 -- the nondimensional conditions.
// 1 -- the flight conditions.
// 2 -- the experiment conditions.
// 3 -- the subsonic boundary conditions.
// 3 -- the subsonic boundary conditions. (Useless!)
// 4 -- the condition that the velocity, temperature and density are given.
// 5 -- the condition that the velocity, temperature and pressure are given.
//flowInitMethod: Flow field initialization method.
// 0 -- The entire flow field is initialized according to Infinite velocity.
// 1 -- The velocity near the wall is initialized according to the boundary layer of the plate.
// refReNumber: Reynolds number, which is based unit length, unit of 1/m.
// refDimensionalTemperature: Dimensional reference temperature, or the total temperature only for the experiment condition.
// freestream_vibration_temperature: Dimensional freestream vibration temperature.
@ -303,11 +314,11 @@ int compressible = 1;
// condition is radiation equilibrium temperature, and 0.8 is the default value.
// refMolecularWeight: the reference molecular weight of gas used for perfect gas. The unit is g/mol.
// Generally, the gas is air. Sometimes, it is experiment gas, such as Nitrogen, Argon, and so on.
int directionMethod = 0;
double refMachNumber = 0.73;
double attackd = 2.79;
double angleSlide = 0.00;
int flowInitMethod = 0;
int inflowParaType = 0;
double refReNumber = 6.5e6;
@ -321,14 +332,6 @@ double freestream_vibration_temperature = 300.00;
//double refDimensionalTemperature = 6051.024; // The total temperature, T*(1+(refGama-1)*M*M/2).
//double refDimensionalPressure = 4.299696E09; // The total pressure, p*(T0/T)^(refGama/(refGama-1)).
//int inflowParaType = 3;
//int nsubsonicInlet = 1;
//int nsubsonicOutlet = 1;
//string inLetFileName = "./bin/subsonicInlet.hypara";
//string outLetFileName = "./bin/subsonicOutlet.hypara";
//double refDimensionalTemperature = 288.144;
//double refDimensionalPressure = 1.01313E05;
// The velocity, temperature and density are fixed.
//int inflowParaType = 4;
//double refDimensionalVelocity = 1000.0;
@ -341,9 +344,15 @@ double freestream_vibration_temperature = 300.00;
// The MachNumber, temperature and pressure are fixed.
//int inflowParaType = 6;
//double refDimensionalTemperature = 293;
//double refDimensionalTemperature = 293.0;
//double refDimensionalPressure = 8886.06;
// The velocity, temperature and pressure are read from file.
//int inflowParaType = 7;
//string weatherDataFilePath = "./WRFData/";
//double longitude = 110.95
//double latitude = 19.61;
double wallTemperature = -1.0;
double radiationCoef = 0.8;
@ -357,35 +366,35 @@ double forceReferenceArea = 1.0; // unit of meter^2.
double TorqueRefX = 0.0; // unit of meter.
double TorqueRefY = 0.0; // unit of meter.
double TorqueRefZ = 0.0; // unit of meter.
double knudsenLength = 1.0; // unit of meter.
double refMolecularWeight = 28.9644; // unit of g/mol.
//-----------------------------------------------------------------------
# Spatial Discretisation #
//-----------------------------------------------------------------------
#*******************************************************************
#************************************************************************
# Struct Solver *
#*******************************************************************
#************************************************************************
// inviscidSchemeName: Spatial discretisation scheme of struct grid.
// Using this when solve structered grid or hybrid.
// -- "vanleer", "steger", "hlle", "lax_f".
// -- "roe", "modified_roe".
// -- "vanleer", "steger", "hlle", "lax_f",
// -- "roe", "modified_roe",
// -- "ausm+", "ausm+w", "ausm+up", "ausmdv", "ausmpw", "ausmpw+".
// isWennScheme: If using WENN Scheme of struct grid.
// 0 -- NO. (default)
// 1 -- Yes.
// str_limiter_name: Limiter of struct grid.
// -- "vanalbada", "vanleer", "minmod", "smooth", "minvan", "3rdsmooth", "3rd_minmod_smooth".
// -- "nolim", no limiter.
// -- "vanalbada_clz", clz supersonic version.
// -- "weno3_js", "wenn3_prm211", "wenn3_zm", "wenn3_zes2", "wenn3_zes3"
// -- "vanalbada", "vanleer", "minmod", "smooth", "minvan", "3rdsmooth", "3rd_minmod_smooth",
// -- "nolim", no limiter,
// -- "vanalbada_clz", clz supersonic version,
// -- "weno3_js", "wenn3_prm211", "wenn3_zm", "wenn3_zes2", "wenn3_zes3".
string inviscidSchemeName = "roe";
int isWennScheme = 0;
string str_limiter_name = "vanalbada";
#*******************************************************************
#************************************************************************
# UnStruct Solver or Common *
#*******************************************************************
#************************************************************************
// viscousType: Viscous model.
// 0 -- Euler.
// 1 -- Lamilar.
@ -410,11 +419,11 @@ string str_limiter_name = "vanalbada";
// 3 -- IDDES.
// uns_scheme_name: Spatial discretisation scheme of Unstruct grid.
// Using this when solve Unstructered grid or hybrid.
// -- "vanleer", "roe", "steger", "kfvs", "lax_f", "hlle".
// -- "vanleer", "roe", "GMRESRoe", "GMRESSteger", "steger", "kfvs", "lax_f", "hlle",
// -- "ausm+", "ausmdv", "ausm+w", "ausmpw", "ausmpw+".
// uns_limiter_name: Limiter of Unstruct grid.
// -- "barth", "vencat", "vanleer", "minmod".
// -- "vanalbada", "smooth", "nnd", "lpz", "1st".
// -- "barth", "vencat", "vanleer", "minmod",
// -- "vanalbada", "smooth", "nnd", "lpz", "1st",
// -- "nolim", no limiter.
// uns_vis_name: Discretisation method of viscous term.
// -- "std", "test", "aver", "new1", "new2".
@ -442,7 +451,7 @@ string str_limiter_name = "vanalbada";
// 3 -- Harten type, which is default used.
// roeEntropyScale: Entropy fix (correction) coefficient scale, default is 1.0.
// It is used to scale the default Roe entropy fix coefficients.
// AusmpwPlusLimiter: A Limiter to make "function w" not change acutely in AusmpwPlus scheme, default is 1.0
// AusmpwPlusLimiter: A Limiter to make "function w" not change acutely in AusmpwPlus scheme, default is 1.0.
//int viscousType = 0;
//string viscousName = "Euler";
@ -475,9 +484,9 @@ double roeEntropyScale = 1.0;
double AusmpwPlusLimiter = 1.0;
//-----------------------------------------------------------------------
# Temporal Discretisation #
//-----------------------------------------------------------------------
#************************************************************************
# Temporal Discretisation *
#************************************************************************
// iunsteady: Steady or unsteady.
// 0 -- steady.
// 1 -- unsteay.
@ -504,11 +513,18 @@ double AusmpwPlusLimiter = 1.0;
// 6 -- Jacobian iteration.
// 7 -- Line LU-SGS.
// 8 -- Matrix LU-SGS.
// 9 -- GMRES.
// iSimplifyViscousTerm: Simplify the computation of viscous term in the Block LU-SGS method. The default value assigns 1 that could speed up the computation.
// Otherwise, the viscous Jacobian matrix Mv should be computed that will increase the memory and time in iteration of the BLUSGS method.
// CFLStart: Started cfl number.
// CFLEnd: End cfl number.
// CFLVaryStep: The number of step when cfl increase from CFLStart to CFLEnd.
// GMRESCFLScale : CFL = CFLStart * GMRESCFLScal^iteration.
// OriginalTscheme : Used for LUSGS and GMres hybrid computing.
// useLUSGSprecond: Initialize flow field for GMRES.
// 0 --Initialize by first order Jacobian matrix.
// 1 --Initialize by LUSGS.
// GMRESInitStep : the number of iteration step of irst order Jacobian matrix or LUSGS for initialize flow field.
// ktmax: Dtratio. dt[i] = MIN(dt[i], ktmax * dtmin / vol[i])
// swapDq: Communication dq between forward/backward sweep of LUSGS or not, default is 0.
// nLUSGSSweeps: Sub iteration of LU-SGS or Block LU-SGS.
@ -533,7 +549,6 @@ double AusmpwPlusLimiter = 1.0;
// 2 -- Pab3D wall function.
// RKStage: The number of Runge-Kutta step.
// lamda: Cofficient of Runge-Kutta step.
int iunsteady = 0;
double physicalTimeStep = 0.01;
double physicalTimeStepDimensional = -0.001;
@ -543,7 +558,7 @@ int ifStaticsReynoldsStress = 0;
int startStatisticStep = 800000;
double statisticalTimePeriod = -1.0;
int statisticMethod = 0;
int linearTwoStepMethods = 1; // 1--BDF1; 2--C-N; 3--BDF2;
int linearTwoStepMethods = 1; // 1--BDF1; 2--C-N; 3--BDF2.
int methodOfDualTime = 3;
int min_sub_iter = 50;
@ -558,7 +573,10 @@ int isUsePreTwall = 0;
double CFLStart = 0.01;
double CFLEnd = 10.0;
int CFLVaryStep = 500;
double GMRESCFLScale = 1.0;
int OriginalTscheme = 9;
int useLUSGSprecond = 1;
int GMRESInitStep = 1000;
double pMaxForCFL = 0.2;
double pMinForCFL = 0.1;
double deltaMaxForCFL = 0.2;
@ -575,7 +593,7 @@ int order = 2;
double visl_min = 0.01;
double turbCFLScale = 1.0;
double csrv = 2.0;
double csrv = 1.0;
double timemax = 1.0e10;
double dtsave = -1.0;
int maxale = 10;
@ -591,10 +609,9 @@ double lamda[] = [0.5, 1.0];
//int RKStage = 4;
//double lamda[] = [0.25, 0.33333333333, 0.5, 1.0];
//-----------------------------------------------------------------------
# File In or Out #
//-----------------------------------------------------------------------
#************************************************************************
# File In or Out *
#************************************************************************
// numberOfGridGroups: The number of grid groups.
// gridfile: The partitioned Grid file path, using relative path,
// which is relative to the working directory.
@ -618,10 +635,8 @@ double lamda[] = [0.5, 1.0];
// nIsComputeWallDist: Whether to compute the wall distance.
// 0 -- Compute wall distance.
// 1 -- Not compute.
//
// protectionFile0 and protectionFile1: Two continuation file of the data protection mechanism.
// wall_heatfluxfile: The file to output the MaxHeatFlux of wall.
int numberOfGridGroups = 1;
string gridfile = "./grid/rae2822_hybrid2d__4.fts";
string wallTemperaturefile = "";
@ -632,10 +647,12 @@ int cellMethodOrNodeMethod = 0;
string resSaveFile = "results/res.dat";
string turbresfile = "results/turbres.dat";
string transitionResFile = "results/transitionRes.dat";
string aircoeffile = "results/aircoef.dat";
string restartNSFile = "results/flow.dat";
string turbfile = "results/turb.dat";
string transitionFile = "results/transition.dat";
string visualfile = "results/tecflow.plt";
string wall_aircoefile = "results/wall_aircoef.dat";
@ -645,11 +662,15 @@ string protectionFile0 = "results/flow0.dat";
string protectionFile1 = "results/flow1.dat";
string wall_heatfluxfile = "results/wall_heatflux.dat";
string protectionTurbFile0 = "results/turb0.dat";
string protectionTurbFile1 = "results/turb1.dat";
string protectionTransitionFile0 = "results/transition0.dat";
string protectionTransitionFile1 = "results/transition1.dat";
int nDumpSurfaceInfo = 0;
string wall_varfile = "";
string jetDefineFile = "bin/jet.hypara";
string sixDofFileName = "results/sixDofInfo.dat";
string derivativeFileName = "results/identify.dat";
string hysteresisFileName = "results/force_beta.plt";
@ -659,7 +680,8 @@ int plotFieldType = 0;
// visualfileType: The file type of visualfile.
// 0 -- Tecplot binary.
// 1 -- Tecplot ASCII.
// 2 -- Ensight binary.
// 3 -- Ensight ASCII.
int visualfileType = 1;
// samplefileMode: The dump mode of sample file.
@ -697,21 +719,21 @@ double upperPlotFieldBox[] = [1.0 1.0 1.0];
// -- vibration temperature(Tv, 33), electron temperature(Te, 34), vibrational energy(Ev, 35), electric energy(Ee, 36),
// -- number density of electron(Ne, 37), dimensioanl density(rho, 38), dimensioanl pressure(p, 39), dimensioanl temperature(T, 40),
// -- gradientUx(41), gradientUy(42), gradientVx(43), gradientVy(44), streamline_u(45), streamline_v(46), streamline_w(47),
// -- transition intermittency(intermittency, 51), -transition momentum thickness reynolds(MomentumThicknessReynolds, 52),
// -- overlap iblank(iblank, 81)
// -- specific heat ratio(gama, 56)
// -- transition intermittency(intermittency, 51), transition momentum thickness reynolds(MomentumThicknessReynolds, 52),
// -- local CFL Number(localCFL, 57), minimal CFL Number(minCFL, 58),
// -- overlap iblank(iblank, 81),
// -- specific heat ratio(gama, 56), Knudsen number(kn, 60), Damkohler number(Da, 61), vibrational nonequilibrium number(Vi, 62).
// Important Warning: Array size of visualVariables MUST be equal to nVisualVariables!!!
// Variables order must from small to big.
//-----------the optional parameters list for the wall boundary condition----------------
// nVisualWallVariables: The number of visual variables on wall.
// visualWallVariables : dumped variable types, listed as following:
// -coefficient of pressure(cp, 0), -coefficient of friction(cf, 1), yplus(2), -non-dimensional heat flux(Q_NonDim, 3), -dimensional heat flux(Q_Dim, 4),
// -pressure on wall(pw, 5), -temperature on wall(Tw, 6), -density on wall(rhow, 7), -heat flux of translational-rotational temperature term(Qtr, 8),
// -heat flux of species diffusion term(Qs, 9), -heat flux of vibrational temperature term(Qv, 10), -heat flux of electron temperature term(Qe, 11),
// -species mass fractions(Ns, 12), -x component of wall velocity(Vx, 13), -y component of wall velocity(Vy, 14), -z component of wall velocity(Vz, 15)
// -slip translational-rotational temperature(Tts, 16), -slip vibrational temperature(Tvs, 17), -slip electron temperature(Tes, 18), -absolute wall velocity(Vs, 19)
// -Stanton number(St, 20), -coefficient of heat rate(Ch, 21), -temperature jump(deltaT, 22), -Grid Reynolds number on wall(Re_w, 23)
// -- coefficient of pressure(cp, 0), coefficient of friction(cf, 1), yplus(2), non-dimensional heat flux(Q_NonDim, 3), dimensional heat flux(Q_Dim, 4),
// -- pressure on wall(pw, 5), temperature on wall(Tw, 6), density on wall(rhow, 7), heat flux of translational-rotational temperature term(Qtr, 8),
// -- heat flux of species diffusion term(Qs, 9), heat flux of vibrational temperature term(Qv, 10), heat flux of electron temperature term(Qe, 11),
// -- species mass fractions(Ns, 12), x component of wall velocity(Vx, 13), y component of wall velocity(Vy, 14), z component of wall velocity(Vz, 15),
// -- slip translational-rotational temperature(Tts, 16), slip vibrational temperature(Tvs, 17), slip electron temperature(Tes, 18), absolute wall velocity(Vs, 19),
// -- Stanton number(St, 20), coefficient of heat rate(Ch, 21), temperature jump(deltaT, 22), Grid Reynolds number on wall(Re_w, 23), Knudsen number(Kn_wall, 24).
int nVisualVariables = 8;
int visualVariables[] = [0, 1, 2, 3, 4, 5, 6, 15];
@ -739,7 +761,9 @@ int dumpStandardModel = 0;
// 1 -- Real cell where the probe is located.
// nProbeVariables: Number of variables want to be dumped for probes monitered.
// probeVariables : Variable types dumped, listed as following:
// -- density(0), u(1), v(2), w(3), pressure(4), temperature(5), mach(6).
// -- density(0), u(1), v(2), w(3), pressure(4), temperature(5), mach(6),
// -- dimensioanl_density(7), dimensioanl_u(8), dimensioanl_v(9),
// -- dimensioanl_w(10), dimensioanl_pressure(11), dimensioanl_temperature(12).
// Important Warning: Array size of probeVariables MUST be equal to nProbeVariables!!!
// probeVariables order must from small to big.
// probeVariablesInterpolationMethod: Interpolation method used to compute the probe variables.
@ -761,12 +785,13 @@ string probesDefineFile = "bin/probes_XYZ.dat";
int searchCellsMethod = 0;
int nProbeVariables = 7;
int probeVariables[] = [0, 1, 2, 3, 4, 5, 6];
int nProbeVariables = 14;
int probeVariables[] = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13];
int probeVariablesInterpolationMethod = 0;
//-----------------------------------------------------------------------
# Turbulence Parameter #
//-----------------------------------------------------------------------
#************************************************************************
# Turbulence Parameter *
#************************************************************************
// turbInterval: Iteration number of turbulence.
// kindOfTurbSource: Kinds of turbulent source.
// 0 -- Original.
@ -774,15 +799,12 @@ int probeVariablesInterpolationMethod = 0;
// transitionType: transition model type
// 0 -- none.
// 2 -- gama-re-theta.
// turbIntensity: (valid while greater than 0.0 ) turbulent intensity of free stream(*100) in transition
// freeturbIntensitySRModify: to use SR modify in free stream turbulent intensity decay or not
// turbIntensity: (valid while greater than 0.0 ) turbulent intensity of free stream(*100) in transition.
// freeturbIntensitySRModify: to use SR modify in free stream turbulent intensity decay or not.
int turbInterval = 1;
int turbOrderStruct = 2;
int kindOfTurbSource = 0;
int mod_turb_res = 0;
double turb_relax = 1.0;
double freeStreamViscosity = 1.0e-3;
double muoo = 3.0;
double kwoo = 5.0;
@ -791,28 +813,27 @@ double turbIntensity = -1.0;
int freeturbIntensitySRModify = 0;
double freeDecayXLocation = 0.0;
int compressibleCorrection = 0;
int prandtlNumberCorrection = 0;
int transitionMaFix = 1;
# maximum eddy viscosity (myt/my) max.
// maximum eddy viscosity (myt/my) max.
double eddyViscosityLimit = 1.0e10;
int monitor_vistmax = 0;
//-----------------------------------------------------------------------
# LES Parameter #
//-----------------------------------------------------------------------
#************************************************************************
# LES Parameter *
#************************************************************************
// iLES: Create LESSolver or not.
// = 1 - Create LESSolver;
// != 1 - not.
// = 1 -- Create LESSolver;
// != 1 -- not.
// amplitudeofDisturb: Amplitude of adding disturb.
// disturbstep: Unsteady time step or steady iteration of adding random disturb.
// iterdisturb: Add random disturb in every sub-iter or only first sub-iter.
// = 0 - in only first sub-iter;
// != 0 - in every sub-iter.
// = 0 -- in only first sub-iter;
// != 0 -- in every sub-iter.
// ipraddisturb: Add density and pressure disturb or not.
// ibodyforce: Add body force in source flux of NS equations or not.
// = 0 - not;
// != 0 - Add body force.
// = 0 -- not;
// != 0 -- Add body force.
// bodyforce: Body force in source flux of NS equations or not.
// utau: friction velocity, using in DNSDisturb.
// sgsmodel: subgrid scale model.
@ -820,23 +841,22 @@ int monitor_vistmax = 0;
// = "dsmCom";
// = "wale";
// = "sigma".
// deltaFunctionType: = 1 - MAX(deltai, deltaj, deltak);
// = 2 - pow(deltai * deltaj *deltak, 1/3);
// = 3 - Devloped by Scotti.
// wallDampingFunctionType: = 0 - no wall function;
// = 1 - van Driest;
// = 2 - developed by Dr. Deng Xiaobing;
// = 3 - developed by Piomelli.
// deltaFunctionType: = 1 -- MAX(deltai, deltaj, deltak);
// = 2 -- pow(deltai * deltaj *deltak, 1/3);
// = 3 -- Devloped by Scotti.
// wallDampingFunctionType: = 0 -- no wall function;
// = 1 -- van Driest;
// = 2 -- developed by Dr. Deng Xiaobing;
// = 3 -- developed by Piomelli.
// turbViscousCutType: turbulent viscosity cut type.
// = 0 - mu_total = mut + mul;
// = 1 - mu_total = max(mut-mul,0)+ mul;
// = 2 - mu_total = max(mut ,0)+ mul.
// = 0 -- mu_total = mut + mul;
// = 1 -- mu_total = max(mut-mul, 0) + mul;
// = 2 -- mu_total = max(mut , 0) + mul.
// smagConstant: constant of smagorinsky model.
// waleConstant: constant of wale model.
// filterDirection [3]: filter variables in i, j, k direction or not.
// averageDirection[3]: average variables in i, j, k direction or not.
// isotropicConstant: constant of isotropic part of SGS stress.
int iLES = 0;
string sgsmodel = "smagorinsky";
int deltaFunctionType = 2;
@ -852,9 +872,9 @@ double testFilterScale = 2.0;
int averageWidth = 1;
int monitorNegativeConstant = 0;
//-----------------------------------------------------------------------
# Other Parameters for Hypersonic Non-equilibrium Gas #
//-----------------------------------------------------------------------
#************************************************************************
# Other Parameters for Hypersonic Non-equilibrium Gas *
#************************************************************************
// dg_high_order:
// 0 -- generic order accuracy.
// 1 -- high order accuracy.
@ -862,9 +882,6 @@ int monitorNegativeConstant = 0;
// 0 -- gas model is fixed in the codes.
// 1 -- gas model is imported from library files.
// isAdaptiveSolver: isAdaptiveSolver = 0 indicates the generic Navier-Stokes solver,
// isAdaptiveSolver>0 indicates the HyFlow self-adaptive solver.
// 1 -- using HyFlow self-adaptive solver where the switch is controlled by the total iteration steps.
// 2 -- using HyFlow self-adaptive solver where the switch is controlled by variation of the key residual.
// nm: Equation number of the physics, but is out of commision now.
// 4 -- for 2D.
// 5 -- for 3D.
@ -886,14 +903,13 @@ int monitorNegativeConstant = 0;
// nEquilibriumGas: the variable is valid when the condition of nchem = 0 is satisfied.
// 0 -- perfect gas.
// 5, 7, 11 -- equilibrium gas, meanwhile, its value denotes the number of gas component.
// nPCWCycleStep: the maximum step number of iteration in the module of computing species mass fractions with the partial catalytic wall(PCW) condition.
// the value equals to or is greater than 1, and 3 is for default value.
// nRETCycleStep: the maximum step number of iteration in the module of computing radiation equilibrium temperature on wall.
// the value equals to or is greater than 1, and 3 is for default value.
// nSLIPCycleStep:the maximum step number of iteration in the module of computing slip temperature, slip velocity and slip species mass fraction.
// the value equals to or is greater than 1, and 3 is for default value.
// nPCWCycleStep: The maximum step number of iteration in the module of computing species mass fractions with the partial catalytic wall(PCW) condition.
// The value equals to or is greater than 1, and 3 is for default value.
// nRETCycleStep: The maximum step number of iteration in the module of computing radiation equilibrium temperature on wall.
// The value equals to or is greater than 1, and 3 is for default value.
// nSLIPCycleStep:The maximum step number of iteration in the module of computing slip temperature, slip velocity and slip species mass fraction.
// The value equals to or is greater than 1, and 3 is for default value.
// nSlipBCModel: The computational model of slip boundary conditions.
// 0 -- no slip.
// 1 -- the conventional Maxwell slip conditions.
// 2 -- the Gokcen slip conditions.
@ -913,10 +929,13 @@ int monitorNegativeConstant = 0;
// 1 -- One-temperature model.
// 2 -- Two-temperature model.
// 3 -- Three-temperature model.
// isUseNoneqCond:
// 0 -- compute the source terms without any conditions.
// 1 -- compute the source terms using the non-equilibrium condition.
// frozenCondition: the threshold value of frozen chemical flow condition, 0.1 is the default value.
// nIdealState: whether take all gas species as ideal gas for gas-mixture process.
// 0 -- No.
// 1 -- Yes.
// nTEnergyModel: the method to computing temperature energy model.
// 1 -- Yes. // nTEnergyModel: the method to computing temperature energy model.
// 0 -- the energy term is computed using the conventional method.
// 1 -- the energy term is computed using the polynomial fitting method.
// 2 -- the energy term is computed using the piecewise polynomial fitting method.
@ -946,14 +965,13 @@ int monitorNegativeConstant = 0;
// 1.0 -- proposed by Maxwell.
// sqrt(2/PI)~0.8 -- used for "micro-slip", namely the actual velocity slip at the wall.
// 1.146 -- proposed for an additional "fictitious" velocity slip.
// chemicalRelaxCorf: The value is in range of [0.001, 1.0].
// spectrumRadiusCoef: The value is in range of [0.0, 2.0].
// staticPressureRelaxCorf: The value is in range of [0.1, 1.0].
// nIsChemicalFreeze: the flag to freeze the chemical reactions.
// 0 -- not freeze, the chemical reaction sources will be calculated.
// 1 -- freezes the chemical reactions, the chemical reaction sources will not be calculated.// veTemperatureMin: The minimum of Tv and Te
// 1 -- freezes the chemical reactions, the chemical reaction sources will not be calculated.
// veTemperatureMin: The minimum of Tv and Te.
// maxViscous: the maximum of Viscous.
// trTemperatureMin: the minimum value of trTemperature.
// veTemperatureMin: the minimum value of veTemperature.
@ -965,36 +983,34 @@ int monitorNegativeConstant = 0;
// nSpeciesLimit: limitter of gas species
// 0 -- not used.
// 1 -- used.
// nTurblenceForChemical: the coupled mode of Turblence and Chemical reaction
// nTurblenceForChemical: the coupled mode of Turblence and Chemical reaction.
// 0 -- method 0.
// 1 -- method 1.
// nViscosityFluxSublevelModified: Modified for ViscosityFlux on Sublevel grid
// nViscosityFluxSublevelModified: Modified for ViscosityFlux on Sublevel grid.
// 0 -- not used.
// 1 -- used.
// nViscosityPeModified: Pe Modified for ViscosityCoef
// nViscosityPeModified: Pe Modified for ViscosityCoef.
// 0 -- not used.
// 1 -- used.
// nChemcalSourceModified: Modified on ChemcalSource
// nChemcalSourceModified: Modified on ChemcalSource.
// 0 -- not used.
// 1 -- used.
// nChemcalSourceEsMethod: Modified on ChemcalSource
// 0 -- approximation algorithm 1 (Ori.)
// 1 -- approximation algorithm 2 (New)
// nChemcalSourceEsMethod: Modified on ChemcalSource.
// 0 -- approximation algorithm 1 (Ori).
// 1 -- approximation algorithm 2 (New).
// nMaxStepTemperature: the iterative steps of temperature.
// veTemperatureMinModified: Modified on the minimum of Tve for Cvvs
// 0 -- not used
// 1 -- used
// nDiagonalModified: Modified on Diagonal
// 0 -- not used
// 1 -- Ori.
// 2 -- new
// veTemperatureMinModified: Modified on the minimum of Tve for Cvvs.
// 0 -- not used.
// 1 -- used.
// nDiagonalModified: Modified on Diagonal.
// 0 -- not used.
// 1 -- new.
// nDiagonalModifiedTurb: Modified on Diagonal for turbulence.
// 0 -- not used.
// 1 -- new.
// nGradPrimtiveMethod:
// 0 -- Ori.
// 1 -- new
// 1 -- new.
// nAblation:
// 0 -- The wall ablation is not computed.
// 1 -- The wall ablation is computed.
@ -1017,8 +1033,8 @@ int monitorNegativeConstant = 0;
// "Mars-Pa8" is for Park model of Mars gas, "Mars-Mc8" for McKenzie model of Mars gas.
// "Combustion-12" -- indicates the Combustion Chamber Gas Model which includes 12-species-20-reactions.
// "Gas-Mixture" -- indicates the process of mixing gas without reacting.
// for struct solver mixing two species£¨SpeciesA, SpeciesB£©.
// for unstruct solver mixing multi-species£¨O2 NO CO CO2 H2 N2 Air CH4£©.
// for struct solver mixing two species<65><73>SpeciesA, SpeciesB<73><42>.
// for unstruct solver mixing multi-species<65><73>O2 NO CO CO2 H2 N2 Air CH4<48><34>.
// For self-definition model, the gasfile is used to indicate the file path of the new gas model.
// speciesName: Used to list the names of each species, while each species name is separated by the symbol of comma.
// initMassFraction: Used to list the initial mass fractions of species in accordance with the sequence of names in the parameter speciesName.
@ -1040,13 +1056,16 @@ int monitorNegativeConstant = 0;
// firstStepError : the residual error of the first step iteration for the self-adaptive calculation.
// secondStepError : the residual error of the second step iteration for the self-adaptive calculation.
// thirdStepError : the residual error of the third step iteration for the self-adaptive calculation.
// useHyflowSetting : Setting for HyFLOW GUI.
// 0 -- PHengLEI
// 1 -- HyFLOW
// nProtectData: Use the continuation file data protection mechanism.
// 0 -- no
// 1 -- yes
// 0 -- no.
// 1 -- yes.
// nTvChange: Judge whether the Tv equals Ttr.
// 0 -- yes.
// 1 -- no.
// isMoleFractionType: 1 indicates the mass fractions, or else the mole fractions.
// nFraction: the initial fractions type of species.
// 0 -- mass fraction.
// 1 -- mole fraction.
int dg_high_order = 0;
int iapplication = 0;
int isAdaptiveSolver = 0;
@ -1114,6 +1133,7 @@ double densityMin = 1.0e-8;
double densityMinFactor = 0.1;
double tAdjustmentFactor = 10.0;
double iniSpeedCoef = 1.0;
int iniSpeedMode = 0;
int nDebug = 0;
int nSpeciesLimit = 1;
@ -1125,18 +1145,21 @@ int nChemcalSourceEsMethod = 1;
int nMaxStepTemperature = 5;
int veTemperatureMinModified = 1;
int nDiagonalModified = 0;
int nDiagonalModifiedTurb = 0;
int nGradPrimtiveMethod = 1;
int nInviscidFluxModify = 1;
int nQlLimitMethod = 2;
int nSpeciesForWallMethod = 1;
int nDensityForWallMethod = 0;
int wallMultiTemperature = 0;
int nProtectData = 0;
int useHyflowSetting = 0;
int nAblation = 0;
int isInjection = 0;
int nViscosityModel = 0;
int nMarsModel = 0;
int nTvChange = 0;
int isMoleFractionType = 0;
string gasfile = "DK5";
//string gasfile = "./chemical/Dunn-Kang_air5s11r.dat";
string speciesName = "O, O2, NO, N, N2";
@ -1173,9 +1196,17 @@ double molecularWeightSpeciesB = 30.0;
//string speciesName = "O2, N2";
//string initMassFraction = "1.0, 0.0";
int nFraction = 0;
int nContinueModel = 0;
int nChemicalFlowStep = 0;
int ifStartFromPerfectGasResults = 0;
int isUseNoneqCond = 0;
double frozenCondition = 0.01;
int nLeakageMonitor = 0;
double totalLeakageVolume = 1000.0;
double monitorThresholdValue = 0.05;
double sprayFactor = 0.0;
#########################################################################
// Multi-Grid parameters.
@ -1196,7 +1227,6 @@ int ifStartFromPerfectGasResults = 0;
// 1 -- zero order.
// 2 -- first-order. (default)
// mgCorrectionLimit: Multi-grid correction limit.
int nMGLevel = 1;
int MGCoarsestIteration = 1;
int MGPreIteration = 1;
@ -1226,9 +1256,9 @@ string holeFullFileName = "./grid/holeFullFile.dat";
string linkFileName = "./grid/topology.dat";
string zoneInverseFileName = "./grid/zoneInverseMapping.inp";
#########################################################################
# High Order Struct Solver #
#########################################################################
#************************************************************************
# High Order Struct Solver *
#************************************************************************
// isFVMOrFDM:
// 0 -- NSSolverStruct using Finite Volume Method.
// 1 -- NSSolverStruct using Finite Differ Method.
@ -1273,10 +1303,29 @@ int allReduceStep = 1;
// codeOfOversetGrid: Overlapping(overset) grid or not.
// 0 -- NON-overlapping grid.
// 1 -- Overlapping grid.
// oversetInterpolationMethod: the method of overset interpolation while field simulation
// oversetInterpolationMethod: the method of overset interpolation while field simulation.
// 0 -- set the acceptor cell value by donor cell value.
// 1 -- set the acceptor cell value by distance weight of donor cell value.
// readOversetFileOrNo: Whether to read overset-file(.ovs) that has been generated.
// 0 -- no.
// 1 -- yes.
// symetryOrNot: If there exist symetryplanes(XY plane, the coordinate of Z direction is 0) in
// the current overset grid(only for three dimension).
// 0 -- no.
// 1 -- yes.
// readInAuxiliaryInnerGrid: Whether to read auxiliary inner grid.
// 0 -- no.
// 1 -- yes.
// walldistMainZone: The initial value of background grid which does not exist wall boundary condition.
// toleranceForOversetSearch: The tolerance of overset searching zone to judge whether the obtained node is in the current computing cell.
// toleranceForOversetBox: The tolerance of building the minimum box of computing cells in the overlapping region.
// twoOrderInterpolationOrNot: The number of interpolated cell layers in the overlapping boundary.
// 0 -- one layer.
// 1 -- two layers.
// keyEnlargeOfActiveNodes: The number of enlarged overset-boundary layers in the buffer region.
// outTecplotOverset: Whether to dump out the flowfield data after the progress of overset configure.
// 0 -- no.
// 1 -- yes.
int codeOfOversetGrid = 0;
int oversetInterpolationMethod = 0;
int readOversetFileOrNot = 0;
@ -1295,7 +1344,6 @@ int twoOrderInterpolationOrNot = 0;
int keyEnlargeOfActiveNodes = 0;
int outTecplotOverset = 0;
int outPutOversetVisualization = 0;
int numberOfMovingBodies = 2;
// ----------------- ALE configuration ------------------------------
@ -1306,34 +1354,40 @@ double referenceLength = 1.0;
double referenceVelocity = 1.0;
double referenceDensity = 1.0;
int strategyForFaceNormalVelocity = 0; //0-By Sweeping volume; 1-By face center 1st; 2-By face center 2nd;
int strategyForGCLSource = 0; //0-present; 1-Ahn;
int strategyForFaceNormalVelocity = 0; // 0-By Sweeping volume; 1-By face center 1st; 2-By face center 2nd.
int strategyForGCLSource = 0; // 0-present; 1-Ahn.
//0:1st-Admas-Bashforth; 1:2nd-Admas-Bashforth; 2:1st-Implicit-Euler; 3:2nd-Implicit Euler; 4:2nd-Adams-Moulton; 5:3rd-Adams-Moulton
// 0: 1st-Admas-Bashforth; 1: 2nd-Admas-Bashforth; 2: 1st-Implicit-Euler; 3: 2nd-Implicit Euler; 4: 2nd-Adams-Moulton; 5: 3rd-Adams-Moulton.
int methodForKineticEquation = 0;
double relaxParameterOfKinetic = 1.0;
#########################################################################
# motive information #
#########################################################################
#************************************************************************
# motive information *
#************************************************************************
int numberOfMovingBodies = 1;
############################## body0 ##############################
//mass of parts
// mass of parts.
double mass_0 = 1.0;
//mass matrix of parts Ixx Iyy Izz Ixy Ixz Iyz
// gravity of parts (along negative direction in Y-axis, eg. 9.8).
double gravity_0 = 0.0;
// mass matrix of parts Ixx Iyy Izz Ixy Ixz Iyz.
double massMatrix_0[] = 1e-7, 1e-6, 1e-6, 0.0, 0.0, 0.0;
//initial six DOF position information of parts. xc yc zc
// initial six DOF position information of parts. xc yc zc.
double massCenter_0[] = 0.0, 0.0, 0.0;
//initial six DOF position information of parts. angleX angleY angleZ
// if reset mass center while restart.
int resetMassCenter_0 = 0;
// position offset of parts. dx dy dz.
double massCenterDxyz_0[] = 0.0, 0.0, 0.0;
// initial six DOF position information of parts. angleX angleY angleZ.
double attitudeAngle_0[] = 0.0, 0.0, 0.0;
//initial six DOF move information of parts. vc vy vz
// initial six DOF move information of parts. vc vy vz.
double massCenterVelocity_0[] = 0.0, 0.0, 0.0;
//initial six DOF move information of parts. omigX omigY omigZ
// initial six DOF move information of parts. omigX omigY omigZ.
double angularVelocity_0[] = 0.0, 0.0, 0.0;
// the object that the parts belong to.
int fartherIndex_0 = -1;
//the assembly position of the parts. xc yc zc angleX angleY angleZ
// the assembly position of the parts. xc yc zc angleX angleY angleZ.
double configPamameter_0[] = 0.0, 0.0, 0.0, 0.0, 0.0, 0.0;
// the move pattern of the parts.
// -1 given motion partten.
@ -1349,23 +1403,24 @@ double configPamameter_0[] = 0.0 ,0.0 ,0.0 ,0.0 ,0.0
int RBDMethod_0 = 0;
double amplitude_0 = 0.0;
double reduceFrequency_0 = 0.0;
//direction of rotation
// direction of rotation.
// 1 -- clockwise from the point of view along the positive x axis.
// -1 -- anticlockwise from the point of view along the positive x axis.
int direction_0 = -1;
double rotateFrequency_0 = 0.0;
//string uDFSixDofFileName_0 = "./Bin/UDFSixDof.Parameter";
//additional force (system axis) fX fY fZ
// dimensional physical time for additional force(s).
double addedForceTime_0[] = 0.0;
// additional force(inertia system) fX fY fZ.
double addedForce_0[] = 0.0, 0.0, 0.0;
//additional moment of Force (system axis) mX mY mZ
// additional moment(inertia system) mX mY mZ.
double addedMoment_0[] = 0.0, 0.0, 0.0;
// the deformation method of the parts.
int morphing_0 = 0;
// post indentify
// post indentify.
int integralOrder = 4;
// ---------------- ATP read --------------------------------------------
//@int inflowParaType = 0;
//@double refReNumber = 6.5e6;
@ -1379,18 +1434,34 @@ int integralOrder = 4;
//@string outLetFileName = "./bin/subsonicOutlet.hypara";
//@double refDimensionalVelocity = 0;
//@double refDimensionalDensity = 0;
#########################################################################
# Old Parameter #
#########################################################################
//@string weatherDataFilePath = "./WRFData/";
//@double longitude = 110.95
//@double latitude = 19.61;
#************************************************************************
# Old Parameter *
#************************************************************************
int isPlotVolumeField = 0;
#************************************************************************
# partial flow field setting Parameter *
#************************************************************************
//int nPartialParameter = 0; // 0/1/2
//int nNumberOfPartialField = 0; //
//int nStartGridIndex[] = [0];
//int nEndGridIndex[] = [0];
#########################################################################
# Incompressible Parameter #
#########################################################################
//double partialCFL[] = [0.0];
//double partialSpeedCoef[] = [0.0];
//double partialSpeed[] = [0.0];
//double partialAttackd[] = [0.0];
//double partialSlide[] = [0.0];
//double partialPressure[] = [0.0];
//double partialTemperature[] = [0.0];
//double partialMassFractions[] = [0.0];
#************************************************************************
# Incompressible Parameter *
#************************************************************************
int isSolveEnergyEquation = 0;
int isSolveTurbEquation = 0;
int isSolveSpeciesEquation = 0;

View File

@ -5,9 +5,12 @@
// 0 -- Unstructured grid.
// 1 -- Structured grid.
// 2 -- Hybrid grid, include both of unstructured and structured grid.
// axisup: Type of Cartisien coordinates system, used in grid conversion.
// 1 -- Y upward. (default)
// 2 -- Z upward.
// nAxisRotateTimes: number of axis rotating times, zero (default) meaning without rotating.
// axisRotateOrder : axis rotating order.
// 1 -- X-axis.
// 2 -- Y-axis.
// 3 -- Z-axis.
// axisRotateAngles: axis rotating angles (degree), which are corresponding to the axis rotating order.
// from_gtype: Type of grid data type in grid conversion process.
// -1 -- MULTI_TYPE.
// 1 -- PHengLEI, *.fts.
@ -35,7 +38,9 @@
int gridtype = 2;
// default
int axisup = 1;
int nAxisRotateTimes = 0;
int axisRotateOrder[] = [1, 2, 3];
double axisRotateAngles[] = [0.0, 0.0, 0.0];
int from_gtype = 2;
int omit_no_bound_bc = 1;

