diff --git a/docs/user/get_started/5_inverse_wave_equation.md b/docs/user/get_started/5_inverse_wave_equation.md index 8f36462..680e71e 100644 --- a/docs/user/get_started/5_inverse_wave_equation.md +++ b/docs/user/get_started/5_inverse_wave_equation.md @@ -3,7 +3,7 @@ Consider the 1d wave equation: $$ \begin{equation} -\frac{\partial^2u}{\partial t^2}=c\frac{\partial^2u}{\partial x^2}, +\frac{\partial^2u}{\partial t^2}=c^2\frac{\partial^2u}{\partial x^2}, \end{equation} $$ where $c>0$ is unknown and is to be estimated. A group of data pairs $\{x_i, t_i, u_i\}_{i=1,2,\cdot,N}$ is observed. @@ -11,7 +11,7 @@ Then the problem is formulated as: $$ \min_{u,c} \sum_{i=1,2,\cdots,N} \|u(x_i, t_i)-u_i\|^2\\ -s.t. \frac{\partial^2u}{\partial t^2}=c\frac{\partial^2u}{\partial x^2} +s.t. \frac{\partial^2u}{\partial t^2}=c^2\frac{\partial^2u}{\partial x^2} $$ In the context of PINN, $u$ is parameterized to $u_\theta$. @@ -20,7 +20,7 @@ The problem above is transformed to the discrete form: $$ \min_{\theta,c} w_1\sum_{i=1,2,\cdots,N} \|u_\theta(x_i, t_i)-u_i\|^2 -+w_2\sum_{i=1,2,\cdots,M}\left|\frac{\partial^2u_\theta(x_i,t_i)}{\partial t^2}-c\frac{\partial^2u_\theta(x_i,t_i)}{\partial x^2}\right|^2. ++w_2\sum_{i=1,2,\cdots,M}\left|\frac{\partial^2u_\theta(x_i,t_i)}{\partial t^2}-c^2\frac{\partial^2u_\theta(x_i,t_i)}{\partial x^2}\right|^2. $$ ## Importing External Data