from idrlnet import shortcut as sc import sympy as sp import torch import numpy as np from idrlnet.pde_op.equations import NavierStokesNode from matplotlib import tri import matplotlib.pyplot as plt x, y = sp.symbols('x y') rec = sc.Rectangle((-0.05, -0.05), (0.05, 0.05)) @sc.datanode(name='flow_domain') class InteriorDomain(sc.SampleDomain): def __init__(self): points = rec.sample_interior(400000, bounds={x: (-0.05, 0.05), y: (-0.05, 0.05)}) constraints = sc.Variables({'continuity': torch.zeros(len(points['x']), 1), 'momentum_x': torch.zeros(len(points['x']), 1), 'momentum_y': torch.zeros(len(points['x']), 1)}) points['area'] = np.ones_like(points['area']) * 2.5e-6 constraints['lambda_continuity'] = points['sdf'] constraints['lambda_momentum_x'] = points['sdf'] constraints['lambda_momentum_y'] = points['sdf'] self.points = sc.Variables(points).to_torch_tensor_() self.constraints = sc.Variables(constraints).to_torch_tensor_() def sampling(self, *args, **kwargs): return self.points, self.constraints @sc.datanode(name='left_right_down') class LeftRightDownBoundaryDomain(sc.SampleDomain): def __init__(self): points = rec.sample_boundary(3333, sieve=(y < 0.05)) constraints = sc.Variables({'u': torch.zeros(len(points['x']), 1), 'v': torch.zeros(len(points['x']), 1)}) points['area'] = np.ones_like(points['area']) * 1e-4 self.points = sc.Variables(points).to_torch_tensor_() self.constraints = sc.Variables(constraints).to_torch_tensor_() def sampling(self, *args, **kwargs): return self.points, self.constraints @sc.datanode(name='up') class UpBoundaryDomain(sc.SampleDomain): def __init__(self): points = rec.sample_boundary(10000, sieve=sp.Eq(y, 0.05)) points['area'] = np.ones_like(points['area']) * 1e-4 constraints = sc.Variables({'u': torch.ones(len(points['x']), 1), 'v': torch.zeros(len(points['x']), 1)}) constraints['lambda_u'] = 1 - 20 * abs(points['x'].copy()) self.points = sc.Variables(points).to_torch_tensor_() self.constraints = sc.Variables(constraints).to_torch_tensor_() def sampling(self, *args, **kwargs): return self.points, self.constraints torch.autograd.set_detect_anomaly(True) net = sc.MLP([2, 100, 100, 100, 100, 3], activation=sc.Activation.tanh, initialization=sc.Initializer.Xavier_uniform, weight_norm=False) net_u = sc.NetNode(inputs=('x', 'y',), outputs=('u', 'v', 'p'), net=net, name='net_u') pde = NavierStokesNode(nu=0.01, rho=1.0, dim=2, time=False) s = sc.Solver(sample_domains=(InteriorDomain(), LeftRightDownBoundaryDomain(), UpBoundaryDomain()), netnodes=[net_u], pdes=[pde], max_iter=4000, network_dir='./result/tanh_Xavier_uniform', ) s.solve() def interoir_domain_infer(): points = rec.sample_interior(1000000, bounds={x: (-0.05, 0.05), y: (-0.05, 0.05)}) constraints = sc.Variables({'continuity': torch.zeros(len(points['x']), 1), 'momentum_x': torch.zeros(len(points['x']), 1), 'momentum_y': torch.zeros(len(points['x']), 1)}) return points, constraints data_infer = sc.get_data_node(interoir_domain_infer, name='flow_domain') s.sample_domains = [data_infer] pred = s.infer_step({'flow_domain': ['x', 'y', 'v', 'u', 'p']}) num_x = pred['flow_domain']['x'].detach().cpu().numpy().ravel() num_y = pred['flow_domain']['y'].detach().cpu().numpy().ravel() num_u = pred['flow_domain']['u'].detach().cpu().numpy().ravel() num_v = pred['flow_domain']['v'].detach().cpu().numpy().ravel() num_p = pred['flow_domain']['p'].detach().cpu().numpy().ravel() triang_total = tri.Triangulation(num_x, num_y) triang_total = tri.Triangulation(num_x, num_y) u_pre = num_u.flatten() fig = plt.figure(figsize=(15, 5)) ax1 = fig.add_subplot(131) tcf = ax1.tricontourf(triang_total, num_u, 100, cmap="jet") tc_bar = plt.colorbar(tcf) ax1.set_title('u') ax2 = fig.add_subplot(132) tcf = ax2.tricontourf(triang_total, num_v, 100, cmap="jet") tc_bar = plt.colorbar(tcf) ax2.set_title('v') ax3 = fig.add_subplot(133) tcf = ax3.tricontourf(triang_total, num_p, 100, cmap="jet") tc_bar = plt.colorbar(tcf) ax3.set_title('p') plt.show()