View File

@ -8,6 +8,7 @@
// Platform for Hybrid Engineering Simulation of Flows +
// China Aerodynamics Research and Development Center +
// (C) Copyright, Since 2010 +
// PHengLEI 2212 +
//+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
###########################################################################
# Default parameters for Grid conversion #
@ -46,19 +47,24 @@ int gridobj = 1;
int multiblock = 0;
int iadapt = 0;
int SymmetryFaceVector = 1;
int gridReorder = 0;
int faceReorderMethod = 0;
// axisup: Type of Cartisien coordinates system, used in grid conversion.
// 1 -- Y upward. (default)
// 2 -- Z upward.
int axisup = 1;
// nAxisRotateTimes: number of axis rotating times, zero (default) meaning without rotating.
// axisRotateOrder : axis rotating order.
// 1 -- X-axis.
// 2 -- Y-axis.
// 3 -- Z-axis.
// axisRotateAngles: axis rotating angles (degree), which are corresponding to the axis rotating order.
int nAxisRotateTimes = 0;
int axisRotateOrder[] = [1, 2, 3];
double axisRotateAngles[] = [0.0, 0.0, 0.0];
// omit_no_bound_bc: What's boundary condition for the type of "no_boundary_condition".
// 0 -- Interface. (default)
// 1 -- Physical boundary condition, used in Hybrid solver.
int omit_no_bound_bc = 0;
int omitRepeatInterface = 1;
//-----------------------------------------------------------------------
# Grid data type #
@ -89,7 +95,6 @@ int dumpOldGrid = 0;
int numberOfGridFile = 1;
string from_gfile = "./grid/rae2822_hybrid2d.cas";
string from_gfile1 = "";
string out_gfile = "./grid/flat_laminr_133_85_2d.fts";
// ----------------- some advanced choices ------------------------------
@ -178,7 +183,6 @@ double influencePara = 25.0;
which only support one direction.
// rotationAngle: The relative angle between two periodic face.
which is recorded in degrees.
int periodicType = 0;
double translationLength[] = [0.0, 0.0, 0.0];
double rotationAngle = 0.0;
@ -192,7 +196,6 @@ double rotationAngle = 0.0;
// 2 -- refine structured grid.
// maxproc: The number of partition zones that want to be divided into.
// numberOfMultifile: The number of partition grid files that want to be dumped out.
int pgridtype = 0;
int maxproc = 4;
int numberOfMultifile = 1;
@ -207,8 +210,8 @@ int blockIndexOfMark = 0;
int cellIndexOfMark[] = [185, 30, 1];
// parallelStrategy:
//! -# 0 : each zone is assigned to the one that defined in grid partition procedure.
//! -# 1 : random assigned for each zone or by some else ways.
// 0 -- each zone is assigned to the one that defined in grid partition procedure.
// 1 -- random assigned for each zone or by some else ways.
int parallelStrategy = 1;
//-----------------------------------------------------------------------
@ -232,7 +235,6 @@ string partition_grid_file = "./grid/sphere_mixed__4.fts";
// 1 -- perfect balance.
// maxproc -- perfect imbalance.
// 1.05 -- recommended.
int omit_no_bound_bc = 0;
int npartmethod = 1;
int parallelPartitionMethod = 2;
@ -253,24 +255,30 @@ int numberOfMultigrid = 1;
// intervalStepSample: The step intervals for monitored probes variables file 'sample.dat' saved.
// intervalStepForce: The step intervals for aerodynamics coefficients file 'aircoef.dat' saved.
// intervalStepRes: The step intervals for residual file 'res.dat' saved.
// ifLowSpeedPrecon: Precondition process to accelerate convergence for low speed flow.
// 0 -- no precondition process. (default, mach > 0.3)
// 1 -- carry out precondition process. (mach number <= 0.3)
int maxSimuStep = 20000;
int intervalStepFlow = 1000;
int intervalStepPlot = 1000;
int intervalStepSample = 1000;
int intervalStepForce = 100;
int intervalStepRes = 10;
int ifLowSpeedPrecon = 0;
// compressible:
// 0 -- incompressible flow.
// 1 -- compressible flow. (default)
int compressible = 1;
// ifLowSpeedPrecon: Precondition process to accelerate convergence for low speed flow.
// 0 -- no precondition process. (default, mach > 0.3)
// 1 -- carry out precondition process. (mach number <= 0.3)
// Kprec: The coefficient K for the cut-off velocity.
// 1.0~3.0 is suggested. (default, 3.0)
// preconFarfieldBCMethod: The precondition method for farfield boundary condition.
// 0 -- precondition far-field boundary based on riemann invariants.
// 1 -- Turkel's simplified far-field boundary condition.
int ifLowSpeedPrecon = 0;
double Kprec = 3.0;
int preconFarfieldBCMethod = 1;
//-----------------------------------------------------------------------
# CFD Control Parameter #
//-----------------------------------------------------------------------
@ -281,9 +289,12 @@ int compressible = 1;
// 0 -- the nondimensional conditions.
// 1 -- the flight conditions.
// 2 -- the experiment conditions.
// 3 -- the subsonic boundary conditions.
// 3 -- the subsonic boundary conditions. (Useless!)
// 4 -- the condition that the velocity, temperature and density are given.
// 5 -- the condition that the velocity, temperature and pressure are given.
//flowInitMethod: Flow field initialization method.
// 0 -- The entire flow field is initialized according to Infinite velocity.
// 1 -- The velocity near the wall is initialized according to the boundary layer of the plate.
// refReNumber: Reynolds number, which is based unit length, unit of 1/m.
// refDimensionalTemperature: Dimensional reference temperature, or the total temperature only for the experiment condition.
// freestream_vibration_temperature: Dimensional freestream vibration temperature.
@ -303,11 +314,11 @@ int compressible = 1;
// condition is radiation equilibrium temperature, and 0.8 is the default value.
// refMolecularWeight: the reference molecular weight of gas used for perfect gas. The unit is g/mol.
// Generally, the gas is air. Sometimes, it is experiment gas, such as Nitrogen, Argon, and so on.
int directionMethod = 0;
double refMachNumber = 0.73;
double attackd = 2.79;
double angleSlide = 0.00;
int flowInitMethod = 0;
int inflowParaType = 0;
double refReNumber = 6.5e6;
@ -321,14 +332,6 @@ double freestream_vibration_temperature = 300.00;
//double refDimensionalTemperature = 6051.024; // The total temperature, T*(1+(refGama-1)*M*M/2).
//double refDimensionalPressure = 4.299696E09; // The total pressure, p*(T0/T)^(refGama/(refGama-1)).
//int inflowParaType = 3;
//int nsubsonicInlet = 1;
//int nsubsonicOutlet = 1;
//string inLetFileName = "./bin/subsonicInlet.hypara";
//string outLetFileName = "./bin/subsonicOutlet.hypara";
//double refDimensionalTemperature = 288.144;
//double refDimensionalPressure = 1.01313E05;
// The velocity, temperature and density are fixed.
//int inflowParaType = 4;
//double refDimensionalVelocity = 1000.0;
@ -341,9 +344,15 @@ double freestream_vibration_temperature = 300.00;
// The MachNumber, temperature and pressure are fixed.
//int inflowParaType = 6;
//double refDimensionalTemperature = 293;
//double refDimensionalTemperature = 293.0;
//double refDimensionalPressure = 8886.06;
// The velocity, temperature and pressure are read from file.
//int inflowParaType = 7;
//string weatherDataFilePath = "./WRFData/";
//double longitude = 110.95
//double latitude = 19.61;
double wallTemperature = -1.0;
double radiationCoef = 0.8;
@ -357,35 +366,35 @@ double forceReferenceArea = 1.0; // unit of meter^2.
double TorqueRefX = 0.0; // unit of meter.
double TorqueRefY = 0.0; // unit of meter.
double TorqueRefZ = 0.0; // unit of meter.
double knudsenLength = 1.0; // unit of meter.
double refMolecularWeight = 28.9644; // unit of g/mol.
//-----------------------------------------------------------------------
# Spatial Discretisation #
//-----------------------------------------------------------------------
#*******************************************************************
#************************************************************************
# Struct Solver *
#*******************************************************************
#************************************************************************
// inviscidSchemeName: Spatial discretisation scheme of struct grid.
// Using this when solve structered grid or hybrid.
// -- "vanleer", "steger", "hlle", "lax_f".
// -- "roe", "modified_roe".
// -- "vanleer", "steger", "hlle", "lax_f",
// -- "roe", "modified_roe",
// -- "ausm+", "ausm+w", "ausm+up", "ausmdv", "ausmpw", "ausmpw+".
// isWennScheme: If using WENN Scheme of struct grid.
// 0 -- NO. (default)
// 1 -- Yes.
// str_limiter_name: Limiter of struct grid.
// -- "vanalbada", "vanleer", "minmod", "smooth", "minvan", "3rdsmooth", "3rd_minmod_smooth".
// -- "nolim", no limiter.
// -- "vanalbada_clz", clz supersonic version.
// -- "weno3_js", "wenn3_prm211", "wenn3_zm", "wenn3_zes2", "wenn3_zes3"
// -- "vanalbada", "vanleer", "minmod", "smooth", "minvan", "3rdsmooth", "3rd_minmod_smooth",
// -- "nolim", no limiter,
// -- "vanalbada_clz", clz supersonic version,
// -- "weno3_js", "wenn3_prm211", "wenn3_zm", "wenn3_zes2", "wenn3_zes3".
string inviscidSchemeName = "roe";
int isWennScheme = 0;
string str_limiter_name = "vanalbada";
#*******************************************************************
#************************************************************************
# UnStruct Solver or Common *
#*******************************************************************
#************************************************************************
// viscousType: Viscous model.
// 0 -- Euler.
// 1 -- Lamilar.
@ -410,11 +419,11 @@ string str_limiter_name = "vanalbada";
// 3 -- IDDES.
// uns_scheme_name: Spatial discretisation scheme of Unstruct grid.
// Using this when solve Unstructered grid or hybrid.
// -- "vanleer", "roe", "steger", "kfvs", "lax_f", "hlle".
// -- "vanleer", "roe", "GMRESRoe", "GMRESSteger", "steger", "kfvs", "lax_f", "hlle",
// -- "ausm+", "ausmdv", "ausm+w", "ausmpw", "ausmpw+".
// uns_limiter_name: Limiter of Unstruct grid.
// -- "barth", "vencat", "vanleer", "minmod".
// -- "vanalbada", "smooth", "nnd", "lpz", "1st".
// -- "barth", "vencat", "vanleer", "minmod",
// -- "vanalbada", "smooth", "nnd", "lpz", "1st",
// -- "nolim", no limiter.
// uns_vis_name: Discretisation method of viscous term.
// -- "std", "test", "aver", "new1", "new2".
@ -442,7 +451,7 @@ string str_limiter_name = "vanalbada";
// 3 -- Harten type, which is default used.
// roeEntropyScale: Entropy fix (correction) coefficient scale, default is 1.0.
// It is used to scale the default Roe entropy fix coefficients.
// AusmpwPlusLimiter: A Limiter to make "function w" not change acutely in AusmpwPlus scheme, default is 1.0
// AusmpwPlusLimiter: A Limiter to make "function w" not change acutely in AusmpwPlus scheme, default is 1.0.
//int viscousType = 0;
//string viscousName = "Euler";
@ -475,9 +484,9 @@ double roeEntropyScale = 1.0;
double AusmpwPlusLimiter = 1.0;
//-----------------------------------------------------------------------
# Temporal Discretisation #
//-----------------------------------------------------------------------
#************************************************************************
# Temporal Discretisation *
#************************************************************************
// iunsteady: Steady or unsteady.
// 0 -- steady.
// 1 -- unsteay.
@ -504,11 +513,18 @@ double AusmpwPlusLimiter = 1.0;
// 6 -- Jacobian iteration.
// 7 -- Line LU-SGS.
// 8 -- Matrix LU-SGS.
// 9 -- GMRES.
// iSimplifyViscousTerm: Simplify the computation of viscous term in the Block LU-SGS method. The default value assigns 1 that could speed up the computation.
// Otherwise, the viscous Jacobian matrix Mv should be computed that will increase the memory and time in iteration of the BLUSGS method.
// CFLStart: Started cfl number.
// CFLEnd: End cfl number.
// CFLVaryStep: The number of step when cfl increase from CFLStart to CFLEnd.
// GMRESCFLScale : CFL = CFLStart * GMRESCFLScal^iteration.
// OriginalTscheme : Used for LUSGS and GMres hybrid computing.
// useLUSGSprecond: Initialize flow field for GMRES.
// 0 --Initialize by first order Jacobian matrix.
// 1 --Initialize by LUSGS.
// GMRESInitStep : the number of iteration step of irst order Jacobian matrix or LUSGS for initialize flow field.
// ktmax: Dtratio. dt[i] = MIN(dt[i], ktmax * dtmin / vol[i])
// swapDq: Communication dq between forward/backward sweep of LUSGS or not, default is 0.
// nLUSGSSweeps: Sub iteration of LU-SGS or Block LU-SGS.
@ -533,7 +549,6 @@ double AusmpwPlusLimiter = 1.0;
// 2 -- Pab3D wall function.
// RKStage: The number of Runge-Kutta step.
// lamda: Cofficient of Runge-Kutta step.
int iunsteady = 0;
double physicalTimeStep = 0.01;
double physicalTimeStepDimensional = -0.001;
@ -543,7 +558,7 @@ int ifStaticsReynoldsStress = 0;
int startStatisticStep = 800000;
double statisticalTimePeriod = -1.0;
int statisticMethod = 0;
int linearTwoStepMethods = 1; // 1--BDF1; 2--C-N; 3--BDF2;
int linearTwoStepMethods = 1; // 1--BDF1; 2--C-N; 3--BDF2.
int methodOfDualTime = 3;
int min_sub_iter = 50;
@ -558,7 +573,10 @@ int isUsePreTwall = 0;
double CFLStart = 0.01;
double CFLEnd = 10.0;
int CFLVaryStep = 500;
double GMRESCFLScale = 1.0;
int OriginalTscheme = 9;
int useLUSGSprecond = 1;
int GMRESInitStep = 1000;
double pMaxForCFL = 0.2;
double pMinForCFL = 0.1;
double deltaMaxForCFL = 0.2;
@ -575,7 +593,7 @@ int order = 2;
double visl_min = 0.01;
double turbCFLScale = 1.0;
double csrv = 2.0;
double csrv = 1.0;
double timemax = 1.0e10;
double dtsave = -1.0;
int maxale = 10;
@ -591,10 +609,9 @@ double lamda[] = [0.5, 1.0];
//int RKStage = 4;
//double lamda[] = [0.25, 0.33333333333, 0.5, 1.0];
//-----------------------------------------------------------------------
# File In or Out #
//-----------------------------------------------------------------------
#************************************************************************
# File In or Out *
#************************************************************************
// numberOfGridGroups: The number of grid groups.
// gridfile: The partitioned Grid file path, using relative path,
// which is relative to the working directory.
@ -618,10 +635,8 @@ double lamda[] = [0.5, 1.0];
// nIsComputeWallDist: Whether to compute the wall distance.
// 0 -- Compute wall distance.
// 1 -- Not compute.
//
// protectionFile0 and protectionFile1: Two continuation file of the data protection mechanism.
// wall_heatfluxfile: The file to output the MaxHeatFlux of wall.
int numberOfGridGroups = 1;
string gridfile = "./grid/rae2822_hybrid2d__4.fts";
string wallTemperaturefile = "";
@ -632,10 +647,12 @@ int cellMethodOrNodeMethod = 0;
string resSaveFile = "results/res.dat";
string turbresfile = "results/turbres.dat";
string transitionResFile = "results/transitionRes.dat";
string aircoeffile = "results/aircoef.dat";
string restartNSFile = "results/flow.dat";
string turbfile = "results/turb.dat";
string transitionFile = "results/transition.dat";
string visualfile = "results/tecflow.plt";
string wall_aircoefile = "results/wall_aircoef.dat";
@ -645,11 +662,15 @@ string protectionFile0 = "results/flow0.dat";
string protectionFile1 = "results/flow1.dat";
string wall_heatfluxfile = "results/wall_heatflux.dat";
string protectionTurbFile0 = "results/turb0.dat";
string protectionTurbFile1 = "results/turb1.dat";
string protectionTransitionFile0 = "results/transition0.dat";
string protectionTransitionFile1 = "results/transition1.dat";
int nDumpSurfaceInfo = 0;
string wall_varfile = "";
string jetDefineFile = "bin/jet.hypara";
string sixDofFileName = "results/sixDofInfo.dat";
string derivativeFileName = "results/identify.dat";
string hysteresisFileName = "results/force_beta.plt";
@ -659,7 +680,8 @@ int plotFieldType = 0;
// visualfileType: The file type of visualfile.
// 0 -- Tecplot binary.
// 1 -- Tecplot ASCII.
// 2 -- Ensight binary.
// 3 -- Ensight ASCII.
int visualfileType = 1;
// samplefileMode: The dump mode of sample file.
@ -697,21 +719,21 @@ double upperPlotFieldBox[] = [1.0 1.0 1.0];
// -- vibration temperature(Tv, 33), electron temperature(Te, 34), vibrational energy(Ev, 35), electric energy(Ee, 36),
// -- number density of electron(Ne, 37), dimensioanl density(rho, 38), dimensioanl pressure(p, 39), dimensioanl temperature(T, 40),
// -- gradientUx(41), gradientUy(42), gradientVx(43), gradientVy(44), streamline_u(45), streamline_v(46), streamline_w(47),
// -- transition intermittency(intermittency, 51), -transition momentum thickness reynolds(MomentumThicknessReynolds, 52),
// -- overlap iblank(iblank, 81)
// -- specific heat ratio(gama, 56)
// -- transition intermittency(intermittency, 51), transition momentum thickness reynolds(MomentumThicknessReynolds, 52),
// -- local CFL Number(localCFL, 57), minimal CFL Number(minCFL, 58),
// -- overlap iblank(iblank, 81),
// -- specific heat ratio(gama, 56), Knudsen number(kn, 60), Damkohler number(Da, 61), vibrational nonequilibrium number(Vi, 62).
// Important Warning: Array size of visualVariables MUST be equal to nVisualVariables!!!
// Variables order must from small to big.
//-----------the optional parameters list for the wall boundary condition----------------
// nVisualWallVariables: The number of visual variables on wall.
// visualWallVariables : dumped variable types, listed as following:
// -coefficient of pressure(cp, 0), -coefficient of friction(cf, 1), yplus(2), -non-dimensional heat flux(Q_NonDim, 3), -dimensional heat flux(Q_Dim, 4),
// -pressure on wall(pw, 5), -temperature on wall(Tw, 6), -density on wall(rhow, 7), -heat flux of translational-rotational temperature term(Qtr, 8),
// -heat flux of species diffusion term(Qs, 9), -heat flux of vibrational temperature term(Qv, 10), -heat flux of electron temperature term(Qe, 11),
// -species mass fractions(Ns, 12), -x component of wall velocity(Vx, 13), -y component of wall velocity(Vy, 14), -z component of wall velocity(Vz, 15)
// -slip translational-rotational temperature(Tts, 16), -slip vibrational temperature(Tvs, 17), -slip electron temperature(Tes, 18), -absolute wall velocity(Vs, 19)
// -Stanton number(St, 20), -coefficient of heat rate(Ch, 21), -temperature jump(deltaT, 22), -Grid Reynolds number on wall(Re_w, 23)
// -- coefficient of pressure(cp, 0), coefficient of friction(cf, 1), yplus(2), non-dimensional heat flux(Q_NonDim, 3), dimensional heat flux(Q_Dim, 4),
// -- pressure on wall(pw, 5), temperature on wall(Tw, 6), density on wall(rhow, 7), heat flux of translational-rotational temperature term(Qtr, 8),
// -- heat flux of species diffusion term(Qs, 9), heat flux of vibrational temperature term(Qv, 10), heat flux of electron temperature term(Qe, 11),
// -- species mass fractions(Ns, 12), x component of wall velocity(Vx, 13), y component of wall velocity(Vy, 14), z component of wall velocity(Vz, 15),
// -- slip translational-rotational temperature(Tts, 16), slip vibrational temperature(Tvs, 17), slip electron temperature(Tes, 18), absolute wall velocity(Vs, 19),
// -- Stanton number(St, 20), coefficient of heat rate(Ch, 21), temperature jump(deltaT, 22), Grid Reynolds number on wall(Re_w, 23), Knudsen number(Kn_wall, 24).
int nVisualVariables = 8;
int visualVariables[] = [0, 1, 2, 3, 4, 5, 6, 15];
@ -739,7 +761,9 @@ int dumpStandardModel = 0;
// 1 -- Real cell where the probe is located.
// nProbeVariables: Number of variables want to be dumped for probes monitered.
// probeVariables : Variable types dumped, listed as following:
// -- density(0), u(1), v(2), w(3), pressure(4), temperature(5), mach(6).
// -- density(0), u(1), v(2), w(3), pressure(4), temperature(5), mach(6),
// -- dimensioanl_density(7), dimensioanl_u(8), dimensioanl_v(9),
// -- dimensioanl_w(10), dimensioanl_pressure(11), dimensioanl_temperature(12).
// Important Warning: Array size of probeVariables MUST be equal to nProbeVariables!!!
// probeVariables order must from small to big.
// probeVariablesInterpolationMethod: Interpolation method used to compute the probe variables.
@ -761,12 +785,13 @@ string probesDefineFile = "bin/probes_XYZ.dat";
int searchCellsMethod = 0;
int nProbeVariables = 7;
int probeVariables[] = [0, 1, 2, 3, 4, 5, 6];
int nProbeVariables = 14;
int probeVariables[] = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13];
int probeVariablesInterpolationMethod = 0;
//-----------------------------------------------------------------------
# Turbulence Parameter #
//-----------------------------------------------------------------------
#************************************************************************
# Turbulence Parameter *
#************************************************************************
// turbInterval: Iteration number of turbulence.
// kindOfTurbSource: Kinds of turbulent source.
// 0 -- Original.
@ -774,15 +799,12 @@ int probeVariablesInterpolationMethod = 0;
// transitionType: transition model type
// 0 -- none.
// 2 -- gama-re-theta.
// turbIntensity: (valid while greater than 0.0 ) turbulent intensity of free stream(*100) in transition
// freeturbIntensitySRModify: to use SR modify in free stream turbulent intensity decay or not
// turbIntensity: (valid while greater than 0.0 ) turbulent intensity of free stream(*100) in transition.
// freeturbIntensitySRModify: to use SR modify in free stream turbulent intensity decay or not.
int turbInterval = 1;
int turbOrderStruct = 2;
int kindOfTurbSource = 0;
int mod_turb_res = 0;
double turb_relax = 1.0;
double freeStreamViscosity = 1.0e-3;
double muoo = 3.0;
double kwoo = 5.0;
@ -791,28 +813,27 @@ double turbIntensity = -1.0;
int freeturbIntensitySRModify = 0;
double freeDecayXLocation = 0.0;
int compressibleCorrection = 0;
int prandtlNumberCorrection = 0;
int transitionMaFix = 1;
# maximum eddy viscosity (myt/my) max.
// maximum eddy viscosity (myt/my) max.
double eddyViscosityLimit = 1.0e10;
int monitor_vistmax = 0;
//-----------------------------------------------------------------------
# LES Parameter #
//-----------------------------------------------------------------------
#************************************************************************
# LES Parameter *
#************************************************************************
// iLES: Create LESSolver or not.
// = 1 - Create LESSolver;
// != 1 - not.
// = 1 -- Create LESSolver;
// != 1 -- not.
// amplitudeofDisturb: Amplitude of adding disturb.
// disturbstep: Unsteady time step or steady iteration of adding random disturb.
// iterdisturb: Add random disturb in every sub-iter or only first sub-iter.
// = 0 - in only first sub-iter;
// != 0 - in every sub-iter.
// = 0 -- in only first sub-iter;
// != 0 -- in every sub-iter.
// ipraddisturb: Add density and pressure disturb or not.
// ibodyforce: Add body force in source flux of NS equations or not.
// = 0 - not;
// != 0 - Add body force.
// = 0 -- not;
// != 0 -- Add body force.
// bodyforce: Body force in source flux of NS equations or not.
// utau: friction velocity, using in DNSDisturb.
// sgsmodel: subgrid scale model.
@ -820,23 +841,22 @@ int monitor_vistmax = 0;
// = "dsmCom";
// = "wale";
// = "sigma".
// deltaFunctionType: = 1 - MAX(deltai, deltaj, deltak);
// = 2 - pow(deltai * deltaj *deltak, 1/3);
// = 3 - Devloped by Scotti.
// wallDampingFunctionType: = 0 - no wall function;
// = 1 - van Driest;
// = 2 - developed by Dr. Deng Xiaobing;
// = 3 - developed by Piomelli.
// deltaFunctionType: = 1 -- MAX(deltai, deltaj, deltak);
// = 2 -- pow(deltai * deltaj *deltak, 1/3);
// = 3 -- Devloped by Scotti.
// wallDampingFunctionType: = 0 -- no wall function;
// = 1 -- van Driest;
// = 2 -- developed by Dr. Deng Xiaobing;
// = 3 -- developed by Piomelli.
// turbViscousCutType: turbulent viscosity cut type.
// = 0 - mu_total = mut + mul;
// = 1 - mu_total = max(mut-mul,0)+ mul;
// = 2 - mu_total = max(mut ,0)+ mul.
// = 0 -- mu_total = mut + mul;
// = 1 -- mu_total = max(mut-mul, 0) + mul;
// = 2 -- mu_total = max(mut , 0) + mul.
// smagConstant: constant of smagorinsky model.
// waleConstant: constant of wale model.
// filterDirection [3]: filter variables in i, j, k direction or not.
// averageDirection[3]: average variables in i, j, k direction or not.
// isotropicConstant: constant of isotropic part of SGS stress.
int iLES = 0;
string sgsmodel = "smagorinsky";
int deltaFunctionType = 2;
@ -852,9 +872,9 @@ double testFilterScale = 2.0;
int averageWidth = 1;
int monitorNegativeConstant = 0;
//-----------------------------------------------------------------------
# Other Parameters for Hypersonic Non-equilibrium Gas #
//-----------------------------------------------------------------------
#************************************************************************
# Other Parameters for Hypersonic Non-equilibrium Gas *
#************************************************************************
// dg_high_order:
// 0 -- generic order accuracy.
// 1 -- high order accuracy.
@ -862,9 +882,6 @@ int monitorNegativeConstant = 0;
// 0 -- gas model is fixed in the codes.
// 1 -- gas model is imported from library files.
// isAdaptiveSolver: isAdaptiveSolver = 0 indicates the generic Navier-Stokes solver,
// isAdaptiveSolver>0 indicates the HyFlow self-adaptive solver.
// 1 -- using HyFlow self-adaptive solver where the switch is controlled by the total iteration steps.
// 2 -- using HyFlow self-adaptive solver where the switch is controlled by variation of the key residual.
// nm: Equation number of the physics, but is out of commision now.
// 4 -- for 2D.
// 5 -- for 3D.
@ -886,14 +903,13 @@ int monitorNegativeConstant = 0;
// nEquilibriumGas: the variable is valid when the condition of nchem = 0 is satisfied.
// 0 -- perfect gas.
// 5, 7, 11 -- equilibrium gas, meanwhile, its value denotes the number of gas component.
// nPCWCycleStep: the maximum step number of iteration in the module of computing species mass fractions with the partial catalytic wall(PCW) condition.
// the value equals to or is greater than 1, and 3 is for default value.
// nRETCycleStep: the maximum step number of iteration in the module of computing radiation equilibrium temperature on wall.
// the value equals to or is greater than 1, and 3 is for default value.
// nSLIPCycleStep:the maximum step number of iteration in the module of computing slip temperature, slip velocity and slip species mass fraction.
// the value equals to or is greater than 1, and 3 is for default value.
// nPCWCycleStep: The maximum step number of iteration in the module of computing species mass fractions with the partial catalytic wall(PCW) condition.
// The value equals to or is greater than 1, and 3 is for default value.
// nRETCycleStep: The maximum step number of iteration in the module of computing radiation equilibrium temperature on wall.
// The value equals to or is greater than 1, and 3 is for default value.
// nSLIPCycleStep:The maximum step number of iteration in the module of computing slip temperature, slip velocity and slip species mass fraction.
// The value equals to or is greater than 1, and 3 is for default value.
// nSlipBCModel: The computational model of slip boundary conditions.
// 0 -- no slip.
// 1 -- the conventional Maxwell slip conditions.
// 2 -- the Gokcen slip conditions.
@ -913,10 +929,13 @@ int monitorNegativeConstant = 0;
// 1 -- One-temperature model.
// 2 -- Two-temperature model.
// 3 -- Three-temperature model.
// isUseNoneqCond:
// 0 -- compute the source terms without any conditions.
// 1 -- compute the source terms using the non-equilibrium condition.
// frozenCondition: the threshold value of frozen chemical flow condition, 0.1 is the default value.
// nIdealState: whether take all gas species as ideal gas for gas-mixture process.
// 0 -- No.
// 1 -- Yes.
// nTEnergyModel: the method to computing temperature energy model.
// 1 -- Yes. // nTEnergyModel: the method to computing temperature energy model.
// 0 -- the energy term is computed using the conventional method.
// 1 -- the energy term is computed using the polynomial fitting method.
// 2 -- the energy term is computed using the piecewise polynomial fitting method.
@ -946,14 +965,13 @@ int monitorNegativeConstant = 0;
// 1.0 -- proposed by Maxwell.
// sqrt(2/PI)~0.8 -- used for "micro-slip", namely the actual velocity slip at the wall.
// 1.146 -- proposed for an additional "fictitious" velocity slip.
// chemicalRelaxCorf: The value is in range of [0.001, 1.0].
// spectrumRadiusCoef: The value is in range of [0.0, 2.0].
// staticPressureRelaxCorf: The value is in range of [0.1, 1.0].
// nIsChemicalFreeze: the flag to freeze the chemical reactions.
// 0 -- not freeze, the chemical reaction sources will be calculated.
// 1 -- freezes the chemical reactions, the chemical reaction sources will not be calculated.// veTemperatureMin: The minimum of Tv and Te
// 1 -- freezes the chemical reactions, the chemical reaction sources will not be calculated.
// veTemperatureMin: The minimum of Tv and Te.
// maxViscous: the maximum of Viscous.
// trTemperatureMin: the minimum value of trTemperature.
// veTemperatureMin: the minimum value of veTemperature.
@ -965,36 +983,34 @@ int monitorNegativeConstant = 0;
// nSpeciesLimit: limitter of gas species
// 0 -- not used.
// 1 -- used.
// nTurblenceForChemical: the coupled mode of Turblence and Chemical reaction
// nTurblenceForChemical: the coupled mode of Turblence and Chemical reaction.
// 0 -- method 0.
// 1 -- method 1.
// nViscosityFluxSublevelModified: Modified for ViscosityFlux on Sublevel grid
// nViscosityFluxSublevelModified: Modified for ViscosityFlux on Sublevel grid.
// 0 -- not used.
// 1 -- used.
// nViscosityPeModified: Pe Modified for ViscosityCoef
// nViscosityPeModified: Pe Modified for ViscosityCoef.
// 0 -- not used.
// 1 -- used.
// nChemcalSourceModified: Modified on ChemcalSource
// nChemcalSourceModified: Modified on ChemcalSource.
// 0 -- not used.
// 1 -- used.
// nChemcalSourceEsMethod: Modified on ChemcalSource
// 0 -- approximation algorithm 1 (Ori.)
// 1 -- approximation algorithm 2 (New)
// nChemcalSourceEsMethod: Modified on ChemcalSource.
// 0 -- approximation algorithm 1 (Ori).
// 1 -- approximation algorithm 2 (New).
// nMaxStepTemperature: the iterative steps of temperature.
// veTemperatureMinModified: Modified on the minimum of Tve for Cvvs
// 0 -- not used
// 1 -- used
// nDiagonalModified: Modified on Diagonal
// 0 -- not used
// 1 -- Ori.
// 2 -- new
// veTemperatureMinModified: Modified on the minimum of Tve for Cvvs.
// 0 -- not used.
// 1 -- used.
// nDiagonalModified: Modified on Diagonal.
// 0 -- not used.
// 1 -- new.
// nDiagonalModifiedTurb: Modified on Diagonal for turbulence.
// 0 -- not used.
// 1 -- new.
// nGradPrimtiveMethod:
// 0 -- Ori.
// 1 -- new
// 1 -- new.
// nAblation:
// 0 -- The wall ablation is not computed.
// 1 -- The wall ablation is computed.
@ -1017,8 +1033,8 @@ int monitorNegativeConstant = 0;
// "Mars-Pa8" is for Park model of Mars gas, "Mars-Mc8" for McKenzie model of Mars gas.
// "Combustion-12" -- indicates the Combustion Chamber Gas Model which includes 12-species-20-reactions.
// "Gas-Mixture" -- indicates the process of mixing gas without reacting.
// for struct solver mixing two species£¨SpeciesA, SpeciesB£©.
// for unstruct solver mixing multi-species£¨O2 NO CO CO2 H2 N2 Air CH4£©.
// for struct solver mixing two species<65><73>SpeciesA, SpeciesB<73><42>.
// for unstruct solver mixing multi-species<65><73>O2 NO CO CO2 H2 N2 Air CH4<48><34>.
// For self-definition model, the gasfile is used to indicate the file path of the new gas model.
// speciesName: Used to list the names of each species, while each species name is separated by the symbol of comma.
// initMassFraction: Used to list the initial mass fractions of species in accordance with the sequence of names in the parameter speciesName.
@ -1040,13 +1056,16 @@ int monitorNegativeConstant = 0;
// firstStepError : the residual error of the first step iteration for the self-adaptive calculation.
// secondStepError : the residual error of the second step iteration for the self-adaptive calculation.
// thirdStepError : the residual error of the third step iteration for the self-adaptive calculation.
// useHyflowSetting : Setting for HyFLOW GUI.
// 0 -- PHengLEI
// 1 -- HyFLOW
// nProtectData: Use the continuation file data protection mechanism.
// 0 -- no
// 1 -- yes
// 0 -- no.
// 1 -- yes.
// nTvChange: Judge whether the Tv equals Ttr.
// 0 -- yes.
// 1 -- no.
// isMoleFractionType: 1 indicates the mass fractions, or else the mole fractions.
// nFraction: the initial fractions type of species.
// 0 -- mass fraction.
// 1 -- mole fraction.
int dg_high_order = 0;
int iapplication = 0;
int isAdaptiveSolver = 0;
@ -1114,6 +1133,7 @@ double densityMin = 1.0e-8;
double densityMinFactor = 0.1;
double tAdjustmentFactor = 10.0;
double iniSpeedCoef = 1.0;
int iniSpeedMode = 0;
int nDebug = 0;
int nSpeciesLimit = 1;
@ -1125,18 +1145,21 @@ int nChemcalSourceEsMethod = 1;
int nMaxStepTemperature = 5;
int veTemperatureMinModified = 1;
int nDiagonalModified = 0;
int nDiagonalModifiedTurb = 0;
int nGradPrimtiveMethod = 1;
int nInviscidFluxModify = 1;
int nQlLimitMethod = 2;
int nSpeciesForWallMethod = 1;
int nDensityForWallMethod = 0;
int wallMultiTemperature = 0;
int nProtectData = 0;
int useHyflowSetting = 0;
int nAblation = 0;
int isInjection = 0;
int nViscosityModel = 0;
int nMarsModel = 0;
int nTvChange = 0;
int isMoleFractionType = 0;
string gasfile = "DK5";
//string gasfile = "./chemical/Dunn-Kang_air5s11r.dat";
string speciesName = "O, O2, NO, N, N2";
@ -1173,9 +1196,17 @@ double molecularWeightSpeciesB = 30.0;
//string speciesName = "O2, N2";
//string initMassFraction = "1.0, 0.0";
int nFraction = 0;
int nContinueModel = 0;
int nChemicalFlowStep = 0;
int ifStartFromPerfectGasResults = 0;
int isUseNoneqCond = 0;
double frozenCondition = 0.01;
int nLeakageMonitor = 0;
double totalLeakageVolume = 1000.0;
double monitorThresholdValue = 0.05;
double sprayFactor = 0.0;
#########################################################################
// Multi-Grid parameters.
@ -1196,7 +1227,6 @@ int ifStartFromPerfectGasResults = 0;
// 1 -- zero order.
// 2 -- first-order. (default)
// mgCorrectionLimit: Multi-grid correction limit.
int nMGLevel = 1;
int MGCoarsestIteration = 1;
int MGPreIteration = 1;
@ -1226,9 +1256,9 @@ string holeFullFileName = "./grid/holeFullFile.dat";
string linkFileName = "./grid/topology.dat";
string zoneInverseFileName = "./grid/zoneInverseMapping.inp";
#########################################################################
# High Order Struct Solver #
#########################################################################
#************************************************************************
# High Order Struct Solver *
#************************************************************************
// isFVMOrFDM:
// 0 -- NSSolverStruct using Finite Volume Method.
// 1 -- NSSolverStruct using Finite Differ Method.
@ -1273,10 +1303,29 @@ int allReduceStep = 1;
// codeOfOversetGrid: Overlapping(overset) grid or not.
// 0 -- NON-overlapping grid.
// 1 -- Overlapping grid.
// oversetInterpolationMethod: the method of overset interpolation while field simulation
// oversetInterpolationMethod: the method of overset interpolation while field simulation.
// 0 -- set the acceptor cell value by donor cell value.
// 1 -- set the acceptor cell value by distance weight of donor cell value.
// readOversetFileOrNo: Whether to read overset-file(.ovs) that has been generated.
// 0 -- no.
// 1 -- yes.
// symetryOrNot: If there exist symetryplanes(XY plane, the coordinate of Z direction is 0) in
// the current overset grid(only for three dimension).
// 0 -- no.
// 1 -- yes.
// readInAuxiliaryInnerGrid: Whether to read auxiliary inner grid.
// 0 -- no.
// 1 -- yes.
// walldistMainZone: The initial value of background grid which does not exist wall boundary condition.
// toleranceForOversetSearch: The tolerance of overset searching zone to judge whether the obtained node is in the current computing cell.
// toleranceForOversetBox: The tolerance of building the minimum box of computing cells in the overlapping region.
// twoOrderInterpolationOrNot: The number of interpolated cell layers in the overlapping boundary.
// 0 -- one layer.
// 1 -- two layers.
// keyEnlargeOfActiveNodes: The number of enlarged overset-boundary layers in the buffer region.
// outTecplotOverset: Whether to dump out the flowfield data after the progress of overset configure.
// 0 -- no.
// 1 -- yes.
int codeOfOversetGrid = 0;
int oversetInterpolationMethod = 0;
int readOversetFileOrNot = 0;
@ -1295,7 +1344,6 @@ int twoOrderInterpolationOrNot = 0;
int keyEnlargeOfActiveNodes = 0;
int outTecplotOverset = 0;
int outPutOversetVisualization = 0;
int numberOfMovingBodies = 2;
// ----------------- ALE configuration ------------------------------
@ -1306,34 +1354,40 @@ double referenceLength = 1.0;
double referenceVelocity = 1.0;
double referenceDensity = 1.0;
int strategyForFaceNormalVelocity = 0; //0-By Sweeping volume; 1-By face center 1st; 2-By face center 2nd;
int strategyForGCLSource = 0; //0-present; 1-Ahn;
int strategyForFaceNormalVelocity = 0; // 0-By Sweeping volume; 1-By face center 1st; 2-By face center 2nd.
int strategyForGCLSource = 0; // 0-present; 1-Ahn.
//0:1st-Admas-Bashforth; 1:2nd-Admas-Bashforth; 2:1st-Implicit-Euler; 3:2nd-Implicit Euler; 4:2nd-Adams-Moulton; 5:3rd-Adams-Moulton
// 0: 1st-Admas-Bashforth; 1: 2nd-Admas-Bashforth; 2: 1st-Implicit-Euler; 3: 2nd-Implicit Euler; 4: 2nd-Adams-Moulton; 5: 3rd-Adams-Moulton.
int methodForKineticEquation = 0;
double relaxParameterOfKinetic = 1.0;
#########################################################################
# motive information #
#########################################################################
#************************************************************************
# motive information *
#************************************************************************
int numberOfMovingBodies = 1;
############################## body0 ##############################
//mass of parts
// mass of parts.
double mass_0 = 1.0;
//mass matrix of parts Ixx Iyy Izz Ixy Ixz Iyz
// gravity of parts (along negative direction in Y-axis, eg. 9.8).
double gravity_0 = 0.0;
// mass matrix of parts Ixx Iyy Izz Ixy Ixz Iyz.
double massMatrix_0[] = 1e-7, 1e-6, 1e-6, 0.0, 0.0, 0.0;
//initial six DOF position information of parts. xc yc zc
// initial six DOF position information of parts. xc yc zc.
double massCenter_0[] = 0.0, 0.0, 0.0;
//initial six DOF position information of parts. angleX angleY angleZ
// if reset mass center while restart.
int resetMassCenter_0 = 0;
// position offset of parts. dx dy dz.
double massCenterDxyz_0[] = 0.0, 0.0, 0.0;
// initial six DOF position information of parts. angleX angleY angleZ.
double attitudeAngle_0[] = 0.0, 0.0, 0.0;
//initial six DOF move information of parts. vc vy vz
// initial six DOF move information of parts. vc vy vz.
double massCenterVelocity_0[] = 0.0, 0.0, 0.0;
//initial six DOF move information of parts. omigX omigY omigZ
// initial six DOF move information of parts. omigX omigY omigZ.
double angularVelocity_0[] = 0.0, 0.0, 0.0;
// the object that the parts belong to.
int fartherIndex_0 = -1;
//the assembly position of the parts. xc yc zc angleX angleY angleZ
// the assembly position of the parts. xc yc zc angleX angleY angleZ.
double configPamameter_0[] = 0.0, 0.0, 0.0, 0.0, 0.0, 0.0;
// the move pattern of the parts.
// -1 given motion partten.
@ -1349,23 +1403,24 @@ double configPamameter_0[] = 0.0 ,0.0 ,0.0 ,0.0 ,0.0
int RBDMethod_0 = 0;
double amplitude_0 = 0.0;
double reduceFrequency_0 = 0.0;
//direction of rotation
// direction of rotation.
// 1 -- clockwise from the point of view along the positive x axis.
// -1 -- anticlockwise from the point of view along the positive x axis.
int direction_0 = -1;
double rotateFrequency_0 = 0.0;
//string uDFSixDofFileName_0 = "./Bin/UDFSixDof.Parameter";
//additional force (system axis) fX fY fZ
// dimensional physical time for additional force(s).
double addedForceTime_0[] = 0.0;
// additional force(inertia system) fX fY fZ.
double addedForce_0[] = 0.0, 0.0, 0.0;
//additional moment of Force (system axis) mX mY mZ
// additional moment(inertia system) mX mY mZ.
double addedMoment_0[] = 0.0, 0.0, 0.0;
// the deformation method of the parts.
int morphing_0 = 0;
// post indentify
// post indentify.
int integralOrder = 4;
// ---------------- ATP read --------------------------------------------
//@int inflowParaType = 0;
//@double refReNumber = 6.5e6;
@ -1379,18 +1434,34 @@ int integralOrder = 4;
//@string outLetFileName = "./bin/subsonicOutlet.hypara";
//@double refDimensionalVelocity = 0;
//@double refDimensionalDensity = 0;
#########################################################################
# Old Parameter #
#########################################################################
//@string weatherDataFilePath = "./WRFData/";
//@double longitude = 110.95
//@double latitude = 19.61;
#************************************************************************
# Old Parameter *
#************************************************************************
int isPlotVolumeField = 0;
#************************************************************************
# partial flow field setting Parameter *
#************************************************************************
//int nPartialParameter = 0; // 0/1/2
//int nNumberOfPartialField = 0; //
//int nStartGridIndex[] = [0];
//int nEndGridIndex[] = [0];
#########################################################################
# Incompressible Parameter #
#########################################################################
//double partialCFL[] = [0.0];
//double partialSpeedCoef[] = [0.0];
//double partialSpeed[] = [0.0];
//double partialAttackd[] = [0.0];
//double partialSlide[] = [0.0];
//double partialPressure[] = [0.0];
//double partialTemperature[] = [0.0];
//double partialMassFractions[] = [0.0];
#************************************************************************
# Incompressible Parameter *
#************************************************************************
int isSolveEnergyEquation = 0;
int isSolveTurbEquation = 0;
int isSolveSpeciesEquation = 0;

View File

@ -4,9 +4,12 @@
// gridtype: Grid type for generation, conversion, reconstruction, merging.
// 0 -- Unstructured grid.
// 1 -- Structured grid.
// axisup: Type of Cartisien coordinates system, used in grid conversion.
// 1 -- Y upward. (default)
// 2 -- Z upward.
// nAxisRotateTimes: number of axis rotating times, zero (default) meaning without rotating.
// axisRotateOrder : axis rotating order.
// 1 -- X-axis.
// 2 -- Y-axis.
// 3 -- Z-axis.
// axisRotateAngles: axis rotating angles (degree), which are corresponding to the axis rotating order.
// from_gtype: Type of grid data type in grid conversion process.
// -1 -- MULTI_TYPE.
// 1 -- PHengLEI, *.fts.
@ -18,7 +21,9 @@
// 7 -- Hybrid, include both of unstructured and structured grid, *.fts.
// 8 -- GMSH, *.msh.
int gridtype = 1;
int axisup = 1;
int nAxisRotateTimes = 0;
int axisRotateOrder[] = [1, 2, 3];
double axisRotateAngles[] = [0.0, 0.0, 0.0];
int from_gtype = 2;
#########################################################################

