import idrlnet.shortcut as sc import sympy as sp import matplotlib.pyplot as plt import matplotlib.tri as tri import numpy as np x, y = sp.symbols("x y") temp = sp.Symbol("temp") temp_range = {temp: (-0.2, 0.2)} rec = sc.Rectangle((-1.0, -1.0), (1.0, 1.0)) @sc.datanode class Right(sc.SampleDomain): # Due to `name` is not specified, Right will be the name of datanode automatically def sampling(self, *args, **kwargs): points = rec.sample_boundary( 1000, sieve=(sp.Eq(x, 1.0)), param_ranges=temp_range ) constraints = sc.Variables({"T": 0.0}) return points, constraints @sc.datanode class Left(sc.SampleDomain): # Due to `name` is not specified, Left will be the name of datanode automatically def sampling(self, *args, **kwargs): points = rec.sample_boundary( 1000, sieve=(sp.Eq(x, -1.0)), param_ranges=temp_range ) constraints = sc.Variables({"T": temp}) return points, constraints @sc.datanode(name="up_down") class UpDownBoundaryDomain(sc.SampleDomain): def sampling(self, *args, **kwargs): points = rec.sample_boundary( 1000, sieve=((x > -1.0) & (x < 1.0)), param_ranges=temp_range ) constraints = sc.Variables({"normal_gradient_T": 0.0}) return points, constraints @sc.datanode(name="heat_domain") class HeatDomain(sc.SampleDomain): def __init__(self): self.points = 1000 def sampling(self, *args, **kwargs): points = rec.sample_interior(self.points, param_ranges=temp_range) constraints = sc.Variables({"diffusion_T": 1.0}) return points, constraints net = sc.get_net_node( inputs=("x", "y", "temp"), outputs=("T",), name="net1", arch=sc.Arch.mlp ) pde = sc.DiffusionNode(T="T", D=1.0, Q=0.0, dim=2, time=False) grad = sc.NormalGradient("T", dim=2, time=False) s = sc.Solver( sample_domains=(HeatDomain(), Left(), Right(), UpDownBoundaryDomain()), netnodes=[net], pdes=[pde, grad], max_iter=3000, ) s.solve() def infer_temp(temp_num, file_suffix=None): temp_range[temp] = temp_num s.set_domain_parameter("heat_domain", {"points": 10000}) coord = s.infer_step({"heat_domain": ["x", "y", "T"]}) num_x = coord["heat_domain"]["x"].cpu().detach().numpy().ravel() num_y = coord["heat_domain"]["y"].cpu().detach().numpy().ravel() num_Tp = coord["heat_domain"]["T"].cpu().detach().numpy().ravel() # Ground truth num_T = -(num_x + 1 + temp_num) * (num_x - 1.0) / 2 fig, ax = plt.subplots(1, 3, figsize=(10, 3)) triang_total = tri.Triangulation(num_x, num_y) ax[0].tricontourf(triang_total, num_Tp, 100, cmap="hot", vmin=-0.2, vmax=1.21 / 2) ax[0].axis("off") ax[0].set_title(f"prediction($T_l={temp_num:.2f}$)") ax[1].tricontourf(triang_total, num_T, 100, cmap="hot", vmin=-0.2, vmax=1.21 / 2) ax[1].axis("off") ax[1].set_title(f"ground truth($T_l={temp_num:.2f}$)") ax[2].tricontourf( triang_total, np.abs(num_T - num_Tp), 100, cmap="hot", vmin=0, vmax=1.21 / 2 ) ax[2].axis("off") ax[2].set_title("absolute error") if file_suffix is None: plt.savefig(f"poisson_{temp_num:.2f}.png", dpi=300, bbox_inches="tight") plt.show() else: plt.savefig(f"poisson_{file_suffix}.png", dpi=300, bbox_inches="tight") plt.show() for i in range(41): temp_num = i / 100 - 0.2 infer_temp(temp_num, file_suffix=i)