test: add ldc example

This commit is contained in:
weipengOO98 2021-07-26 14:30:53 +08:00
parent f665364ef0
commit 465b388de3
1 changed files with 115 additions and 0 deletions

115
examples/ldc/ldc.py Executable file
View File

@ -0,0 +1,115 @@
from idrlnet import shortcut as sc
import sympy as sp
import torch
import numpy as np
from idrlnet.pde_op.equations import NavierStokesNode
from matplotlib import tri
import matplotlib.pyplot as plt
x, y = sp.symbols('x y')
rec = sc.Rectangle((-0.05, -0.05), (0.05, 0.05))
@sc.datanode(name='flow_domain')
class InteriorDomain(sc.SampleDomain):
def __init__(self):
points = rec.sample_interior(400000, bounds={x: (-0.05, 0.05), y: (-0.05, 0.05)})
constraints = sc.Variables({'continuity': torch.zeros(len(points['x']), 1),
'momentum_x': torch.zeros(len(points['x']), 1),
'momentum_y': torch.zeros(len(points['x']), 1)})
points['area'] = np.ones_like(points['area']) * 2.5e-6
constraints['lambda_continuity'] = points['sdf']
constraints['lambda_momentum_x'] = points['sdf']
constraints['lambda_momentum_y'] = points['sdf']
self.points = sc.Variables(points).to_torch_tensor_()
self.constraints = sc.Variables(constraints).to_torch_tensor_()
def sampling(self, *args, **kwargs):
return self.points, self.constraints
@sc.datanode(name='left_right_down')
class LeftRightDownBoundaryDomain(sc.SampleDomain):
def __init__(self):
points = rec.sample_boundary(3333, sieve=(y < 0.05))
constraints = sc.Variables({'u': torch.zeros(len(points['x']), 1), 'v': torch.zeros(len(points['x']), 1)})
points['area'] = np.ones_like(points['area']) * 1e-4
self.points = sc.Variables(points).to_torch_tensor_()
self.constraints = sc.Variables(constraints).to_torch_tensor_()
def sampling(self, *args, **kwargs):
return self.points, self.constraints
@sc.datanode(name='up')
class UpBoundaryDomain(sc.SampleDomain):
def __init__(self):
points = rec.sample_boundary(10000, sieve=sp.Eq(y, 0.05))
points['area'] = np.ones_like(points['area']) * 1e-4
constraints = sc.Variables({'u': torch.ones(len(points['x']), 1), 'v': torch.zeros(len(points['x']), 1)})
constraints['lambda_u'] = 1 - 20 * abs(points['x'].copy())
self.points = sc.Variables(points).to_torch_tensor_()
self.constraints = sc.Variables(constraints).to_torch_tensor_()
def sampling(self, *args, **kwargs):
return self.points, self.constraints
torch.autograd.set_detect_anomaly(True)
net = sc.MLP([2, 100, 100, 100, 100, 3], activation=sc.Activation.tanh, initialization=sc.Initializer.Xavier_uniform,
weight_norm=False)
net_u = sc.NetNode(inputs=('x', 'y',), outputs=('u', 'v', 'p'), net=net, name='net_u')
pde = NavierStokesNode(nu=0.01, rho=1.0, dim=2, time=False)
s = sc.Solver(sample_domains=(InteriorDomain(), LeftRightDownBoundaryDomain(), UpBoundaryDomain()),
netnodes=[net_u],
pdes=[pde],
max_iter=4000,
network_dir='./result/tanh_Xavier_uniform',
)
s.solve()
def interoir_domain_infer():
points = rec.sample_interior(1000000, bounds={x: (-0.05, 0.05), y: (-0.05, 0.05)})
constraints = sc.Variables({'continuity': torch.zeros(len(points['x']), 1),
'momentum_x': torch.zeros(len(points['x']), 1),
'momentum_y': torch.zeros(len(points['x']), 1)})
return points, constraints
data_infer = sc.get_data_node(interoir_domain_infer, name='flow_domain')
s.sample_domains = [data_infer]
pred = s.infer_step({'flow_domain': ['x', 'y', 'v', 'u', 'p']})
num_x = pred['flow_domain']['x'].detach().cpu().numpy().ravel()
num_y = pred['flow_domain']['y'].detach().cpu().numpy().ravel()
num_u = pred['flow_domain']['u'].detach().cpu().numpy().ravel()
num_v = pred['flow_domain']['v'].detach().cpu().numpy().ravel()
num_p = pred['flow_domain']['p'].detach().cpu().numpy().ravel()
triang_total = tri.Triangulation(num_x, num_y)
triang_total = tri.Triangulation(num_x, num_y)
u_pre = num_u.flatten()
fig = plt.figure(figsize=(15, 5))
ax1 = fig.add_subplot(131)
tcf = ax1.tricontourf(triang_total, num_u, 100, cmap="jet")
tc_bar = plt.colorbar(tcf)
ax1.set_title('u')
ax2 = fig.add_subplot(132)
tcf = ax2.tricontourf(triang_total, num_v, 100, cmap="jet")
tc_bar = plt.colorbar(tcf)
ax2.set_title('v')
ax3 = fig.add_subplot(133)
tcf = ax3.tricontourf(triang_total, num_p, 100, cmap="jet")
tc_bar = plt.colorbar(tcf)
ax3.set_title('p')
plt.show()