View File

@ -8,6 +8,7 @@
// Platform for Hybrid Engineering Simulation of Flows +
// China Aerodynamics Research and Development Center +
// (C) Copyright, Since 2010 +
// PHengLEI 2212 +
//+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
###########################################################################
# Default parameters for Grid conversion #
@ -46,19 +47,24 @@ int gridobj = 1;
int multiblock = 0;
int iadapt = 0;
int SymmetryFaceVector = 1;
int gridReorder = 0;
int faceReorderMethod = 0;
// axisup: Type of Cartisien coordinates system, used in grid conversion.
// 1 -- Y upward. (default)
// 2 -- Z upward.
int axisup = 1;
// nAxisRotateTimes: number of axis rotating times, zero (default) meaning without rotating.
// axisRotateOrder : axis rotating order.
// 1 -- X-axis.
// 2 -- Y-axis.
// 3 -- Z-axis.
// axisRotateAngles: axis rotating angles (degree), which are corresponding to the axis rotating order.
int nAxisRotateTimes = 0;
int axisRotateOrder[] = [1, 2, 3];
double axisRotateAngles[] = [0.0, 0.0, 0.0];
// omit_no_bound_bc: What's boundary condition for the type of "no_boundary_condition".
// 0 -- Interface. (default)
// 1 -- Physical boundary condition, used in Hybrid solver.
int omit_no_bound_bc = 0;
int omitRepeatInterface = 1;
//-----------------------------------------------------------------------
# Grid data type #
@ -89,7 +95,6 @@ int dumpOldGrid = 0;
int numberOfGridFile = 1;
string from_gfile = "./grid/rae2822_hybrid2d.cas";
string from_gfile1 = "";
string out_gfile = "./grid/flat_laminr_133_85_2d.fts";
// ----------------- some advanced choices ------------------------------
@ -178,7 +183,6 @@ double influencePara = 25.0;
which only support one direction.
// rotationAngle: The relative angle between two periodic face.
which is recorded in degrees.
int periodicType = 0;
double translationLength[] = [0.0, 0.0, 0.0];
double rotationAngle = 0.0;
@ -192,7 +196,6 @@ double rotationAngle = 0.0;
// 2 -- refine structured grid.
// maxproc: The number of partition zones that want to be divided into.
// numberOfMultifile: The number of partition grid files that want to be dumped out.
int pgridtype = 0;
int maxproc = 4;
int numberOfMultifile = 1;
@ -207,8 +210,8 @@ int blockIndexOfMark = 0;
int cellIndexOfMark[] = [185, 30, 1];
// parallelStrategy:
//! -# 0 : each zone is assigned to the one that defined in grid partition procedure.
//! -# 1 : random assigned for each zone or by some else ways.
// 0 -- each zone is assigned to the one that defined in grid partition procedure.
// 1 -- random assigned for each zone or by some else ways.
int parallelStrategy = 1;
//-----------------------------------------------------------------------
@ -232,7 +235,6 @@ string partition_grid_file = "./grid/sphere_mixed__4.fts";
// 1 -- perfect balance.
// maxproc -- perfect imbalance.
// 1.05 -- recommended.
int omit_no_bound_bc = 0;
int npartmethod = 1;
int parallelPartitionMethod = 2;
@ -253,24 +255,30 @@ int numberOfMultigrid = 1;
// intervalStepSample: The step intervals for monitored probes variables file 'sample.dat' saved.
// intervalStepForce: The step intervals for aerodynamics coefficients file 'aircoef.dat' saved.
// intervalStepRes: The step intervals for residual file 'res.dat' saved.
// ifLowSpeedPrecon: Precondition process to accelerate convergence for low speed flow.
// 0 -- no precondition process. (default, mach > 0.3)
// 1 -- carry out precondition process. (mach number <= 0.3)
int maxSimuStep = 20000;
int intervalStepFlow = 1000;
int intervalStepPlot = 1000;
int intervalStepSample = 1000;
int intervalStepForce = 100;
int intervalStepRes = 10;
int ifLowSpeedPrecon = 0;
// compressible:
// 0 -- incompressible flow.
// 1 -- compressible flow. (default)
int compressible = 1;
// ifLowSpeedPrecon: Precondition process to accelerate convergence for low speed flow.
// 0 -- no precondition process. (default, mach > 0.3)
// 1 -- carry out precondition process. (mach number <= 0.3)
// Kprec: The coefficient K for the cut-off velocity.
// 1.0~3.0 is suggested. (default, 3.0)
// preconFarfieldBCMethod: The precondition method for farfield boundary condition.
// 0 -- precondition far-field boundary based on riemann invariants.
// 1 -- Turkel's simplified far-field boundary condition.
int ifLowSpeedPrecon = 0;
double Kprec = 3.0;
int preconFarfieldBCMethod = 1;
//-----------------------------------------------------------------------
# CFD Control Parameter #
//-----------------------------------------------------------------------
@ -281,9 +289,12 @@ int compressible = 1;
// 0 -- the nondimensional conditions.
// 1 -- the flight conditions.
// 2 -- the experiment conditions.
// 3 -- the subsonic boundary conditions.
// 3 -- the subsonic boundary conditions. (Useless!)
// 4 -- the condition that the velocity, temperature and density are given.
// 5 -- the condition that the velocity, temperature and pressure are given.
//flowInitMethod: Flow field initialization method.
// 0 -- The entire flow field is initialized according to Infinite velocity.
// 1 -- The velocity near the wall is initialized according to the boundary layer of the plate.
// refReNumber: Reynolds number, which is based unit length, unit of 1/m.
// refDimensionalTemperature: Dimensional reference temperature, or the total temperature only for the experiment condition.
// freestream_vibration_temperature: Dimensional freestream vibration temperature.
@ -303,11 +314,11 @@ int compressible = 1;
// condition is radiation equilibrium temperature, and 0.8 is the default value.
// refMolecularWeight: the reference molecular weight of gas used for perfect gas. The unit is g/mol.
// Generally, the gas is air. Sometimes, it is experiment gas, such as Nitrogen, Argon, and so on.
int directionMethod = 0;
double refMachNumber = 0.73;
double attackd = 2.79;
double angleSlide = 0.00;
int flowInitMethod = 0;
int inflowParaType = 0;
double refReNumber = 6.5e6;
@ -321,14 +332,6 @@ double freestream_vibration_temperature = 300.00;
//double refDimensionalTemperature = 6051.024; // The total temperature, T*(1+(refGama-1)*M*M/2).
//double refDimensionalPressure = 4.299696E09; // The total pressure, p*(T0/T)^(refGama/(refGama-1)).
//int inflowParaType = 3;
//int nsubsonicInlet = 1;
//int nsubsonicOutlet = 1;
//string inLetFileName = "./bin/subsonicInlet.hypara";
//string outLetFileName = "./bin/subsonicOutlet.hypara";
//double refDimensionalTemperature = 288.144;
//double refDimensionalPressure = 1.01313E05;
// The velocity, temperature and density are fixed.
//int inflowParaType = 4;
//double refDimensionalVelocity = 1000.0;
@ -341,9 +344,15 @@ double freestream_vibration_temperature = 300.00;
// The MachNumber, temperature and pressure are fixed.
//int inflowParaType = 6;
//double refDimensionalTemperature = 293;
//double refDimensionalTemperature = 293.0;
//double refDimensionalPressure = 8886.06;
// The velocity, temperature and pressure are read from file.
//int inflowParaType = 7;
//string weatherDataFilePath = "./WRFData/";
//double longitude = 110.95
//double latitude = 19.61;
double wallTemperature = -1.0;
double radiationCoef = 0.8;
@ -357,35 +366,35 @@ double forceReferenceArea = 1.0; // unit of meter^2.
double TorqueRefX = 0.0; // unit of meter.
double TorqueRefY = 0.0; // unit of meter.
double TorqueRefZ = 0.0; // unit of meter.
double knudsenLength = 1.0; // unit of meter.
double refMolecularWeight = 28.9644; // unit of g/mol.
//-----------------------------------------------------------------------
# Spatial Discretisation #
//-----------------------------------------------------------------------
#*******************************************************************
#************************************************************************
# Struct Solver *
#*******************************************************************
#************************************************************************
// inviscidSchemeName: Spatial discretisation scheme of struct grid.
// Using this when solve structered grid or hybrid.
// -- "vanleer", "steger", "hlle", "lax_f".
// -- "roe", "modified_roe".
// -- "vanleer", "steger", "hlle", "lax_f",
// -- "roe", "modified_roe",
// -- "ausm+", "ausm+w", "ausm+up", "ausmdv", "ausmpw", "ausmpw+".
// isWennScheme: If using WENN Scheme of struct grid.
// 0 -- NO. (default)
// 1 -- Yes.
// str_limiter_name: Limiter of struct grid.
// -- "vanalbada", "vanleer", "minmod", "smooth", "minvan", "3rdsmooth", "3rd_minmod_smooth".
// -- "nolim", no limiter.
// -- "vanalbada_clz", clz supersonic version.
// -- "weno3_js", "wenn3_prm211", "wenn3_zm", "wenn3_zes2", "wenn3_zes3"
// -- "vanalbada", "vanleer", "minmod", "smooth", "minvan", "3rdsmooth", "3rd_minmod_smooth",
// -- "nolim", no limiter,
// -- "vanalbada_clz", clz supersonic version,
// -- "weno3_js", "wenn3_prm211", "wenn3_zm", "wenn3_zes2", "wenn3_zes3".
string inviscidSchemeName = "roe";
int isWennScheme = 0;
string str_limiter_name = "vanalbada";
#*******************************************************************
#************************************************************************
# UnStruct Solver or Common *
#*******************************************************************
#************************************************************************
// viscousType: Viscous model.
// 0 -- Euler.
// 1 -- Lamilar.
@ -410,11 +419,11 @@ string str_limiter_name = "vanalbada";
// 3 -- IDDES.
// uns_scheme_name: Spatial discretisation scheme of Unstruct grid.
// Using this when solve Unstructered grid or hybrid.
// -- "vanleer", "roe", "steger", "kfvs", "lax_f", "hlle".
// -- "vanleer", "roe", "GMRESRoe", "GMRESSteger", "steger", "kfvs", "lax_f", "hlle",
// -- "ausm+", "ausmdv", "ausm+w", "ausmpw", "ausmpw+".
// uns_limiter_name: Limiter of Unstruct grid.
// -- "barth", "vencat", "vanleer", "minmod".
// -- "vanalbada", "smooth", "nnd", "lpz", "1st".
// -- "barth", "vencat", "vanleer", "minmod",
// -- "vanalbada", "smooth", "nnd", "lpz", "1st",
// -- "nolim", no limiter.
// uns_vis_name: Discretisation method of viscous term.
// -- "std", "test", "aver", "new1", "new2".
@ -442,7 +451,7 @@ string str_limiter_name = "vanalbada";
// 3 -- Harten type, which is default used.
// roeEntropyScale: Entropy fix (correction) coefficient scale, default is 1.0.
// It is used to scale the default Roe entropy fix coefficients.
// AusmpwPlusLimiter: A Limiter to make "function w" not change acutely in AusmpwPlus scheme, default is 1.0
// AusmpwPlusLimiter: A Limiter to make "function w" not change acutely in AusmpwPlus scheme, default is 1.0.
//int viscousType = 0;
//string viscousName = "Euler";
@ -475,9 +484,9 @@ double roeEntropyScale = 1.0;
double AusmpwPlusLimiter = 1.0;
//-----------------------------------------------------------------------
# Temporal Discretisation #
//-----------------------------------------------------------------------
#************************************************************************
# Temporal Discretisation *
#************************************************************************
// iunsteady: Steady or unsteady.
// 0 -- steady.
// 1 -- unsteay.
@ -504,11 +513,18 @@ double AusmpwPlusLimiter = 1.0;
// 6 -- Jacobian iteration.
// 7 -- Line LU-SGS.
// 8 -- Matrix LU-SGS.
// 9 -- GMRES.
// iSimplifyViscousTerm: Simplify the computation of viscous term in the Block LU-SGS method. The default value assigns 1 that could speed up the computation.
// Otherwise, the viscous Jacobian matrix Mv should be computed that will increase the memory and time in iteration of the BLUSGS method.
// CFLStart: Started cfl number.
// CFLEnd: End cfl number.
// CFLVaryStep: The number of step when cfl increase from CFLStart to CFLEnd.
// GMRESCFLScale : CFL = CFLStart * GMRESCFLScal^iteration.
// OriginalTscheme : Used for LUSGS and GMres hybrid computing.
// useLUSGSprecond: Initialize flow field for GMRES.
// 0 --Initialize by first order Jacobian matrix.
// 1 --Initialize by LUSGS.
// GMRESInitStep : the number of iteration step of irst order Jacobian matrix or LUSGS for initialize flow field.
// ktmax: Dtratio. dt[i] = MIN(dt[i], ktmax * dtmin / vol[i])
// swapDq: Communication dq between forward/backward sweep of LUSGS or not, default is 0.
// nLUSGSSweeps: Sub iteration of LU-SGS or Block LU-SGS.
@ -533,7 +549,6 @@ double AusmpwPlusLimiter = 1.0;
// 2 -- Pab3D wall function.
// RKStage: The number of Runge-Kutta step.
// lamda: Cofficient of Runge-Kutta step.
int iunsteady = 0;
double physicalTimeStep = 0.01;
double physicalTimeStepDimensional = -0.001;
@ -543,7 +558,7 @@ int ifStaticsReynoldsStress = 0;
int startStatisticStep = 800000;
double statisticalTimePeriod = -1.0;
int statisticMethod = 0;
int linearTwoStepMethods = 1; // 1--BDF1; 2--C-N; 3--BDF2;
int linearTwoStepMethods = 1; // 1--BDF1; 2--C-N; 3--BDF2.
int methodOfDualTime = 3;
int min_sub_iter = 50;
@ -558,7 +573,10 @@ int isUsePreTwall = 0;
double CFLStart = 0.01;
double CFLEnd = 10.0;
int CFLVaryStep = 500;
double GMRESCFLScale = 1.0;
int OriginalTscheme = 9;
int useLUSGSprecond = 1;
int GMRESInitStep = 1000;
double pMaxForCFL = 0.2;
double pMinForCFL = 0.1;
double deltaMaxForCFL = 0.2;
@ -575,7 +593,7 @@ int order = 2;
double visl_min = 0.01;
double turbCFLScale = 1.0;
double csrv = 2.0;
double csrv = 1.0;
double timemax = 1.0e10;
double dtsave = -1.0;
int maxale = 10;
@ -591,10 +609,9 @@ double lamda[] = [0.5, 1.0];
//int RKStage = 4;
//double lamda[] = [0.25, 0.33333333333, 0.5, 1.0];
//-----------------------------------------------------------------------
# File In or Out #
//-----------------------------------------------------------------------
#************************************************************************
# File In or Out *
#************************************************************************
// numberOfGridGroups: The number of grid groups.
// gridfile: The partitioned Grid file path, using relative path,
// which is relative to the working directory.
@ -618,10 +635,8 @@ double lamda[] = [0.5, 1.0];
// nIsComputeWallDist: Whether to compute the wall distance.
// 0 -- Compute wall distance.
// 1 -- Not compute.
//
// protectionFile0 and protectionFile1: Two continuation file of the data protection mechanism.
// wall_heatfluxfile: The file to output the MaxHeatFlux of wall.
int numberOfGridGroups = 1;
string gridfile = "./grid/rae2822_hybrid2d__4.fts";
string wallTemperaturefile = "";
@ -632,10 +647,12 @@ int cellMethodOrNodeMethod = 0;
string resSaveFile = "results/res.dat";
string turbresfile = "results/turbres.dat";
string transitionResFile = "results/transitionRes.dat";
string aircoeffile = "results/aircoef.dat";
string restartNSFile = "results/flow.dat";
string turbfile = "results/turb.dat";
string transitionFile = "results/transition.dat";
string visualfile = "results/tecflow.plt";
string wall_aircoefile = "results/wall_aircoef.dat";
@ -645,11 +662,15 @@ string protectionFile0 = "results/flow0.dat";
string protectionFile1 = "results/flow1.dat";
string wall_heatfluxfile = "results/wall_heatflux.dat";
string protectionTurbFile0 = "results/turb0.dat";
string protectionTurbFile1 = "results/turb1.dat";
string protectionTransitionFile0 = "results/transition0.dat";
string protectionTransitionFile1 = "results/transition1.dat";
int nDumpSurfaceInfo = 0;
string wall_varfile = "";
string jetDefineFile = "bin/jet.hypara";
string sixDofFileName = "results/sixDofInfo.dat";
string derivativeFileName = "results/identify.dat";
string hysteresisFileName = "results/force_beta.plt";
@ -659,7 +680,8 @@ int plotFieldType = 0;
// visualfileType: The file type of visualfile.
// 0 -- Tecplot binary.
// 1 -- Tecplot ASCII.
// 2 -- Ensight binary.
// 3 -- Ensight ASCII.
int visualfileType = 1;
// samplefileMode: The dump mode of sample file.
@ -697,21 +719,21 @@ double upperPlotFieldBox[] = [1.0 1.0 1.0];
// -- vibration temperature(Tv, 33), electron temperature(Te, 34), vibrational energy(Ev, 35), electric energy(Ee, 36),
// -- number density of electron(Ne, 37), dimensioanl density(rho, 38), dimensioanl pressure(p, 39), dimensioanl temperature(T, 40),
// -- gradientUx(41), gradientUy(42), gradientVx(43), gradientVy(44), streamline_u(45), streamline_v(46), streamline_w(47),
// -- transition intermittency(intermittency, 51), -transition momentum thickness reynolds(MomentumThicknessReynolds, 52),
// -- overlap iblank(iblank, 81)
// -- specific heat ratio(gama, 56)
// -- transition intermittency(intermittency, 51), transition momentum thickness reynolds(MomentumThicknessReynolds, 52),
// -- local CFL Number(localCFL, 57), minimal CFL Number(minCFL, 58),
// -- overlap iblank(iblank, 81),
// -- specific heat ratio(gama, 56), Knudsen number(kn, 60), Damkohler number(Da, 61), vibrational nonequilibrium number(Vi, 62).
// Important Warning: Array size of visualVariables MUST be equal to nVisualVariables!!!
// Variables order must from small to big.
//-----------the optional parameters list for the wall boundary condition----------------
// nVisualWallVariables: The number of visual variables on wall.
// visualWallVariables : dumped variable types, listed as following:
// -coefficient of pressure(cp, 0), -coefficient of friction(cf, 1), yplus(2), -non-dimensional heat flux(Q_NonDim, 3), -dimensional heat flux(Q_Dim, 4),
// -pressure on wall(pw, 5), -temperature on wall(Tw, 6), -density on wall(rhow, 7), -heat flux of translational-rotational temperature term(Qtr, 8),
// -heat flux of species diffusion term(Qs, 9), -heat flux of vibrational temperature term(Qv, 10), -heat flux of electron temperature term(Qe, 11),
// -species mass fractions(Ns, 12), -x component of wall velocity(Vx, 13), -y component of wall velocity(Vy, 14), -z component of wall velocity(Vz, 15)
// -slip translational-rotational temperature(Tts, 16), -slip vibrational temperature(Tvs, 17), -slip electron temperature(Tes, 18), -absolute wall velocity(Vs, 19)
// -Stanton number(St, 20), -coefficient of heat rate(Ch, 21), -temperature jump(deltaT, 22), -Grid Reynolds number on wall(Re_w, 23)
// -- coefficient of pressure(cp, 0), coefficient of friction(cf, 1), yplus(2), non-dimensional heat flux(Q_NonDim, 3), dimensional heat flux(Q_Dim, 4),
// -- pressure on wall(pw, 5), temperature on wall(Tw, 6), density on wall(rhow, 7), heat flux of translational-rotational temperature term(Qtr, 8),
// -- heat flux of species diffusion term(Qs, 9), heat flux of vibrational temperature term(Qv, 10), heat flux of electron temperature term(Qe, 11),
// -- species mass fractions(Ns, 12), x component of wall velocity(Vx, 13), y component of wall velocity(Vy, 14), z component of wall velocity(Vz, 15),
// -- slip translational-rotational temperature(Tts, 16), slip vibrational temperature(Tvs, 17), slip electron temperature(Tes, 18), absolute wall velocity(Vs, 19),
// -- Stanton number(St, 20), coefficient of heat rate(Ch, 21), temperature jump(deltaT, 22), Grid Reynolds number on wall(Re_w, 23), Knudsen number(Kn_wall, 24).
int nVisualVariables = 8;
int visualVariables[] = [0, 1, 2, 3, 4, 5, 6, 15];
@ -739,7 +761,9 @@ int dumpStandardModel = 0;
// 1 -- Real cell where the probe is located.
// nProbeVariables: Number of variables want to be dumped for probes monitered.
// probeVariables : Variable types dumped, listed as following:
// -- density(0), u(1), v(2), w(3), pressure(4), temperature(5), mach(6).
// -- density(0), u(1), v(2), w(3), pressure(4), temperature(5), mach(6),
// -- dimensioanl_density(7), dimensioanl_u(8), dimensioanl_v(9),
// -- dimensioanl_w(10), dimensioanl_pressure(11), dimensioanl_temperature(12).
// Important Warning: Array size of probeVariables MUST be equal to nProbeVariables!!!
// probeVariables order must from small to big.
// probeVariablesInterpolationMethod: Interpolation method used to compute the probe variables.
@ -761,12 +785,13 @@ string probesDefineFile = "bin/probes_XYZ.dat";
int searchCellsMethod = 0;
int nProbeVariables = 7;
int probeVariables[] = [0, 1, 2, 3, 4, 5, 6];
int nProbeVariables = 14;
int probeVariables[] = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13];
int probeVariablesInterpolationMethod = 0;
//-----------------------------------------------------------------------
# Turbulence Parameter #
//-----------------------------------------------------------------------
#************************************************************************
# Turbulence Parameter *
#************************************************************************
// turbInterval: Iteration number of turbulence.
// kindOfTurbSource: Kinds of turbulent source.
// 0 -- Original.
@ -774,15 +799,12 @@ int probeVariablesInterpolationMethod = 0;
// transitionType: transition model type
// 0 -- none.
// 2 -- gama-re-theta.
// turbIntensity: (valid while greater than 0.0 ) turbulent intensity of free stream(*100) in transition
// freeturbIntensitySRModify: to use SR modify in free stream turbulent intensity decay or not
// turbIntensity: (valid while greater than 0.0 ) turbulent intensity of free stream(*100) in transition.
// freeturbIntensitySRModify: to use SR modify in free stream turbulent intensity decay or not.
int turbInterval = 1;
int turbOrderStruct = 2;
int kindOfTurbSource = 0;
int mod_turb_res = 0;
double turb_relax = 1.0;
double freeStreamViscosity = 1.0e-3;
double muoo = 3.0;
double kwoo = 5.0;
@ -791,28 +813,27 @@ double turbIntensity = -1.0;
int freeturbIntensitySRModify = 0;
double freeDecayXLocation = 0.0;
int compressibleCorrection = 0;
int prandtlNumberCorrection = 0;
int transitionMaFix = 1;
# maximum eddy viscosity (myt/my) max.
// maximum eddy viscosity (myt/my) max.
double eddyViscosityLimit = 1.0e10;
int monitor_vistmax = 0;
//-----------------------------------------------------------------------
# LES Parameter #
//-----------------------------------------------------------------------
#************************************************************************
# LES Parameter *
#************************************************************************
// iLES: Create LESSolver or not.
// = 1 - Create LESSolver;
// != 1 - not.
// = 1 -- Create LESSolver;
// != 1 -- not.
// amplitudeofDisturb: Amplitude of adding disturb.
// disturbstep: Unsteady time step or steady iteration of adding random disturb.
// iterdisturb: Add random disturb in every sub-iter or only first sub-iter.
// = 0 - in only first sub-iter;
// != 0 - in every sub-iter.
// = 0 -- in only first sub-iter;
// != 0 -- in every sub-iter.
// ipraddisturb: Add density and pressure disturb or not.
// ibodyforce: Add body force in source flux of NS equations or not.
// = 0 - not;
// != 0 - Add body force.
// = 0 -- not;
// != 0 -- Add body force.
// bodyforce: Body force in source flux of NS equations or not.
// utau: friction velocity, using in DNSDisturb.
// sgsmodel: subgrid scale model.
@ -820,23 +841,22 @@ int monitor_vistmax = 0;
// = "dsmCom";
// = "wale";
// = "sigma".
// deltaFunctionType: = 1 - MAX(deltai, deltaj, deltak);
// = 2 - pow(deltai * deltaj *deltak, 1/3);
// = 3 - Devloped by Scotti.
// wallDampingFunctionType: = 0 - no wall function;
// = 1 - van Driest;
// = 2 - developed by Dr. Deng Xiaobing;
// = 3 - developed by Piomelli.
// deltaFunctionType: = 1 -- MAX(deltai, deltaj, deltak);
// = 2 -- pow(deltai * deltaj *deltak, 1/3);
// = 3 -- Devloped by Scotti.
// wallDampingFunctionType: = 0 -- no wall function;
// = 1 -- van Driest;
// = 2 -- developed by Dr. Deng Xiaobing;
// = 3 -- developed by Piomelli.
// turbViscousCutType: turbulent viscosity cut type.
// = 0 - mu_total = mut + mul;
// = 1 - mu_total = max(mut-mul,0)+ mul;
// = 2 - mu_total = max(mut ,0)+ mul.
// = 0 -- mu_total = mut + mul;
// = 1 -- mu_total = max(mut-mul, 0) + mul;
// = 2 -- mu_total = max(mut , 0) + mul.
// smagConstant: constant of smagorinsky model.
// waleConstant: constant of wale model.
// filterDirection [3]: filter variables in i, j, k direction or not.
// averageDirection[3]: average variables in i, j, k direction or not.
// isotropicConstant: constant of isotropic part of SGS stress.
int iLES = 0;
string sgsmodel = "smagorinsky";
int deltaFunctionType = 2;
@ -852,9 +872,9 @@ double testFilterScale = 2.0;
int averageWidth = 1;
int monitorNegativeConstant = 0;
//-----------------------------------------------------------------------
# Other Parameters for Hypersonic Non-equilibrium Gas #
//-----------------------------------------------------------------------
#************************************************************************
# Other Parameters for Hypersonic Non-equilibrium Gas *
#************************************************************************
// dg_high_order:
// 0 -- generic order accuracy.
// 1 -- high order accuracy.
@ -862,9 +882,6 @@ int monitorNegativeConstant = 0;
// 0 -- gas model is fixed in the codes.
// 1 -- gas model is imported from library files.
// isAdaptiveSolver: isAdaptiveSolver = 0 indicates the generic Navier-Stokes solver,
// isAdaptiveSolver>0 indicates the HyFlow self-adaptive solver.
// 1 -- using HyFlow self-adaptive solver where the switch is controlled by the total iteration steps.
// 2 -- using HyFlow self-adaptive solver where the switch is controlled by variation of the key residual.
// nm: Equation number of the physics, but is out of commision now.
// 4 -- for 2D.
// 5 -- for 3D.
@ -886,14 +903,13 @@ int monitorNegativeConstant = 0;
// nEquilibriumGas: the variable is valid when the condition of nchem = 0 is satisfied.
// 0 -- perfect gas.
// 5, 7, 11 -- equilibrium gas, meanwhile, its value denotes the number of gas component.
// nPCWCycleStep: the maximum step number of iteration in the module of computing species mass fractions with the partial catalytic wall(PCW) condition.
// the value equals to or is greater than 1, and 3 is for default value.
// nRETCycleStep: the maximum step number of iteration in the module of computing radiation equilibrium temperature on wall.
// the value equals to or is greater than 1, and 3 is for default value.
// nSLIPCycleStep:the maximum step number of iteration in the module of computing slip temperature, slip velocity and slip species mass fraction.
// the value equals to or is greater than 1, and 3 is for default value.
// nPCWCycleStep: The maximum step number of iteration in the module of computing species mass fractions with the partial catalytic wall(PCW) condition.
// The value equals to or is greater than 1, and 3 is for default value.
// nRETCycleStep: The maximum step number of iteration in the module of computing radiation equilibrium temperature on wall.
// The value equals to or is greater than 1, and 3 is for default value.
// nSLIPCycleStep:The maximum step number of iteration in the module of computing slip temperature, slip velocity and slip species mass fraction.
// The value equals to or is greater than 1, and 3 is for default value.
// nSlipBCModel: The computational model of slip boundary conditions.
// 0 -- no slip.
// 1 -- the conventional Maxwell slip conditions.
// 2 -- the Gokcen slip conditions.
@ -913,10 +929,13 @@ int monitorNegativeConstant = 0;
// 1 -- One-temperature model.
// 2 -- Two-temperature model.
// 3 -- Three-temperature model.
// isUseNoneqCond:
// 0 -- compute the source terms without any conditions.
// 1 -- compute the source terms using the non-equilibrium condition.
// frozenCondition: the threshold value of frozen chemical flow condition, 0.1 is the default value.
// nIdealState: whether take all gas species as ideal gas for gas-mixture process.
// 0 -- No.
// 1 -- Yes.
// nTEnergyModel: the method to computing temperature energy model.
// 1 -- Yes. // nTEnergyModel: the method to computing temperature energy model.
// 0 -- the energy term is computed using the conventional method.
// 1 -- the energy term is computed using the polynomial fitting method.
// 2 -- the energy term is computed using the piecewise polynomial fitting method.
@ -946,14 +965,13 @@ int monitorNegativeConstant = 0;
// 1.0 -- proposed by Maxwell.
// sqrt(2/PI)~0.8 -- used for "micro-slip", namely the actual velocity slip at the wall.
// 1.146 -- proposed for an additional "fictitious" velocity slip.
// chemicalRelaxCorf: The value is in range of [0.001, 1.0].
// spectrumRadiusCoef: The value is in range of [0.0, 2.0].
// staticPressureRelaxCorf: The value is in range of [0.1, 1.0].
// nIsChemicalFreeze: the flag to freeze the chemical reactions.
// 0 -- not freeze, the chemical reaction sources will be calculated.
// 1 -- freezes the chemical reactions, the chemical reaction sources will not be calculated.// veTemperatureMin: The minimum of Tv and Te
// 1 -- freezes the chemical reactions, the chemical reaction sources will not be calculated.
// veTemperatureMin: The minimum of Tv and Te.
// maxViscous: the maximum of Viscous.
// trTemperatureMin: the minimum value of trTemperature.
// veTemperatureMin: the minimum value of veTemperature.
@ -965,36 +983,34 @@ int monitorNegativeConstant = 0;
// nSpeciesLimit: limitter of gas species
// 0 -- not used.
// 1 -- used.
// nTurblenceForChemical: the coupled mode of Turblence and Chemical reaction
// nTurblenceForChemical: the coupled mode of Turblence and Chemical reaction.
// 0 -- method 0.
// 1 -- method 1.
// nViscosityFluxSublevelModified: Modified for ViscosityFlux on Sublevel grid
// nViscosityFluxSublevelModified: Modified for ViscosityFlux on Sublevel grid.
// 0 -- not used.
// 1 -- used.
// nViscosityPeModified: Pe Modified for ViscosityCoef
// nViscosityPeModified: Pe Modified for ViscosityCoef.
// 0 -- not used.
// 1 -- used.
// nChemcalSourceModified: Modified on ChemcalSource
// nChemcalSourceModified: Modified on ChemcalSource.
// 0 -- not used.
// 1 -- used.
// nChemcalSourceEsMethod: Modified on ChemcalSource
// 0 -- approximation algorithm 1 (Ori.)
// 1 -- approximation algorithm 2 (New)
// nChemcalSourceEsMethod: Modified on ChemcalSource.
// 0 -- approximation algorithm 1 (Ori).
// 1 -- approximation algorithm 2 (New).
// nMaxStepTemperature: the iterative steps of temperature.
// veTemperatureMinModified: Modified on the minimum of Tve for Cvvs
// 0 -- not used
// 1 -- used
// nDiagonalModified: Modified on Diagonal
// 0 -- not used
// 1 -- Ori.
// 2 -- new
// veTemperatureMinModified: Modified on the minimum of Tve for Cvvs.
// 0 -- not used.
// 1 -- used.
// nDiagonalModified: Modified on Diagonal.
// 0 -- not used.
// 1 -- new.
// nDiagonalModifiedTurb: Modified on Diagonal for turbulence.
// 0 -- not used.
// 1 -- new.
// nGradPrimtiveMethod:
// 0 -- Ori.
// 1 -- new
// 1 -- new.
// nAblation:
// 0 -- The wall ablation is not computed.
// 1 -- The wall ablation is computed.
@ -1017,8 +1033,8 @@ int monitorNegativeConstant = 0;
// "Mars-Pa8" is for Park model of Mars gas, "Mars-Mc8" for McKenzie model of Mars gas.
// "Combustion-12" -- indicates the Combustion Chamber Gas Model which includes 12-species-20-reactions.
// "Gas-Mixture" -- indicates the process of mixing gas without reacting.
// for struct solver mixing two species£¨SpeciesA, SpeciesB£©.
// for unstruct solver mixing multi-species£¨O2 NO CO CO2 H2 N2 Air CH4£©.
// for struct solver mixing two species<65><73>SpeciesA, SpeciesB<73><42>.
// for unstruct solver mixing multi-species<65><73>O2 NO CO CO2 H2 N2 Air CH4<48><34>.
// For self-definition model, the gasfile is used to indicate the file path of the new gas model.
// speciesName: Used to list the names of each species, while each species name is separated by the symbol of comma.
// initMassFraction: Used to list the initial mass fractions of species in accordance with the sequence of names in the parameter speciesName.
@ -1040,13 +1056,16 @@ int monitorNegativeConstant = 0;
// firstStepError : the residual error of the first step iteration for the self-adaptive calculation.
// secondStepError : the residual error of the second step iteration for the self-adaptive calculation.
// thirdStepError : the residual error of the third step iteration for the self-adaptive calculation.
// useHyflowSetting : Setting for HyFLOW GUI.
// 0 -- PHengLEI
// 1 -- HyFLOW
// nProtectData: Use the continuation file data protection mechanism.
// 0 -- no
// 1 -- yes
// 0 -- no.
// 1 -- yes.
// nTvChange: Judge whether the Tv equals Ttr.
// 0 -- yes.
// 1 -- no.
// isMoleFractionType: 1 indicates the mass fractions, or else the mole fractions.
// nFraction: the initial fractions type of species.
// 0 -- mass fraction.
// 1 -- mole fraction.
int dg_high_order = 0;
int iapplication = 0;
int isAdaptiveSolver = 0;
@ -1114,6 +1133,7 @@ double densityMin = 1.0e-8;
double densityMinFactor = 0.1;
double tAdjustmentFactor = 10.0;
double iniSpeedCoef = 1.0;
int iniSpeedMode = 0;
int nDebug = 0;
int nSpeciesLimit = 1;
@ -1125,18 +1145,21 @@ int nChemcalSourceEsMethod = 1;
int nMaxStepTemperature = 5;
int veTemperatureMinModified = 1;
int nDiagonalModified = 0;
int nDiagonalModifiedTurb = 0;
int nGradPrimtiveMethod = 1;
int nInviscidFluxModify = 1;
int nQlLimitMethod = 2;
int nSpeciesForWallMethod = 1;
int nDensityForWallMethod = 0;
int wallMultiTemperature = 0;
int nProtectData = 0;
int useHyflowSetting = 0;
int nAblation = 0;
int isInjection = 0;
int nViscosityModel = 0;
int nMarsModel = 0;
int nTvChange = 0;
int isMoleFractionType = 0;
string gasfile = "DK5";
//string gasfile = "./chemical/Dunn-Kang_air5s11r.dat";
string speciesName = "O, O2, NO, N, N2";
@ -1173,9 +1196,17 @@ double molecularWeightSpeciesB = 30.0;
//string speciesName = "O2, N2";
//string initMassFraction = "1.0, 0.0";
int nFraction = 0;
int nContinueModel = 0;
int nChemicalFlowStep = 0;
int ifStartFromPerfectGasResults = 0;
int isUseNoneqCond = 0;
double frozenCondition = 0.01;
int nLeakageMonitor = 0;
double totalLeakageVolume = 1000.0;
double monitorThresholdValue = 0.05;
double sprayFactor = 0.0;
#########################################################################
// Multi-Grid parameters.
@ -1196,7 +1227,6 @@ int ifStartFromPerfectGasResults = 0;
// 1 -- zero order.
// 2 -- first-order. (default)
// mgCorrectionLimit: Multi-grid correction limit.
int nMGLevel = 1;
int MGCoarsestIteration = 1;
int MGPreIteration = 1;
@ -1226,9 +1256,9 @@ string holeFullFileName = "./grid/holeFullFile.dat";
string linkFileName = "./grid/topology.dat";
string zoneInverseFileName = "./grid/zoneInverseMapping.inp";
#########################################################################
# High Order Struct Solver #
#########################################################################
#************************************************************************
# High Order Struct Solver *
#************************************************************************
// isFVMOrFDM:
// 0 -- NSSolverStruct using Finite Volume Method.
// 1 -- NSSolverStruct using Finite Differ Method.
@ -1273,10 +1303,29 @@ int allReduceStep = 1;
// codeOfOversetGrid: Overlapping(overset) grid or not.
// 0 -- NON-overlapping grid.
// 1 -- Overlapping grid.
// oversetInterpolationMethod: the method of overset interpolation while field simulation
// oversetInterpolationMethod: the method of overset interpolation while field simulation.
// 0 -- set the acceptor cell value by donor cell value.
// 1 -- set the acceptor cell value by distance weight of donor cell value.
// readOversetFileOrNo: Whether to read overset-file(.ovs) that has been generated.
// 0 -- no.
// 1 -- yes.
// symetryOrNot: If there exist symetryplanes(XY plane, the coordinate of Z direction is 0) in
// the current overset grid(only for three dimension).
// 0 -- no.
// 1 -- yes.
// readInAuxiliaryInnerGrid: Whether to read auxiliary inner grid.
// 0 -- no.
// 1 -- yes.
// walldistMainZone: The initial value of background grid which does not exist wall boundary condition.
// toleranceForOversetSearch: The tolerance of overset searching zone to judge whether the obtained node is in the current computing cell.
// toleranceForOversetBox: The tolerance of building the minimum box of computing cells in the overlapping region.
// twoOrderInterpolationOrNot: The number of interpolated cell layers in the overlapping boundary.
// 0 -- one layer.
// 1 -- two layers.
// keyEnlargeOfActiveNodes: The number of enlarged overset-boundary layers in the buffer region.
// outTecplotOverset: Whether to dump out the flowfield data after the progress of overset configure.
// 0 -- no.
// 1 -- yes.
int codeOfOversetGrid = 0;
int oversetInterpolationMethod = 0;
int readOversetFileOrNot = 0;
@ -1295,7 +1344,6 @@ int twoOrderInterpolationOrNot = 0;
int keyEnlargeOfActiveNodes = 0;
int outTecplotOverset = 0;
int outPutOversetVisualization = 0;
int numberOfMovingBodies = 2;
// ----------------- ALE configuration ------------------------------
@ -1306,34 +1354,40 @@ double referenceLength = 1.0;
double referenceVelocity = 1.0;
double referenceDensity = 1.0;
int strategyForFaceNormalVelocity = 0; //0-By Sweeping volume; 1-By face center 1st; 2-By face center 2nd;
int strategyForGCLSource = 0; //0-present; 1-Ahn;
int strategyForFaceNormalVelocity = 0; // 0-By Sweeping volume; 1-By face center 1st; 2-By face center 2nd.
int strategyForGCLSource = 0; // 0-present; 1-Ahn.
//0:1st-Admas-Bashforth; 1:2nd-Admas-Bashforth; 2:1st-Implicit-Euler; 3:2nd-Implicit Euler; 4:2nd-Adams-Moulton; 5:3rd-Adams-Moulton
// 0: 1st-Admas-Bashforth; 1: 2nd-Admas-Bashforth; 2: 1st-Implicit-Euler; 3: 2nd-Implicit Euler; 4: 2nd-Adams-Moulton; 5: 3rd-Adams-Moulton.
int methodForKineticEquation = 0;
double relaxParameterOfKinetic = 1.0;
#########################################################################
# motive information #
#########################################################################
#************************************************************************
# motive information *
#************************************************************************
int numberOfMovingBodies = 1;
############################## body0 ##############################
//mass of parts
// mass of parts.
double mass_0 = 1.0;
//mass matrix of parts Ixx Iyy Izz Ixy Ixz Iyz
// gravity of parts (along negative direction in Y-axis, eg. 9.8).
double gravity_0 = 0.0;
// mass matrix of parts Ixx Iyy Izz Ixy Ixz Iyz.
double massMatrix_0[] = 1e-7, 1e-6, 1e-6, 0.0, 0.0, 0.0;
//initial six DOF position information of parts. xc yc zc
// initial six DOF position information of parts. xc yc zc.
double massCenter_0[] = 0.0, 0.0, 0.0;
//initial six DOF position information of parts. angleX angleY angleZ
// if reset mass center while restart.
int resetMassCenter_0 = 0;
// position offset of parts. dx dy dz.
double massCenterDxyz_0[] = 0.0, 0.0, 0.0;
// initial six DOF position information of parts. angleX angleY angleZ.
double attitudeAngle_0[] = 0.0, 0.0, 0.0;
//initial six DOF move information of parts. vc vy vz
// initial six DOF move information of parts. vc vy vz.
double massCenterVelocity_0[] = 0.0, 0.0, 0.0;
//initial six DOF move information of parts. omigX omigY omigZ
// initial six DOF move information of parts. omigX omigY omigZ.
double angularVelocity_0[] = 0.0, 0.0, 0.0;
// the object that the parts belong to.
int fartherIndex_0 = -1;
//the assembly position of the parts. xc yc zc angleX angleY angleZ
// the assembly position of the parts. xc yc zc angleX angleY angleZ.
double configPamameter_0[] = 0.0, 0.0, 0.0, 0.0, 0.0, 0.0;
// the move pattern of the parts.
// -1 given motion partten.
@ -1349,23 +1403,24 @@ double configPamameter_0[] = 0.0 ,0.0 ,0.0 ,0.0 ,0.0
int RBDMethod_0 = 0;
double amplitude_0 = 0.0;
double reduceFrequency_0 = 0.0;
//direction of rotation
// direction of rotation.
// 1 -- clockwise from the point of view along the positive x axis.
// -1 -- anticlockwise from the point of view along the positive x axis.
int direction_0 = -1;
double rotateFrequency_0 = 0.0;
//string uDFSixDofFileName_0 = "./Bin/UDFSixDof.Parameter";
//additional force (system axis) fX fY fZ
// dimensional physical time for additional force(s).
double addedForceTime_0[] = 0.0;
// additional force(inertia system) fX fY fZ.
double addedForce_0[] = 0.0, 0.0, 0.0;
//additional moment of Force (system axis) mX mY mZ
// additional moment(inertia system) mX mY mZ.
double addedMoment_0[] = 0.0, 0.0, 0.0;
// the deformation method of the parts.
int morphing_0 = 0;
// post indentify
// post indentify.
int integralOrder = 4;
// ---------------- ATP read --------------------------------------------
//@int inflowParaType = 0;
//@double refReNumber = 6.5e6;
@ -1379,18 +1434,34 @@ int integralOrder = 4;
//@string outLetFileName = "./bin/subsonicOutlet.hypara";
//@double refDimensionalVelocity = 0;
//@double refDimensionalDensity = 0;
#########################################################################
# Old Parameter #
#########################################################################
//@string weatherDataFilePath = "./WRFData/";
//@double longitude = 110.95
//@double latitude = 19.61;
#************************************************************************
# Old Parameter *
#************************************************************************
int isPlotVolumeField = 0;
#************************************************************************
# partial flow field setting Parameter *
#************************************************************************
//int nPartialParameter = 0; // 0/1/2
//int nNumberOfPartialField = 0; //
//int nStartGridIndex[] = [0];
//int nEndGridIndex[] = [0];
#########################################################################
# Incompressible Parameter #
#########################################################################
//double partialCFL[] = [0.0];
//double partialSpeedCoef[] = [0.0];
//double partialSpeed[] = [0.0];
//double partialAttackd[] = [0.0];
//double partialSlide[] = [0.0];
//double partialPressure[] = [0.0];
//double partialTemperature[] = [0.0];
//double partialMassFractions[] = [0.0];
#************************************************************************
# Incompressible Parameter *
#************************************************************************
int isSolveEnergyEquation = 0;
int isSolveTurbEquation = 0;
int isSolveSpeciesEquation = 0;

View File

@ -4,9 +4,12 @@
// gridtype: Grid type for generation, conversion, reconstruction, merging.
// 0 -- Unstructured grid.
// 1 -- Structured grid.
// axisup: Type of Cartisien coordinates system, used in grid conversion.
// 1 -- Y upward. (default)
// 2 -- Z upward.
// nAxisRotateTimes: number of axis rotating times, zero (default) meaning without rotating.
// axisRotateOrder : axis rotating order.
// 1 -- X-axis.
// 2 -- Y-axis.
// 3 -- Z-axis.
// axisRotateAngles: axis rotating angles (degree), which are corresponding to the axis rotating order
// from_gtype: Type of grid data type in grid conversion process.
// -1 -- MULTI_TYPE.
// 1 -- PHengLEI, *.fts.
@ -18,7 +21,9 @@
// 7 -- Hybrid, include both of unstructured and structured grid, *.fts.
// 8 -- GMSH, *.msh.
int gridtype = 1;
int axisup = 1;
int nAxisRotateTimes = 0;
int axisRotateOrder[] = [1, 2, 3];
double axisRotateAngles[] = [0.0, 0.0, 0.0];
int from_gtype = 2;
#########################################################################

View File

@ -8,6 +8,7 @@
// Platform for Hybrid Engineering Simulation of Flows +
// China Aerodynamics Research and Development Center +
// (C) Copyright, Since 2010 +
// PHengLEI 2212 +
//+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
###########################################################################
# Default parameters for Grid conversion #
@ -46,19 +47,24 @@ int gridobj = 1;
int multiblock = 0;
int iadapt = 0;
int SymmetryFaceVector = 1;
int gridReorder = 0;
int faceReorderMethod = 0;
// axisup: Type of Cartisien coordinates system, used in grid conversion.
// 1 -- Y upward. (default)
// 2 -- Z upward.
int axisup = 1;
// nAxisRotateTimes: number of axis rotating times, zero (default) meaning without rotating.
// axisRotateOrder : axis rotating order.
// 1 -- X-axis.
// 2 -- Y-axis.
// 3 -- Z-axis.
// axisRotateAngles: axis rotating angles (degree), which are corresponding to the axis rotating order.
int nAxisRotateTimes = 0;
int axisRotateOrder[] = [1, 2, 3];
double axisRotateAngles[] = [0.0, 0.0, 0.0];
// omit_no_bound_bc: What's boundary condition for the type of "no_boundary_condition".
// 0 -- Interface. (default)
// 1 -- Physical boundary condition, used in Hybrid solver.
int omit_no_bound_bc = 0;
int omitRepeatInterface = 1;
//-----------------------------------------------------------------------
# Grid data type #
@ -89,7 +95,6 @@ int dumpOldGrid = 0;
int numberOfGridFile = 1;
string from_gfile = "./grid/rae2822_hybrid2d.cas";
string from_gfile1 = "";
string out_gfile = "./grid/flat_laminr_133_85_2d.fts";
// ----------------- some advanced choices ------------------------------
@ -178,7 +183,6 @@ double influencePara = 25.0;
which only support one direction.
// rotationAngle: The relative angle between two periodic face.
which is recorded in degrees.
int periodicType = 0;
double translationLength[] = [0.0, 0.0, 0.0];
double rotationAngle = 0.0;
@ -192,7 +196,6 @@ double rotationAngle = 0.0;
// 2 -- refine structured grid.
// maxproc: The number of partition zones that want to be divided into.
// numberOfMultifile: The number of partition grid files that want to be dumped out.
int pgridtype = 0;
int maxproc = 4;
int numberOfMultifile = 1;
@ -207,8 +210,8 @@ int blockIndexOfMark = 0;
int cellIndexOfMark[] = [185, 30, 1];
// parallelStrategy:
//! -# 0 : each zone is assigned to the one that defined in grid partition procedure.
//! -# 1 : random assigned for each zone or by some else ways.
// 0 -- each zone is assigned to the one that defined in grid partition procedure.
// 1 -- random assigned for each zone or by some else ways.
int parallelStrategy = 1;
//-----------------------------------------------------------------------
@ -232,7 +235,6 @@ string partition_grid_file = "./grid/sphere_mixed__4.fts";
// 1 -- perfect balance.
// maxproc -- perfect imbalance.
// 1.05 -- recommended.
int omit_no_bound_bc = 0;
int npartmethod = 1;
int parallelPartitionMethod = 2;
@ -253,24 +255,30 @@ int numberOfMultigrid = 1;
// intervalStepSample: The step intervals for monitored probes variables file 'sample.dat' saved.
// intervalStepForce: The step intervals for aerodynamics coefficients file 'aircoef.dat' saved.
// intervalStepRes: The step intervals for residual file 'res.dat' saved.
// ifLowSpeedPrecon: Precondition process to accelerate convergence for low speed flow.
// 0 -- no precondition process. (default, mach > 0.3)
// 1 -- carry out precondition process. (mach number <= 0.3)
int maxSimuStep = 20000;
int intervalStepFlow = 1000;
int intervalStepPlot = 1000;
int intervalStepSample = 1000;
int intervalStepForce = 100;
int intervalStepRes = 10;
int ifLowSpeedPrecon = 0;
// compressible:
// 0 -- incompressible flow.
// 1 -- compressible flow. (default)
int compressible = 1;
// ifLowSpeedPrecon: Precondition process to accelerate convergence for low speed flow.
// 0 -- no precondition process. (default, mach > 0.3)
// 1 -- carry out precondition process. (mach number <= 0.3)
// Kprec: The coefficient K for the cut-off velocity.
// 1.0~3.0 is suggested. (default, 3.0)
// preconFarfieldBCMethod: The precondition method for farfield boundary condition.
// 0 -- precondition far-field boundary based on riemann invariants.
// 1 -- Turkel's simplified far-field boundary condition.
int ifLowSpeedPrecon = 0;
double Kprec = 3.0;
int preconFarfieldBCMethod = 1;
//-----------------------------------------------------------------------
# CFD Control Parameter #
//-----------------------------------------------------------------------
@ -281,9 +289,12 @@ int compressible = 1;
// 0 -- the nondimensional conditions.
// 1 -- the flight conditions.
// 2 -- the experiment conditions.
// 3 -- the subsonic boundary conditions.
// 3 -- the subsonic boundary conditions. (Useless!)
// 4 -- the condition that the velocity, temperature and density are given.
// 5 -- the condition that the velocity, temperature and pressure are given.
//flowInitMethod: Flow field initialization method.
// 0 -- The entire flow field is initialized according to Infinite velocity.
// 1 -- The velocity near the wall is initialized according to the boundary layer of the plate.
// refReNumber: Reynolds number, which is based unit length, unit of 1/m.
// refDimensionalTemperature: Dimensional reference temperature, or the total temperature only for the experiment condition.
// freestream_vibration_temperature: Dimensional freestream vibration temperature.
@ -303,11 +314,11 @@ int compressible = 1;
// condition is radiation equilibrium temperature, and 0.8 is the default value.
// refMolecularWeight: the reference molecular weight of gas used for perfect gas. The unit is g/mol.
// Generally, the gas is air. Sometimes, it is experiment gas, such as Nitrogen, Argon, and so on.
int directionMethod = 0;
double refMachNumber = 0.73;
double attackd = 2.79;
double angleSlide = 0.00;
int flowInitMethod = 0;
int inflowParaType = 0;
double refReNumber = 6.5e6;
@ -321,14 +332,6 @@ double freestream_vibration_temperature = 300.00;
//double refDimensionalTemperature = 6051.024; // The total temperature, T*(1+(refGama-1)*M*M/2).
//double refDimensionalPressure = 4.299696E09; // The total pressure, p*(T0/T)^(refGama/(refGama-1)).
//int inflowParaType = 3;
//int nsubsonicInlet = 1;
//int nsubsonicOutlet = 1;
//string inLetFileName = "./bin/subsonicInlet.hypara";
//string outLetFileName = "./bin/subsonicOutlet.hypara";
//double refDimensionalTemperature = 288.144;
//double refDimensionalPressure = 1.01313E05;
// The velocity, temperature and density are fixed.
//int inflowParaType = 4;
//double refDimensionalVelocity = 1000.0;
@ -341,9 +344,15 @@ double freestream_vibration_temperature = 300.00;
// The MachNumber, temperature and pressure are fixed.
//int inflowParaType = 6;
//double refDimensionalTemperature = 293;
//double refDimensionalTemperature = 293.0;
//double refDimensionalPressure = 8886.06;
// The velocity, temperature and pressure are read from file.
//int inflowParaType = 7;
//string weatherDataFilePath = "./WRFData/";
//double longitude = 110.95
//double latitude = 19.61;
double wallTemperature = -1.0;
double radiationCoef = 0.8;
@ -357,35 +366,35 @@ double forceReferenceArea = 1.0; // unit of meter^2.
double TorqueRefX = 0.0; // unit of meter.
double TorqueRefY = 0.0; // unit of meter.
double TorqueRefZ = 0.0; // unit of meter.
double knudsenLength = 1.0; // unit of meter.
double refMolecularWeight = 28.9644; // unit of g/mol.
//-----------------------------------------------------------------------
# Spatial Discretisation #
//-----------------------------------------------------------------------
#*******************************************************************
#************************************************************************
# Struct Solver *
#*******************************************************************
#************************************************************************
// inviscidSchemeName: Spatial discretisation scheme of struct grid.
// Using this when solve structered grid or hybrid.
// -- "vanleer", "steger", "hlle", "lax_f".
// -- "roe", "modified_roe".
// -- "vanleer", "steger", "hlle", "lax_f",
// -- "roe", "modified_roe",
// -- "ausm+", "ausm+w", "ausm+up", "ausmdv", "ausmpw", "ausmpw+".
// isWennScheme: If using WENN Scheme of struct grid.
// 0 -- NO. (default)
// 1 -- Yes.
// str_limiter_name: Limiter of struct grid.
// -- "vanalbada", "vanleer", "minmod", "smooth", "minvan", "3rdsmooth", "3rd_minmod_smooth".
// -- "nolim", no limiter.
// -- "vanalbada_clz", clz supersonic version.
// -- "weno3_js", "wenn3_prm211", "wenn3_zm", "wenn3_zes2", "wenn3_zes3"
// -- "vanalbada", "vanleer", "minmod", "smooth", "minvan", "3rdsmooth", "3rd_minmod_smooth",
// -- "nolim", no limiter,
// -- "vanalbada_clz", clz supersonic version,
// -- "weno3_js", "wenn3_prm211", "wenn3_zm", "wenn3_zes2", "wenn3_zes3".
string inviscidSchemeName = "roe";
int isWennScheme = 0;
string str_limiter_name = "vanalbada";
#*******************************************************************
#************************************************************************
# UnStruct Solver or Common *
#*******************************************************************
#************************************************************************
// viscousType: Viscous model.
// 0 -- Euler.
// 1 -- Lamilar.
@ -410,11 +419,11 @@ string str_limiter_name = "vanalbada";
// 3 -- IDDES.
// uns_scheme_name: Spatial discretisation scheme of Unstruct grid.
// Using this when solve Unstructered grid or hybrid.
// -- "vanleer", "roe", "steger", "kfvs", "lax_f", "hlle".
// -- "vanleer", "roe", "GMRESRoe", "GMRESSteger", "steger", "kfvs", "lax_f", "hlle",
// -- "ausm+", "ausmdv", "ausm+w", "ausmpw", "ausmpw+".
// uns_limiter_name: Limiter of Unstruct grid.
// -- "barth", "vencat", "vanleer", "minmod".
// -- "vanalbada", "smooth", "nnd", "lpz", "1st".
// -- "barth", "vencat", "vanleer", "minmod",
// -- "vanalbada", "smooth", "nnd", "lpz", "1st",
// -- "nolim", no limiter.
// uns_vis_name: Discretisation method of viscous term.
// -- "std", "test", "aver", "new1", "new2".
@ -442,7 +451,7 @@ string str_limiter_name = "vanalbada";
// 3 -- Harten type, which is default used.
// roeEntropyScale: Entropy fix (correction) coefficient scale, default is 1.0.
// It is used to scale the default Roe entropy fix coefficients.
// AusmpwPlusLimiter: A Limiter to make "function w" not change acutely in AusmpwPlus scheme, default is 1.0
// AusmpwPlusLimiter: A Limiter to make "function w" not change acutely in AusmpwPlus scheme, default is 1.0.
//int viscousType = 0;
//string viscousName = "Euler";
@ -475,9 +484,9 @@ double roeEntropyScale = 1.0;
double AusmpwPlusLimiter = 1.0;
//-----------------------------------------------------------------------
# Temporal Discretisation #
//-----------------------------------------------------------------------
#************************************************************************
# Temporal Discretisation *
#************************************************************************
// iunsteady: Steady or unsteady.
// 0 -- steady.
// 1 -- unsteay.
@ -504,11 +513,18 @@ double AusmpwPlusLimiter = 1.0;
// 6 -- Jacobian iteration.
// 7 -- Line LU-SGS.
// 8 -- Matrix LU-SGS.
// 9 -- GMRES.
// iSimplifyViscousTerm: Simplify the computation of viscous term in the Block LU-SGS method. The default value assigns 1 that could speed up the computation.
// Otherwise, the viscous Jacobian matrix Mv should be computed that will increase the memory and time in iteration of the BLUSGS method.
// CFLStart: Started cfl number.
// CFLEnd: End cfl number.
// CFLVaryStep: The number of step when cfl increase from CFLStart to CFLEnd.
// GMRESCFLScale : CFL = CFLStart * GMRESCFLScal^iteration.
// OriginalTscheme : Used for LUSGS and GMres hybrid computing.
// useLUSGSprecond: Initialize flow field for GMRES.
// 0 --Initialize by first order Jacobian matrix.
// 1 --Initialize by LUSGS.
// GMRESInitStep : the number of iteration step of irst order Jacobian matrix or LUSGS for initialize flow field.
// ktmax: Dtratio. dt[i] = MIN(dt[i], ktmax * dtmin / vol[i])
// swapDq: Communication dq between forward/backward sweep of LUSGS or not, default is 0.
// nLUSGSSweeps: Sub iteration of LU-SGS or Block LU-SGS.
@ -533,7 +549,6 @@ double AusmpwPlusLimiter = 1.0;
// 2 -- Pab3D wall function.
// RKStage: The number of Runge-Kutta step.
// lamda: Cofficient of Runge-Kutta step.
int iunsteady = 0;
double physicalTimeStep = 0.01;
double physicalTimeStepDimensional = -0.001;
@ -543,7 +558,7 @@ int ifStaticsReynoldsStress = 0;
int startStatisticStep = 800000;
double statisticalTimePeriod = -1.0;
int statisticMethod = 0;
int linearTwoStepMethods = 1; // 1--BDF1; 2--C-N; 3--BDF2;
int linearTwoStepMethods = 1; // 1--BDF1; 2--C-N; 3--BDF2.
int methodOfDualTime = 3;
int min_sub_iter = 50;
@ -558,7 +573,10 @@ int isUsePreTwall = 0;
double CFLStart = 0.01;
double CFLEnd = 10.0;
int CFLVaryStep = 500;
double GMRESCFLScale = 1.0;
int OriginalTscheme = 9;
int useLUSGSprecond = 1;
int GMRESInitStep = 1000;
double pMaxForCFL = 0.2;
double pMinForCFL = 0.1;
double deltaMaxForCFL = 0.2;
@ -575,7 +593,7 @@ int order = 2;
double visl_min = 0.01;
double turbCFLScale = 1.0;
double csrv = 2.0;
double csrv = 1.0;
double timemax = 1.0e10;
double dtsave = -1.0;
int maxale = 10;
@ -591,10 +609,9 @@ double lamda[] = [0.5, 1.0];
//int RKStage = 4;
//double lamda[] = [0.25, 0.33333333333, 0.5, 1.0];
//-----------------------------------------------------------------------
# File In or Out #
//-----------------------------------------------------------------------
#************************************************************************
# File In or Out *
#************************************************************************
// numberOfGridGroups: The number of grid groups.
// gridfile: The partitioned Grid file path, using relative path,
// which is relative to the working directory.
@ -618,10 +635,8 @@ double lamda[] = [0.5, 1.0];
// nIsComputeWallDist: Whether to compute the wall distance.
// 0 -- Compute wall distance.
// 1 -- Not compute.
//
// protectionFile0 and protectionFile1: Two continuation file of the data protection mechanism.
// wall_heatfluxfile: The file to output the MaxHeatFlux of wall.
int numberOfGridGroups = 1;
string gridfile = "./grid/rae2822_hybrid2d__4.fts";
string wallTemperaturefile = "";
@ -632,10 +647,12 @@ int cellMethodOrNodeMethod = 0;
string resSaveFile = "results/res.dat";
string turbresfile = "results/turbres.dat";
string transitionResFile = "results/transitionRes.dat";
string aircoeffile = "results/aircoef.dat";
string restartNSFile = "results/flow.dat";
string turbfile = "results/turb.dat";
string transitionFile = "results/transition.dat";
string visualfile = "results/tecflow.plt";
string wall_aircoefile = "results/wall_aircoef.dat";
@ -645,11 +662,15 @@ string protectionFile0 = "results/flow0.dat";
string protectionFile1 = "results/flow1.dat";
string wall_heatfluxfile = "results/wall_heatflux.dat";
string protectionTurbFile0 = "results/turb0.dat";
string protectionTurbFile1 = "results/turb1.dat";
string protectionTransitionFile0 = "results/transition0.dat";
string protectionTransitionFile1 = "results/transition1.dat";
int nDumpSurfaceInfo = 0;
string wall_varfile = "";
string jetDefineFile = "bin/jet.hypara";
string sixDofFileName = "results/sixDofInfo.dat";
string derivativeFileName = "results/identify.dat";
string hysteresisFileName = "results/force_beta.plt";
@ -659,7 +680,8 @@ int plotFieldType = 0;
// visualfileType: The file type of visualfile.
// 0 -- Tecplot binary.
// 1 -- Tecplot ASCII.
// 2 -- Ensight binary.
// 3 -- Ensight ASCII.
int visualfileType = 1;
// samplefileMode: The dump mode of sample file.
@ -697,21 +719,21 @@ double upperPlotFieldBox[] = [1.0 1.0 1.0];
// -- vibration temperature(Tv, 33), electron temperature(Te, 34), vibrational energy(Ev, 35), electric energy(Ee, 36),
// -- number density of electron(Ne, 37), dimensioanl density(rho, 38), dimensioanl pressure(p, 39), dimensioanl temperature(T, 40),
// -- gradientUx(41), gradientUy(42), gradientVx(43), gradientVy(44), streamline_u(45), streamline_v(46), streamline_w(47),
// -- transition intermittency(intermittency, 51), -transition momentum thickness reynolds(MomentumThicknessReynolds, 52),
// -- overlap iblank(iblank, 81)
// -- specific heat ratio(gama, 56)
// -- transition intermittency(intermittency, 51), transition momentum thickness reynolds(MomentumThicknessReynolds, 52),
// -- local CFL Number(localCFL, 57), minimal CFL Number(minCFL, 58),
// -- overlap iblank(iblank, 81),
// -- specific heat ratio(gama, 56), Knudsen number(kn, 60), Damkohler number(Da, 61), vibrational nonequilibrium number(Vi, 62).
// Important Warning: Array size of visualVariables MUST be equal to nVisualVariables!!!
// Variables order must from small to big.
//-----------the optional parameters list for the wall boundary condition----------------
// nVisualWallVariables: The number of visual variables on wall.
// visualWallVariables : dumped variable types, listed as following:
// -coefficient of pressure(cp, 0), -coefficient of friction(cf, 1), yplus(2), -non-dimensional heat flux(Q_NonDim, 3), -dimensional heat flux(Q_Dim, 4),
// -pressure on wall(pw, 5), -temperature on wall(Tw, 6), -density on wall(rhow, 7), -heat flux of translational-rotational temperature term(Qtr, 8),
// -heat flux of species diffusion term(Qs, 9), -heat flux of vibrational temperature term(Qv, 10), -heat flux of electron temperature term(Qe, 11),
// -species mass fractions(Ns, 12), -x component of wall velocity(Vx, 13), -y component of wall velocity(Vy, 14), -z component of wall velocity(Vz, 15)
// -slip translational-rotational temperature(Tts, 16), -slip vibrational temperature(Tvs, 17), -slip electron temperature(Tes, 18), -absolute wall velocity(Vs, 19)
// -Stanton number(St, 20), -coefficient of heat rate(Ch, 21), -temperature jump(deltaT, 22), -Grid Reynolds number on wall(Re_w, 23)
// -- coefficient of pressure(cp, 0), coefficient of friction(cf, 1), yplus(2), non-dimensional heat flux(Q_NonDim, 3), dimensional heat flux(Q_Dim, 4),
// -- pressure on wall(pw, 5), temperature on wall(Tw, 6), density on wall(rhow, 7), heat flux of translational-rotational temperature term(Qtr, 8),
// -- heat flux of species diffusion term(Qs, 9), heat flux of vibrational temperature term(Qv, 10), heat flux of electron temperature term(Qe, 11),
// -- species mass fractions(Ns, 12), x component of wall velocity(Vx, 13), y component of wall velocity(Vy, 14), z component of wall velocity(Vz, 15),
// -- slip translational-rotational temperature(Tts, 16), slip vibrational temperature(Tvs, 17), slip electron temperature(Tes, 18), absolute wall velocity(Vs, 19),
// -- Stanton number(St, 20), coefficient of heat rate(Ch, 21), temperature jump(deltaT, 22), Grid Reynolds number on wall(Re_w, 23), Knudsen number(Kn_wall, 24).
int nVisualVariables = 8;
int visualVariables[] = [0, 1, 2, 3, 4, 5, 6, 15];
@ -739,7 +761,9 @@ int dumpStandardModel = 0;
// 1 -- Real cell where the probe is located.
// nProbeVariables: Number of variables want to be dumped for probes monitered.
// probeVariables : Variable types dumped, listed as following:
// -- density(0), u(1), v(2), w(3), pressure(4), temperature(5), mach(6).
// -- density(0), u(1), v(2), w(3), pressure(4), temperature(5), mach(6),
// -- dimensioanl_density(7), dimensioanl_u(8), dimensioanl_v(9),
// -- dimensioanl_w(10), dimensioanl_pressure(11), dimensioanl_temperature(12).
// Important Warning: Array size of probeVariables MUST be equal to nProbeVariables!!!
// probeVariables order must from small to big.
// probeVariablesInterpolationMethod: Interpolation method used to compute the probe variables.
@ -761,12 +785,13 @@ string probesDefineFile = "bin/probes_XYZ.dat";
int searchCellsMethod = 0;
int nProbeVariables = 7;
int probeVariables[] = [0, 1, 2, 3, 4, 5, 6];
int nProbeVariables = 14;
int probeVariables[] = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13];
int probeVariablesInterpolationMethod = 0;
//-----------------------------------------------------------------------
# Turbulence Parameter #
//-----------------------------------------------------------------------
#************************************************************************
# Turbulence Parameter *
#************************************************************************
// turbInterval: Iteration number of turbulence.
// kindOfTurbSource: Kinds of turbulent source.
// 0 -- Original.
@ -774,15 +799,12 @@ int probeVariablesInterpolationMethod = 0;
// transitionType: transition model type
// 0 -- none.
// 2 -- gama-re-theta.
// turbIntensity: (valid while greater than 0.0 ) turbulent intensity of free stream(*100) in transition
// freeturbIntensitySRModify: to use SR modify in free stream turbulent intensity decay or not
// turbIntensity: (valid while greater than 0.0 ) turbulent intensity of free stream(*100) in transition.
// freeturbIntensitySRModify: to use SR modify in free stream turbulent intensity decay or not.
int turbInterval = 1;
int turbOrderStruct = 2;
int kindOfTurbSource = 0;
int mod_turb_res = 0;
double turb_relax = 1.0;
double freeStreamViscosity = 1.0e-3;
double muoo = 3.0;
double kwoo = 5.0;
@ -791,28 +813,27 @@ double turbIntensity = -1.0;
int freeturbIntensitySRModify = 0;
double freeDecayXLocation = 0.0;
int compressibleCorrection = 0;
int prandtlNumberCorrection = 0;
int transitionMaFix = 1;
# maximum eddy viscosity (myt/my) max.
// maximum eddy viscosity (myt/my) max.
double eddyViscosityLimit = 1.0e10;
int monitor_vistmax = 0;
//-----------------------------------------------------------------------
# LES Parameter #
//-----------------------------------------------------------------------
#************************************************************************
# LES Parameter *
#************************************************************************
// iLES: Create LESSolver or not.
// = 1 - Create LESSolver;
// != 1 - not.
// = 1 -- Create LESSolver;
// != 1 -- not.
// amplitudeofDisturb: Amplitude of adding disturb.
// disturbstep: Unsteady time step or steady iteration of adding random disturb.
// iterdisturb: Add random disturb in every sub-iter or only first sub-iter.
// = 0 - in only first sub-iter;
// != 0 - in every sub-iter.
// = 0 -- in only first sub-iter;
// != 0 -- in every sub-iter.
// ipraddisturb: Add density and pressure disturb or not.
// ibodyforce: Add body force in source flux of NS equations or not.
// = 0 - not;
// != 0 - Add body force.
// = 0 -- not;
// != 0 -- Add body force.
// bodyforce: Body force in source flux of NS equations or not.
// utau: friction velocity, using in DNSDisturb.
// sgsmodel: subgrid scale model.
@ -820,23 +841,22 @@ int monitor_vistmax = 0;
// = "dsmCom";
// = "wale";
// = "sigma".
// deltaFunctionType: = 1 - MAX(deltai, deltaj, deltak);
// = 2 - pow(deltai * deltaj *deltak, 1/3);
// = 3 - Devloped by Scotti.
// wallDampingFunctionType: = 0 - no wall function;
// = 1 - van Driest;
// = 2 - developed by Dr. Deng Xiaobing;
// = 3 - developed by Piomelli.
// deltaFunctionType: = 1 -- MAX(deltai, deltaj, deltak);
// = 2 -- pow(deltai * deltaj *deltak, 1/3);
// = 3 -- Devloped by Scotti.
// wallDampingFunctionType: = 0 -- no wall function;
// = 1 -- van Driest;
// = 2 -- developed by Dr. Deng Xiaobing;
// = 3 -- developed by Piomelli.
// turbViscousCutType: turbulent viscosity cut type.
// = 0 - mu_total = mut + mul;
// = 1 - mu_total = max(mut-mul,0)+ mul;
// = 2 - mu_total = max(mut ,0)+ mul.
// = 0 -- mu_total = mut + mul;
// = 1 -- mu_total = max(mut-mul, 0) + mul;
// = 2 -- mu_total = max(mut , 0) + mul.
// smagConstant: constant of smagorinsky model.
// waleConstant: constant of wale model.
// filterDirection [3]: filter variables in i, j, k direction or not.
// averageDirection[3]: average variables in i, j, k direction or not.
// isotropicConstant: constant of isotropic part of SGS stress.
int iLES = 0;
string sgsmodel = "smagorinsky";
int deltaFunctionType = 2;
@ -852,9 +872,9 @@ double testFilterScale = 2.0;
int averageWidth = 1;
int monitorNegativeConstant = 0;
//-----------------------------------------------------------------------
# Other Parameters for Hypersonic Non-equilibrium Gas #
//-----------------------------------------------------------------------
#************************************************************************
# Other Parameters for Hypersonic Non-equilibrium Gas *
#************************************************************************
// dg_high_order:
// 0 -- generic order accuracy.
// 1 -- high order accuracy.
@ -862,9 +882,6 @@ int monitorNegativeConstant = 0;
// 0 -- gas model is fixed in the codes.
// 1 -- gas model is imported from library files.
// isAdaptiveSolver: isAdaptiveSolver = 0 indicates the generic Navier-Stokes solver,
// isAdaptiveSolver>0 indicates the HyFlow self-adaptive solver.
// 1 -- using HyFlow self-adaptive solver where the switch is controlled by the total iteration steps.
// 2 -- using HyFlow self-adaptive solver where the switch is controlled by variation of the key residual.
// nm: Equation number of the physics, but is out of commision now.
// 4 -- for 2D.
// 5 -- for 3D.
@ -886,14 +903,13 @@ int monitorNegativeConstant = 0;
// nEquilibriumGas: the variable is valid when the condition of nchem = 0 is satisfied.
// 0 -- perfect gas.
// 5, 7, 11 -- equilibrium gas, meanwhile, its value denotes the number of gas component.
// nPCWCycleStep: the maximum step number of iteration in the module of computing species mass fractions with the partial catalytic wall(PCW) condition.
// the value equals to or is greater than 1, and 3 is for default value.
// nRETCycleStep: the maximum step number of iteration in the module of computing radiation equilibrium temperature on wall.
// the value equals to or is greater than 1, and 3 is for default value.
// nSLIPCycleStep:the maximum step number of iteration in the module of computing slip temperature, slip velocity and slip species mass fraction.
// the value equals to or is greater than 1, and 3 is for default value.
// nPCWCycleStep: The maximum step number of iteration in the module of computing species mass fractions with the partial catalytic wall(PCW) condition.
// The value equals to or is greater than 1, and 3 is for default value.
// nRETCycleStep: The maximum step number of iteration in the module of computing radiation equilibrium temperature on wall.
// The value equals to or is greater than 1, and 3 is for default value.
// nSLIPCycleStep:The maximum step number of iteration in the module of computing slip temperature, slip velocity and slip species mass fraction.
// The value equals to or is greater than 1, and 3 is for default value.
// nSlipBCModel: The computational model of slip boundary conditions.
// 0 -- no slip.
// 1 -- the conventional Maxwell slip conditions.
// 2 -- the Gokcen slip conditions.
@ -913,10 +929,13 @@ int monitorNegativeConstant = 0;
// 1 -- One-temperature model.
// 2 -- Two-temperature model.
// 3 -- Three-temperature model.
// isUseNoneqCond:
// 0 -- compute the source terms without any conditions.
// 1 -- compute the source terms using the non-equilibrium condition.
// frozenCondition: the threshold value of frozen chemical flow condition, 0.1 is the default value.
// nIdealState: whether take all gas species as ideal gas for gas-mixture process.
// 0 -- No.
// 1 -- Yes.
// nTEnergyModel: the method to computing temperature energy model.
// 1 -- Yes. // nTEnergyModel: the method to computing temperature energy model.
// 0 -- the energy term is computed using the conventional method.
// 1 -- the energy term is computed using the polynomial fitting method.
// 2 -- the energy term is computed using the piecewise polynomial fitting method.
@ -946,14 +965,13 @@ int monitorNegativeConstant = 0;
// 1.0 -- proposed by Maxwell.
// sqrt(2/PI)~0.8 -- used for "micro-slip", namely the actual velocity slip at the wall.
// 1.146 -- proposed for an additional "fictitious" velocity slip.
// chemicalRelaxCorf: The value is in range of [0.001, 1.0].
// spectrumRadiusCoef: The value is in range of [0.0, 2.0].
// staticPressureRelaxCorf: The value is in range of [0.1, 1.0].
// nIsChemicalFreeze: the flag to freeze the chemical reactions.
// 0 -- not freeze, the chemical reaction sources will be calculated.
// 1 -- freezes the chemical reactions, the chemical reaction sources will not be calculated.// veTemperatureMin: The minimum of Tv and Te
// 1 -- freezes the chemical reactions, the chemical reaction sources will not be calculated.
// veTemperatureMin: The minimum of Tv and Te.
// maxViscous: the maximum of Viscous.
// trTemperatureMin: the minimum value of trTemperature.
// veTemperatureMin: the minimum value of veTemperature.
@ -965,36 +983,34 @@ int monitorNegativeConstant = 0;
// nSpeciesLimit: limitter of gas species
// 0 -- not used.
// 1 -- used.
// nTurblenceForChemical: the coupled mode of Turblence and Chemical reaction
// nTurblenceForChemical: the coupled mode of Turblence and Chemical reaction.
// 0 -- method 0.
// 1 -- method 1.
// nViscosityFluxSublevelModified: Modified for ViscosityFlux on Sublevel grid
// nViscosityFluxSublevelModified: Modified for ViscosityFlux on Sublevel grid.
// 0 -- not used.
// 1 -- used.
// nViscosityPeModified: Pe Modified for ViscosityCoef
// nViscosityPeModified: Pe Modified for ViscosityCoef.
// 0 -- not used.
// 1 -- used.
// nChemcalSourceModified: Modified on ChemcalSource
// nChemcalSourceModified: Modified on ChemcalSource.
// 0 -- not used.
// 1 -- used.
// nChemcalSourceEsMethod: Modified on ChemcalSource
// 0 -- approximation algorithm 1 (Ori.)
// 1 -- approximation algorithm 2 (New)
// nChemcalSourceEsMethod: Modified on ChemcalSource.
// 0 -- approximation algorithm 1 (Ori).
// 1 -- approximation algorithm 2 (New).
// nMaxStepTemperature: the iterative steps of temperature.
// veTemperatureMinModified: Modified on the minimum of Tve for Cvvs
// 0 -- not used
// 1 -- used
// nDiagonalModified: Modified on Diagonal
// 0 -- not used
// 1 -- Ori.
// 2 -- new
// veTemperatureMinModified: Modified on the minimum of Tve for Cvvs.
// 0 -- not used.
// 1 -- used.
// nDiagonalModified: Modified on Diagonal.
// 0 -- not used.
// 1 -- new.
// nDiagonalModifiedTurb: Modified on Diagonal for turbulence.
// 0 -- not used.
// 1 -- new.
// nGradPrimtiveMethod:
// 0 -- Ori.
// 1 -- new
// 1 -- new.
// nAblation:
// 0 -- The wall ablation is not computed.
// 1 -- The wall ablation is computed.
@ -1017,8 +1033,8 @@ int monitorNegativeConstant = 0;
// "Mars-Pa8" is for Park model of Mars gas, "Mars-Mc8" for McKenzie model of Mars gas.
// "Combustion-12" -- indicates the Combustion Chamber Gas Model which includes 12-species-20-reactions.
// "Gas-Mixture" -- indicates the process of mixing gas without reacting.
// for struct solver mixing two species£¨SpeciesA, SpeciesB£©.
// for unstruct solver mixing multi-species£¨O2 NO CO CO2 H2 N2 Air CH4£©.
// for struct solver mixing two species<65><73>SpeciesA, SpeciesB<73><42>.
// for unstruct solver mixing multi-species<65><73>O2 NO CO CO2 H2 N2 Air CH4<48><34>.
// For self-definition model, the gasfile is used to indicate the file path of the new gas model.
// speciesName: Used to list the names of each species, while each species name is separated by the symbol of comma.
// initMassFraction: Used to list the initial mass fractions of species in accordance with the sequence of names in the parameter speciesName.
@ -1040,13 +1056,16 @@ int monitorNegativeConstant = 0;
// firstStepError : the residual error of the first step iteration for the self-adaptive calculation.
// secondStepError : the residual error of the second step iteration for the self-adaptive calculation.
// thirdStepError : the residual error of the third step iteration for the self-adaptive calculation.
// useHyflowSetting : Setting for HyFLOW GUI.
// 0 -- PHengLEI
// 1 -- HyFLOW
// nProtectData: Use the continuation file data protection mechanism.
// 0 -- no
// 1 -- yes
// 0 -- no.
// 1 -- yes.
// nTvChange: Judge whether the Tv equals Ttr.
// 0 -- yes.
// 1 -- no.
// isMoleFractionType: 1 indicates the mass fractions, or else the mole fractions.
// nFraction: the initial fractions type of species.
// 0 -- mass fraction.
// 1 -- mole fraction.
int dg_high_order = 0;
int iapplication = 0;
int isAdaptiveSolver = 0;
@ -1114,6 +1133,7 @@ double densityMin = 1.0e-8;
double densityMinFactor = 0.1;
double tAdjustmentFactor = 10.0;
double iniSpeedCoef = 1.0;
int iniSpeedMode = 0;
int nDebug = 0;
int nSpeciesLimit = 1;
@ -1125,18 +1145,21 @@ int nChemcalSourceEsMethod = 1;
int nMaxStepTemperature = 5;
int veTemperatureMinModified = 1;
int nDiagonalModified = 0;
int nDiagonalModifiedTurb = 0;
int nGradPrimtiveMethod = 1;
int nInviscidFluxModify = 1;
int nQlLimitMethod = 2;
int nSpeciesForWallMethod = 1;
int nDensityForWallMethod = 0;
int wallMultiTemperature = 0;
int nProtectData = 0;
int useHyflowSetting = 0;
int nAblation = 0;
int isInjection = 0;
int nViscosityModel = 0;
int nMarsModel = 0;
int nTvChange = 0;
int isMoleFractionType = 0;
string gasfile = "DK5";
//string gasfile = "./chemical/Dunn-Kang_air5s11r.dat";
string speciesName = "O, O2, NO, N, N2";
@ -1173,9 +1196,17 @@ double molecularWeightSpeciesB = 30.0;
//string speciesName = "O2, N2";
//string initMassFraction = "1.0, 0.0";
int nFraction = 0;
int nContinueModel = 0;
int nChemicalFlowStep = 0;
int ifStartFromPerfectGasResults = 0;
int isUseNoneqCond = 0;
double frozenCondition = 0.01;
int nLeakageMonitor = 0;
double totalLeakageVolume = 1000.0;
double monitorThresholdValue = 0.05;
double sprayFactor = 0.0;
#########################################################################
// Multi-Grid parameters.
@ -1196,7 +1227,6 @@ int ifStartFromPerfectGasResults = 0;
// 1 -- zero order.
// 2 -- first-order. (default)
// mgCorrectionLimit: Multi-grid correction limit.
int nMGLevel = 1;
int MGCoarsestIteration = 1;
int MGPreIteration = 1;
@ -1226,9 +1256,9 @@ string holeFullFileName = "./grid/holeFullFile.dat";
string linkFileName = "./grid/topology.dat";
string zoneInverseFileName = "./grid/zoneInverseMapping.inp";
#########################################################################
# High Order Struct Solver #
#########################################################################
#************************************************************************
# High Order Struct Solver *
#************************************************************************
// isFVMOrFDM:
// 0 -- NSSolverStruct using Finite Volume Method.
// 1 -- NSSolverStruct using Finite Differ Method.
@ -1273,10 +1303,29 @@ int allReduceStep = 1;
// codeOfOversetGrid: Overlapping(overset) grid or not.
// 0 -- NON-overlapping grid.
// 1 -- Overlapping grid.
// oversetInterpolationMethod: the method of overset interpolation while field simulation
// oversetInterpolationMethod: the method of overset interpolation while field simulation.
// 0 -- set the acceptor cell value by donor cell value.
// 1 -- set the acceptor cell value by distance weight of donor cell value.
// readOversetFileOrNo: Whether to read overset-file(.ovs) that has been generated.
// 0 -- no.
// 1 -- yes.
// symetryOrNot: If there exist symetryplanes(XY plane, the coordinate of Z direction is 0) in
// the current overset grid(only for three dimension).
// 0 -- no.
// 1 -- yes.
// readInAuxiliaryInnerGrid: Whether to read auxiliary inner grid.
// 0 -- no.
// 1 -- yes.
// walldistMainZone: The initial value of background grid which does not exist wall boundary condition.
// toleranceForOversetSearch: The tolerance of overset searching zone to judge whether the obtained node is in the current computing cell.
// toleranceForOversetBox: The tolerance of building the minimum box of computing cells in the overlapping region.
// twoOrderInterpolationOrNot: The number of interpolated cell layers in the overlapping boundary.
// 0 -- one layer.
// 1 -- two layers.
// keyEnlargeOfActiveNodes: The number of enlarged overset-boundary layers in the buffer region.
// outTecplotOverset: Whether to dump out the flowfield data after the progress of overset configure.
// 0 -- no.
// 1 -- yes.
int codeOfOversetGrid = 0;
int oversetInterpolationMethod = 0;
int readOversetFileOrNot = 0;
@ -1295,7 +1344,6 @@ int twoOrderInterpolationOrNot = 0;
int keyEnlargeOfActiveNodes = 0;
int outTecplotOverset = 0;
int outPutOversetVisualization = 0;
int numberOfMovingBodies = 2;
// ----------------- ALE configuration ------------------------------
@ -1306,34 +1354,40 @@ double referenceLength = 1.0;
double referenceVelocity = 1.0;
double referenceDensity = 1.0;
int strategyForFaceNormalVelocity = 0; //0-By Sweeping volume; 1-By face center 1st; 2-By face center 2nd;
int strategyForGCLSource = 0; //0-present; 1-Ahn;
int strategyForFaceNormalVelocity = 0; // 0-By Sweeping volume; 1-By face center 1st; 2-By face center 2nd.
int strategyForGCLSource = 0; // 0-present; 1-Ahn.
//0:1st-Admas-Bashforth; 1:2nd-Admas-Bashforth; 2:1st-Implicit-Euler; 3:2nd-Implicit Euler; 4:2nd-Adams-Moulton; 5:3rd-Adams-Moulton
// 0: 1st-Admas-Bashforth; 1: 2nd-Admas-Bashforth; 2: 1st-Implicit-Euler; 3: 2nd-Implicit Euler; 4: 2nd-Adams-Moulton; 5: 3rd-Adams-Moulton.
int methodForKineticEquation = 0;
double relaxParameterOfKinetic = 1.0;
#########################################################################
# motive information #
#########################################################################
#************************************************************************
# motive information *
#************************************************************************
int numberOfMovingBodies = 1;
############################## body0 ##############################
//mass of parts
// mass of parts.
double mass_0 = 1.0;
//mass matrix of parts Ixx Iyy Izz Ixy Ixz Iyz
// gravity of parts (along negative direction in Y-axis, eg. 9.8).
double gravity_0 = 0.0;
// mass matrix of parts Ixx Iyy Izz Ixy Ixz Iyz.
double massMatrix_0[] = 1e-7, 1e-6, 1e-6, 0.0, 0.0, 0.0;
//initial six DOF position information of parts. xc yc zc
// initial six DOF position information of parts. xc yc zc.
double massCenter_0[] = 0.0, 0.0, 0.0;
//initial six DOF position information of parts. angleX angleY angleZ
// if reset mass center while restart.
int resetMassCenter_0 = 0;
// position offset of parts. dx dy dz.
double massCenterDxyz_0[] = 0.0, 0.0, 0.0;
// initial six DOF position information of parts. angleX angleY angleZ.
double attitudeAngle_0[] = 0.0, 0.0, 0.0;
//initial six DOF move information of parts. vc vy vz
// initial six DOF move information of parts. vc vy vz.
double massCenterVelocity_0[] = 0.0, 0.0, 0.0;
//initial six DOF move information of parts. omigX omigY omigZ
// initial six DOF move information of parts. omigX omigY omigZ.
double angularVelocity_0[] = 0.0, 0.0, 0.0;
// the object that the parts belong to.
int fartherIndex_0 = -1;
//the assembly position of the parts. xc yc zc angleX angleY angleZ
// the assembly position of the parts. xc yc zc angleX angleY angleZ.
double configPamameter_0[] = 0.0, 0.0, 0.0, 0.0, 0.0, 0.0;
// the move pattern of the parts.
// -1 given motion partten.
@ -1349,23 +1403,24 @@ double configPamameter_0[] = 0.0 ,0.0 ,0.0 ,0.0 ,0.0
int RBDMethod_0 = 0;
double amplitude_0 = 0.0;
double reduceFrequency_0 = 0.0;
//direction of rotation
// direction of rotation.
// 1 -- clockwise from the point of view along the positive x axis.
// -1 -- anticlockwise from the point of view along the positive x axis.
int direction_0 = -1;
double rotateFrequency_0 = 0.0;
//string uDFSixDofFileName_0 = "./Bin/UDFSixDof.Parameter";
//additional force (system axis) fX fY fZ
// dimensional physical time for additional force(s).
double addedForceTime_0[] = 0.0;
// additional force(inertia system) fX fY fZ.
double addedForce_0[] = 0.0, 0.0, 0.0;
//additional moment of Force (system axis) mX mY mZ
// additional moment(inertia system) mX mY mZ.
double addedMoment_0[] = 0.0, 0.0, 0.0;
// the deformation method of the parts.
int morphing_0 = 0;
// post indentify
// post indentify.
int integralOrder = 4;
// ---------------- ATP read --------------------------------------------
//@int inflowParaType = 0;
//@double refReNumber = 6.5e6;
@ -1379,18 +1434,34 @@ int integralOrder = 4;
//@string outLetFileName = "./bin/subsonicOutlet.hypara";
//@double refDimensionalVelocity = 0;
//@double refDimensionalDensity = 0;
#########################################################################
# Old Parameter #
#########################################################################
//@string weatherDataFilePath = "./WRFData/";
//@double longitude = 110.95
//@double latitude = 19.61;
#************************************************************************
# Old Parameter *
#************************************************************************
int isPlotVolumeField = 0;
#************************************************************************
# partial flow field setting Parameter *
#************************************************************************
//int nPartialParameter = 0; // 0/1/2
//int nNumberOfPartialField = 0; //
//int nStartGridIndex[] = [0];
//int nEndGridIndex[] = [0];
#########################################################################
# Incompressible Parameter #
#########################################################################
//double partialCFL[] = [0.0];
//double partialSpeedCoef[] = [0.0];
//double partialSpeed[] = [0.0];
//double partialAttackd[] = [0.0];
//double partialSlide[] = [0.0];
//double partialPressure[] = [0.0];
//double partialTemperature[] = [0.0];
//double partialMassFractions[] = [0.0];
#************************************************************************
# Incompressible Parameter *
#************************************************************************
int isSolveEnergyEquation = 0;
int isSolveTurbEquation = 0;
int isSolveSpeciesEquation = 0;

View File

@ -4,9 +4,12 @@
// gridtype: Grid type for generation, conversion, reconstruction, merging.
// 0 -- Unstructured grid.
// 1 -- Structured grid.
// axisup: Type of Cartisien coordinates system, used in grid conversion.
// 1 -- Y upward. (default)
// 2 -- Z upward.
// nAxisRotateTimes: number of axis rotating times, zero (default) meaning without rotating.
// axisRotateOrder : axis rotating order.
// 1 -- X-axis.
// 2 -- Y-axis.
// 3 -- Z-axis.
// axisRotateAngles: axis rotating angles (degree), which are corresponding to the axis rotating order
// from_gtype: Type of grid data type in grid conversion process.
// -1 -- MULTI_TYPE
// 1 -- HyperFLOW( PHengLEI ), *.fts.
@ -18,7 +21,9 @@
// 7 -- Hybrid, include both of unstructured and structured grid, *.fts.
// 8 -- GMSH, *.msh.
int gridtype = 1;
int axisup = 1;
int nAxisRotateTimes = 0;
int axisRotateOrder[] = [1, 2, 3];
double axisRotateAngles[] = [0.0, 0.0, 0.0];
int from_gtype = 3;
#########################################################################

View File

@ -8,6 +8,7 @@
// Platform for Hybrid Engineering Simulation of Flows +
// China Aerodynamics Research and Development Center +
// (C) Copyright, Since 2010 +
// PHengLEI 2212 +
//+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
###########################################################################
# Default parameters for Grid conversion #
@ -46,19 +47,24 @@ int gridobj = 1;
int multiblock = 0;
int iadapt = 0;
int SymmetryFaceVector = 1;
int gridReorder = 0;
int faceReorderMethod = 0;
// axisup: Type of Cartisien coordinates system, used in grid conversion.
// 1 -- Y upward. (default)
// 2 -- Z upward.
int axisup = 1;
// nAxisRotateTimes: number of axis rotating times, zero (default) meaning without rotating.
// axisRotateOrder : axis rotating order.
// 1 -- X-axis.
// 2 -- Y-axis.
// 3 -- Z-axis.
// axisRotateAngles: axis rotating angles (degree), which are corresponding to the axis rotating order.
int nAxisRotateTimes = 0;
int axisRotateOrder[] = [1, 2, 3];
double axisRotateAngles[] = [0.0, 0.0, 0.0];
// omit_no_bound_bc: What's boundary condition for the type of "no_boundary_condition".
// 0 -- Interface. (default)
// 1 -- Physical boundary condition, used in Hybrid solver.
int omit_no_bound_bc = 0;
int omitRepeatInterface = 1;
//-----------------------------------------------------------------------
# Grid data type #
@ -89,7 +95,6 @@ int dumpOldGrid = 0;
int numberOfGridFile = 1;
string from_gfile = "./grid/rae2822_hybrid2d.cas";
string from_gfile1 = "";
string out_gfile = "./grid/flat_laminr_133_85_2d.fts";
// ----------------- some advanced choices ------------------------------
@ -178,7 +183,6 @@ double influencePara = 25.0;
which only support one direction.
// rotationAngle: The relative angle between two periodic face.
which is recorded in degrees.
int periodicType = 0;
double translationLength[] = [0.0, 0.0, 0.0];
double rotationAngle = 0.0;
@ -192,7 +196,6 @@ double rotationAngle = 0.0;
// 2 -- refine structured grid.
// maxproc: The number of partition zones that want to be divided into.
// numberOfMultifile: The number of partition grid files that want to be dumped out.
int pgridtype = 0;
int maxproc = 4;
int numberOfMultifile = 1;
@ -207,8 +210,8 @@ int blockIndexOfMark = 0;
int cellIndexOfMark[] = [185, 30, 1];
// parallelStrategy:
//! -# 0 : each zone is assigned to the one that defined in grid partition procedure.
//! -# 1 : random assigned for each zone or by some else ways.
// 0 -- each zone is assigned to the one that defined in grid partition procedure.
// 1 -- random assigned for each zone or by some else ways.
int parallelStrategy = 1;
//-----------------------------------------------------------------------
@ -232,7 +235,6 @@ string partition_grid_file = "./grid/sphere_mixed__4.fts";
// 1 -- perfect balance.
// maxproc -- perfect imbalance.
// 1.05 -- recommended.
int omit_no_bound_bc = 0;
int npartmethod = 1;
int parallelPartitionMethod = 2;
@ -253,24 +255,30 @@ int numberOfMultigrid = 1;
// intervalStepSample: The step intervals for monitored probes variables file 'sample.dat' saved.
// intervalStepForce: The step intervals for aerodynamics coefficients file 'aircoef.dat' saved.
// intervalStepRes: The step intervals for residual file 'res.dat' saved.
// ifLowSpeedPrecon: Precondition process to accelerate convergence for low speed flow.
// 0 -- no precondition process. (default, mach > 0.3)
// 1 -- carry out precondition process. (mach number <= 0.3)
int maxSimuStep = 20000;
int intervalStepFlow = 1000;
int intervalStepPlot = 1000;
int intervalStepSample = 1000;
int intervalStepForce = 100;
int intervalStepRes = 10;
int ifLowSpeedPrecon = 0;
// compressible:
// 0 -- incompressible flow.
// 1 -- compressible flow. (default)
int compressible = 1;
// ifLowSpeedPrecon: Precondition process to accelerate convergence for low speed flow.
// 0 -- no precondition process. (default, mach > 0.3)
// 1 -- carry out precondition process. (mach number <= 0.3)
// Kprec: The coefficient K for the cut-off velocity.
// 1.0~3.0 is suggested. (default, 3.0)
// preconFarfieldBCMethod: The precondition method for farfield boundary condition.
// 0 -- precondition far-field boundary based on riemann invariants.
// 1 -- Turkel's simplified far-field boundary condition.
int ifLowSpeedPrecon = 0;
double Kprec = 3.0;
int preconFarfieldBCMethod = 1;
//-----------------------------------------------------------------------
# CFD Control Parameter #
//-----------------------------------------------------------------------
@ -281,9 +289,12 @@ int compressible = 1;
// 0 -- the nondimensional conditions.
// 1 -- the flight conditions.
// 2 -- the experiment conditions.
// 3 -- the subsonic boundary conditions.
// 3 -- the subsonic boundary conditions. (Useless!)
// 4 -- the condition that the velocity, temperature and density are given.
// 5 -- the condition that the velocity, temperature and pressure are given.
//flowInitMethod: Flow field initialization method.
// 0 -- The entire flow field is initialized according to Infinite velocity.
// 1 -- The velocity near the wall is initialized according to the boundary layer of the plate.
// refReNumber: Reynolds number, which is based unit length, unit of 1/m.
// refDimensionalTemperature: Dimensional reference temperature, or the total temperature only for the experiment condition.
// freestream_vibration_temperature: Dimensional freestream vibration temperature.
@ -303,11 +314,11 @@ int compressible = 1;
// condition is radiation equilibrium temperature, and 0.8 is the default value.
// refMolecularWeight: the reference molecular weight of gas used for perfect gas. The unit is g/mol.
// Generally, the gas is air. Sometimes, it is experiment gas, such as Nitrogen, Argon, and so on.
int directionMethod = 0;
double refMachNumber = 0.73;
double attackd = 2.79;
double angleSlide = 0.00;
int flowInitMethod = 0;
int inflowParaType = 0;
double refReNumber = 6.5e6;
@ -321,14 +332,6 @@ double freestream_vibration_temperature = 300.00;
//double refDimensionalTemperature = 6051.024; // The total temperature, T*(1+(refGama-1)*M*M/2).
//double refDimensionalPressure = 4.299696E09; // The total pressure, p*(T0/T)^(refGama/(refGama-1)).
//int inflowParaType = 3;
//int nsubsonicInlet = 1;
//int nsubsonicOutlet = 1;
//string inLetFileName = "./bin/subsonicInlet.hypara";
//string outLetFileName = "./bin/subsonicOutlet.hypara";
//double refDimensionalTemperature = 288.144;
//double refDimensionalPressure = 1.01313E05;
// The velocity, temperature and density are fixed.
//int inflowParaType = 4;
//double refDimensionalVelocity = 1000.0;
@ -341,9 +344,15 @@ double freestream_vibration_temperature = 300.00;
// The MachNumber, temperature and pressure are fixed.
//int inflowParaType = 6;
//double refDimensionalTemperature = 293;
//double refDimensionalTemperature = 293.0;
//double refDimensionalPressure = 8886.06;
// The velocity, temperature and pressure are read from file.
//int inflowParaType = 7;
//string weatherDataFilePath = "./WRFData/";
//double longitude = 110.95
//double latitude = 19.61;
double wallTemperature = -1.0;
double radiationCoef = 0.8;
@ -357,35 +366,35 @@ double forceReferenceArea = 1.0; // unit of meter^2.
double TorqueRefX = 0.0; // unit of meter.
double TorqueRefY = 0.0; // unit of meter.
double TorqueRefZ = 0.0; // unit of meter.
double knudsenLength = 1.0; // unit of meter.
double refMolecularWeight = 28.9644; // unit of g/mol.
//-----------------------------------------------------------------------
# Spatial Discretisation #
//-----------------------------------------------------------------------
#*******************************************************************
#************************************************************************
# Struct Solver *
#*******************************************************************
#************************************************************************
// inviscidSchemeName: Spatial discretisation scheme of struct grid.
// Using this when solve structered grid or hybrid.
// -- "vanleer", "steger", "hlle", "lax_f".
// -- "roe", "modified_roe".
// -- "vanleer", "steger", "hlle", "lax_f",
// -- "roe", "modified_roe",
// -- "ausm+", "ausm+w", "ausm+up", "ausmdv", "ausmpw", "ausmpw+".
// isWennScheme: If using WENN Scheme of struct grid.
// 0 -- NO. (default)
// 1 -- Yes.
// str_limiter_name: Limiter of struct grid.
// -- "vanalbada", "vanleer", "minmod", "smooth", "minvan", "3rdsmooth", "3rd_minmod_smooth".
// -- "nolim", no limiter.
// -- "vanalbada_clz", clz supersonic version.
// -- "weno3_js", "wenn3_prm211", "wenn3_zm", "wenn3_zes2", "wenn3_zes3"
// -- "vanalbada", "vanleer", "minmod", "smooth", "minvan", "3rdsmooth", "3rd_minmod_smooth",
// -- "nolim", no limiter,
// -- "vanalbada_clz", clz supersonic version,
// -- "weno3_js", "wenn3_prm211", "wenn3_zm", "wenn3_zes2", "wenn3_zes3".
string inviscidSchemeName = "roe";
int isWennScheme = 0;
string str_limiter_name = "vanalbada";
#*******************************************************************
#************************************************************************
# UnStruct Solver or Common *
#*******************************************************************
#************************************************************************
// viscousType: Viscous model.
// 0 -- Euler.
// 1 -- Lamilar.
@ -410,11 +419,11 @@ string str_limiter_name = "vanalbada";
// 3 -- IDDES.
// uns_scheme_name: Spatial discretisation scheme of Unstruct grid.
// Using this when solve Unstructered grid or hybrid.
// -- "vanleer", "roe", "steger", "kfvs", "lax_f", "hlle".
// -- "vanleer", "roe", "GMRESRoe", "GMRESSteger", "steger", "kfvs", "lax_f", "hlle",
// -- "ausm+", "ausmdv", "ausm+w", "ausmpw", "ausmpw+".
// uns_limiter_name: Limiter of Unstruct grid.
// -- "barth", "vencat", "vanleer", "minmod".
// -- "vanalbada", "smooth", "nnd", "lpz", "1st".
// -- "barth", "vencat", "vanleer", "minmod",
// -- "vanalbada", "smooth", "nnd", "lpz", "1st",
// -- "nolim", no limiter.
// uns_vis_name: Discretisation method of viscous term.
// -- "std", "test", "aver", "new1", "new2".
@ -442,7 +451,7 @@ string str_limiter_name = "vanalbada";
// 3 -- Harten type, which is default used.
// roeEntropyScale: Entropy fix (correction) coefficient scale, default is 1.0.
// It is used to scale the default Roe entropy fix coefficients.
// AusmpwPlusLimiter: A Limiter to make "function w" not change acutely in AusmpwPlus scheme, default is 1.0
// AusmpwPlusLimiter: A Limiter to make "function w" not change acutely in AusmpwPlus scheme, default is 1.0.
//int viscousType = 0;
//string viscousName = "Euler";
@ -475,9 +484,9 @@ double roeEntropyScale = 1.0;
double AusmpwPlusLimiter = 1.0;
//-----------------------------------------------------------------------
# Temporal Discretisation #
//-----------------------------------------------------------------------
#************************************************************************
# Temporal Discretisation *
#************************************************************************
// iunsteady: Steady or unsteady.
// 0 -- steady.
// 1 -- unsteay.
@ -504,11 +513,18 @@ double AusmpwPlusLimiter = 1.0;
// 6 -- Jacobian iteration.
// 7 -- Line LU-SGS.
// 8 -- Matrix LU-SGS.
// 9 -- GMRES.
// iSimplifyViscousTerm: Simplify the computation of viscous term in the Block LU-SGS method. The default value assigns 1 that could speed up the computation.
// Otherwise, the viscous Jacobian matrix Mv should be computed that will increase the memory and time in iteration of the BLUSGS method.
// CFLStart: Started cfl number.
// CFLEnd: End cfl number.
// CFLVaryStep: The number of step when cfl increase from CFLStart to CFLEnd.
// GMRESCFLScale : CFL = CFLStart * GMRESCFLScal^iteration.
// OriginalTscheme : Used for LUSGS and GMres hybrid computing.
// useLUSGSprecond: Initialize flow field for GMRES.
// 0 --Initialize by first order Jacobian matrix.
// 1 --Initialize by LUSGS.
// GMRESInitStep : the number of iteration step of irst order Jacobian matrix or LUSGS for initialize flow field.
// ktmax: Dtratio. dt[i] = MIN(dt[i], ktmax * dtmin / vol[i])
// swapDq: Communication dq between forward/backward sweep of LUSGS or not, default is 0.
// nLUSGSSweeps: Sub iteration of LU-SGS or Block LU-SGS.
@ -533,7 +549,6 @@ double AusmpwPlusLimiter = 1.0;
// 2 -- Pab3D wall function.
// RKStage: The number of Runge-Kutta step.
// lamda: Cofficient of Runge-Kutta step.
int iunsteady = 0;
double physicalTimeStep = 0.01;
double physicalTimeStepDimensional = -0.001;
@ -543,7 +558,7 @@ int ifStaticsReynoldsStress = 0;
int startStatisticStep = 800000;
double statisticalTimePeriod = -1.0;
int statisticMethod = 0;
int linearTwoStepMethods = 1; // 1--BDF1; 2--C-N; 3--BDF2;
int linearTwoStepMethods = 1; // 1--BDF1; 2--C-N; 3--BDF2.
int methodOfDualTime = 3;
int min_sub_iter = 50;
@ -558,7 +573,10 @@ int isUsePreTwall = 0;
double CFLStart = 0.01;
double CFLEnd = 10.0;
int CFLVaryStep = 500;
double GMRESCFLScale = 1.0;
int OriginalTscheme = 9;
int useLUSGSprecond = 1;
int GMRESInitStep = 1000;
double pMaxForCFL = 0.2;
double pMinForCFL = 0.1;
double deltaMaxForCFL = 0.2;
@ -575,7 +593,7 @@ int order = 2;
double visl_min = 0.01;
double turbCFLScale = 1.0;
double csrv = 2.0;
double csrv = 1.0;
double timemax = 1.0e10;
double dtsave = -1.0;
int maxale = 10;
@ -591,10 +609,9 @@ double lamda[] = [0.5, 1.0];
//int RKStage = 4;
//double lamda[] = [0.25, 0.33333333333, 0.5, 1.0];
//-----------------------------------------------------------------------
# File In or Out #
//-----------------------------------------------------------------------
#************************************************************************
# File In or Out *
#************************************************************************
// numberOfGridGroups: The number of grid groups.
// gridfile: The partitioned Grid file path, using relative path,
// which is relative to the working directory.
@ -618,10 +635,8 @@ double lamda[] = [0.5, 1.0];
// nIsComputeWallDist: Whether to compute the wall distance.
// 0 -- Compute wall distance.
// 1 -- Not compute.
//
// protectionFile0 and protectionFile1: Two continuation file of the data protection mechanism.
// wall_heatfluxfile: The file to output the MaxHeatFlux of wall.
int numberOfGridGroups = 1;
string gridfile = "./grid/rae2822_hybrid2d__4.fts";
string wallTemperaturefile = "";
@ -632,10 +647,12 @@ int cellMethodOrNodeMethod = 0;
string resSaveFile = "results/res.dat";
string turbresfile = "results/turbres.dat";
string transitionResFile = "results/transitionRes.dat";
string aircoeffile = "results/aircoef.dat";
string restartNSFile = "results/flow.dat";
string turbfile = "results/turb.dat";
string transitionFile = "results/transition.dat";
string visualfile = "results/tecflow.plt";
string wall_aircoefile = "results/wall_aircoef.dat";
@ -645,11 +662,15 @@ string protectionFile0 = "results/flow0.dat";
string protectionFile1 = "results/flow1.dat";
string wall_heatfluxfile = "results/wall_heatflux.dat";
string protectionTurbFile0 = "results/turb0.dat";
string protectionTurbFile1 = "results/turb1.dat";
string protectionTransitionFile0 = "results/transition0.dat";
string protectionTransitionFile1 = "results/transition1.dat";
int nDumpSurfaceInfo = 0;
string wall_varfile = "";
string jetDefineFile = "bin/jet.hypara";
string sixDofFileName = "results/sixDofInfo.dat";
string derivativeFileName = "results/identify.dat";
string hysteresisFileName = "results/force_beta.plt";
@ -659,7 +680,8 @@ int plotFieldType = 0;
// visualfileType: The file type of visualfile.
// 0 -- Tecplot binary.
// 1 -- Tecplot ASCII.
// 2 -- Ensight binary.
// 3 -- Ensight ASCII.
int visualfileType = 1;
// samplefileMode: The dump mode of sample file.
@ -697,21 +719,21 @@ double upperPlotFieldBox[] = [1.0 1.0 1.0];
// -- vibration temperature(Tv, 33), electron temperature(Te, 34), vibrational energy(Ev, 35), electric energy(Ee, 36),
// -- number density of electron(Ne, 37), dimensioanl density(rho, 38), dimensioanl pressure(p, 39), dimensioanl temperature(T, 40),
// -- gradientUx(41), gradientUy(42), gradientVx(43), gradientVy(44), streamline_u(45), streamline_v(46), streamline_w(47),
// -- transition intermittency(intermittency, 51), -transition momentum thickness reynolds(MomentumThicknessReynolds, 52),
// -- overlap iblank(iblank, 81)
// -- specific heat ratio(gama, 56)
// -- transition intermittency(intermittency, 51), transition momentum thickness reynolds(MomentumThicknessReynolds, 52),
// -- local CFL Number(localCFL, 57), minimal CFL Number(minCFL, 58),
// -- overlap iblank(iblank, 81),
// -- specific heat ratio(gama, 56), Knudsen number(kn, 60), Damkohler number(Da, 61), vibrational nonequilibrium number(Vi, 62).
// Important Warning: Array size of visualVariables MUST be equal to nVisualVariables!!!
// Variables order must from small to big.
//-----------the optional parameters list for the wall boundary condition----------------
// nVisualWallVariables: The number of visual variables on wall.
// visualWallVariables : dumped variable types, listed as following:
// -coefficient of pressure(cp, 0), -coefficient of friction(cf, 1), yplus(2), -non-dimensional heat flux(Q_NonDim, 3), -dimensional heat flux(Q_Dim, 4),
// -pressure on wall(pw, 5), -temperature on wall(Tw, 6), -density on wall(rhow, 7), -heat flux of translational-rotational temperature term(Qtr, 8),
// -heat flux of species diffusion term(Qs, 9), -heat flux of vibrational temperature term(Qv, 10), -heat flux of electron temperature term(Qe, 11),
// -species mass fractions(Ns, 12), -x component of wall velocity(Vx, 13), -y component of wall velocity(Vy, 14), -z component of wall velocity(Vz, 15)
// -slip translational-rotational temperature(Tts, 16), -slip vibrational temperature(Tvs, 17), -slip electron temperature(Tes, 18), -absolute wall velocity(Vs, 19)
// -Stanton number(St, 20), -coefficient of heat rate(Ch, 21), -temperature jump(deltaT, 22), -Grid Reynolds number on wall(Re_w, 23)
// -- coefficient of pressure(cp, 0), coefficient of friction(cf, 1), yplus(2), non-dimensional heat flux(Q_NonDim, 3), dimensional heat flux(Q_Dim, 4),
// -- pressure on wall(pw, 5), temperature on wall(Tw, 6), density on wall(rhow, 7), heat flux of translational-rotational temperature term(Qtr, 8),
// -- heat flux of species diffusion term(Qs, 9), heat flux of vibrational temperature term(Qv, 10), heat flux of electron temperature term(Qe, 11),
// -- species mass fractions(Ns, 12), x component of wall velocity(Vx, 13), y component of wall velocity(Vy, 14), z component of wall velocity(Vz, 15),
// -- slip translational-rotational temperature(Tts, 16), slip vibrational temperature(Tvs, 17), slip electron temperature(Tes, 18), absolute wall velocity(Vs, 19),
// -- Stanton number(St, 20), coefficient of heat rate(Ch, 21), temperature jump(deltaT, 22), Grid Reynolds number on wall(Re_w, 23), Knudsen number(Kn_wall, 24).
int nVisualVariables = 8;
int visualVariables[] = [0, 1, 2, 3, 4, 5, 6, 15];
@ -739,7 +761,9 @@ int dumpStandardModel = 0;
// 1 -- Real cell where the probe is located.
// nProbeVariables: Number of variables want to be dumped for probes monitered.
// probeVariables : Variable types dumped, listed as following:
// -- density(0), u(1), v(2), w(3), pressure(4), temperature(5), mach(6).
// -- density(0), u(1), v(2), w(3), pressure(4), temperature(5), mach(6),
// -- dimensioanl_density(7), dimensioanl_u(8), dimensioanl_v(9),
// -- dimensioanl_w(10), dimensioanl_pressure(11), dimensioanl_temperature(12).
// Important Warning: Array size of probeVariables MUST be equal to nProbeVariables!!!
// probeVariables order must from small to big.
// probeVariablesInterpolationMethod: Interpolation method used to compute the probe variables.
@ -761,12 +785,13 @@ string probesDefineFile = "bin/probes_XYZ.dat";
int searchCellsMethod = 0;
int nProbeVariables = 7;
int probeVariables[] = [0, 1, 2, 3, 4, 5, 6];
int nProbeVariables = 14;
int probeVariables[] = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13];
int probeVariablesInterpolationMethod = 0;
//-----------------------------------------------------------------------
# Turbulence Parameter #
//-----------------------------------------------------------------------
#************************************************************************
# Turbulence Parameter *
#************************************************************************
// turbInterval: Iteration number of turbulence.
// kindOfTurbSource: Kinds of turbulent source.
// 0 -- Original.
@ -774,15 +799,12 @@ int probeVariablesInterpolationMethod = 0;
// transitionType: transition model type
// 0 -- none.
// 2 -- gama-re-theta.
// turbIntensity: (valid while greater than 0.0 ) turbulent intensity of free stream(*100) in transition
// freeturbIntensitySRModify: to use SR modify in free stream turbulent intensity decay or not
// turbIntensity: (valid while greater than 0.0 ) turbulent intensity of free stream(*100) in transition.
// freeturbIntensitySRModify: to use SR modify in free stream turbulent intensity decay or not.
int turbInterval = 1;
int turbOrderStruct = 2;
int kindOfTurbSource = 0;
int mod_turb_res = 0;
double turb_relax = 1.0;
double freeStreamViscosity = 1.0e-3;
double muoo = 3.0;
double kwoo = 5.0;
@ -791,28 +813,27 @@ double turbIntensity = -1.0;
int freeturbIntensitySRModify = 0;
double freeDecayXLocation = 0.0;
int compressibleCorrection = 0;
int prandtlNumberCorrection = 0;
int transitionMaFix = 1;
# maximum eddy viscosity (myt/my) max.
// maximum eddy viscosity (myt/my) max.
double eddyViscosityLimit = 1.0e10;
int monitor_vistmax = 0;
//-----------------------------------------------------------------------
# LES Parameter #
//-----------------------------------------------------------------------
#************************************************************************
# LES Parameter *
#************************************************************************
// iLES: Create LESSolver or not.
// = 1 - Create LESSolver;
// != 1 - not.
// = 1 -- Create LESSolver;
// != 1 -- not.
// amplitudeofDisturb: Amplitude of adding disturb.
// disturbstep: Unsteady time step or steady iteration of adding random disturb.
// iterdisturb: Add random disturb in every sub-iter or only first sub-iter.
// = 0 - in only first sub-iter;
// != 0 - in every sub-iter.
// = 0 -- in only first sub-iter;
// != 0 -- in every sub-iter.
// ipraddisturb: Add density and pressure disturb or not.
// ibodyforce: Add body force in source flux of NS equations or not.
// = 0 - not;
// != 0 - Add body force.
// = 0 -- not;
// != 0 -- Add body force.
// bodyforce: Body force in source flux of NS equations or not.
// utau: friction velocity, using in DNSDisturb.
// sgsmodel: subgrid scale model.
@ -820,23 +841,22 @@ int monitor_vistmax = 0;
// = "dsmCom";
// = "wale";
// = "sigma".
// deltaFunctionType: = 1 - MAX(deltai, deltaj, deltak);
// = 2 - pow(deltai * deltaj *deltak, 1/3);
// = 3 - Devloped by Scotti.
// wallDampingFunctionType: = 0 - no wall function;
// = 1 - van Driest;
// = 2 - developed by Dr. Deng Xiaobing;
// = 3 - developed by Piomelli.
// deltaFunctionType: = 1 -- MAX(deltai, deltaj, deltak);
// = 2 -- pow(deltai * deltaj *deltak, 1/3);
// = 3 -- Devloped by Scotti.
// wallDampingFunctionType: = 0 -- no wall function;
// = 1 -- van Driest;
// = 2 -- developed by Dr. Deng Xiaobing;
// = 3 -- developed by Piomelli.
// turbViscousCutType: turbulent viscosity cut type.
// = 0 - mu_total = mut + mul;
// = 1 - mu_total = max(mut-mul,0)+ mul;
// = 2 - mu_total = max(mut ,0)+ mul.
// = 0 -- mu_total = mut + mul;
// = 1 -- mu_total = max(mut-mul, 0) + mul;
// = 2 -- mu_total = max(mut , 0) + mul.
// smagConstant: constant of smagorinsky model.
// waleConstant: constant of wale model.
// filterDirection [3]: filter variables in i, j, k direction or not.
// averageDirection[3]: average variables in i, j, k direction or not.
// isotropicConstant: constant of isotropic part of SGS stress.
int iLES = 0;
string sgsmodel = "smagorinsky";
int deltaFunctionType = 2;
@ -852,9 +872,9 @@ double testFilterScale = 2.0;
int averageWidth = 1;
int monitorNegativeConstant = 0;
//-----------------------------------------------------------------------
# Other Parameters for Hypersonic Non-equilibrium Gas #
//-----------------------------------------------------------------------
#************************************************************************
# Other Parameters for Hypersonic Non-equilibrium Gas *
#************************************************************************
// dg_high_order:
// 0 -- generic order accuracy.
// 1 -- high order accuracy.
@ -862,9 +882,6 @@ int monitorNegativeConstant = 0;
// 0 -- gas model is fixed in the codes.
// 1 -- gas model is imported from library files.
// isAdaptiveSolver: isAdaptiveSolver = 0 indicates the generic Navier-Stokes solver,
// isAdaptiveSolver>0 indicates the HyFlow self-adaptive solver.
// 1 -- using HyFlow self-adaptive solver where the switch is controlled by the total iteration steps.
// 2 -- using HyFlow self-adaptive solver where the switch is controlled by variation of the key residual.
// nm: Equation number of the physics, but is out of commision now.
// 4 -- for 2D.
// 5 -- for 3D.
@ -886,14 +903,13 @@ int monitorNegativeConstant = 0;
// nEquilibriumGas: the variable is valid when the condition of nchem = 0 is satisfied.
// 0 -- perfect gas.
// 5, 7, 11 -- equilibrium gas, meanwhile, its value denotes the number of gas component.
// nPCWCycleStep: the maximum step number of iteration in the module of computing species mass fractions with the partial catalytic wall(PCW) condition.
// the value equals to or is greater than 1, and 3 is for default value.
// nRETCycleStep: the maximum step number of iteration in the module of computing radiation equilibrium temperature on wall.
// the value equals to or is greater than 1, and 3 is for default value.
// nSLIPCycleStep:the maximum step number of iteration in the module of computing slip temperature, slip velocity and slip species mass fraction.
// the value equals to or is greater than 1, and 3 is for default value.
// nPCWCycleStep: The maximum step number of iteration in the module of computing species mass fractions with the partial catalytic wall(PCW) condition.
// The value equals to or is greater than 1, and 3 is for default value.
// nRETCycleStep: The maximum step number of iteration in the module of computing radiation equilibrium temperature on wall.
// The value equals to or is greater than 1, and 3 is for default value.
// nSLIPCycleStep:The maximum step number of iteration in the module of computing slip temperature, slip velocity and slip species mass fraction.
// The value equals to or is greater than 1, and 3 is for default value.
// nSlipBCModel: The computational model of slip boundary conditions.
// 0 -- no slip.
// 1 -- the conventional Maxwell slip conditions.
// 2 -- the Gokcen slip conditions.
@ -913,10 +929,13 @@ int monitorNegativeConstant = 0;
// 1 -- One-temperature model.
// 2 -- Two-temperature model.
// 3 -- Three-temperature model.
// isUseNoneqCond:
// 0 -- compute the source terms without any conditions.
// 1 -- compute the source terms using the non-equilibrium condition.
// frozenCondition: the threshold value of frozen chemical flow condition, 0.1 is the default value.
// nIdealState: whether take all gas species as ideal gas for gas-mixture process.
// 0 -- No.
// 1 -- Yes.
// nTEnergyModel: the method to computing temperature energy model.
// 1 -- Yes. // nTEnergyModel: the method to computing temperature energy model.
// 0 -- the energy term is computed using the conventional method.
// 1 -- the energy term is computed using the polynomial fitting method.
// 2 -- the energy term is computed using the piecewise polynomial fitting method.
@ -946,14 +965,13 @@ int monitorNegativeConstant = 0;
// 1.0 -- proposed by Maxwell.
// sqrt(2/PI)~0.8 -- used for "micro-slip", namely the actual velocity slip at the wall.
// 1.146 -- proposed for an additional "fictitious" velocity slip.
// chemicalRelaxCorf: The value is in range of [0.001, 1.0].
// spectrumRadiusCoef: The value is in range of [0.0, 2.0].
// staticPressureRelaxCorf: The value is in range of [0.1, 1.0].
// nIsChemicalFreeze: the flag to freeze the chemical reactions.
// 0 -- not freeze, the chemical reaction sources will be calculated.
// 1 -- freezes the chemical reactions, the chemical reaction sources will not be calculated.// veTemperatureMin: The minimum of Tv and Te
// 1 -- freezes the chemical reactions, the chemical reaction sources will not be calculated.
// veTemperatureMin: The minimum of Tv and Te.
// maxViscous: the maximum of Viscous.
// trTemperatureMin: the minimum value of trTemperature.
// veTemperatureMin: the minimum value of veTemperature.
@ -965,36 +983,34 @@ int monitorNegativeConstant = 0;
// nSpeciesLimit: limitter of gas species
// 0 -- not used.
// 1 -- used.
// nTurblenceForChemical: the coupled mode of Turblence and Chemical reaction
// nTurblenceForChemical: the coupled mode of Turblence and Chemical reaction.
// 0 -- method 0.
// 1 -- method 1.
// nViscosityFluxSublevelModified: Modified for ViscosityFlux on Sublevel grid
// nViscosityFluxSublevelModified: Modified for ViscosityFlux on Sublevel grid.
// 0 -- not used.
// 1 -- used.
// nViscosityPeModified: Pe Modified for ViscosityCoef
// nViscosityPeModified: Pe Modified for ViscosityCoef.
// 0 -- not used.
// 1 -- used.
// nChemcalSourceModified: Modified on ChemcalSource
// nChemcalSourceModified: Modified on ChemcalSource.
// 0 -- not used.
// 1 -- used.
// nChemcalSourceEsMethod: Modified on ChemcalSource
// 0 -- approximation algorithm 1 (Ori.)
// 1 -- approximation algorithm 2 (New)
// nChemcalSourceEsMethod: Modified on ChemcalSource.
// 0 -- approximation algorithm 1 (Ori).
// 1 -- approximation algorithm 2 (New).
// nMaxStepTemperature: the iterative steps of temperature.
// veTemperatureMinModified: Modified on the minimum of Tve for Cvvs
// 0 -- not used
// 1 -- used
// nDiagonalModified: Modified on Diagonal
// 0 -- not used
// 1 -- Ori.
// 2 -- new
// veTemperatureMinModified: Modified on the minimum of Tve for Cvvs.
// 0 -- not used.
// 1 -- used.
// nDiagonalModified: Modified on Diagonal.
// 0 -- not used.
// 1 -- new.
// nDiagonalModifiedTurb: Modified on Diagonal for turbulence.
// 0 -- not used.
// 1 -- new.
// nGradPrimtiveMethod:
// 0 -- Ori.
// 1 -- new
// 1 -- new.
// nAblation:
// 0 -- The wall ablation is not computed.
// 1 -- The wall ablation is computed.
@ -1017,8 +1033,8 @@ int monitorNegativeConstant = 0;
// "Mars-Pa8" is for Park model of Mars gas, "Mars-Mc8" for McKenzie model of Mars gas.
// "Combustion-12" -- indicates the Combustion Chamber Gas Model which includes 12-species-20-reactions.
// "Gas-Mixture" -- indicates the process of mixing gas without reacting.
// for struct solver mixing two species£¨SpeciesA, SpeciesB£©.
// for unstruct solver mixing multi-species£¨O2 NO CO CO2 H2 N2 Air CH4£©.
// for struct solver mixing two species<65><73>SpeciesA, SpeciesB<73><42>.
// for unstruct solver mixing multi-species<65><73>O2 NO CO CO2 H2 N2 Air CH4<48><34>.
// For self-definition model, the gasfile is used to indicate the file path of the new gas model.
// speciesName: Used to list the names of each species, while each species name is separated by the symbol of comma.
// initMassFraction: Used to list the initial mass fractions of species in accordance with the sequence of names in the parameter speciesName.
@ -1040,13 +1056,16 @@ int monitorNegativeConstant = 0;
// firstStepError : the residual error of the first step iteration for the self-adaptive calculation.
// secondStepError : the residual error of the second step iteration for the self-adaptive calculation.
// thirdStepError : the residual error of the third step iteration for the self-adaptive calculation.
// useHyflowSetting : Setting for HyFLOW GUI.
// 0 -- PHengLEI
// 1 -- HyFLOW
// nProtectData: Use the continuation file data protection mechanism.
// 0 -- no
// 1 -- yes
// 0 -- no.
// 1 -- yes.
// nTvChange: Judge whether the Tv equals Ttr.
// 0 -- yes.
// 1 -- no.
// isMoleFractionType: 1 indicates the mass fractions, or else the mole fractions.
// nFraction: the initial fractions type of species.
// 0 -- mass fraction.
// 1 -- mole fraction.
int dg_high_order = 0;
int iapplication = 0;
int isAdaptiveSolver = 0;
@ -1114,6 +1133,7 @@ double densityMin = 1.0e-8;
double densityMinFactor = 0.1;
double tAdjustmentFactor = 10.0;
double iniSpeedCoef = 1.0;
int iniSpeedMode = 0;
int nDebug = 0;
int nSpeciesLimit = 1;
@ -1125,18 +1145,21 @@ int nChemcalSourceEsMethod = 1;
int nMaxStepTemperature = 5;
int veTemperatureMinModified = 1;
int nDiagonalModified = 0;
int nDiagonalModifiedTurb = 0;
int nGradPrimtiveMethod = 1;
int nInviscidFluxModify = 1;
int nQlLimitMethod = 2;
int nSpeciesForWallMethod = 1;
int nDensityForWallMethod = 0;
int wallMultiTemperature = 0;
int nProtectData = 0;
int useHyflowSetting = 0;
int nAblation = 0;
int isInjection = 0;
int nViscosityModel = 0;
int nMarsModel = 0;
int nTvChange = 0;
int isMoleFractionType = 0;
string gasfile = "DK5";
//string gasfile = "./chemical/Dunn-Kang_air5s11r.dat";
string speciesName = "O, O2, NO, N, N2";
@ -1173,9 +1196,17 @@ double molecularWeightSpeciesB = 30.0;
//string speciesName = "O2, N2";
//string initMassFraction = "1.0, 0.0";
int nFraction = 0;
int nContinueModel = 0;
int nChemicalFlowStep = 0;
int ifStartFromPerfectGasResults = 0;
int isUseNoneqCond = 0;
double frozenCondition = 0.01;
int nLeakageMonitor = 0;
double totalLeakageVolume = 1000.0;
double monitorThresholdValue = 0.05;
double sprayFactor = 0.0;
#########################################################################
// Multi-Grid parameters.
@ -1196,7 +1227,6 @@ int ifStartFromPerfectGasResults = 0;
// 1 -- zero order.
// 2 -- first-order. (default)
// mgCorrectionLimit: Multi-grid correction limit.
int nMGLevel = 1;
int MGCoarsestIteration = 1;
int MGPreIteration = 1;
@ -1226,9 +1256,9 @@ string holeFullFileName = "./grid/holeFullFile.dat";
string linkFileName = "./grid/topology.dat";
string zoneInverseFileName = "./grid/zoneInverseMapping.inp";
#########################################################################
# High Order Struct Solver #
#########################################################################
#************************************************************************
# High Order Struct Solver *
#************************************************************************
// isFVMOrFDM:
// 0 -- NSSolverStruct using Finite Volume Method.
// 1 -- NSSolverStruct using Finite Differ Method.
@ -1273,10 +1303,29 @@ int allReduceStep = 1;
// codeOfOversetGrid: Overlapping(overset) grid or not.
// 0 -- NON-overlapping grid.
// 1 -- Overlapping grid.
// oversetInterpolationMethod: the method of overset interpolation while field simulation
// oversetInterpolationMethod: the method of overset interpolation while field simulation.
// 0 -- set the acceptor cell value by donor cell value.
// 1 -- set the acceptor cell value by distance weight of donor cell value.
// readOversetFileOrNo: Whether to read overset-file(.ovs) that has been generated.
// 0 -- no.
// 1 -- yes.
// symetryOrNot: If there exist symetryplanes(XY plane, the coordinate of Z direction is 0) in
// the current overset grid(only for three dimension).
// 0 -- no.
// 1 -- yes.
// readInAuxiliaryInnerGrid: Whether to read auxiliary inner grid.
// 0 -- no.
// 1 -- yes.
// walldistMainZone: The initial value of background grid which does not exist wall boundary condition.
// toleranceForOversetSearch: The tolerance of overset searching zone to judge whether the obtained node is in the current computing cell.
// toleranceForOversetBox: The tolerance of building the minimum box of computing cells in the overlapping region.
// twoOrderInterpolationOrNot: The number of interpolated cell layers in the overlapping boundary.
// 0 -- one layer.
// 1 -- two layers.
// keyEnlargeOfActiveNodes: The number of enlarged overset-boundary layers in the buffer region.
// outTecplotOverset: Whether to dump out the flowfield data after the progress of overset configure.
// 0 -- no.
// 1 -- yes.
int codeOfOversetGrid = 0;
int oversetInterpolationMethod = 0;
int readOversetFileOrNot = 0;
@ -1295,7 +1344,6 @@ int twoOrderInterpolationOrNot = 0;
int keyEnlargeOfActiveNodes = 0;
int outTecplotOverset = 0;
int outPutOversetVisualization = 0;
int numberOfMovingBodies = 2;
// ----------------- ALE configuration ------------------------------
@ -1306,34 +1354,40 @@ double referenceLength = 1.0;
double referenceVelocity = 1.0;
double referenceDensity = 1.0;
int strategyForFaceNormalVelocity = 0; //0-By Sweeping volume; 1-By face center 1st; 2-By face center 2nd;
int strategyForGCLSource = 0; //0-present; 1-Ahn;
int strategyForFaceNormalVelocity = 0; // 0-By Sweeping volume; 1-By face center 1st; 2-By face center 2nd.
int strategyForGCLSource = 0; // 0-present; 1-Ahn.
//0:1st-Admas-Bashforth; 1:2nd-Admas-Bashforth; 2:1st-Implicit-Euler; 3:2nd-Implicit Euler; 4:2nd-Adams-Moulton; 5:3rd-Adams-Moulton
// 0: 1st-Admas-Bashforth; 1: 2nd-Admas-Bashforth; 2: 1st-Implicit-Euler; 3: 2nd-Implicit Euler; 4: 2nd-Adams-Moulton; 5: 3rd-Adams-Moulton.
int methodForKineticEquation = 0;
double relaxParameterOfKinetic = 1.0;
#########################################################################
# motive information #
#########################################################################
#************************************************************************
# motive information *
#************************************************************************
int numberOfMovingBodies = 1;
############################## body0 ##############################
//mass of parts
// mass of parts.
double mass_0 = 1.0;
//mass matrix of parts Ixx Iyy Izz Ixy Ixz Iyz
// gravity of parts (along negative direction in Y-axis, eg. 9.8).
double gravity_0 = 0.0;
// mass matrix of parts Ixx Iyy Izz Ixy Ixz Iyz.
double massMatrix_0[] = 1e-7, 1e-6, 1e-6, 0.0, 0.0, 0.0;
//initial six DOF position information of parts. xc yc zc
// initial six DOF position information of parts. xc yc zc.
double massCenter_0[] = 0.0, 0.0, 0.0;
//initial six DOF position information of parts. angleX angleY angleZ
// if reset mass center while restart.
int resetMassCenter_0 = 0;
// position offset of parts. dx dy dz.
double massCenterDxyz_0[] = 0.0, 0.0, 0.0;
// initial six DOF position information of parts. angleX angleY angleZ.
double attitudeAngle_0[] = 0.0, 0.0, 0.0;
//initial six DOF move information of parts. vc vy vz
// initial six DOF move information of parts. vc vy vz.
double massCenterVelocity_0[] = 0.0, 0.0, 0.0;
//initial six DOF move information of parts. omigX omigY omigZ
// initial six DOF move information of parts. omigX omigY omigZ.
double angularVelocity_0[] = 0.0, 0.0, 0.0;
// the object that the parts belong to.
int fartherIndex_0 = -1;
//the assembly position of the parts. xc yc zc angleX angleY angleZ
// the assembly position of the parts. xc yc zc angleX angleY angleZ.
double configPamameter_0[] = 0.0, 0.0, 0.0, 0.0, 0.0, 0.0;
// the move pattern of the parts.
// -1 given motion partten.
@ -1349,23 +1403,24 @@ double configPamameter_0[] = 0.0 ,0.0 ,0.0 ,0.0 ,0.0
int RBDMethod_0 = 0;
double amplitude_0 = 0.0;
double reduceFrequency_0 = 0.0;
//direction of rotation
// direction of rotation.
// 1 -- clockwise from the point of view along the positive x axis.
// -1 -- anticlockwise from the point of view along the positive x axis.
int direction_0 = -1;
double rotateFrequency_0 = 0.0;
//string uDFSixDofFileName_0 = "./Bin/UDFSixDof.Parameter";
//additional force (system axis) fX fY fZ
// dimensional physical time for additional force(s).
double addedForceTime_0[] = 0.0;
// additional force(inertia system) fX fY fZ.
double addedForce_0[] = 0.0, 0.0, 0.0;
//additional moment of Force (system axis) mX mY mZ
// additional moment(inertia system) mX mY mZ.
double addedMoment_0[] = 0.0, 0.0, 0.0;
// the deformation method of the parts.
int morphing_0 = 0;
// post indentify
// post indentify.
int integralOrder = 4;
// ---------------- ATP read --------------------------------------------
//@int inflowParaType = 0;
//@double refReNumber = 6.5e6;
@ -1379,18 +1434,34 @@ int integralOrder = 4;
//@string outLetFileName = "./bin/subsonicOutlet.hypara";
//@double refDimensionalVelocity = 0;
//@double refDimensionalDensity = 0;
#########################################################################
# Old Parameter #
#########################################################################
//@string weatherDataFilePath = "./WRFData/";
//@double longitude = 110.95
//@double latitude = 19.61;
#************************************************************************
# Old Parameter *
#************************************************************************
int isPlotVolumeField = 0;
#************************************************************************
# partial flow field setting Parameter *
#************************************************************************
//int nPartialParameter = 0; // 0/1/2
//int nNumberOfPartialField = 0; //
//int nStartGridIndex[] = [0];
//int nEndGridIndex[] = [0];
#########################################################################
# Incompressible Parameter #
#########################################################################
//double partialCFL[] = [0.0];
//double partialSpeedCoef[] = [0.0];
//double partialSpeed[] = [0.0];
//double partialAttackd[] = [0.0];
//double partialSlide[] = [0.0];
//double partialPressure[] = [0.0];
//double partialTemperature[] = [0.0];
//double partialMassFractions[] = [0.0];
#************************************************************************
# Incompressible Parameter *
#************************************************************************
int isSolveEnergyEquation = 0;
int isSolveTurbEquation = 0;
int isSolveSpeciesEquation = 0;

View File

@ -4,9 +4,12 @@
// gridtype: Grid type for generation, conversion, reconstruction, merging.
// 0 -- Unstructured grid.
// 1 -- Structured grid.
// axisup: Type of Cartisien coordinates system, used in grid conversion.
// 1 -- Y upward. (default)
// 2 -- Z upward.
// nAxisRotateTimes: number of axis rotating times, zero (default) meaning without rotating.
// axisRotateOrder : axis rotating order.
// 1 -- X-axis.
// 2 -- Y-axis.
// 3 -- Z-axis.
// axisRotateAngles: axis rotating angles (degree), which are corresponding to the axis rotating order.
// from_gtype: Type of grid data type in grid conversion process.
// -1 -- MULTI_TYPE.
// 1 -- PHengLEI, *.fts.
@ -18,7 +21,9 @@
// 7 -- Hybrid, include both of unstructured and structured grid, *.fts.
// 8 -- GMSH, *.msh.
int gridtype = 1;
int axisup = 2;
int nAxisRotateTimes = 1;
int axisRotateOrder[] = [1];
double axisRotateAngles[] = [90.0];
int from_gtype = 2;
#########################################################################

View File

@ -8,6 +8,7 @@
// Platform for Hybrid Engineering Simulation of Flows +
// China Aerodynamics Research and Development Center +
// (C) Copyright, Since 2010 +
// PHengLEI 2212 +
//+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
###########################################################################
# Default parameters for Grid conversion #
@ -46,19 +47,24 @@ int gridobj = 1;
int multiblock = 0;
int iadapt = 0;
int SymmetryFaceVector = 1;
int gridReorder = 0;
int faceReorderMethod = 0;
// axisup: Type of Cartisien coordinates system, used in grid conversion.
// 1 -- Y upward. (default)
// 2 -- Z upward.
int axisup = 1;
// nAxisRotateTimes: number of axis rotating times, zero (default) meaning without rotating.
// axisRotateOrder : axis rotating order.
// 1 -- X-axis.
// 2 -- Y-axis.
// 3 -- Z-axis.
// axisRotateAngles: axis rotating angles (degree), which are corresponding to the axis rotating order.
int nAxisRotateTimes = 0;
int axisRotateOrder[] = [1, 2, 3];
double axisRotateAngles[] = [0.0, 0.0, 0.0];
// omit_no_bound_bc: What's boundary condition for the type of "no_boundary_condition".
// 0 -- Interface. (default)
// 1 -- Physical boundary condition, used in Hybrid solver.
int omit_no_bound_bc = 0;
int omitRepeatInterface = 1;
//-----------------------------------------------------------------------
# Grid data type #
@ -89,7 +95,6 @@ int dumpOldGrid = 0;
int numberOfGridFile = 1;
string from_gfile = "./grid/rae2822_hybrid2d.cas";
string from_gfile1 = "";
string out_gfile = "./grid/flat_laminr_133_85_2d.fts";
// ----------------- some advanced choices ------------------------------
@ -178,7 +183,6 @@ double influencePara = 25.0;
which only support one direction.
// rotationAngle: The relative angle between two periodic face.
which is recorded in degrees.
int periodicType = 0;
double translationLength[] = [0.0, 0.0, 0.0];
double rotationAngle = 0.0;
@ -192,7 +196,6 @@ double rotationAngle = 0.0;
// 2 -- refine structured grid.
// maxproc: The number of partition zones that want to be divided into.
// numberOfMultifile: The number of partition grid files that want to be dumped out.
int pgridtype = 0;
int maxproc = 4;
int numberOfMultifile = 1;
@ -207,8 +210,8 @@ int blockIndexOfMark = 0;
int cellIndexOfMark[] = [185, 30, 1];
// parallelStrategy:
//! -# 0 : each zone is assigned to the one that defined in grid partition procedure.
//! -# 1 : random assigned for each zone or by some else ways.
// 0 -- each zone is assigned to the one that defined in grid partition procedure.
// 1 -- random assigned for each zone or by some else ways.
int parallelStrategy = 1;
//-----------------------------------------------------------------------
@ -232,7 +235,6 @@ string partition_grid_file = "./grid/sphere_mixed__4.fts";
// 1 -- perfect balance.
// maxproc -- perfect imbalance.
// 1.05 -- recommended.
int omit_no_bound_bc = 0;
int npartmethod = 1;
int parallelPartitionMethod = 2;
@ -253,24 +255,30 @@ int numberOfMultigrid = 1;
// intervalStepSample: The step intervals for monitored probes variables file 'sample.dat' saved.
// intervalStepForce: The step intervals for aerodynamics coefficients file 'aircoef.dat' saved.
// intervalStepRes: The step intervals for residual file 'res.dat' saved.
// ifLowSpeedPrecon: Precondition process to accelerate convergence for low speed flow.
// 0 -- no precondition process. (default, mach > 0.3)
// 1 -- carry out precondition process. (mach number <= 0.3)
int maxSimuStep = 20000;
int intervalStepFlow = 1000;
int intervalStepPlot = 1000;
int intervalStepSample = 1000;
int intervalStepForce = 100;
int intervalStepRes = 10;
int ifLowSpeedPrecon = 0;
// compressible:
// 0 -- incompressible flow.
// 1 -- compressible flow. (default)
int compressible = 1;
// ifLowSpeedPrecon: Precondition process to accelerate convergence for low speed flow.
// 0 -- no precondition process. (default, mach > 0.3)
// 1 -- carry out precondition process. (mach number <= 0.3)
// Kprec: The coefficient K for the cut-off velocity.
// 1.0~3.0 is suggested. (default, 3.0)
// preconFarfieldBCMethod: The precondition method for farfield boundary condition.
// 0 -- precondition far-field boundary based on riemann invariants.
// 1 -- Turkel's simplified far-field boundary condition.
int ifLowSpeedPrecon = 0;
double Kprec = 3.0;
int preconFarfieldBCMethod = 1;
//-----------------------------------------------------------------------
# CFD Control Parameter #
//-----------------------------------------------------------------------
@ -281,9 +289,12 @@ int compressible = 1;
// 0 -- the nondimensional conditions.
// 1 -- the flight conditions.
// 2 -- the experiment conditions.
// 3 -- the subsonic boundary conditions.
// 3 -- the subsonic boundary conditions. (Useless!)
// 4 -- the condition that the velocity, temperature and density are given.
// 5 -- the condition that the velocity, temperature and pressure are given.
//flowInitMethod: Flow field initialization method.
// 0 -- The entire flow field is initialized according to Infinite velocity.
// 1 -- The velocity near the wall is initialized according to the boundary layer of the plate.
// refReNumber: Reynolds number, which is based unit length, unit of 1/m.
// refDimensionalTemperature: Dimensional reference temperature, or the total temperature only for the experiment condition.
// freestream_vibration_temperature: Dimensional freestream vibration temperature.
@ -303,11 +314,11 @@ int compressible = 1;
// condition is radiation equilibrium temperature, and 0.8 is the default value.
// refMolecularWeight: the reference molecular weight of gas used for perfect gas. The unit is g/mol.
// Generally, the gas is air. Sometimes, it is experiment gas, such as Nitrogen, Argon, and so on.
int directionMethod = 0;
double refMachNumber = 0.73;
double attackd = 2.79;
double angleSlide = 0.00;
int flowInitMethod = 0;
int inflowParaType = 0;
double refReNumber = 6.5e6;
@ -321,14 +332,6 @@ double freestream_vibration_temperature = 300.00;
//double refDimensionalTemperature = 6051.024; // The total temperature, T*(1+(refGama-1)*M*M/2).
//double refDimensionalPressure = 4.299696E09; // The total pressure, p*(T0/T)^(refGama/(refGama-1)).
//int inflowParaType = 3;
//int nsubsonicInlet = 1;
//int nsubsonicOutlet = 1;
//string inLetFileName = "./bin/subsonicInlet.hypara";
//string outLetFileName = "./bin/subsonicOutlet.hypara";
//double refDimensionalTemperature = 288.144;
//double refDimensionalPressure = 1.01313E05;
// The velocity, temperature and density are fixed.
//int inflowParaType = 4;
//double refDimensionalVelocity = 1000.0;
@ -341,9 +344,15 @@ double freestream_vibration_temperature = 300.00;
// The MachNumber, temperature and pressure are fixed.
//int inflowParaType = 6;
//double refDimensionalTemperature = 293;
//double refDimensionalTemperature = 293.0;
//double refDimensionalPressure = 8886.06;
// The velocity, temperature and pressure are read from file.
//int inflowParaType = 7;
//string weatherDataFilePath = "./WRFData/";
//double longitude = 110.95
//double latitude = 19.61;
double wallTemperature = -1.0;
double radiationCoef = 0.8;
@ -357,35 +366,35 @@ double forceReferenceArea = 1.0; // unit of meter^2.
double TorqueRefX = 0.0; // unit of meter.
double TorqueRefY = 0.0; // unit of meter.
double TorqueRefZ = 0.0; // unit of meter.
double knudsenLength = 1.0; // unit of meter.
double refMolecularWeight = 28.9644; // unit of g/mol.
//-----------------------------------------------------------------------
# Spatial Discretisation #
//-----------------------------------------------------------------------
#*******************************************************************
#************************************************************************
# Struct Solver *
#*******************************************************************
#************************************************************************
// inviscidSchemeName: Spatial discretisation scheme of struct grid.
// Using this when solve structered grid or hybrid.
// -- "vanleer", "steger", "hlle", "lax_f".
// -- "roe", "modified_roe".
// -- "vanleer", "steger", "hlle", "lax_f",
// -- "roe", "modified_roe",
// -- "ausm+", "ausm+w", "ausm+up", "ausmdv", "ausmpw", "ausmpw+".
// isWennScheme: If using WENN Scheme of struct grid.
// 0 -- NO. (default)
// 1 -- Yes.
// str_limiter_name: Limiter of struct grid.
// -- "vanalbada", "vanleer", "minmod", "smooth", "minvan", "3rdsmooth", "3rd_minmod_smooth".
// -- "nolim", no limiter.
// -- "vanalbada_clz", clz supersonic version.
// -- "weno3_js", "wenn3_prm211", "wenn3_zm", "wenn3_zes2", "wenn3_zes3"
// -- "vanalbada", "vanleer", "minmod", "smooth", "minvan", "3rdsmooth", "3rd_minmod_smooth",
// -- "nolim", no limiter,
// -- "vanalbada_clz", clz supersonic version,
// -- "weno3_js", "wenn3_prm211", "wenn3_zm", "wenn3_zes2", "wenn3_zes3".
string inviscidSchemeName = "roe";
int isWennScheme = 0;
string str_limiter_name = "vanalbada";
#*******************************************************************
#************************************************************************
# UnStruct Solver or Common *
#*******************************************************************
#************************************************************************
// viscousType: Viscous model.
// 0 -- Euler.
// 1 -- Lamilar.
@ -410,11 +419,11 @@ string str_limiter_name = "vanalbada";
// 3 -- IDDES.
// uns_scheme_name: Spatial discretisation scheme of Unstruct grid.
// Using this when solve Unstructered grid or hybrid.
// -- "vanleer", "roe", "steger", "kfvs", "lax_f", "hlle".
// -- "vanleer", "roe", "GMRESRoe", "GMRESSteger", "steger", "kfvs", "lax_f", "hlle",
// -- "ausm+", "ausmdv", "ausm+w", "ausmpw", "ausmpw+".
// uns_limiter_name: Limiter of Unstruct grid.
// -- "barth", "vencat", "vanleer", "minmod".
// -- "vanalbada", "smooth", "nnd", "lpz", "1st".
// -- "barth", "vencat", "vanleer", "minmod",
// -- "vanalbada", "smooth", "nnd", "lpz", "1st",
// -- "nolim", no limiter.
// uns_vis_name: Discretisation method of viscous term.
// -- "std", "test", "aver", "new1", "new2".
@ -442,7 +451,7 @@ string str_limiter_name = "vanalbada";
// 3 -- Harten type, which is default used.
// roeEntropyScale: Entropy fix (correction) coefficient scale, default is 1.0.
// It is used to scale the default Roe entropy fix coefficients.
// AusmpwPlusLimiter: A Limiter to make "function w" not change acutely in AusmpwPlus scheme, default is 1.0
// AusmpwPlusLimiter: A Limiter to make "function w" not change acutely in AusmpwPlus scheme, default is 1.0.
//int viscousType = 0;
//string viscousName = "Euler";
@ -475,9 +484,9 @@ double roeEntropyScale = 1.0;
double AusmpwPlusLimiter = 1.0;
//-----------------------------------------------------------------------
# Temporal Discretisation #
//-----------------------------------------------------------------------
#************************************************************************
# Temporal Discretisation *
#************************************************************************
// iunsteady: Steady or unsteady.
// 0 -- steady.
// 1 -- unsteay.
@ -504,11 +513,18 @@ double AusmpwPlusLimiter = 1.0;
// 6 -- Jacobian iteration.
// 7 -- Line LU-SGS.
// 8 -- Matrix LU-SGS.
// 9 -- GMRES.
// iSimplifyViscousTerm: Simplify the computation of viscous term in the Block LU-SGS method. The default value assigns 1 that could speed up the computation.
// Otherwise, the viscous Jacobian matrix Mv should be computed that will increase the memory and time in iteration of the BLUSGS method.
// CFLStart: Started cfl number.
// CFLEnd: End cfl number.
// CFLVaryStep: The number of step when cfl increase from CFLStart to CFLEnd.
// GMRESCFLScale : CFL = CFLStart * GMRESCFLScal^iteration.
// OriginalTscheme : Used for LUSGS and GMres hybrid computing.
// useLUSGSprecond: Initialize flow field for GMRES.
// 0 --Initialize by first order Jacobian matrix.
// 1 --Initialize by LUSGS.
// GMRESInitStep : the number of iteration step of irst order Jacobian matrix or LUSGS for initialize flow field.
// ktmax: Dtratio. dt[i] = MIN(dt[i], ktmax * dtmin / vol[i])
// swapDq: Communication dq between forward/backward sweep of LUSGS or not, default is 0.
// nLUSGSSweeps: Sub iteration of LU-SGS or Block LU-SGS.
@ -533,7 +549,6 @@ double AusmpwPlusLimiter = 1.0;
// 2 -- Pab3D wall function.
// RKStage: The number of Runge-Kutta step.
// lamda: Cofficient of Runge-Kutta step.
int iunsteady = 0;
double physicalTimeStep = 0.01;
double physicalTimeStepDimensional = -0.001;
@ -543,7 +558,7 @@ int ifStaticsReynoldsStress = 0;
int startStatisticStep = 800000;
double statisticalTimePeriod = -1.0;
int statisticMethod = 0;
int linearTwoStepMethods = 1; // 1--BDF1; 2--C-N; 3--BDF2;
int linearTwoStepMethods = 1; // 1--BDF1; 2--C-N; 3--BDF2.
int methodOfDualTime = 3;
int min_sub_iter = 50;
@ -558,7 +573,10 @@ int isUsePreTwall = 0;
double CFLStart = 0.01;
double CFLEnd = 10.0;
int CFLVaryStep = 500;
double GMRESCFLScale = 1.0;
int OriginalTscheme = 9;
int useLUSGSprecond = 1;
int GMRESInitStep = 1000;
double pMaxForCFL = 0.2;
double pMinForCFL = 0.1;
double deltaMaxForCFL = 0.2;
@ -575,7 +593,7 @@ int order = 2;
double visl_min = 0.01;
double turbCFLScale = 1.0;
double csrv = 2.0;
double csrv = 1.0;
double timemax = 1.0e10;
double dtsave = -1.0;
int maxale = 10;
@ -591,10 +609,9 @@ double lamda[] = [0.5, 1.0];
//int RKStage = 4;
//double lamda[] = [0.25, 0.33333333333, 0.5, 1.0];
//-----------------------------------------------------------------------
# File In or Out #
//-----------------------------------------------------------------------
#************************************************************************
# File In or Out *
#************************************************************************
// numberOfGridGroups: The number of grid groups.
// gridfile: The partitioned Grid file path, using relative path,
// which is relative to the working directory.
@ -618,10 +635,8 @@ double lamda[] = [0.5, 1.0];
// nIsComputeWallDist: Whether to compute the wall distance.
// 0 -- Compute wall distance.
// 1 -- Not compute.
//
// protectionFile0 and protectionFile1: Two continuation file of the data protection mechanism.
// wall_heatfluxfile: The file to output the MaxHeatFlux of wall.
int numberOfGridGroups = 1;
string gridfile = "./grid/rae2822_hybrid2d__4.fts";
string wallTemperaturefile = "";
@ -632,10 +647,12 @@ int cellMethodOrNodeMethod = 0;
string resSaveFile = "results/res.dat";
string turbresfile = "results/turbres.dat";
string transitionResFile = "results/transitionRes.dat";
string aircoeffile = "results/aircoef.dat";
string restartNSFile = "results/flow.dat";
string turbfile = "results/turb.dat";
string transitionFile = "results/transition.dat";
string visualfile = "results/tecflow.plt";
string wall_aircoefile = "results/wall_aircoef.dat";
@ -645,11 +662,15 @@ string protectionFile0 = "results/flow0.dat";
string protectionFile1 = "results/flow1.dat";
string wall_heatfluxfile = "results/wall_heatflux.dat";
string protectionTurbFile0 = "results/turb0.dat";
string protectionTurbFile1 = "results/turb1.dat";
string protectionTransitionFile0 = "results/transition0.dat";
string protectionTransitionFile1 = "results/transition1.dat";
int nDumpSurfaceInfo = 0;
string wall_varfile = "";
string jetDefineFile = "bin/jet.hypara";
string sixDofFileName = "results/sixDofInfo.dat";
string derivativeFileName = "results/identify.dat";
string hysteresisFileName = "results/force_beta.plt";
@ -659,7 +680,8 @@ int plotFieldType = 0;
// visualfileType: The file type of visualfile.
// 0 -- Tecplot binary.
// 1 -- Tecplot ASCII.
// 2 -- Ensight binary.
// 3 -- Ensight ASCII.
int visualfileType = 1;
// samplefileMode: The dump mode of sample file.
@ -697,21 +719,21 @@ double upperPlotFieldBox[] = [1.0 1.0 1.0];
// -- vibration temperature(Tv, 33), electron temperature(Te, 34), vibrational energy(Ev, 35), electric energy(Ee, 36),
// -- number density of electron(Ne, 37), dimensioanl density(rho, 38), dimensioanl pressure(p, 39), dimensioanl temperature(T, 40),
// -- gradientUx(41), gradientUy(42), gradientVx(43), gradientVy(44), streamline_u(45), streamline_v(46), streamline_w(47),
// -- transition intermittency(intermittency, 51), -transition momentum thickness reynolds(MomentumThicknessReynolds, 52),
// -- overlap iblank(iblank, 81)
// -- specific heat ratio(gama, 56)
// -- transition intermittency(intermittency, 51), transition momentum thickness reynolds(MomentumThicknessReynolds, 52),
// -- local CFL Number(localCFL, 57), minimal CFL Number(minCFL, 58),
// -- overlap iblank(iblank, 81),
// -- specific heat ratio(gama, 56), Knudsen number(kn, 60), Damkohler number(Da, 61), vibrational nonequilibrium number(Vi, 62).
// Important Warning: Array size of visualVariables MUST be equal to nVisualVariables!!!
// Variables order must from small to big.
//-----------the optional parameters list for the wall boundary condition----------------
// nVisualWallVariables: The number of visual variables on wall.
// visualWallVariables : dumped variable types, listed as following:
// -coefficient of pressure(cp, 0), -coefficient of friction(cf, 1), yplus(2), -non-dimensional heat flux(Q_NonDim, 3), -dimensional heat flux(Q_Dim, 4),
// -pressure on wall(pw, 5), -temperature on wall(Tw, 6), -density on wall(rhow, 7), -heat flux of translational-rotational temperature term(Qtr, 8),
// -heat flux of species diffusion term(Qs, 9), -heat flux of vibrational temperature term(Qv, 10), -heat flux of electron temperature term(Qe, 11),
// -species mass fractions(Ns, 12), -x component of wall velocity(Vx, 13), -y component of wall velocity(Vy, 14), -z component of wall velocity(Vz, 15)
// -slip translational-rotational temperature(Tts, 16), -slip vibrational temperature(Tvs, 17), -slip electron temperature(Tes, 18), -absolute wall velocity(Vs, 19)
// -Stanton number(St, 20), -coefficient of heat rate(Ch, 21), -temperature jump(deltaT, 22), -Grid Reynolds number on wall(Re_w, 23)
// -- coefficient of pressure(cp, 0), coefficient of friction(cf, 1), yplus(2), non-dimensional heat flux(Q_NonDim, 3), dimensional heat flux(Q_Dim, 4),
// -- pressure on wall(pw, 5), temperature on wall(Tw, 6), density on wall(rhow, 7), heat flux of translational-rotational temperature term(Qtr, 8),
// -- heat flux of species diffusion term(Qs, 9), heat flux of vibrational temperature term(Qv, 10), heat flux of electron temperature term(Qe, 11),
// -- species mass fractions(Ns, 12), x component of wall velocity(Vx, 13), y component of wall velocity(Vy, 14), z component of wall velocity(Vz, 15),
// -- slip translational-rotational temperature(Tts, 16), slip vibrational temperature(Tvs, 17), slip electron temperature(Tes, 18), absolute wall velocity(Vs, 19),
// -- Stanton number(St, 20), coefficient of heat rate(Ch, 21), temperature jump(deltaT, 22), Grid Reynolds number on wall(Re_w, 23), Knudsen number(Kn_wall, 24).
int nVisualVariables = 8;
int visualVariables[] = [0, 1, 2, 3, 4, 5, 6, 15];
@ -739,7 +761,9 @@ int dumpStandardModel = 0;
// 1 -- Real cell where the probe is located.
// nProbeVariables: Number of variables want to be dumped for probes monitered.
// probeVariables : Variable types dumped, listed as following:
// -- density(0), u(1), v(2), w(3), pressure(4), temperature(5), mach(6).
// -- density(0), u(1), v(2), w(3), pressure(4), temperature(5), mach(6),
// -- dimensioanl_density(7), dimensioanl_u(8), dimensioanl_v(9),
// -- dimensioanl_w(10), dimensioanl_pressure(11), dimensioanl_temperature(12).
// Important Warning: Array size of probeVariables MUST be equal to nProbeVariables!!!
// probeVariables order must from small to big.
// probeVariablesInterpolationMethod: Interpolation method used to compute the probe variables.
@ -761,12 +785,13 @@ string probesDefineFile = "bin/probes_XYZ.dat";
int searchCellsMethod = 0;
int nProbeVariables = 7;
int probeVariables[] = [0, 1, 2, 3, 4, 5, 6];
int nProbeVariables = 14;
int probeVariables[] = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13];
int probeVariablesInterpolationMethod = 0;
//-----------------------------------------------------------------------
# Turbulence Parameter #
//-----------------------------------------------------------------------
#************************************************************************
# Turbulence Parameter *
#************************************************************************
// turbInterval: Iteration number of turbulence.
// kindOfTurbSource: Kinds of turbulent source.
// 0 -- Original.
@ -774,15 +799,12 @@ int probeVariablesInterpolationMethod = 0;
// transitionType: transition model type
// 0 -- none.
// 2 -- gama-re-theta.
// turbIntensity: (valid while greater than 0.0 ) turbulent intensity of free stream(*100) in transition
// freeturbIntensitySRModify: to use SR modify in free stream turbulent intensity decay or not
// turbIntensity: (valid while greater than 0.0 ) turbulent intensity of free stream(*100) in transition.
// freeturbIntensitySRModify: to use SR modify in free stream turbulent intensity decay or not.
int turbInterval = 1;
int turbOrderStruct = 2;
int kindOfTurbSource = 0;
int mod_turb_res = 0;
double turb_relax = 1.0;
double freeStreamViscosity = 1.0e-3;
double muoo = 3.0;
double kwoo = 5.0;
@ -791,28 +813,27 @@ double turbIntensity = -1.0;
int freeturbIntensitySRModify = 0;
double freeDecayXLocation = 0.0;
int compressibleCorrection = 0;
int prandtlNumberCorrection = 0;
int transitionMaFix = 1;
# maximum eddy viscosity (myt/my) max.
// maximum eddy viscosity (myt/my) max.
double eddyViscosityLimit = 1.0e10;
int monitor_vistmax = 0;
//-----------------------------------------------------------------------
# LES Parameter #
//-----------------------------------------------------------------------
#************************************************************************
# LES Parameter *
#************************************************************************
// iLES: Create LESSolver or not.
// = 1 - Create LESSolver;
// != 1 - not.
// = 1 -- Create LESSolver;
// != 1 -- not.
// amplitudeofDisturb: Amplitude of adding disturb.
// disturbstep: Unsteady time step or steady iteration of adding random disturb.
// iterdisturb: Add random disturb in every sub-iter or only first sub-iter.
// = 0 - in only first sub-iter;
// != 0 - in every sub-iter.
// = 0 -- in only first sub-iter;
// != 0 -- in every sub-iter.
// ipraddisturb: Add density and pressure disturb or not.
// ibodyforce: Add body force in source flux of NS equations or not.
// = 0 - not;
// != 0 - Add body force.
// = 0 -- not;
// != 0 -- Add body force.
// bodyforce: Body force in source flux of NS equations or not.
// utau: friction velocity, using in DNSDisturb.
// sgsmodel: subgrid scale model.
@ -820,23 +841,22 @@ int monitor_vistmax = 0;
// = "dsmCom";
// = "wale";
// = "sigma".
// deltaFunctionType: = 1 - MAX(deltai, deltaj, deltak);
// = 2 - pow(deltai * deltaj *deltak, 1/3);
// = 3 - Devloped by Scotti.
// wallDampingFunctionType: = 0 - no wall function;
// = 1 - van Driest;
// = 2 - developed by Dr. Deng Xiaobing;
// = 3 - developed by Piomelli.
// deltaFunctionType: = 1 -- MAX(deltai, deltaj, deltak);
// = 2 -- pow(deltai * deltaj *deltak, 1/3);
// = 3 -- Devloped by Scotti.
// wallDampingFunctionType: = 0 -- no wall function;
// = 1 -- van Driest;
// = 2 -- developed by Dr. Deng Xiaobing;
// = 3 -- developed by Piomelli.
// turbViscousCutType: turbulent viscosity cut type.
// = 0 - mu_total = mut + mul;
// = 1 - mu_total = max(mut-mul,0)+ mul;
// = 2 - mu_total = max(mut ,0)+ mul.
// = 0 -- mu_total = mut + mul;
// = 1 -- mu_total = max(mut-mul, 0) + mul;
// = 2 -- mu_total = max(mut , 0) + mul.
// smagConstant: constant of smagorinsky model.
// waleConstant: constant of wale model.
// filterDirection [3]: filter variables in i, j, k direction or not.
// averageDirection[3]: average variables in i, j, k direction or not.
// isotropicConstant: constant of isotropic part of SGS stress.
int iLES = 0;
string sgsmodel = "smagorinsky";
int deltaFunctionType = 2;
@ -852,9 +872,9 @@ double testFilterScale = 2.0;
int averageWidth = 1;
int monitorNegativeConstant = 0;
//-----------------------------------------------------------------------
# Other Parameters for Hypersonic Non-equilibrium Gas #
//-----------------------------------------------------------------------
#************************************************************************
# Other Parameters for Hypersonic Non-equilibrium Gas *
#************************************************************************
// dg_high_order:
// 0 -- generic order accuracy.
// 1 -- high order accuracy.
@ -862,9 +882,6 @@ int monitorNegativeConstant = 0;
// 0 -- gas model is fixed in the codes.
// 1 -- gas model is imported from library files.
// isAdaptiveSolver: isAdaptiveSolver = 0 indicates the generic Navier-Stokes solver,
// isAdaptiveSolver>0 indicates the HyFlow self-adaptive solver.
// 1 -- using HyFlow self-adaptive solver where the switch is controlled by the total iteration steps.
// 2 -- using HyFlow self-adaptive solver where the switch is controlled by variation of the key residual.
// nm: Equation number of the physics, but is out of commision now.
// 4 -- for 2D.
// 5 -- for 3D.
@ -886,14 +903,13 @@ int monitorNegativeConstant = 0;
// nEquilibriumGas: the variable is valid when the condition of nchem = 0 is satisfied.
// 0 -- perfect gas.
// 5, 7, 11 -- equilibrium gas, meanwhile, its value denotes the number of gas component.
// nPCWCycleStep: the maximum step number of iteration in the module of computing species mass fractions with the partial catalytic wall(PCW) condition.
// the value equals to or is greater than 1, and 3 is for default value.
// nRETCycleStep: the maximum step number of iteration in the module of computing radiation equilibrium temperature on wall.
// the value equals to or is greater than 1, and 3 is for default value.
// nSLIPCycleStep:the maximum step number of iteration in the module of computing slip temperature, slip velocity and slip species mass fraction.
// the value equals to or is greater than 1, and 3 is for default value.
// nPCWCycleStep: The maximum step number of iteration in the module of computing species mass fractions with the partial catalytic wall(PCW) condition.
// The value equals to or is greater than 1, and 3 is for default value.
// nRETCycleStep: The maximum step number of iteration in the module of computing radiation equilibrium temperature on wall.
// The value equals to or is greater than 1, and 3 is for default value.
// nSLIPCycleStep:The maximum step number of iteration in the module of computing slip temperature, slip velocity and slip species mass fraction.
// The value equals to or is greater than 1, and 3 is for default value.
// nSlipBCModel: The computational model of slip boundary conditions.
// 0 -- no slip.
// 1 -- the conventional Maxwell slip conditions.
// 2 -- the Gokcen slip conditions.
@ -913,10 +929,13 @@ int monitorNegativeConstant = 0;
// 1 -- One-temperature model.
// 2 -- Two-temperature model.
// 3 -- Three-temperature model.
// isUseNoneqCond:
// 0 -- compute the source terms without any conditions.
// 1 -- compute the source terms using the non-equilibrium condition.
// frozenCondition: the threshold value of frozen chemical flow condition, 0.1 is the default value.
// nIdealState: whether take all gas species as ideal gas for gas-mixture process.
// 0 -- No.
// 1 -- Yes.
// nTEnergyModel: the method to computing temperature energy model.
// 1 -- Yes. // nTEnergyModel: the method to computing temperature energy model.
// 0 -- the energy term is computed using the conventional method.
// 1 -- the energy term is computed using the polynomial fitting method.
// 2 -- the energy term is computed using the piecewise polynomial fitting method.
@ -946,14 +965,13 @@ int monitorNegativeConstant = 0;
// 1.0 -- proposed by Maxwell.
// sqrt(2/PI)~0.8 -- used for "micro-slip", namely the actual velocity slip at the wall.
// 1.146 -- proposed for an additional "fictitious" velocity slip.
// chemicalRelaxCorf: The value is in range of [0.001, 1.0].
// spectrumRadiusCoef: The value is in range of [0.0, 2.0].
// staticPressureRelaxCorf: The value is in range of [0.1, 1.0].
// nIsChemicalFreeze: the flag to freeze the chemical reactions.
// 0 -- not freeze, the chemical reaction sources will be calculated.
// 1 -- freezes the chemical reactions, the chemical reaction sources will not be calculated.// veTemperatureMin: The minimum of Tv and Te
// 1 -- freezes the chemical reactions, the chemical reaction sources will not be calculated.
// veTemperatureMin: The minimum of Tv and Te.
// maxViscous: the maximum of Viscous.
// trTemperatureMin: the minimum value of trTemperature.
// veTemperatureMin: the minimum value of veTemperature.
@ -965,36 +983,34 @@ int monitorNegativeConstant = 0;
// nSpeciesLimit: limitter of gas species
// 0 -- not used.
// 1 -- used.
// nTurblenceForChemical: the coupled mode of Turblence and Chemical reaction
// nTurblenceForChemical: the coupled mode of Turblence and Chemical reaction.
// 0 -- method 0.
// 1 -- method 1.
// nViscosityFluxSublevelModified: Modified for ViscosityFlux on Sublevel grid
// nViscosityFluxSublevelModified: Modified for ViscosityFlux on Sublevel grid.
// 0 -- not used.
// 1 -- used.
// nViscosityPeModified: Pe Modified for ViscosityCoef
// nViscosityPeModified: Pe Modified for ViscosityCoef.
// 0 -- not used.
// 1 -- used.
// nChemcalSourceModified: Modified on ChemcalSource
// nChemcalSourceModified: Modified on ChemcalSource.
// 0 -- not used.
// 1 -- used.
// nChemcalSourceEsMethod: Modified on ChemcalSource
// 0 -- approximation algorithm 1 (Ori.)
// 1 -- approximation algorithm 2 (New)
// nChemcalSourceEsMethod: Modified on ChemcalSource.
// 0 -- approximation algorithm 1 (Ori).
// 1 -- approximation algorithm 2 (New).
// nMaxStepTemperature: the iterative steps of temperature.
// veTemperatureMinModified: Modified on the minimum of Tve for Cvvs
// 0 -- not used
// 1 -- used
// nDiagonalModified: Modified on Diagonal
// 0 -- not used
// 1 -- Ori.
// 2 -- new
// veTemperatureMinModified: Modified on the minimum of Tve for Cvvs.
// 0 -- not used.
// 1 -- used.
// nDiagonalModified: Modified on Diagonal.
// 0 -- not used.
// 1 -- new.
// nDiagonalModifiedTurb: Modified on Diagonal for turbulence.
// 0 -- not used.
// 1 -- new.
// nGradPrimtiveMethod:
// 0 -- Ori.
// 1 -- new
// 1 -- new.
// nAblation:
// 0 -- The wall ablation is not computed.
// 1 -- The wall ablation is computed.
@ -1017,8 +1033,8 @@ int monitorNegativeConstant = 0;
// "Mars-Pa8" is for Park model of Mars gas, "Mars-Mc8" for McKenzie model of Mars gas.
// "Combustion-12" -- indicates the Combustion Chamber Gas Model which includes 12-species-20-reactions.
// "Gas-Mixture" -- indicates the process of mixing gas without reacting.
// for struct solver mixing two species£¨SpeciesA, SpeciesB£©.
// for unstruct solver mixing multi-species£¨O2 NO CO CO2 H2 N2 Air CH4£©.
// for struct solver mixing two species<65><73>SpeciesA, SpeciesB<73><42>.
// for unstruct solver mixing multi-species<65><73>O2 NO CO CO2 H2 N2 Air CH4<48><34>.
// For self-definition model, the gasfile is used to indicate the file path of the new gas model.
// speciesName: Used to list the names of each species, while each species name is separated by the symbol of comma.
// initMassFraction: Used to list the initial mass fractions of species in accordance with the sequence of names in the parameter speciesName.
@ -1040,13 +1056,16 @@ int monitorNegativeConstant = 0;
// firstStepError : the residual error of the first step iteration for the self-adaptive calculation.
// secondStepError : the residual error of the second step iteration for the self-adaptive calculation.
// thirdStepError : the residual error of the third step iteration for the self-adaptive calculation.
// useHyflowSetting : Setting for HyFLOW GUI.
// 0 -- PHengLEI
// 1 -- HyFLOW
// nProtectData: Use the continuation file data protection mechanism.
// 0 -- no
// 1 -- yes
// 0 -- no.
// 1 -- yes.
// nTvChange: Judge whether the Tv equals Ttr.
// 0 -- yes.
// 1 -- no.
// isMoleFractionType: 1 indicates the mass fractions, or else the mole fractions.
// nFraction: the initial fractions type of species.
// 0 -- mass fraction.
// 1 -- mole fraction.
int dg_high_order = 0;
int iapplication = 0;
int isAdaptiveSolver = 0;
@ -1114,6 +1133,7 @@ double densityMin = 1.0e-8;
double densityMinFactor = 0.1;
double tAdjustmentFactor = 10.0;
double iniSpeedCoef = 1.0;
int iniSpeedMode = 0;
int nDebug = 0;
int nSpeciesLimit = 1;
@ -1125,18 +1145,21 @@ int nChemcalSourceEsMethod = 1;
int nMaxStepTemperature = 5;
int veTemperatureMinModified = 1;
int nDiagonalModified = 0;
int nDiagonalModifiedTurb = 0;
int nGradPrimtiveMethod = 1;
int nInviscidFluxModify = 1;
int nQlLimitMethod = 2;
int nSpeciesForWallMethod = 1;
int nDensityForWallMethod = 0;
int wallMultiTemperature = 0;
int nProtectData = 0;
int useHyflowSetting = 0;
int nAblation = 0;
int isInjection = 0;
int nViscosityModel = 0;
int nMarsModel = 0;
int nTvChange = 0;
int isMoleFractionType = 0;
string gasfile = "DK5";
//string gasfile = "./chemical/Dunn-Kang_air5s11r.dat";
string speciesName = "O, O2, NO, N, N2";
@ -1173,9 +1196,17 @@ double molecularWeightSpeciesB = 30.0;
//string speciesName = "O2, N2";
//string initMassFraction = "1.0, 0.0";
int nFraction = 0;
int nContinueModel = 0;
int nChemicalFlowStep = 0;
int ifStartFromPerfectGasResults = 0;
int isUseNoneqCond = 0;
double frozenCondition = 0.01;
int nLeakageMonitor = 0;
double totalLeakageVolume = 1000.0;
double monitorThresholdValue = 0.05;
double sprayFactor = 0.0;
#########################################################################
// Multi-Grid parameters.
@ -1196,7 +1227,6 @@ int ifStartFromPerfectGasResults = 0;
// 1 -- zero order.
// 2 -- first-order. (default)
// mgCorrectionLimit: Multi-grid correction limit.
int nMGLevel = 1;
int MGCoarsestIteration = 1;
int MGPreIteration = 1;
@ -1226,9 +1256,9 @@ string holeFullFileName = "./grid/holeFullFile.dat";
string linkFileName = "./grid/topology.dat";
string zoneInverseFileName = "./grid/zoneInverseMapping.inp";
#########################################################################
# High Order Struct Solver #
#########################################################################
#************************************************************************
# High Order Struct Solver *
#************************************************************************
// isFVMOrFDM:
// 0 -- NSSolverStruct using Finite Volume Method.
// 1 -- NSSolverStruct using Finite Differ Method.
@ -1273,10 +1303,29 @@ int allReduceStep = 1;
// codeOfOversetGrid: Overlapping(overset) grid or not.
// 0 -- NON-overlapping grid.
// 1 -- Overlapping grid.
// oversetInterpolationMethod: the method of overset interpolation while field simulation
// oversetInterpolationMethod: the method of overset interpolation while field simulation.
// 0 -- set the acceptor cell value by donor cell value.
// 1 -- set the acceptor cell value by distance weight of donor cell value.
// readOversetFileOrNo: Whether to read overset-file(.ovs) that has been generated.
// 0 -- no.
// 1 -- yes.
// symetryOrNot: If there exist symetryplanes(XY plane, the coordinate of Z direction is 0) in
// the current overset grid(only for three dimension).
// 0 -- no.
// 1 -- yes.
// readInAuxiliaryInnerGrid: Whether to read auxiliary inner grid.
// 0 -- no.
// 1 -- yes.
// walldistMainZone: The initial value of background grid which does not exist wall boundary condition.
// toleranceForOversetSearch: The tolerance of overset searching zone to judge whether the obtained node is in the current computing cell.
// toleranceForOversetBox: The tolerance of building the minimum box of computing cells in the overlapping region.
// twoOrderInterpolationOrNot: The number of interpolated cell layers in the overlapping boundary.
// 0 -- one layer.
// 1 -- two layers.
// keyEnlargeOfActiveNodes: The number of enlarged overset-boundary layers in the buffer region.
// outTecplotOverset: Whether to dump out the flowfield data after the progress of overset configure.
// 0 -- no.
// 1 -- yes.
int codeOfOversetGrid = 0;
int oversetInterpolationMethod = 0;
int readOversetFileOrNot = 0;
@ -1295,7 +1344,6 @@ int twoOrderInterpolationOrNot = 0;
int keyEnlargeOfActiveNodes = 0;
int outTecplotOverset = 0;
int outPutOversetVisualization = 0;
int numberOfMovingBodies = 2;
// ----------------- ALE configuration ------------------------------
@ -1306,34 +1354,40 @@ double referenceLength = 1.0;
double referenceVelocity = 1.0;
double referenceDensity = 1.0;
int strategyForFaceNormalVelocity = 0; //0-By Sweeping volume; 1-By face center 1st; 2-By face center 2nd;
int strategyForGCLSource = 0; //0-present; 1-Ahn;
int strategyForFaceNormalVelocity = 0; // 0-By Sweeping volume; 1-By face center 1st; 2-By face center 2nd.
int strategyForGCLSource = 0; // 0-present; 1-Ahn.
//0:1st-Admas-Bashforth; 1:2nd-Admas-Bashforth; 2:1st-Implicit-Euler; 3:2nd-Implicit Euler; 4:2nd-Adams-Moulton; 5:3rd-Adams-Moulton
// 0: 1st-Admas-Bashforth; 1: 2nd-Admas-Bashforth; 2: 1st-Implicit-Euler; 3: 2nd-Implicit Euler; 4: 2nd-Adams-Moulton; 5: 3rd-Adams-Moulton.
int methodForKineticEquation = 0;
double relaxParameterOfKinetic = 1.0;
#########################################################################
# motive information #
#########################################################################
#************************************************************************
# motive information *
#************************************************************************
int numberOfMovingBodies = 1;
############################## body0 ##############################
//mass of parts
// mass of parts.
double mass_0 = 1.0;
//mass matrix of parts Ixx Iyy Izz Ixy Ixz Iyz
// gravity of parts (along negative direction in Y-axis, eg. 9.8).
double gravity_0 = 0.0;
// mass matrix of parts Ixx Iyy Izz Ixy Ixz Iyz.
double massMatrix_0[] = 1e-7, 1e-6, 1e-6, 0.0, 0.0, 0.0;
//initial six DOF position information of parts. xc yc zc
// initial six DOF position information of parts. xc yc zc.
double massCenter_0[] = 0.0, 0.0, 0.0;
//initial six DOF position information of parts. angleX angleY angleZ
// if reset mass center while restart.
int resetMassCenter_0 = 0;
// position offset of parts. dx dy dz.
double massCenterDxyz_0[] = 0.0, 0.0, 0.0;
// initial six DOF position information of parts. angleX angleY angleZ.
double attitudeAngle_0[] = 0.0, 0.0, 0.0;
//initial six DOF move information of parts. vc vy vz
// initial six DOF move information of parts. vc vy vz.
double massCenterVelocity_0[] = 0.0, 0.0, 0.0;
//initial six DOF move information of parts. omigX omigY omigZ
// initial six DOF move information of parts. omigX omigY omigZ.
double angularVelocity_0[] = 0.0, 0.0, 0.0;
// the object that the parts belong to.
int fartherIndex_0 = -1;
//the assembly position of the parts. xc yc zc angleX angleY angleZ
// the assembly position of the parts. xc yc zc angleX angleY angleZ.
double configPamameter_0[] = 0.0, 0.0, 0.0, 0.0, 0.0, 0.0;
// the move pattern of the parts.
// -1 given motion partten.
@ -1349,23 +1403,24 @@ double configPamameter_0[] = 0.0 ,0.0 ,0.0 ,0.0 ,0.0
int RBDMethod_0 = 0;
double amplitude_0 = 0.0;
double reduceFrequency_0 = 0.0;
//direction of rotation
// direction of rotation.
// 1 -- clockwise from the point of view along the positive x axis.
// -1 -- anticlockwise from the point of view along the positive x axis.
int direction_0 = -1;
double rotateFrequency_0 = 0.0;
//string uDFSixDofFileName_0 = "./Bin/UDFSixDof.Parameter";
//additional force (system axis) fX fY fZ
// dimensional physical time for additional force(s).
double addedForceTime_0[] = 0.0;
// additional force(inertia system) fX fY fZ.
double addedForce_0[] = 0.0, 0.0, 0.0;
//additional moment of Force (system axis) mX mY mZ
// additional moment(inertia system) mX mY mZ.
double addedMoment_0[] = 0.0, 0.0, 0.0;
// the deformation method of the parts.
int morphing_0 = 0;
// post indentify
// post indentify.
int integralOrder = 4;
// ---------------- ATP read --------------------------------------------
//@int inflowParaType = 0;
//@double refReNumber = 6.5e6;
@ -1379,18 +1434,34 @@ int integralOrder = 4;
//@string outLetFileName = "./bin/subsonicOutlet.hypara";
//@double refDimensionalVelocity = 0;
//@double refDimensionalDensity = 0;
#########################################################################
# Old Parameter #
#########################################################################
//@string weatherDataFilePath = "./WRFData/";
//@double longitude = 110.95
//@double latitude = 19.61;
#************************************************************************
# Old Parameter *
#************************************************************************
int isPlotVolumeField = 0;
#************************************************************************
# partial flow field setting Parameter *
#************************************************************************
//int nPartialParameter = 0; // 0/1/2
//int nNumberOfPartialField = 0; //
//int nStartGridIndex[] = [0];
//int nEndGridIndex[] = [0];
#########################################################################
# Incompressible Parameter #
#########################################################################
//double partialCFL[] = [0.0];
//double partialSpeedCoef[] = [0.0];
//double partialSpeed[] = [0.0];
//double partialAttackd[] = [0.0];
//double partialSlide[] = [0.0];
//double partialPressure[] = [0.0];
//double partialTemperature[] = [0.0];
//double partialMassFractions[] = [0.0];
#************************************************************************
# Incompressible Parameter *
#************************************************************************
int isSolveEnergyEquation = 0;
int isSolveTurbEquation = 0;
int isSolveSpeciesEquation = 0;

View File

@ -4,9 +4,12 @@
// gridtype: Grid type for generation, conversion, reconstruction, merging.
// 0 -- Unstructured grid.
// 1 -- Structured grid.
// axisup: Type of Cartisien coordinates system, used in grid conversion.
// 1 -- Y upward. (default)
// 2 -- Z upward.
// nAxisRotateTimes: number of axis rotating times, zero (default) meaning without rotating.
// axisRotateOrder : axis rotating order.
// 1 -- X-axis.
// 2 -- Y-axis.
// 3 -- Z-axis.
// axisRotateAngles: axis rotating angles (degree), which are corresponding to the axis rotating order
// from_gtype: Type of grid data type in grid conversion process.
// -1 -- MULTI_TYPE.
// 1 -- PHengLEI, *.fts.
@ -18,7 +21,9 @@
// 7 -- Hybrid, include both of unstructured and structured grid, *.fts.
// 8 -- GMSH, *.msh.
int gridtype = 1;
int axisup = 1;
int nAxisRotateTimes = 0;
int axisRotateOrder[] = [1, 2, 3];
double axisRotateAngles[] = [0.0, 0.0, 0.0];
int from_gtype = 2;
#########################################################################

View File

@ -4,9 +4,12 @@
// gridtype: Grid type for generation, conversion, reconstruction, merging.
// 0 -- Unstructured grid.
// 1 -- Structured grid.
// axisup: Type of Cartisien coordinates system, used in grid conversion.
// 1 -- Y upward. (default)
// 2 -- Z upward.
// nAxisRotateTimes: number of axis rotating times, zero (default) meaning without rotating.
// axisRotateOrder : axis rotating order.
// 1 -- X-axis.
// 2 -- Y-axis.
// 3 -- Z-axis.
// axisRotateAngles: axis rotating angles (degree), which are corresponding to the axis rotating order
// from_gtype: Type of grid data type in grid conversion process.
// -1 -- MULTI_TYPE.
// 1 -- PHengLEI, *.fts.
@ -18,7 +21,9 @@
// 7 -- Hybrid, include both of unstructured and structured grid, *.fts.
// 8 -- GMSH, *.msh.
int gridtype = 1;
int axisup = 2;
int nAxisRotateTimes = 1;
int axisRotateOrder[] = [1];
double axisRotateAngles[] = [90.0];
int from_gtype = 2;
#########################################################################

View File

@ -8,6 +8,7 @@
// Platform for Hybrid Engineering Simulation of Flows +
// China Aerodynamics Research and Development Center +
// (C) Copyright, Since 2010 +
// PHengLEI 2212 +
//+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
###########################################################################
# Default parameters for Grid conversion #
@ -46,19 +47,24 @@ int gridobj = 1;
int multiblock = 0;
int iadapt = 0;
int SymmetryFaceVector = 1;
int gridReorder = 0;
int faceReorderMethod = 0;
// axisup: Type of Cartisien coordinates system, used in grid conversion.
// 1 -- Y upward. (default)
// 2 -- Z upward.
int axisup = 1;
// nAxisRotateTimes: number of axis rotating times, zero (default) meaning without rotating.
// axisRotateOrder : axis rotating order.
// 1 -- X-axis.
// 2 -- Y-axis.
// 3 -- Z-axis.
// axisRotateAngles: axis rotating angles (degree), which are corresponding to the axis rotating order.
int nAxisRotateTimes = 0;
int axisRotateOrder[] = [1, 2, 3];
double axisRotateAngles[] = [0.0, 0.0, 0.0];
// omit_no_bound_bc: What's boundary condition for the type of "no_boundary_condition".
// 0 -- Interface. (default)
// 1 -- Physical boundary condition, used in Hybrid solver.
int omit_no_bound_bc = 0;
int omitRepeatInterface = 1;
//-----------------------------------------------------------------------
# Grid data type #
@ -89,7 +95,6 @@ int dumpOldGrid = 0;
int numberOfGridFile = 1;
string from_gfile = "./grid/rae2822_hybrid2d.cas";
string from_gfile1 = "";
string out_gfile = "./grid/flat_laminr_133_85_2d.fts";
// ----------------- some advanced choices ------------------------------
@ -178,7 +183,6 @@ double influencePara = 25.0;
which only support one direction.
// rotationAngle: The relative angle between two periodic face.
which is recorded in degrees.
int periodicType = 0;
double translationLength[] = [0.0, 0.0, 0.0];
double rotationAngle = 0.0;
@ -192,7 +196,6 @@ double rotationAngle = 0.0;
// 2 -- refine structured grid.
// maxproc: The number of partition zones that want to be divided into.
// numberOfMultifile: The number of partition grid files that want to be dumped out.
int pgridtype = 0;
int maxproc = 4;
int numberOfMultifile = 1;
@ -207,8 +210,8 @@ int blockIndexOfMark = 0;
int cellIndexOfMark[] = [185, 30, 1];
// parallelStrategy:
//! -# 0 : each zone is assigned to the one that defined in grid partition procedure.
//! -# 1 : random assigned for each zone or by some else ways.
// 0 -- each zone is assigned to the one that defined in grid partition procedure.
// 1 -- random assigned for each zone or by some else ways.
int parallelStrategy = 1;
//-----------------------------------------------------------------------
@ -232,7 +235,6 @@ string partition_grid_file = "./grid/sphere_mixed__4.fts";
// 1 -- perfect balance.
// maxproc -- perfect imbalance.
// 1.05 -- recommended.
int omit_no_bound_bc = 0;
int npartmethod = 1;
int parallelPartitionMethod = 2;
@ -253,24 +255,30 @@ int numberOfMultigrid = 1;
// intervalStepSample: The step intervals for monitored probes variables file 'sample.dat' saved.
// intervalStepForce: The step intervals for aerodynamics coefficients file 'aircoef.dat' saved.
// intervalStepRes: The step intervals for residual file 'res.dat' saved.
// ifLowSpeedPrecon: Precondition process to accelerate convergence for low speed flow.
// 0 -- no precondition process. (default, mach > 0.3)
// 1 -- carry out precondition process. (mach number <= 0.3)
int maxSimuStep = 20000;
int intervalStepFlow = 1000;
int intervalStepPlot = 1000;
int intervalStepSample = 1000;
int intervalStepForce = 100;
int intervalStepRes = 10;
int ifLowSpeedPrecon = 0;
// compressible:
// 0 -- incompressible flow.
// 1 -- compressible flow. (default)
int compressible = 1;
// ifLowSpeedPrecon: Precondition process to accelerate convergence for low speed flow.
// 0 -- no precondition process. (default, mach > 0.3)
// 1 -- carry out precondition process. (mach number <= 0.3)
// Kprec: The coefficient K for the cut-off velocity.
// 1.0~3.0 is suggested. (default, 3.0)
// preconFarfieldBCMethod: The precondition method for farfield boundary condition.
// 0 -- precondition far-field boundary based on riemann invariants.
// 1 -- Turkel's simplified far-field boundary condition.
int ifLowSpeedPrecon = 0;
double Kprec = 3.0;
int preconFarfieldBCMethod = 1;
//-----------------------------------------------------------------------
# CFD Control Parameter #
//-----------------------------------------------------------------------
@ -281,9 +289,12 @@ int compressible = 1;
// 0 -- the nondimensional conditions.
// 1 -- the flight conditions.
// 2 -- the experiment conditions.
// 3 -- the subsonic boundary conditions.
// 3 -- the subsonic boundary conditions. (Useless!)
// 4 -- the condition that the velocity, temperature and density are given.
// 5 -- the condition that the velocity, temperature and pressure are given.
//flowInitMethod: Flow field initialization method.
// 0 -- The entire flow field is initialized according to Infinite velocity.
// 1 -- The velocity near the wall is initialized according to the boundary layer of the plate.
// refReNumber: Reynolds number, which is based unit length, unit of 1/m.
// refDimensionalTemperature: Dimensional reference temperature, or the total temperature only for the experiment condition.
// freestream_vibration_temperature: Dimensional freestream vibration temperature.
@ -303,11 +314,11 @@ int compressible = 1;
// condition is radiation equilibrium temperature, and 0.8 is the default value.
// refMolecularWeight: the reference molecular weight of gas used for perfect gas. The unit is g/mol.
// Generally, the gas is air. Sometimes, it is experiment gas, such as Nitrogen, Argon, and so on.
int directionMethod = 0;
double refMachNumber = 0.73;
double attackd = 2.79;
double angleSlide = 0.00;
int flowInitMethod = 0;
int inflowParaType = 0;
double refReNumber = 6.5e6;
@ -321,14 +332,6 @@ double freestream_vibration_temperature = 300.00;
//double refDimensionalTemperature = 6051.024; // The total temperature, T*(1+(refGama-1)*M*M/2).
//double refDimensionalPressure = 4.299696E09; // The total pressure, p*(T0/T)^(refGama/(refGama-1)).
//int inflowParaType = 3;
//int nsubsonicInlet = 1;
//int nsubsonicOutlet = 1;
//string inLetFileName = "./bin/subsonicInlet.hypara";
//string outLetFileName = "./bin/subsonicOutlet.hypara";
//double refDimensionalTemperature = 288.144;
//double refDimensionalPressure = 1.01313E05;
// The velocity, temperature and density are fixed.
//int inflowParaType = 4;
//double refDimensionalVelocity = 1000.0;
@ -341,9 +344,15 @@ double freestream_vibration_temperature = 300.00;
// The MachNumber, temperature and pressure are fixed.
//int inflowParaType = 6;
//double refDimensionalTemperature = 293;
//double refDimensionalTemperature = 293.0;
//double refDimensionalPressure = 8886.06;
// The velocity, temperature and pressure are read from file.
//int inflowParaType = 7;
//string weatherDataFilePath = "./WRFData/";
//double longitude = 110.95
//double latitude = 19.61;
double wallTemperature = -1.0;
double radiationCoef = 0.8;
@ -357,35 +366,35 @@ double forceReferenceArea = 1.0; // unit of meter^2.
double TorqueRefX = 0.0; // unit of meter.
double TorqueRefY = 0.0; // unit of meter.
double TorqueRefZ = 0.0; // unit of meter.
double knudsenLength = 1.0; // unit of meter.
double refMolecularWeight = 28.9644; // unit of g/mol.
//-----------------------------------------------------------------------
# Spatial Discretisation #
//-----------------------------------------------------------------------
#*******************************************************************
#************************************************************************
# Struct Solver *
#*******************************************************************
#************************************************************************
// inviscidSchemeName: Spatial discretisation scheme of struct grid.
// Using this when solve structered grid or hybrid.
// -- "vanleer", "steger", "hlle", "lax_f".
// -- "roe", "modified_roe".
// -- "vanleer", "steger", "hlle", "lax_f",
// -- "roe", "modified_roe",
// -- "ausm+", "ausm+w", "ausm+up", "ausmdv", "ausmpw", "ausmpw+".
// isWennScheme: If using WENN Scheme of struct grid.
// 0 -- NO. (default)
// 1 -- Yes.
// str_limiter_name: Limiter of struct grid.
// -- "vanalbada", "vanleer", "minmod", "smooth", "minvan", "3rdsmooth", "3rd_minmod_smooth".
// -- "nolim", no limiter.
// -- "vanalbada_clz", clz supersonic version.
// -- "weno3_js", "wenn3_prm211", "wenn3_zm", "wenn3_zes2", "wenn3_zes3"
// -- "vanalbada", "vanleer", "minmod", "smooth", "minvan", "3rdsmooth", "3rd_minmod_smooth",
// -- "nolim", no limiter,
// -- "vanalbada_clz", clz supersonic version,
// -- "weno3_js", "wenn3_prm211", "wenn3_zm", "wenn3_zes2", "wenn3_zes3".
string inviscidSchemeName = "roe";
int isWennScheme = 0;
string str_limiter_name = "vanalbada";
#*******************************************************************
#************************************************************************
# UnStruct Solver or Common *
#*******************************************************************
#************************************************************************
// viscousType: Viscous model.
// 0 -- Euler.
// 1 -- Lamilar.
@ -410,11 +419,11 @@ string str_limiter_name = "vanalbada";
// 3 -- IDDES.
// uns_scheme_name: Spatial discretisation scheme of Unstruct grid.
// Using this when solve Unstructered grid or hybrid.
// -- "vanleer", "roe", "steger", "kfvs", "lax_f", "hlle".
// -- "vanleer", "roe", "GMRESRoe", "GMRESSteger", "steger", "kfvs", "lax_f", "hlle",
// -- "ausm+", "ausmdv", "ausm+w", "ausmpw", "ausmpw+".
// uns_limiter_name: Limiter of Unstruct grid.
// -- "barth", "vencat", "vanleer", "minmod".
// -- "vanalbada", "smooth", "nnd", "lpz", "1st".
// -- "barth", "vencat", "vanleer", "minmod",
// -- "vanalbada", "smooth", "nnd", "lpz", "1st",
// -- "nolim", no limiter.
// uns_vis_name: Discretisation method of viscous term.
// -- "std", "test", "aver", "new1", "new2".
@ -442,7 +451,7 @@ string str_limiter_name = "vanalbada";
// 3 -- Harten type, which is default used.
// roeEntropyScale: Entropy fix (correction) coefficient scale, default is 1.0.
// It is used to scale the default Roe entropy fix coefficients.
// AusmpwPlusLimiter: A Limiter to make "function w" not change acutely in AusmpwPlus scheme, default is 1.0
// AusmpwPlusLimiter: A Limiter to make "function w" not change acutely in AusmpwPlus scheme, default is 1.0.
//int viscousType = 0;
//string viscousName = "Euler";
@ -475,9 +484,9 @@ double roeEntropyScale = 1.0;
double AusmpwPlusLimiter = 1.0;
//-----------------------------------------------------------------------
# Temporal Discretisation #
//-----------------------------------------------------------------------
#************************************************************************
# Temporal Discretisation *
#************************************************************************
// iunsteady: Steady or unsteady.
// 0 -- steady.
// 1 -- unsteay.
@ -504,11 +513,18 @@ double AusmpwPlusLimiter = 1.0;
// 6 -- Jacobian iteration.
// 7 -- Line LU-SGS.
// 8 -- Matrix LU-SGS.
// 9 -- GMRES.
// iSimplifyViscousTerm: Simplify the computation of viscous term in the Block LU-SGS method. The default value assigns 1 that could speed up the computation.
// Otherwise, the viscous Jacobian matrix Mv should be computed that will increase the memory and time in iteration of the BLUSGS method.
// CFLStart: Started cfl number.
// CFLEnd: End cfl number.
// CFLVaryStep: The number of step when cfl increase from CFLStart to CFLEnd.
// GMRESCFLScale : CFL = CFLStart * GMRESCFLScal^iteration.
// OriginalTscheme : Used for LUSGS and GMres hybrid computing.
// useLUSGSprecond: Initialize flow field for GMRES.
// 0 --Initialize by first order Jacobian matrix.
// 1 --Initialize by LUSGS.
// GMRESInitStep : the number of iteration step of irst order Jacobian matrix or LUSGS for initialize flow field.
// ktmax: Dtratio. dt[i] = MIN(dt[i], ktmax * dtmin / vol[i])
// swapDq: Communication dq between forward/backward sweep of LUSGS or not, default is 0.
// nLUSGSSweeps: Sub iteration of LU-SGS or Block LU-SGS.
@ -533,7 +549,6 @@ double AusmpwPlusLimiter = 1.0;
// 2 -- Pab3D wall function.
// RKStage: The number of Runge-Kutta step.
// lamda: Cofficient of Runge-Kutta step.
int iunsteady = 0;
double physicalTimeStep = 0.01;
double physicalTimeStepDimensional = -0.001;
@ -543,7 +558,7 @@ int ifStaticsReynoldsStress = 0;
int startStatisticStep = 800000;
double statisticalTimePeriod = -1.0;
int statisticMethod = 0;
int linearTwoStepMethods = 1; // 1--BDF1; 2--C-N; 3--BDF2;
int linearTwoStepMethods = 1; // 1--BDF1; 2--C-N; 3--BDF2.
int methodOfDualTime = 3;
int min_sub_iter = 50;
@ -558,7 +573,10 @@ int isUsePreTwall = 0;
double CFLStart = 0.01;
double CFLEnd = 10.0;
int CFLVaryStep = 500;
double GMRESCFLScale = 1.0;
int OriginalTscheme = 9;
int useLUSGSprecond = 1;
int GMRESInitStep = 1000;
double pMaxForCFL = 0.2;
double pMinForCFL = 0.1;
double deltaMaxForCFL = 0.2;
@ -575,7 +593,7 @@ int order = 2;
double visl_min = 0.01;
double turbCFLScale = 1.0;
double csrv = 2.0;
double csrv = 1.0;
double timemax = 1.0e10;
double dtsave = -1.0;
int maxale = 10;
@ -591,10 +609,9 @@ double lamda[] = [0.5, 1.0];
//int RKStage = 4;
//double lamda[] = [0.25, 0.33333333333, 0.5, 1.0];
//-----------------------------------------------------------------------
# File In or Out #
//-----------------------------------------------------------------------
#************************************************************************
# File In or Out *
#************************************************************************
// numberOfGridGroups: The number of grid groups.
// gridfile: The partitioned Grid file path, using relative path,
// which is relative to the working directory.
@ -618,10 +635,8 @@ double lamda[] = [0.5, 1.0];
// nIsComputeWallDist: Whether to compute the wall distance.
// 0 -- Compute wall distance.
// 1 -- Not compute.
//
// protectionFile0 and protectionFile1: Two continuation file of the data protection mechanism.
// wall_heatfluxfile: The file to output the MaxHeatFlux of wall.
int numberOfGridGroups = 1;
string gridfile = "./grid/rae2822_hybrid2d__4.fts";
string wallTemperaturefile = "";
@ -632,10 +647,12 @@ int cellMethodOrNodeMethod = 0;
string resSaveFile = "results/res.dat";
string turbresfile = "results/turbres.dat";
string transitionResFile = "results/transitionRes.dat";
string aircoeffile = "results/aircoef.dat";
string restartNSFile = "results/flow.dat";
string turbfile = "results/turb.dat";
string transitionFile = "results/transition.dat";
string visualfile = "results/tecflow.plt";
string wall_aircoefile = "results/wall_aircoef.dat";
@ -645,11 +662,15 @@ string protectionFile0 = "results/flow0.dat";
string protectionFile1 = "results/flow1.dat";
string wall_heatfluxfile = "results/wall_heatflux.dat";
string protectionTurbFile0 = "results/turb0.dat";
string protectionTurbFile1 = "results/turb1.dat";
string protectionTransitionFile0 = "results/transition0.dat";
string protectionTransitionFile1 = "results/transition1.dat";
int nDumpSurfaceInfo = 0;
string wall_varfile = "";
string jetDefineFile = "bin/jet.hypara";
string sixDofFileName = "results/sixDofInfo.dat";
string derivativeFileName = "results/identify.dat";
string hysteresisFileName = "results/force_beta.plt";
@ -659,7 +680,8 @@ int plotFieldType = 0;
// visualfileType: The file type of visualfile.
// 0 -- Tecplot binary.
// 1 -- Tecplot ASCII.
// 2 -- Ensight binary.
// 3 -- Ensight ASCII.
int visualfileType = 1;
// samplefileMode: The dump mode of sample file.
@ -697,21 +719,21 @@ double upperPlotFieldBox[] = [1.0 1.0 1.0];
// -- vibration temperature(Tv, 33), electron temperature(Te, 34), vibrational energy(Ev, 35), electric energy(Ee, 36),
// -- number density of electron(Ne, 37), dimensioanl density(rho, 38), dimensioanl pressure(p, 39), dimensioanl temperature(T, 40),
// -- gradientUx(41), gradientUy(42), gradientVx(43), gradientVy(44), streamline_u(45), streamline_v(46), streamline_w(47),
// -- transition intermittency(intermittency, 51), -transition momentum thickness reynolds(MomentumThicknessReynolds, 52),
// -- overlap iblank(iblank, 81)
// -- specific heat ratio(gama, 56)
// -- transition intermittency(intermittency, 51), transition momentum thickness reynolds(MomentumThicknessReynolds, 52),
// -- local CFL Number(localCFL, 57), minimal CFL Number(minCFL, 58),
// -- overlap iblank(iblank, 81),
// -- specific heat ratio(gama, 56), Knudsen number(kn, 60), Damkohler number(Da, 61), vibrational nonequilibrium number(Vi, 62).
// Important Warning: Array size of visualVariables MUST be equal to nVisualVariables!!!
// Variables order must from small to big.
//-----------the optional parameters list for the wall boundary condition----------------
// nVisualWallVariables: The number of visual variables on wall.
// visualWallVariables : dumped variable types, listed as following:
// -coefficient of pressure(cp, 0), -coefficient of friction(cf, 1), yplus(2), -non-dimensional heat flux(Q_NonDim, 3), -dimensional heat flux(Q_Dim, 4),
// -pressure on wall(pw, 5), -temperature on wall(Tw, 6), -density on wall(rhow, 7), -heat flux of translational-rotational temperature term(Qtr, 8),
// -heat flux of species diffusion term(Qs, 9), -heat flux of vibrational temperature term(Qv, 10), -heat flux of electron temperature term(Qe, 11),
// -species mass fractions(Ns, 12), -x component of wall velocity(Vx, 13), -y component of wall velocity(Vy, 14), -z component of wall velocity(Vz, 15)
// -slip translational-rotational temperature(Tts, 16), -slip vibrational temperature(Tvs, 17), -slip electron temperature(Tes, 18), -absolute wall velocity(Vs, 19)
// -Stanton number(St, 20), -coefficient of heat rate(Ch, 21), -temperature jump(deltaT, 22), -Grid Reynolds number on wall(Re_w, 23)
// -- coefficient of pressure(cp, 0), coefficient of friction(cf, 1), yplus(2), non-dimensional heat flux(Q_NonDim, 3), dimensional heat flux(Q_Dim, 4),
// -- pressure on wall(pw, 5), temperature on wall(Tw, 6), density on wall(rhow, 7), heat flux of translational-rotational temperature term(Qtr, 8),
// -- heat flux of species diffusion term(Qs, 9), heat flux of vibrational temperature term(Qv, 10), heat flux of electron temperature term(Qe, 11),
// -- species mass fractions(Ns, 12), x component of wall velocity(Vx, 13), y component of wall velocity(Vy, 14), z component of wall velocity(Vz, 15),
// -- slip translational-rotational temperature(Tts, 16), slip vibrational temperature(Tvs, 17), slip electron temperature(Tes, 18), absolute wall velocity(Vs, 19),
// -- Stanton number(St, 20), coefficient of heat rate(Ch, 21), temperature jump(deltaT, 22), Grid Reynolds number on wall(Re_w, 23), Knudsen number(Kn_wall, 24).
int nVisualVariables = 8;
int visualVariables[] = [0, 1, 2, 3, 4, 5, 6, 15];
@ -739,7 +761,9 @@ int dumpStandardModel = 0;
// 1 -- Real cell where the probe is located.
// nProbeVariables: Number of variables want to be dumped for probes monitered.
// probeVariables : Variable types dumped, listed as following:
// -- density(0), u(1), v(2), w(3), pressure(4), temperature(5), mach(6).
// -- density(0), u(1), v(2), w(3), pressure(4), temperature(5), mach(6),
// -- dimensioanl_density(7), dimensioanl_u(8), dimensioanl_v(9),
// -- dimensioanl_w(10), dimensioanl_pressure(11), dimensioanl_temperature(12).
// Important Warning: Array size of probeVariables MUST be equal to nProbeVariables!!!
// probeVariables order must from small to big.
// probeVariablesInterpolationMethod: Interpolation method used to compute the probe variables.
@ -761,12 +785,13 @@ string probesDefineFile = "bin/probes_XYZ.dat";
int searchCellsMethod = 0;
int nProbeVariables = 7;
int probeVariables[] = [0, 1, 2, 3, 4, 5, 6];
int nProbeVariables = 14;
int probeVariables[] = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13];
int probeVariablesInterpolationMethod = 0;
//-----------------------------------------------------------------------
# Turbulence Parameter #
//-----------------------------------------------------------------------
#************************************************************************
# Turbulence Parameter *
#************************************************************************
// turbInterval: Iteration number of turbulence.
// kindOfTurbSource: Kinds of turbulent source.
// 0 -- Original.
@ -774,15 +799,12 @@ int probeVariablesInterpolationMethod = 0;
// transitionType: transition model type
// 0 -- none.
// 2 -- gama-re-theta.
// turbIntensity: (valid while greater than 0.0 ) turbulent intensity of free stream(*100) in transition
// freeturbIntensitySRModify: to use SR modify in free stream turbulent intensity decay or not
// turbIntensity: (valid while greater than 0.0 ) turbulent intensity of free stream(*100) in transition.
// freeturbIntensitySRModify: to use SR modify in free stream turbulent intensity decay or not.
int turbInterval = 1;
int turbOrderStruct = 2;
int kindOfTurbSource = 0;
int mod_turb_res = 0;
double turb_relax = 1.0;
double freeStreamViscosity = 1.0e-3;
double muoo = 3.0;
double kwoo = 5.0;
@ -791,28 +813,27 @@ double turbIntensity = -1.0;
int freeturbIntensitySRModify = 0;
double freeDecayXLocation = 0.0;
int compressibleCorrection = 0;
int prandtlNumberCorrection = 0;
int transitionMaFix = 1;
# maximum eddy viscosity (myt/my) max.
// maximum eddy viscosity (myt/my) max.
double eddyViscosityLimit = 1.0e10;
int monitor_vistmax = 0;
//-----------------------------------------------------------------------
# LES Parameter #
//-----------------------------------------------------------------------
#************************************************************************
# LES Parameter *
#************************************************************************
// iLES: Create LESSolver or not.
// = 1 - Create LESSolver;
// != 1 - not.
// = 1 -- Create LESSolver;
// != 1 -- not.
// amplitudeofDisturb: Amplitude of adding disturb.
// disturbstep: Unsteady time step or steady iteration of adding random disturb.
// iterdisturb: Add random disturb in every sub-iter or only first sub-iter.
// = 0 - in only first sub-iter;
// != 0 - in every sub-iter.
// = 0 -- in only first sub-iter;
// != 0 -- in every sub-iter.
// ipraddisturb: Add density and pressure disturb or not.
// ibodyforce: Add body force in source flux of NS equations or not.
// = 0 - not;
// != 0 - Add body force.
// = 0 -- not;
// != 0 -- Add body force.
// bodyforce: Body force in source flux of NS equations or not.
// utau: friction velocity, using in DNSDisturb.
// sgsmodel: subgrid scale model.
@ -820,23 +841,22 @@ int monitor_vistmax = 0;
// = "dsmCom";
// = "wale";
// = "sigma".
// deltaFunctionType: = 1 - MAX(deltai, deltaj, deltak);
// = 2 - pow(deltai * deltaj *deltak, 1/3);
// = 3 - Devloped by Scotti.
// wallDampingFunctionType: = 0 - no wall function;
// = 1 - van Driest;
// = 2 - developed by Dr. Deng Xiaobing;
// = 3 - developed by Piomelli.
// deltaFunctionType: = 1 -- MAX(deltai, deltaj, deltak);
// = 2 -- pow(deltai * deltaj *deltak, 1/3);
// = 3 -- Devloped by Scotti.
// wallDampingFunctionType: = 0 -- no wall function;
// = 1 -- van Driest;
// = 2 -- developed by Dr. Deng Xiaobing;
// = 3 -- developed by Piomelli.
// turbViscousCutType: turbulent viscosity cut type.
// = 0 - mu_total = mut + mul;
// = 1 - mu_total = max(mut-mul,0)+ mul;
// = 2 - mu_total = max(mut ,0)+ mul.
// = 0 -- mu_total = mut + mul;
// = 1 -- mu_total = max(mut-mul, 0) + mul;
// = 2 -- mu_total = max(mut , 0) + mul.
// smagConstant: constant of smagorinsky model.
// waleConstant: constant of wale model.
// filterDirection [3]: filter variables in i, j, k direction or not.
// averageDirection[3]: average variables in i, j, k direction or not.
// isotropicConstant: constant of isotropic part of SGS stress.
int iLES = 0;
string sgsmodel = "smagorinsky";
int deltaFunctionType = 2;
@ -852,9 +872,9 @@ double testFilterScale = 2.0;
int averageWidth = 1;
int monitorNegativeConstant = 0;
//-----------------------------------------------------------------------
# Other Parameters for Hypersonic Non-equilibrium Gas #
//-----------------------------------------------------------------------
#************************************************************************
# Other Parameters for Hypersonic Non-equilibrium Gas *
#************************************************************************
// dg_high_order:
// 0 -- generic order accuracy.
// 1 -- high order accuracy.
@ -862,9 +882,6 @@ int monitorNegativeConstant = 0;
// 0 -- gas model is fixed in the codes.
// 1 -- gas model is imported from library files.
// isAdaptiveSolver: isAdaptiveSolver = 0 indicates the generic Navier-Stokes solver,
// isAdaptiveSolver>0 indicates the HyFlow self-adaptive solver.
// 1 -- using HyFlow self-adaptive solver where the switch is controlled by the total iteration steps.
// 2 -- using HyFlow self-adaptive solver where the switch is controlled by variation of the key residual.
// nm: Equation number of the physics, but is out of commision now.
// 4 -- for 2D.
// 5 -- for 3D.
@ -886,14 +903,13 @@ int monitorNegativeConstant = 0;
// nEquilibriumGas: the variable is valid when the condition of nchem = 0 is satisfied.
// 0 -- perfect gas.
// 5, 7, 11 -- equilibrium gas, meanwhile, its value denotes the number of gas component.
// nPCWCycleStep: the maximum step number of iteration in the module of computing species mass fractions with the partial catalytic wall(PCW) condition.
// the value equals to or is greater than 1, and 3 is for default value.
// nRETCycleStep: the maximum step number of iteration in the module of computing radiation equilibrium temperature on wall.
// the value equals to or is greater than 1, and 3 is for default value.
// nSLIPCycleStep:the maximum step number of iteration in the module of computing slip temperature, slip velocity and slip species mass fraction.
// the value equals to or is greater than 1, and 3 is for default value.
// nPCWCycleStep: The maximum step number of iteration in the module of computing species mass fractions with the partial catalytic wall(PCW) condition.
// The value equals to or is greater than 1, and 3 is for default value.
// nRETCycleStep: The maximum step number of iteration in the module of computing radiation equilibrium temperature on wall.
// The value equals to or is greater than 1, and 3 is for default value.
// nSLIPCycleStep:The maximum step number of iteration in the module of computing slip temperature, slip velocity and slip species mass fraction.
// The value equals to or is greater than 1, and 3 is for default value.
// nSlipBCModel: The computational model of slip boundary conditions.
// 0 -- no slip.
// 1 -- the conventional Maxwell slip conditions.
// 2 -- the Gokcen slip conditions.
@ -913,10 +929,13 @@ int monitorNegativeConstant = 0;
// 1 -- One-temperature model.
// 2 -- Two-temperature model.
// 3 -- Three-temperature model.
// isUseNoneqCond:
// 0 -- compute the source terms without any conditions.
// 1 -- compute the source terms using the non-equilibrium condition.
// frozenCondition: the threshold value of frozen chemical flow condition, 0.1 is the default value.
// nIdealState: whether take all gas species as ideal gas for gas-mixture process.
// 0 -- No.
// 1 -- Yes.
// nTEnergyModel: the method to computing temperature energy model.
// 1 -- Yes. // nTEnergyModel: the method to computing temperature energy model.
// 0 -- the energy term is computed using the conventional method.
// 1 -- the energy term is computed using the polynomial fitting method.
// 2 -- the energy term is computed using the piecewise polynomial fitting method.
@ -946,14 +965,13 @@ int monitorNegativeConstant = 0;
// 1.0 -- proposed by Maxwell.
// sqrt(2/PI)~0.8 -- used for "micro-slip", namely the actual velocity slip at the wall.
// 1.146 -- proposed for an additional "fictitious" velocity slip.
// chemicalRelaxCorf: The value is in range of [0.001, 1.0].
// spectrumRadiusCoef: The value is in range of [0.0, 2.0].
// staticPressureRelaxCorf: The value is in range of [0.1, 1.0].
// nIsChemicalFreeze: the flag to freeze the chemical reactions.
// 0 -- not freeze, the chemical reaction sources will be calculated.
// 1 -- freezes the chemical reactions, the chemical reaction sources will not be calculated.// veTemperatureMin: The minimum of Tv and Te
// 1 -- freezes the chemical reactions, the chemical reaction sources will not be calculated.
// veTemperatureMin: The minimum of Tv and Te.
// maxViscous: the maximum of Viscous.
// trTemperatureMin: the minimum value of trTemperature.
// veTemperatureMin: the minimum value of veTemperature.
@ -965,36 +983,34 @@ int monitorNegativeConstant = 0;
// nSpeciesLimit: limitter of gas species
// 0 -- not used.
// 1 -- used.
// nTurblenceForChemical: the coupled mode of Turblence and Chemical reaction
// nTurblenceForChemical: the coupled mode of Turblence and Chemical reaction.
// 0 -- method 0.
// 1 -- method 1.
// nViscosityFluxSublevelModified: Modified for ViscosityFlux on Sublevel grid
// nViscosityFluxSublevelModified: Modified for ViscosityFlux on Sublevel grid.
// 0 -- not used.
// 1 -- used.
// nViscosityPeModified: Pe Modified for ViscosityCoef
// nViscosityPeModified: Pe Modified for ViscosityCoef.
// 0 -- not used.
// 1 -- used.
// nChemcalSourceModified: Modified on ChemcalSource
// nChemcalSourceModified: Modified on ChemcalSource.
// 0 -- not used.
// 1 -- used.
// nChemcalSourceEsMethod: Modified on ChemcalSource
// 0 -- approximation algorithm 1 (Ori.)
// 1 -- approximation algorithm 2 (New)
// nChemcalSourceEsMethod: Modified on ChemcalSource.
// 0 -- approximation algorithm 1 (Ori).
// 1 -- approximation algorithm 2 (New).
// nMaxStepTemperature: the iterative steps of temperature.
// veTemperatureMinModified: Modified on the minimum of Tve for Cvvs
// 0 -- not used
// 1 -- used
// nDiagonalModified: Modified on Diagonal
// 0 -- not used
// 1 -- Ori.
// 2 -- new
// veTemperatureMinModified: Modified on the minimum of Tve for Cvvs.
// 0 -- not used.
// 1 -- used.
// nDiagonalModified: Modified on Diagonal.
// 0 -- not used.
// 1 -- new.
// nDiagonalModifiedTurb: Modified on Diagonal for turbulence.
// 0 -- not used.
// 1 -- new.
// nGradPrimtiveMethod:
// 0 -- Ori.
// 1 -- new
// 1 -- new.
// nAblation:
// 0 -- The wall ablation is not computed.
// 1 -- The wall ablation is computed.
@ -1017,8 +1033,8 @@ int monitorNegativeConstant = 0;
// "Mars-Pa8" is for Park model of Mars gas, "Mars-Mc8" for McKenzie model of Mars gas.
// "Combustion-12" -- indicates the Combustion Chamber Gas Model which includes 12-species-20-reactions.
// "Gas-Mixture" -- indicates the process of mixing gas without reacting.
// for struct solver mixing two species£¨SpeciesA, SpeciesB£©.
// for unstruct solver mixing multi-species£¨O2 NO CO CO2 H2 N2 Air CH4£©.
// for struct solver mixing two species<65><73>SpeciesA, SpeciesB<73><42>.
// for unstruct solver mixing multi-species<65><73>O2 NO CO CO2 H2 N2 Air CH4<48><34>.
// For self-definition model, the gasfile is used to indicate the file path of the new gas model.
// speciesName: Used to list the names of each species, while each species name is separated by the symbol of comma.
// initMassFraction: Used to list the initial mass fractions of species in accordance with the sequence of names in the parameter speciesName.
@ -1040,13 +1056,16 @@ int monitorNegativeConstant = 0;
// firstStepError : the residual error of the first step iteration for the self-adaptive calculation.
// secondStepError : the residual error of the second step iteration for the self-adaptive calculation.
// thirdStepError : the residual error of the third step iteration for the self-adaptive calculation.
// useHyflowSetting : Setting for HyFLOW GUI.
// 0 -- PHengLEI
// 1 -- HyFLOW
// nProtectData: Use the continuation file data protection mechanism.
// 0 -- no
// 1 -- yes
// 0 -- no.
// 1 -- yes.
// nTvChange: Judge whether the Tv equals Ttr.
// 0 -- yes.
// 1 -- no.
// isMoleFractionType: 1 indicates the mass fractions, or else the mole fractions.
// nFraction: the initial fractions type of species.
// 0 -- mass fraction.
// 1 -- mole fraction.
int dg_high_order = 0;
int iapplication = 0;
int isAdaptiveSolver = 0;
@ -1114,6 +1133,7 @@ double densityMin = 1.0e-8;
double densityMinFactor = 0.1;
double tAdjustmentFactor = 10.0;
double iniSpeedCoef = 1.0;
int iniSpeedMode = 0;
int nDebug = 0;
int nSpeciesLimit = 1;
@ -1125,18 +1145,21 @@ int nChemcalSourceEsMethod = 1;
int nMaxStepTemperature = 5;
int veTemperatureMinModified = 1;
int nDiagonalModified = 0;
int nDiagonalModifiedTurb = 0;
int nGradPrimtiveMethod = 1;
int nInviscidFluxModify = 1;
int nQlLimitMethod = 2;
int nSpeciesForWallMethod = 1;
int nDensityForWallMethod = 0;
int wallMultiTemperature = 0;
int nProtectData = 0;
int useHyflowSetting = 0;
int nAblation = 0;
int isInjection = 0;
int nViscosityModel = 0;
int nMarsModel = 0;
int nTvChange = 0;
int isMoleFractionType = 0;
string gasfile = "DK5";
//string gasfile = "./chemical/Dunn-Kang_air5s11r.dat";
string speciesName = "O, O2, NO, N, N2";
@ -1173,9 +1196,17 @@ double molecularWeightSpeciesB = 30.0;
//string speciesName = "O2, N2";
//string initMassFraction = "1.0, 0.0";
int nFraction = 0;
int nContinueModel = 0;
int nChemicalFlowStep = 0;
int ifStartFromPerfectGasResults = 0;
int isUseNoneqCond = 0;
double frozenCondition = 0.01;
int nLeakageMonitor = 0;
double totalLeakageVolume = 1000.0;
double monitorThresholdValue = 0.05;
double sprayFactor = 0.0;
#########################################################################
// Multi-Grid parameters.
@ -1196,7 +1227,6 @@ int ifStartFromPerfectGasResults = 0;
// 1 -- zero order.
// 2 -- first-order. (default)
// mgCorrectionLimit: Multi-grid correction limit.
int nMGLevel = 1;
int MGCoarsestIteration = 1;
int MGPreIteration = 1;
@ -1226,9 +1256,9 @@ string holeFullFileName = "./grid/holeFullFile.dat";
string linkFileName = "./grid/topology.dat";
string zoneInverseFileName = "./grid/zoneInverseMapping.inp";
#########################################################################
# High Order Struct Solver #
#########################################################################
#************************************************************************
# High Order Struct Solver *
#************************************************************************
// isFVMOrFDM:
// 0 -- NSSolverStruct using Finite Volume Method.
// 1 -- NSSolverStruct using Finite Differ Method.
@ -1273,10 +1303,29 @@ int allReduceStep = 1;
// codeOfOversetGrid: Overlapping(overset) grid or not.
// 0 -- NON-overlapping grid.
// 1 -- Overlapping grid.
// oversetInterpolationMethod: the method of overset interpolation while field simulation
// oversetInterpolationMethod: the method of overset interpolation while field simulation.
// 0 -- set the acceptor cell value by donor cell value.
// 1 -- set the acceptor cell value by distance weight of donor cell value.
// readOversetFileOrNo: Whether to read overset-file(.ovs) that has been generated.
// 0 -- no.
// 1 -- yes.
// symetryOrNot: If there exist symetryplanes(XY plane, the coordinate of Z direction is 0) in
// the current overset grid(only for three dimension).
// 0 -- no.
// 1 -- yes.
// readInAuxiliaryInnerGrid: Whether to read auxiliary inner grid.
// 0 -- no.
// 1 -- yes.
// walldistMainZone: The initial value of background grid which does not exist wall boundary condition.
// toleranceForOversetSearch: The tolerance of overset searching zone to judge whether the obtained node is in the current computing cell.
// toleranceForOversetBox: The tolerance of building the minimum box of computing cells in the overlapping region.
// twoOrderInterpolationOrNot: The number of interpolated cell layers in the overlapping boundary.
// 0 -- one layer.
// 1 -- two layers.
// keyEnlargeOfActiveNodes: The number of enlarged overset-boundary layers in the buffer region.
// outTecplotOverset: Whether to dump out the flowfield data after the progress of overset configure.
// 0 -- no.
// 1 -- yes.
int codeOfOversetGrid = 0;
int oversetInterpolationMethod = 0;
int readOversetFileOrNot = 0;
@ -1295,7 +1344,6 @@ int twoOrderInterpolationOrNot = 0;
int keyEnlargeOfActiveNodes = 0;
int outTecplotOverset = 0;
int outPutOversetVisualization = 0;
int numberOfMovingBodies = 2;
// ----------------- ALE configuration ------------------------------
@ -1306,34 +1354,40 @@ double referenceLength = 1.0;
double referenceVelocity = 1.0;
double referenceDensity = 1.0;
int strategyForFaceNormalVelocity = 0; //0-By Sweeping volume; 1-By face center 1st; 2-By face center 2nd;
int strategyForGCLSource = 0; //0-present; 1-Ahn;
int strategyForFaceNormalVelocity = 0; // 0-By Sweeping volume; 1-By face center 1st; 2-By face center 2nd.
int strategyForGCLSource = 0; // 0-present; 1-Ahn.
//0:1st-Admas-Bashforth; 1:2nd-Admas-Bashforth; 2:1st-Implicit-Euler; 3:2nd-Implicit Euler; 4:2nd-Adams-Moulton; 5:3rd-Adams-Moulton
// 0: 1st-Admas-Bashforth; 1: 2nd-Admas-Bashforth; 2: 1st-Implicit-Euler; 3: 2nd-Implicit Euler; 4: 2nd-Adams-Moulton; 5: 3rd-Adams-Moulton.
int methodForKineticEquation = 0;
double relaxParameterOfKinetic = 1.0;
#########################################################################
# motive information #
#########################################################################
#************************************************************************
# motive information *
#************************************************************************
int numberOfMovingBodies = 1;
############################## body0 ##############################
//mass of parts
// mass of parts.
double mass_0 = 1.0;
//mass matrix of parts Ixx Iyy Izz Ixy Ixz Iyz
// gravity of parts (along negative direction in Y-axis, eg. 9.8).
double gravity_0 = 0.0;
// mass matrix of parts Ixx Iyy Izz Ixy Ixz Iyz.
double massMatrix_0[] = 1e-7, 1e-6, 1e-6, 0.0, 0.0, 0.0;
//initial six DOF position information of parts. xc yc zc
// initial six DOF position information of parts. xc yc zc.
double massCenter_0[] = 0.0, 0.0, 0.0;
//initial six DOF position information of parts. angleX angleY angleZ
// if reset mass center while restart.
int resetMassCenter_0 = 0;
// position offset of parts. dx dy dz.
double massCenterDxyz_0[] = 0.0, 0.0, 0.0;
// initial six DOF position information of parts. angleX angleY angleZ.
double attitudeAngle_0[] = 0.0, 0.0, 0.0;
//initial six DOF move information of parts. vc vy vz
// initial six DOF move information of parts. vc vy vz.
double massCenterVelocity_0[] = 0.0, 0.0, 0.0;
//initial six DOF move information of parts. omigX omigY omigZ
// initial six DOF move information of parts. omigX omigY omigZ.
double angularVelocity_0[] = 0.0, 0.0, 0.0;
// the object that the parts belong to.
int fartherIndex_0 = -1;
//the assembly position of the parts. xc yc zc angleX angleY angleZ
// the assembly position of the parts. xc yc zc angleX angleY angleZ.
double configPamameter_0[] = 0.0, 0.0, 0.0, 0.0, 0.0, 0.0;
// the move pattern of the parts.
// -1 given motion partten.
@ -1349,23 +1403,24 @@ double configPamameter_0[] = 0.0 ,0.0 ,0.0 ,0.0 ,0.0
int RBDMethod_0 = 0;
double amplitude_0 = 0.0;
double reduceFrequency_0 = 0.0;
//direction of rotation
// direction of rotation.
// 1 -- clockwise from the point of view along the positive x axis.
// -1 -- anticlockwise from the point of view along the positive x axis.
int direction_0 = -1;
double rotateFrequency_0 = 0.0;
//string uDFSixDofFileName_0 = "./Bin/UDFSixDof.Parameter";
//additional force (system axis) fX fY fZ
// dimensional physical time for additional force(s).
double addedForceTime_0[] = 0.0;
// additional force(inertia system) fX fY fZ.
double addedForce_0[] = 0.0, 0.0, 0.0;
//additional moment of Force (system axis) mX mY mZ
// additional moment(inertia system) mX mY mZ.
double addedMoment_0[] = 0.0, 0.0, 0.0;
// the deformation method of the parts.
int morphing_0 = 0;
// post indentify
// post indentify.
int integralOrder = 4;
// ---------------- ATP read --------------------------------------------
//@int inflowParaType = 0;
//@double refReNumber = 6.5e6;
@ -1379,18 +1434,34 @@ int integralOrder = 4;
//@string outLetFileName = "./bin/subsonicOutlet.hypara";
//@double refDimensionalVelocity = 0;
//@double refDimensionalDensity = 0;
#########################################################################
# Old Parameter #
#########################################################################
//@string weatherDataFilePath = "./WRFData/";
//@double longitude = 110.95
//@double latitude = 19.61;
#************************************************************************
# Old Parameter *
#************************************************************************
int isPlotVolumeField = 0;
#************************************************************************
# partial flow field setting Parameter *
#************************************************************************
//int nPartialParameter = 0; // 0/1/2
//int nNumberOfPartialField = 0; //
//int nStartGridIndex[] = [0];
//int nEndGridIndex[] = [0];
#########################################################################
# Incompressible Parameter #
#########################################################################
//double partialCFL[] = [0.0];
//double partialSpeedCoef[] = [0.0];
//double partialSpeed[] = [0.0];
//double partialAttackd[] = [0.0];
//double partialSlide[] = [0.0];
//double partialPressure[] = [0.0];
//double partialTemperature[] = [0.0];
//double partialMassFractions[] = [0.0];
#************************************************************************
# Incompressible Parameter *
#************************************************************************
int isSolveEnergyEquation = 0;
int isSolveTurbEquation = 0;
int isSolveSpeciesEquation = 0;

View File

@ -4,9 +4,12 @@
// gridtype: Grid type for generation, conversion, reconstruction, merging.
// 0 -- Unstructured grid.
// 1 -- Structured grid.
// axisup: Type of Cartisien coordinates system, used in grid conversion.
// 1 -- Y upward. (default)
// 2 -- Z upward.
// nAxisRotateTimes: number of axis rotating times, zero (default) meaning without rotating.
// axisRotateOrder : axis rotating order.
// 1 -- X-axis.
// 2 -- Y-axis.
// 3 -- Z-axis.
// axisRotateAngles: axis rotating angles (degree), which are corresponding to the axis rotating order.
// from_gtype: Type of grid data type in grid conversion process.
// -1 -- MULTI_TYPE.
// 1 -- PHengLEI, *.fts.
@ -18,7 +21,9 @@
// 7 -- Hybrid, include both of unstructured and structured grid, *.fts.
// 8 -- GMSH, *.msh.
int gridtype = 0;
int axisup = 2;
int nAxisRotateTimes = 1;
int axisRotateOrder[] = [1];
double axisRotateAngles[] = [90.0];
int from_gtype = 2;
#########################################################################

View File

@ -8,6 +8,7 @@
// Platform for Hybrid Engineering Simulation of Flows +
// China Aerodynamics Research and Development Center +
// (C) Copyright, Since 2010 +
// PHengLEI 2212 +
//+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
###########################################################################
# Default parameters for Grid conversion #
@ -46,19 +47,24 @@ int gridobj = 1;
int multiblock = 0;
int iadapt = 0;
int SymmetryFaceVector = 1;
int gridReorder = 0;
int faceReorderMethod = 0;
// axisup: Type of Cartisien coordinates system, used in grid conversion.
// 1 -- Y upward. (default)
// 2 -- Z upward.
int axisup = 1;
// nAxisRotateTimes: number of axis rotating times, zero (default) meaning without rotating.
// axisRotateOrder : axis rotating order.
// 1 -- X-axis.
// 2 -- Y-axis.
// 3 -- Z-axis.
// axisRotateAngles: axis rotating angles (degree), which are corresponding to the axis rotating order.
int nAxisRotateTimes = 0;
int axisRotateOrder[] = [1, 2, 3];
double axisRotateAngles[] = [0.0, 0.0, 0.0];
// omit_no_bound_bc: What's boundary condition for the type of "no_boundary_condition".
// 0 -- Interface. (default)
// 1 -- Physical boundary condition, used in Hybrid solver.
int omit_no_bound_bc = 0;
int omitRepeatInterface = 1;
//-----------------------------------------------------------------------
# Grid data type #
@ -89,7 +95,6 @@ int dumpOldGrid = 0;
int numberOfGridFile = 1;
string from_gfile = "./grid/rae2822_hybrid2d.cas";
string from_gfile1 = "";
string out_gfile = "./grid/flat_laminr_133_85_2d.fts";
// ----------------- some advanced choices ------------------------------
@ -178,7 +183,6 @@ double influencePara = 25.0;
which only support one direction.
// rotationAngle: The relative angle between two periodic face.
which is recorded in degrees.
int periodicType = 0;
double translationLength[] = [0.0, 0.0, 0.0];
double rotationAngle = 0.0;
@ -192,7 +196,6 @@ double rotationAngle = 0.0;
// 2 -- refine structured grid.
// maxproc: The number of partition zones that want to be divided into.
// numberOfMultifile: The number of partition grid files that want to be dumped out.
int pgridtype = 0;
int maxproc = 4;
int numberOfMultifile = 1;
@ -207,8 +210,8 @@ int blockIndexOfMark = 0;
int cellIndexOfMark[] = [185, 30, 1];
// parallelStrategy:
//! -# 0 : each zone is assigned to the one that defined in grid partition procedure.
//! -# 1 : random assigned for each zone or by some else ways.
// 0 -- each zone is assigned to the one that defined in grid partition procedure.
// 1 -- random assigned for each zone or by some else ways.
int parallelStrategy = 1;
//-----------------------------------------------------------------------
@ -232,7 +235,6 @@ string partition_grid_file = "./grid/sphere_mixed__4.fts";
// 1 -- perfect balance.
// maxproc -- perfect imbalance.
// 1.05 -- recommended.
int omit_no_bound_bc = 0;
int npartmethod = 1;
int parallelPartitionMethod = 2;
@ -253,24 +255,30 @@ int numberOfMultigrid = 1;
// intervalStepSample: The step intervals for monitored probes variables file 'sample.dat' saved.
// intervalStepForce: The step intervals for aerodynamics coefficients file 'aircoef.dat' saved.
// intervalStepRes: The step intervals for residual file 'res.dat' saved.
// ifLowSpeedPrecon: Precondition process to accelerate convergence for low speed flow.
// 0 -- no precondition process. (default, mach > 0.3)
// 1 -- carry out precondition process. (mach number <= 0.3)
int maxSimuStep = 20000;
int intervalStepFlow = 1000;
int intervalStepPlot = 1000;
int intervalStepSample = 1000;
int intervalStepForce = 100;
int intervalStepRes = 10;
int ifLowSpeedPrecon = 0;
// compressible:
// 0 -- incompressible flow.
// 1 -- compressible flow. (default)
int compressible = 1;
// ifLowSpeedPrecon: Precondition process to accelerate convergence for low speed flow.
// 0 -- no precondition process. (default, mach > 0.3)
// 1 -- carry out precondition process. (mach number <= 0.3)
// Kprec: The coefficient K for the cut-off velocity.
// 1.0~3.0 is suggested. (default, 3.0)
// preconFarfieldBCMethod: The precondition method for farfield boundary condition.
// 0 -- precondition far-field boundary based on riemann invariants.
// 1 -- Turkel's simplified far-field boundary condition.
int ifLowSpeedPrecon = 0;
double Kprec = 3.0;
int preconFarfieldBCMethod = 1;
//-----------------------------------------------------------------------
# CFD Control Parameter #
//-----------------------------------------------------------------------
@ -281,9 +289,12 @@ int compressible = 1;
// 0 -- the nondimensional conditions.
// 1 -- the flight conditions.
// 2 -- the experiment conditions.
// 3 -- the subsonic boundary conditions.
// 3 -- the subsonic boundary conditions. (Useless!)
// 4 -- the condition that the velocity, temperature and density are given.
// 5 -- the condition that the velocity, temperature and pressure are given.
//flowInitMethod: Flow field initialization method.
// 0 -- The entire flow field is initialized according to Infinite velocity.
// 1 -- The velocity near the wall is initialized according to the boundary layer of the plate.
// refReNumber: Reynolds number, which is based unit length, unit of 1/m.
// refDimensionalTemperature: Dimensional reference temperature, or the total temperature only for the experiment condition.
// freestream_vibration_temperature: Dimensional freestream vibration temperature.
@ -303,11 +314,11 @@ int compressible = 1;
// condition is radiation equilibrium temperature, and 0.8 is the default value.
// refMolecularWeight: the reference molecular weight of gas used for perfect gas. The unit is g/mol.
// Generally, the gas is air. Sometimes, it is experiment gas, such as Nitrogen, Argon, and so on.
int directionMethod = 0;
double refMachNumber = 0.73;
double attackd = 2.79;
double angleSlide = 0.00;
int flowInitMethod = 0;
int inflowParaType = 0;
double refReNumber = 6.5e6;
@ -321,14 +332,6 @@ double freestream_vibration_temperature = 300.00;
//double refDimensionalTemperature = 6051.024; // The total temperature, T*(1+(refGama-1)*M*M/2).
//double refDimensionalPressure = 4.299696E09; // The total pressure, p*(T0/T)^(refGama/(refGama-1)).
//int inflowParaType = 3;
//int nsubsonicInlet = 1;
//int nsubsonicOutlet = 1;
//string inLetFileName = "./bin/subsonicInlet.hypara";
//string outLetFileName = "./bin/subsonicOutlet.hypara";
//double refDimensionalTemperature = 288.144;
//double refDimensionalPressure = 1.01313E05;
// The velocity, temperature and density are fixed.
//int inflowParaType = 4;
//double refDimensionalVelocity = 1000.0;
@ -341,9 +344,15 @@ double freestream_vibration_temperature = 300.00;
// The MachNumber, temperature and pressure are fixed.
//int inflowParaType = 6;
//double refDimensionalTemperature = 293;
//double refDimensionalTemperature = 293.0;
//double refDimensionalPressure = 8886.06;
// The velocity, temperature and pressure are read from file.
//int inflowParaType = 7;
//string weatherDataFilePath = "./WRFData/";
//double longitude = 110.95
//double latitude = 19.61;
double wallTemperature = -1.0;
double radiationCoef = 0.8;
@ -357,35 +366,35 @@ double forceReferenceArea = 1.0; // unit of meter^2.
double TorqueRefX = 0.0; // unit of meter.
double TorqueRefY = 0.0; // unit of meter.
double TorqueRefZ = 0.0; // unit of meter.
double knudsenLength = 1.0; // unit of meter.
double refMolecularWeight = 28.9644; // unit of g/mol.
//-----------------------------------------------------------------------
# Spatial Discretisation #
//-----------------------------------------------------------------------
#*******************************************************************
#************************************************************************
# Struct Solver *
#*******************************************************************
#************************************************************************
// inviscidSchemeName: Spatial discretisation scheme of struct grid.
// Using this when solve structered grid or hybrid.
// -- "vanleer", "steger", "hlle", "lax_f".
// -- "roe", "modified_roe".
// -- "vanleer", "steger", "hlle", "lax_f",
// -- "roe", "modified_roe",
// -- "ausm+", "ausm+w", "ausm+up", "ausmdv", "ausmpw", "ausmpw+".
// isWennScheme: If using WENN Scheme of struct grid.
// 0 -- NO. (default)
// 1 -- Yes.
// str_limiter_name: Limiter of struct grid.
// -- "vanalbada", "vanleer", "minmod", "smooth", "minvan", "3rdsmooth", "3rd_minmod_smooth".
// -- "nolim", no limiter.
// -- "vanalbada_clz", clz supersonic version.
// -- "weno3_js", "wenn3_prm211", "wenn3_zm", "wenn3_zes2", "wenn3_zes3"
// -- "vanalbada", "vanleer", "minmod", "smooth", "minvan", "3rdsmooth", "3rd_minmod_smooth",
// -- "nolim", no limiter,
// -- "vanalbada_clz", clz supersonic version,
// -- "weno3_js", "wenn3_prm211", "wenn3_zm", "wenn3_zes2", "wenn3_zes3".
string inviscidSchemeName = "roe";
int isWennScheme = 0;
string str_limiter_name = "vanalbada";
#*******************************************************************
#************************************************************************
# UnStruct Solver or Common *
#*******************************************************************
#************************************************************************
// viscousType: Viscous model.
// 0 -- Euler.
// 1 -- Lamilar.
@ -410,11 +419,11 @@ string str_limiter_name = "vanalbada";
// 3 -- IDDES.
// uns_scheme_name: Spatial discretisation scheme of Unstruct grid.
// Using this when solve Unstructered grid or hybrid.
// -- "vanleer", "roe", "steger", "kfvs", "lax_f", "hlle".
// -- "vanleer", "roe", "GMRESRoe", "GMRESSteger", "steger", "kfvs", "lax_f", "hlle",
// -- "ausm+", "ausmdv", "ausm+w", "ausmpw", "ausmpw+".
// uns_limiter_name: Limiter of Unstruct grid.
// -- "barth", "vencat", "vanleer", "minmod".
// -- "vanalbada", "smooth", "nnd", "lpz", "1st".
// -- "barth", "vencat", "vanleer", "minmod",
// -- "vanalbada", "smooth", "nnd", "lpz", "1st",
// -- "nolim", no limiter.
// uns_vis_name: Discretisation method of viscous term.
// -- "std", "test", "aver", "new1", "new2".
@ -442,7 +451,7 @@ string str_limiter_name = "vanalbada";
// 3 -- Harten type, which is default used.
// roeEntropyScale: Entropy fix (correction) coefficient scale, default is 1.0.
// It is used to scale the default Roe entropy fix coefficients.
// AusmpwPlusLimiter: A Limiter to make "function w" not change acutely in AusmpwPlus scheme, default is 1.0
// AusmpwPlusLimiter: A Limiter to make "function w" not change acutely in AusmpwPlus scheme, default is 1.0.
//int viscousType = 0;
//string viscousName = "Euler";
@ -475,9 +484,9 @@ double roeEntropyScale = 1.0;
double AusmpwPlusLimiter = 1.0;
//-----------------------------------------------------------------------
# Temporal Discretisation #
//-----------------------------------------------------------------------
#************************************************************************
# Temporal Discretisation *
#************************************************************************
// iunsteady: Steady or unsteady.
// 0 -- steady.
// 1 -- unsteay.
@ -504,11 +513,18 @@ double AusmpwPlusLimiter = 1.0;
// 6 -- Jacobian iteration.
// 7 -- Line LU-SGS.
// 8 -- Matrix LU-SGS.
// 9 -- GMRES.
// iSimplifyViscousTerm: Simplify the computation of viscous term in the Block LU-SGS method. The default value assigns 1 that could speed up the computation.
// Otherwise, the viscous Jacobian matrix Mv should be computed that will increase the memory and time in iteration of the BLUSGS method.
// CFLStart: Started cfl number.
// CFLEnd: End cfl number.
// CFLVaryStep: The number of step when cfl increase from CFLStart to CFLEnd.
// GMRESCFLScale : CFL = CFLStart * GMRESCFLScal^iteration.
// OriginalTscheme : Used for LUSGS and GMres hybrid computing.
// useLUSGSprecond: Initialize flow field for GMRES.
// 0 --Initialize by first order Jacobian matrix.
// 1 --Initialize by LUSGS.
// GMRESInitStep : the number of iteration step of irst order Jacobian matrix or LUSGS for initialize flow field.
// ktmax: Dtratio. dt[i] = MIN(dt[i], ktmax * dtmin / vol[i])
// swapDq: Communication dq between forward/backward sweep of LUSGS or not, default is 0.
// nLUSGSSweeps: Sub iteration of LU-SGS or Block LU-SGS.
@ -533,7 +549,6 @@ double AusmpwPlusLimiter = 1.0;
// 2 -- Pab3D wall function.
// RKStage: The number of Runge-Kutta step.
// lamda: Cofficient of Runge-Kutta step.
int iunsteady = 0;
double physicalTimeStep = 0.01;
double physicalTimeStepDimensional = -0.001;
@ -543,7 +558,7 @@ int ifStaticsReynoldsStress = 0;
int startStatisticStep = 800000;
double statisticalTimePeriod = -1.0;
int statisticMethod = 0;
int linearTwoStepMethods = 1; // 1--BDF1; 2--C-N; 3--BDF2;
int linearTwoStepMethods = 1; // 1--BDF1; 2--C-N; 3--BDF2.
int methodOfDualTime = 3;
int min_sub_iter = 50;
@ -558,7 +573,10 @@ int isUsePreTwall = 0;
double CFLStart = 0.01;
double CFLEnd = 10.0;
int CFLVaryStep = 500;
double GMRESCFLScale = 1.0;
int OriginalTscheme = 9;
int useLUSGSprecond = 1;
int GMRESInitStep = 1000;
double pMaxForCFL = 0.2;
double pMinForCFL = 0.1;
double deltaMaxForCFL = 0.2;
@ -575,7 +593,7 @@ int order = 2;
double visl_min = 0.01;
double turbCFLScale = 1.0;
double csrv = 2.0;
double csrv = 1.0;
double timemax = 1.0e10;
double dtsave = -1.0;
int maxale = 10;
@ -591,10 +609,9 @@ double lamda[] = [0.5, 1.0];
//int RKStage = 4;
//double lamda[] = [0.25, 0.33333333333, 0.5, 1.0];
//-----------------------------------------------------------------------
# File In or Out #
//-----------------------------------------------------------------------
#************************************************************************
# File In or Out *
#************************************************************************
// numberOfGridGroups: The number of grid groups.
// gridfile: The partitioned Grid file path, using relative path,
// which is relative to the working directory.
@ -618,10 +635,8 @@ double lamda[] = [0.5, 1.0];
// nIsComputeWallDist: Whether to compute the wall distance.
// 0 -- Compute wall distance.
// 1 -- Not compute.
//
// protectionFile0 and protectionFile1: Two continuation file of the data protection mechanism.
// wall_heatfluxfile: The file to output the MaxHeatFlux of wall.
int numberOfGridGroups = 1;
string gridfile = "./grid/rae2822_hybrid2d__4.fts";
string wallTemperaturefile = "";
@ -632,10 +647,12 @@ int cellMethodOrNodeMethod = 0;
string resSaveFile = "results/res.dat";
string turbresfile = "results/turbres.dat";
string transitionResFile = "results/transitionRes.dat";
string aircoeffile = "results/aircoef.dat";
string restartNSFile = "results/flow.dat";
string turbfile = "results/turb.dat";
string transitionFile = "results/transition.dat";
string visualfile = "results/tecflow.plt";
string wall_aircoefile = "results/wall_aircoef.dat";
@ -645,11 +662,15 @@ string protectionFile0 = "results/flow0.dat";
string protectionFile1 = "results/flow1.dat";
string wall_heatfluxfile = "results/wall_heatflux.dat";
string protectionTurbFile0 = "results/turb0.dat";
string protectionTurbFile1 = "results/turb1.dat";
string protectionTransitionFile0 = "results/transition0.dat";
string protectionTransitionFile1 = "results/transition1.dat";
int nDumpSurfaceInfo = 0;
string wall_varfile = "";
string jetDefineFile = "bin/jet.hypara";
string sixDofFileName = "results/sixDofInfo.dat";
string derivativeFileName = "results/identify.dat";
string hysteresisFileName = "results/force_beta.plt";
@ -659,7 +680,8 @@ int plotFieldType = 0;
// visualfileType: The file type of visualfile.
// 0 -- Tecplot binary.
// 1 -- Tecplot ASCII.
// 2 -- Ensight binary.
// 3 -- Ensight ASCII.
int visualfileType = 1;
// samplefileMode: The dump mode of sample file.
@ -697,21 +719,21 @@ double upperPlotFieldBox[] = [1.0 1.0 1.0];
// -- vibration temperature(Tv, 33), electron temperature(Te, 34), vibrational energy(Ev, 35), electric energy(Ee, 36),
// -- number density of electron(Ne, 37), dimensioanl density(rho, 38), dimensioanl pressure(p, 39), dimensioanl temperature(T, 40),
// -- gradientUx(41), gradientUy(42), gradientVx(43), gradientVy(44), streamline_u(45), streamline_v(46), streamline_w(47),
// -- transition intermittency(intermittency, 51), -transition momentum thickness reynolds(MomentumThicknessReynolds, 52),
// -- overlap iblank(iblank, 81)
// -- specific heat ratio(gama, 56)
// -- transition intermittency(intermittency, 51), transition momentum thickness reynolds(MomentumThicknessReynolds, 52),
// -- local CFL Number(localCFL, 57), minimal CFL Number(minCFL, 58),
// -- overlap iblank(iblank, 81),
// -- specific heat ratio(gama, 56), Knudsen number(kn, 60), Damkohler number(Da, 61), vibrational nonequilibrium number(Vi, 62).
// Important Warning: Array size of visualVariables MUST be equal to nVisualVariables!!!
// Variables order must from small to big.
//-----------the optional parameters list for the wall boundary condition----------------
// nVisualWallVariables: The number of visual variables on wall.
// visualWallVariables : dumped variable types, listed as following:
// -coefficient of pressure(cp, 0), -coefficient of friction(cf, 1), yplus(2), -non-dimensional heat flux(Q_NonDim, 3), -dimensional heat flux(Q_Dim, 4),
// -pressure on wall(pw, 5), -temperature on wall(Tw, 6), -density on wall(rhow, 7), -heat flux of translational-rotational temperature term(Qtr, 8),
// -heat flux of species diffusion term(Qs, 9), -heat flux of vibrational temperature term(Qv, 10), -heat flux of electron temperature term(Qe, 11),
// -species mass fractions(Ns, 12), -x component of wall velocity(Vx, 13), -y component of wall velocity(Vy, 14), -z component of wall velocity(Vz, 15)
// -slip translational-rotational temperature(Tts, 16), -slip vibrational temperature(Tvs, 17), -slip electron temperature(Tes, 18), -absolute wall velocity(Vs, 19)
// -Stanton number(St, 20), -coefficient of heat rate(Ch, 21), -temperature jump(deltaT, 22), -Grid Reynolds number on wall(Re_w, 23)
// -- coefficient of pressure(cp, 0), coefficient of friction(cf, 1), yplus(2), non-dimensional heat flux(Q_NonDim, 3), dimensional heat flux(Q_Dim, 4),
// -- pressure on wall(pw, 5), temperature on wall(Tw, 6), density on wall(rhow, 7), heat flux of translational-rotational temperature term(Qtr, 8),
// -- heat flux of species diffusion term(Qs, 9), heat flux of vibrational temperature term(Qv, 10), heat flux of electron temperature term(Qe, 11),
// -- species mass fractions(Ns, 12), x component of wall velocity(Vx, 13), y component of wall velocity(Vy, 14), z component of wall velocity(Vz, 15),
// -- slip translational-rotational temperature(Tts, 16), slip vibrational temperature(Tvs, 17), slip electron temperature(Tes, 18), absolute wall velocity(Vs, 19),
// -- Stanton number(St, 20), coefficient of heat rate(Ch, 21), temperature jump(deltaT, 22), Grid Reynolds number on wall(Re_w, 23), Knudsen number(Kn_wall, 24).
int nVisualVariables = 8;
int visualVariables[] = [0, 1, 2, 3, 4, 5, 6, 15];
@ -739,7 +761,9 @@ int dumpStandardModel = 0;
// 1 -- Real cell where the probe is located.
// nProbeVariables: Number of variables want to be dumped for probes monitered.
// probeVariables : Variable types dumped, listed as following:
// -- density(0), u(1), v(2), w(3), pressure(4), temperature(5), mach(6).
// -- density(0), u(1), v(2), w(3), pressure(4), temperature(5), mach(6),
// -- dimensioanl_density(7), dimensioanl_u(8), dimensioanl_v(9),
// -- dimensioanl_w(10), dimensioanl_pressure(11), dimensioanl_temperature(12).
// Important Warning: Array size of probeVariables MUST be equal to nProbeVariables!!!
// probeVariables order must from small to big.
// probeVariablesInterpolationMethod: Interpolation method used to compute the probe variables.
@ -761,12 +785,13 @@ string probesDefineFile = "bin/probes_XYZ.dat";
int searchCellsMethod = 0;
int nProbeVariables = 7;
int probeVariables[] = [0, 1, 2, 3, 4, 5, 6];
int nProbeVariables = 14;
int probeVariables[] = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13];
int probeVariablesInterpolationMethod = 0;
//-----------------------------------------------------------------------
# Turbulence Parameter #
//-----------------------------------------------------------------------
#************************************************************************
# Turbulence Parameter *
#************************************************************************
// turbInterval: Iteration number of turbulence.
// kindOfTurbSource: Kinds of turbulent source.
// 0 -- Original.
@ -774,15 +799,12 @@ int probeVariablesInterpolationMethod = 0;
// transitionType: transition model type
// 0 -- none.
// 2 -- gama-re-theta.
// turbIntensity: (valid while greater than 0.0 ) turbulent intensity of free stream(*100) in transition
// freeturbIntensitySRModify: to use SR modify in free stream turbulent intensity decay or not
// turbIntensity: (valid while greater than 0.0 ) turbulent intensity of free stream(*100) in transition.
// freeturbIntensitySRModify: to use SR modify in free stream turbulent intensity decay or not.
int turbInterval = 1;
int turbOrderStruct = 2;
int kindOfTurbSource = 0;
int mod_turb_res = 0;
double turb_relax = 1.0;
double freeStreamViscosity = 1.0e-3;
double muoo = 3.0;
double kwoo = 5.0;
@ -791,28 +813,27 @@ double turbIntensity = -1.0;
int freeturbIntensitySRModify = 0;
double freeDecayXLocation = 0.0;
int compressibleCorrection = 0;
int prandtlNumberCorrection = 0;
int transitionMaFix = 1;
# maximum eddy viscosity (myt/my) max.
// maximum eddy viscosity (myt/my) max.
double eddyViscosityLimit = 1.0e10;
int monitor_vistmax = 0;
//-----------------------------------------------------------------------
# LES Parameter #
//-----------------------------------------------------------------------
#************************************************************************
# LES Parameter *
#************************************************************************
// iLES: Create LESSolver or not.
// = 1 - Create LESSolver;
// != 1 - not.
// = 1 -- Create LESSolver;
// != 1 -- not.
// amplitudeofDisturb: Amplitude of adding disturb.
// disturbstep: Unsteady time step or steady iteration of adding random disturb.
// iterdisturb: Add random disturb in every sub-iter or only first sub-iter.
// = 0 - in only first sub-iter;
// != 0 - in every sub-iter.
// = 0 -- in only first sub-iter;
// != 0 -- in every sub-iter.
// ipraddisturb: Add density and pressure disturb or not.
// ibodyforce: Add body force in source flux of NS equations or not.
// = 0 - not;
// != 0 - Add body force.
// = 0 -- not;
// != 0 -- Add body force.
// bodyforce: Body force in source flux of NS equations or not.
// utau: friction velocity, using in DNSDisturb.
// sgsmodel: subgrid scale model.
@ -820,23 +841,22 @@ int monitor_vistmax = 0;
// = "dsmCom";
// = "wale";
// = "sigma".
// deltaFunctionType: = 1 - MAX(deltai, deltaj, deltak);
// = 2 - pow(deltai * deltaj *deltak, 1/3);
// = 3 - Devloped by Scotti.
// wallDampingFunctionType: = 0 - no wall function;
// = 1 - van Driest;
// = 2 - developed by Dr. Deng Xiaobing;
// = 3 - developed by Piomelli.
// deltaFunctionType: = 1 -- MAX(deltai, deltaj, deltak);
// = 2 -- pow(deltai * deltaj *deltak, 1/3);
// = 3 -- Devloped by Scotti.
// wallDampingFunctionType: = 0 -- no wall function;
// = 1 -- van Driest;
// = 2 -- developed by Dr. Deng Xiaobing;
// = 3 -- developed by Piomelli.
// turbViscousCutType: turbulent viscosity cut type.
// = 0 - mu_total = mut + mul;
// = 1 - mu_total = max(mut-mul,0)+ mul;
// = 2 - mu_total = max(mut ,0)+ mul.
// = 0 -- mu_total = mut + mul;
// = 1 -- mu_total = max(mut-mul, 0) + mul;
// = 2 -- mu_total = max(mut , 0) + mul.
// smagConstant: constant of smagorinsky model.
// waleConstant: constant of wale model.
// filterDirection [3]: filter variables in i, j, k direction or not.
// averageDirection[3]: average variables in i, j, k direction or not.
// isotropicConstant: constant of isotropic part of SGS stress.
int iLES = 0;
string sgsmodel = "smagorinsky";
int deltaFunctionType = 2;
@ -852,9 +872,9 @@ double testFilterScale = 2.0;
int averageWidth = 1;
int monitorNegativeConstant = 0;
//-----------------------------------------------------------------------
# Other Parameters for Hypersonic Non-equilibrium Gas #
//-----------------------------------------------------------------------
#************************************************************************
# Other Parameters for Hypersonic Non-equilibrium Gas *
#************************************************************************
// dg_high_order:
// 0 -- generic order accuracy.
// 1 -- high order accuracy.
@ -862,9 +882,6 @@ int monitorNegativeConstant = 0;
// 0 -- gas model is fixed in the codes.
// 1 -- gas model is imported from library files.
// isAdaptiveSolver: isAdaptiveSolver = 0 indicates the generic Navier-Stokes solver,
// isAdaptiveSolver>0 indicates the HyFlow self-adaptive solver.
// 1 -- using HyFlow self-adaptive solver where the switch is controlled by the total iteration steps.
// 2 -- using HyFlow self-adaptive solver where the switch is controlled by variation of the key residual.
// nm: Equation number of the physics, but is out of commision now.
// 4 -- for 2D.
// 5 -- for 3D.
@ -886,14 +903,13 @@ int monitorNegativeConstant = 0;
// nEquilibriumGas: the variable is valid when the condition of nchem = 0 is satisfied.
// 0 -- perfect gas.
// 5, 7, 11 -- equilibrium gas, meanwhile, its value denotes the number of gas component.
// nPCWCycleStep: the maximum step number of iteration in the module of computing species mass fractions with the partial catalytic wall(PCW) condition.
// the value equals to or is greater than 1, and 3 is for default value.
// nRETCycleStep: the maximum step number of iteration in the module of computing radiation equilibrium temperature on wall.
// the value equals to or is greater than 1, and 3 is for default value.
// nSLIPCycleStep:the maximum step number of iteration in the module of computing slip temperature, slip velocity and slip species mass fraction.
// the value equals to or is greater than 1, and 3 is for default value.
// nPCWCycleStep: The maximum step number of iteration in the module of computing species mass fractions with the partial catalytic wall(PCW) condition.
// The value equals to or is greater than 1, and 3 is for default value.
// nRETCycleStep: The maximum step number of iteration in the module of computing radiation equilibrium temperature on wall.
// The value equals to or is greater than 1, and 3 is for default value.
// nSLIPCycleStep:The maximum step number of iteration in the module of computing slip temperature, slip velocity and slip species mass fraction.
// The value equals to or is greater than 1, and 3 is for default value.
// nSlipBCModel: The computational model of slip boundary conditions.
// 0 -- no slip.
// 1 -- the conventional Maxwell slip conditions.
// 2 -- the Gokcen slip conditions.
@ -913,10 +929,13 @@ int monitorNegativeConstant = 0;
// 1 -- One-temperature model.
// 2 -- Two-temperature model.
// 3 -- Three-temperature model.
// isUseNoneqCond:
// 0 -- compute the source terms without any conditions.
// 1 -- compute the source terms using the non-equilibrium condition.
// frozenCondition: the threshold value of frozen chemical flow condition, 0.1 is the default value.
// nIdealState: whether take all gas species as ideal gas for gas-mixture process.
// 0 -- No.
// 1 -- Yes.
// nTEnergyModel: the method to computing temperature energy model.
// 1 -- Yes. // nTEnergyModel: the method to computing temperature energy model.
// 0 -- the energy term is computed using the conventional method.
// 1 -- the energy term is computed using the polynomial fitting method.
// 2 -- the energy term is computed using the piecewise polynomial fitting method.
@ -946,14 +965,13 @@ int monitorNegativeConstant = 0;
// 1.0 -- proposed by Maxwell.
// sqrt(2/PI)~0.8 -- used for "micro-slip", namely the actual velocity slip at the wall.
// 1.146 -- proposed for an additional "fictitious" velocity slip.
// chemicalRelaxCorf: The value is in range of [0.001, 1.0].
// spectrumRadiusCoef: The value is in range of [0.0, 2.0].
// staticPressureRelaxCorf: The value is in range of [0.1, 1.0].
// nIsChemicalFreeze: the flag to freeze the chemical reactions.
// 0 -- not freeze, the chemical reaction sources will be calculated.
// 1 -- freezes the chemical reactions, the chemical reaction sources will not be calculated.// veTemperatureMin: The minimum of Tv and Te
// 1 -- freezes the chemical reactions, the chemical reaction sources will not be calculated.
// veTemperatureMin: The minimum of Tv and Te.
// maxViscous: the maximum of Viscous.
// trTemperatureMin: the minimum value of trTemperature.
// veTemperatureMin: the minimum value of veTemperature.
@ -965,36 +983,34 @@ int monitorNegativeConstant = 0;
// nSpeciesLimit: limitter of gas species
// 0 -- not used.
// 1 -- used.
// nTurblenceForChemical: the coupled mode of Turblence and Chemical reaction
// nTurblenceForChemical: the coupled mode of Turblence and Chemical reaction.
// 0 -- method 0.
// 1 -- method 1.
// nViscosityFluxSublevelModified: Modified for ViscosityFlux on Sublevel grid
// nViscosityFluxSublevelModified: Modified for ViscosityFlux on Sublevel grid.
// 0 -- not used.
// 1 -- used.
// nViscosityPeModified: Pe Modified for ViscosityCoef
// nViscosityPeModified: Pe Modified for ViscosityCoef.
// 0 -- not used.
// 1 -- used.
// nChemcalSourceModified: Modified on ChemcalSource
// nChemcalSourceModified: Modified on ChemcalSource.
// 0 -- not used.
// 1 -- used.
// nChemcalSourceEsMethod: Modified on ChemcalSource
// 0 -- approximation algorithm 1 (Ori.)
// 1 -- approximation algorithm 2 (New)
// nChemcalSourceEsMethod: Modified on ChemcalSource.
// 0 -- approximation algorithm 1 (Ori).
// 1 -- approximation algorithm 2 (New).
// nMaxStepTemperature: the iterative steps of temperature.
// veTemperatureMinModified: Modified on the minimum of Tve for Cvvs
// 0 -- not used
// 1 -- used
// nDiagonalModified: Modified on Diagonal
// 0 -- not used
// 1 -- Ori.
// 2 -- new
// veTemperatureMinModified: Modified on the minimum of Tve for Cvvs.
// 0 -- not used.
// 1 -- used.
// nDiagonalModified: Modified on Diagonal.
// 0 -- not used.
// 1 -- new.
// nDiagonalModifiedTurb: Modified on Diagonal for turbulence.
// 0 -- not used.
// 1 -- new.
// nGradPrimtiveMethod:
// 0 -- Ori.
// 1 -- new
// 1 -- new.
// nAblation:
// 0 -- The wall ablation is not computed.
// 1 -- The wall ablation is computed.
@ -1017,8 +1033,8 @@ int monitorNegativeConstant = 0;
// "Mars-Pa8" is for Park model of Mars gas, "Mars-Mc8" for McKenzie model of Mars gas.
// "Combustion-12" -- indicates the Combustion Chamber Gas Model which includes 12-species-20-reactions.
// "Gas-Mixture" -- indicates the process of mixing gas without reacting.
// for struct solver mixing two species£¨SpeciesA, SpeciesB£©.
// for unstruct solver mixing multi-species£¨O2 NO CO CO2 H2 N2 Air CH4£©.
// for struct solver mixing two species<65><73>SpeciesA, SpeciesB<73><42>.
// for unstruct solver mixing multi-species<65><73>O2 NO CO CO2 H2 N2 Air CH4<48><34>.
// For self-definition model, the gasfile is used to indicate the file path of the new gas model.
// speciesName: Used to list the names of each species, while each species name is separated by the symbol of comma.
// initMassFraction: Used to list the initial mass fractions of species in accordance with the sequence of names in the parameter speciesName.
@ -1040,13 +1056,16 @@ int monitorNegativeConstant = 0;
// firstStepError : the residual error of the first step iteration for the self-adaptive calculation.
// secondStepError : the residual error of the second step iteration for the self-adaptive calculation.
// thirdStepError : the residual error of the third step iteration for the self-adaptive calculation.
// useHyflowSetting : Setting for HyFLOW GUI.
// 0 -- PHengLEI
// 1 -- HyFLOW
// nProtectData: Use the continuation file data protection mechanism.
// 0 -- no
// 1 -- yes
// 0 -- no.
// 1 -- yes.
// nTvChange: Judge whether the Tv equals Ttr.
// 0 -- yes.
// 1 -- no.
// isMoleFractionType: 1 indicates the mass fractions, or else the mole fractions.
// nFraction: the initial fractions type of species.
// 0 -- mass fraction.
// 1 -- mole fraction.
int dg_high_order = 0;
int iapplication = 0;
int isAdaptiveSolver = 0;
@ -1114,6 +1133,7 @@ double densityMin = 1.0e-8;
double densityMinFactor = 0.1;
double tAdjustmentFactor = 10.0;
double iniSpeedCoef = 1.0;
int iniSpeedMode = 0;
int nDebug = 0;
int nSpeciesLimit = 1;
@ -1125,18 +1145,21 @@ int nChemcalSourceEsMethod = 1;
int nMaxStepTemperature = 5;
int veTemperatureMinModified = 1;
int nDiagonalModified = 0;
int nDiagonalModifiedTurb = 0;
int nGradPrimtiveMethod = 1;
int nInviscidFluxModify = 1;
int nQlLimitMethod = 2;
int nSpeciesForWallMethod = 1;
int nDensityForWallMethod = 0;
int wallMultiTemperature = 0;
int nProtectData = 0;
int useHyflowSetting = 0;
int nAblation = 0;
int isInjection = 0;
int nViscosityModel = 0;
int nMarsModel = 0;
int nTvChange = 0;
int isMoleFractionType = 0;
string gasfile = "DK5";
//string gasfile = "./chemical/Dunn-Kang_air5s11r.dat";
string speciesName = "O, O2, NO, N, N2";
@ -1173,9 +1196,17 @@ double molecularWeightSpeciesB = 30.0;
//string speciesName = "O2, N2";
//string initMassFraction = "1.0, 0.0";
int nFraction = 0;
int nContinueModel = 0;
int nChemicalFlowStep = 0;
int ifStartFromPerfectGasResults = 0;
int isUseNoneqCond = 0;
double frozenCondition = 0.01;
int nLeakageMonitor = 0;
double totalLeakageVolume = 1000.0;
double monitorThresholdValue = 0.05;
double sprayFactor = 0.0;
#########################################################################
// Multi-Grid parameters.
@ -1196,7 +1227,6 @@ int ifStartFromPerfectGasResults = 0;
// 1 -- zero order.
// 2 -- first-order. (default)
// mgCorrectionLimit: Multi-grid correction limit.
int nMGLevel = 1;
int MGCoarsestIteration = 1;
int MGPreIteration = 1;
@ -1226,9 +1256,9 @@ string holeFullFileName = "./grid/holeFullFile.dat";
string linkFileName = "./grid/topology.dat";
string zoneInverseFileName = "./grid/zoneInverseMapping.inp";
#########################################################################
# High Order Struct Solver #
#########################################################################
#************************************************************************
# High Order Struct Solver *
#************************************************************************
// isFVMOrFDM:
// 0 -- NSSolverStruct using Finite Volume Method.
// 1 -- NSSolverStruct using Finite Differ Method.
@ -1273,10 +1303,29 @@ int allReduceStep = 1;
// codeOfOversetGrid: Overlapping(overset) grid or not.
// 0 -- NON-overlapping grid.
// 1 -- Overlapping grid.
// oversetInterpolationMethod: the method of overset interpolation while field simulation
// oversetInterpolationMethod: the method of overset interpolation while field simulation.
// 0 -- set the acceptor cell value by donor cell value.
// 1 -- set the acceptor cell value by distance weight of donor cell value.
// readOversetFileOrNo: Whether to read overset-file(.ovs) that has been generated.
// 0 -- no.
// 1 -- yes.
// symetryOrNot: If there exist symetryplanes(XY plane, the coordinate of Z direction is 0) in
// the current overset grid(only for three dimension).
// 0 -- no.
// 1 -- yes.
// readInAuxiliaryInnerGrid: Whether to read auxiliary inner grid.
// 0 -- no.
// 1 -- yes.
// walldistMainZone: The initial value of background grid which does not exist wall boundary condition.
// toleranceForOversetSearch: The tolerance of overset searching zone to judge whether the obtained node is in the current computing cell.
// toleranceForOversetBox: The tolerance of building the minimum box of computing cells in the overlapping region.
// twoOrderInterpolationOrNot: The number of interpolated cell layers in the overlapping boundary.
// 0 -- one layer.
// 1 -- two layers.
// keyEnlargeOfActiveNodes: The number of enlarged overset-boundary layers in the buffer region.
// outTecplotOverset: Whether to dump out the flowfield data after the progress of overset configure.
// 0 -- no.
// 1 -- yes.
int codeOfOversetGrid = 0;
int oversetInterpolationMethod = 0;
int readOversetFileOrNot = 0;
@ -1295,7 +1344,6 @@ int twoOrderInterpolationOrNot = 0;
int keyEnlargeOfActiveNodes = 0;
int outTecplotOverset = 0;
int outPutOversetVisualization = 0;
int numberOfMovingBodies = 2;
// ----------------- ALE configuration ------------------------------
@ -1306,34 +1354,40 @@ double referenceLength = 1.0;
double referenceVelocity = 1.0;
double referenceDensity = 1.0;
int strategyForFaceNormalVelocity = 0; //0-By Sweeping volume; 1-By face center 1st; 2-By face center 2nd;
int strategyForGCLSource = 0; //0-present; 1-Ahn;
int strategyForFaceNormalVelocity = 0; // 0-By Sweeping volume; 1-By face center 1st; 2-By face center 2nd.
int strategyForGCLSource = 0; // 0-present; 1-Ahn.
//0:1st-Admas-Bashforth; 1:2nd-Admas-Bashforth; 2:1st-Implicit-Euler; 3:2nd-Implicit Euler; 4:2nd-Adams-Moulton; 5:3rd-Adams-Moulton
// 0: 1st-Admas-Bashforth; 1: 2nd-Admas-Bashforth; 2: 1st-Implicit-Euler; 3: 2nd-Implicit Euler; 4: 2nd-Adams-Moulton; 5: 3rd-Adams-Moulton.
int methodForKineticEquation = 0;
double relaxParameterOfKinetic = 1.0;
#########################################################################
# motive information #
#########################################################################
#************************************************************************
# motive information *
#************************************************************************
int numberOfMovingBodies = 1;
############################## body0 ##############################
//mass of parts
// mass of parts.
double mass_0 = 1.0;
//mass matrix of parts Ixx Iyy Izz Ixy Ixz Iyz
// gravity of parts (along negative direction in Y-axis, eg. 9.8).
double gravity_0 = 0.0;
// mass matrix of parts Ixx Iyy Izz Ixy Ixz Iyz.
double massMatrix_0[] = 1e-7, 1e-6, 1e-6, 0.0, 0.0, 0.0;
//initial six DOF position information of parts. xc yc zc
// initial six DOF position information of parts. xc yc zc.
double massCenter_0[] = 0.0, 0.0, 0.0;
//initial six DOF position information of parts. angleX angleY angleZ
// if reset mass center while restart.
int resetMassCenter_0 = 0;
// position offset of parts. dx dy dz.
double massCenterDxyz_0[] = 0.0, 0.0, 0.0;
// initial six DOF position information of parts. angleX angleY angleZ.
double attitudeAngle_0[] = 0.0, 0.0, 0.0;
//initial six DOF move information of parts. vc vy vz
// initial six DOF move information of parts. vc vy vz.
double massCenterVelocity_0[] = 0.0, 0.0, 0.0;
//initial six DOF move information of parts. omigX omigY omigZ
// initial six DOF move information of parts. omigX omigY omigZ.
double angularVelocity_0[] = 0.0, 0.0, 0.0;
// the object that the parts belong to.
int fartherIndex_0 = -1;
//the assembly position of the parts. xc yc zc angleX angleY angleZ
// the assembly position of the parts. xc yc zc angleX angleY angleZ.
double configPamameter_0[] = 0.0, 0.0, 0.0, 0.0, 0.0, 0.0;
// the move pattern of the parts.
// -1 given motion partten.
@ -1349,23 +1403,24 @@ double configPamameter_0[] = 0.0 ,0.0 ,0.0 ,0.0 ,0.0
int RBDMethod_0 = 0;
double amplitude_0 = 0.0;
double reduceFrequency_0 = 0.0;
//direction of rotation
// direction of rotation.
// 1 -- clockwise from the point of view along the positive x axis.
// -1 -- anticlockwise from the point of view along the positive x axis.
int direction_0 = -1;
double rotateFrequency_0 = 0.0;
//string uDFSixDofFileName_0 = "./Bin/UDFSixDof.Parameter";
//additional force (system axis) fX fY fZ
// dimensional physical time for additional force(s).
double addedForceTime_0[] = 0.0;
// additional force(inertia system) fX fY fZ.
double addedForce_0[] = 0.0, 0.0, 0.0;
//additional moment of Force (system axis) mX mY mZ
// additional moment(inertia system) mX mY mZ.
double addedMoment_0[] = 0.0, 0.0, 0.0;
// the deformation method of the parts.
int morphing_0 = 0;
// post indentify
// post indentify.
int integralOrder = 4;
// ---------------- ATP read --------------------------------------------
//@int inflowParaType = 0;
//@double refReNumber = 6.5e6;
@ -1379,18 +1434,34 @@ int integralOrder = 4;
//@string outLetFileName = "./bin/subsonicOutlet.hypara";
//@double refDimensionalVelocity = 0;
//@double refDimensionalDensity = 0;
#########################################################################
# Old Parameter #
#########################################################################
//@string weatherDataFilePath = "./WRFData/";
//@double longitude = 110.95
//@double latitude = 19.61;
#************************************************************************
# Old Parameter *
#************************************************************************
int isPlotVolumeField = 0;
#************************************************************************
# partial flow field setting Parameter *
#************************************************************************
//int nPartialParameter = 0; // 0/1/2
//int nNumberOfPartialField = 0; //
//int nStartGridIndex[] = [0];
//int nEndGridIndex[] = [0];
#########################################################################
# Incompressible Parameter #
#########################################################################
//double partialCFL[] = [0.0];
//double partialSpeedCoef[] = [0.0];
//double partialSpeed[] = [0.0];
//double partialAttackd[] = [0.0];
//double partialSlide[] = [0.0];
//double partialPressure[] = [0.0];
//double partialTemperature[] = [0.0];
//double partialMassFractions[] = [0.0];
#************************************************************************
# Incompressible Parameter *
#************************************************************************
int isSolveEnergyEquation = 0;
int isSolveTurbEquation = 0;
int isSolveSpeciesEquation = 0;

View File

@ -4,9 +4,12 @@
// gridtype: Grid type for generation, conversion, reconstruction, merging.
// 0 -- Unstructured grid.
// 1 -- Structured grid.
// axisup: Type of Cartisien coordinates system, used in grid conversion.
// 1 -- Y upward. (default)
// 2 -- Z upward.
// nAxisRotateTimes: number of axis rotating times, zero (default) meaning without rotating.
// axisRotateOrder : axis rotating order.
// 1 -- X-axis.
// 2 -- Y-axis.
// 3 -- Z-axis.
// axisRotateAngles: axis rotating angles (degree), which are corresponding to the axis rotating order.
// from_gtype: Type of grid data type in grid conversion process.
// -1 -- MULTI_TYPE.
// 1 -- PHengLEI, *.fts.
@ -18,7 +21,9 @@
// 7 -- Hybrid, include both of unstructured and structured grid, *.fts.
// 8 -- GMSH, *.msh.
int gridtype = 1;
int axisup = 1;
int nAxisRotateTimes = 0;
int axisRotateOrder[] = [1, 2, 3];
double axisRotateAngles[] = [0.0, 0.0, 0.0];
int from_gtype = 2;
#########################################################################