forked from idrl/idrlnet
commit
179dfb96d1
|
@ -0,0 +1,24 @@
|
|||
[bumpversion]
|
||||
current_version = 0.0.1-rc1
|
||||
commit = True
|
||||
tag = True
|
||||
tag_name = v{new_version}
|
||||
parse = (?P<major>\d+)\.(?P<minor>\d+)\.(?P<patch>\d+)([-](?P<release>(dev|rc))+(?P<build>\d+))?
|
||||
serialize =
|
||||
{major}.{minor}.{patch}-{release}{build}
|
||||
{major}.{minor}.{patch}
|
||||
|
||||
[bumpversion:part:release]
|
||||
first_value = dev
|
||||
optional_value = ga
|
||||
values =
|
||||
dev
|
||||
rc
|
||||
ga
|
||||
|
||||
[bumpversion:part:build]
|
||||
first_value = 1
|
||||
|
||||
[bumpversion:file:setup.py]
|
||||
|
||||
[bumpversion:file:docs/conf.py]
|
2
.flake8
2
.flake8
|
@ -1,2 +1,2 @@
|
|||
[flake8]
|
||||
ignore = E203, W503, E501, E231, F401, F403
|
||||
ignore = E203, W503, E501, E231, F401, F403, E722, E731
|
||||
|
|
|
@ -0,0 +1,45 @@
|
|||
name: docker-build-push
|
||||
|
||||
on:
|
||||
push:
|
||||
branches: [master]
|
||||
pull_request:
|
||||
branches: [master]
|
||||
release:
|
||||
types: [published, edited]
|
||||
|
||||
|
||||
jobs:
|
||||
docker:
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
-
|
||||
name: Set up QEMU
|
||||
uses: docker/setup-qemu-action@v1
|
||||
-
|
||||
name: Set up Docker Buildx
|
||||
uses: docker/setup-buildx-action@v1
|
||||
-
|
||||
name: Login to DockerHub
|
||||
uses: docker/login-action@v1
|
||||
with:
|
||||
username: ${{ secrets.DOCKERHUB_USERNAME }}
|
||||
password: ${{ secrets.DOCKERHUB_TOKEN }}
|
||||
-
|
||||
name: Print event_name
|
||||
run: echo "$GITHUB_EVENT_NAME, ${{ github.event_name }}, ${{ github.event.release.tag_name }}"
|
||||
|
||||
-
|
||||
name: Get release version
|
||||
if: github.event_name == 'release'
|
||||
id: get_version
|
||||
run: echo "::set-output name=RELEASE_VERSION::${{ github.event.release.tag_name }}"
|
||||
|
||||
-
|
||||
name: Publish Releases to Dockerhub
|
||||
if: github.event_name == 'release'
|
||||
uses: docker/build-push-action@v2
|
||||
with:
|
||||
push: true
|
||||
tags: ${{ secrets.DOCKERHUB_USERNAME }}/idrlnet:${{ steps.get_version.outputs.RELEASE_VERSION }}
|
||||
file: Dockerfile
|
|
@ -0,0 +1,40 @@
|
|||
# This workflow will install Python dependencies, run tests and lint with a variety of Python versions
|
||||
# For more information see: https://help.github.com/actions/language-and-framework-guides/using-python-with-github-actions
|
||||
|
||||
name: Publish to PyPI
|
||||
on:
|
||||
release:
|
||||
types: [published, edited]
|
||||
|
||||
jobs:
|
||||
build:
|
||||
|
||||
runs-on: ubuntu-latest
|
||||
strategy:
|
||||
fail-fast: false
|
||||
matrix:
|
||||
python-version: [3.7]
|
||||
|
||||
steps:
|
||||
- uses: actions/checkout@v2
|
||||
- name: Set up Python ${{ matrix.python-version }}
|
||||
uses: actions/setup-python@v2
|
||||
with:
|
||||
python-version: ${{ matrix.python-version }}
|
||||
- name: Install dependencies
|
||||
run: |
|
||||
python -m pip install --upgrade pip
|
||||
python -m pip install setuptools wheel twine
|
||||
|
||||
- name: Publish to PyPI
|
||||
env:
|
||||
TWINE_USERNAME: ${{ secrets.PYPI_USERNAME }}
|
||||
TWINE_PASSWORD: ${{ secrets.PYPI_PASSWORD }}
|
||||
run: |
|
||||
python setup.py sdist bdist_wheel
|
||||
twine upload --repository-url dist/*
|
||||
|
||||
- name: Install from PyPI
|
||||
run: |
|
||||
pip install -U idrlnet
|
||||
pip show idrlnet
|
|
@ -0,0 +1,38 @@
|
|||
# This workflow will install Python dependencies, run tests and lint with a variety of Python versions
|
||||
# For more information see: https://help.github.com/actions/language-and-framework-guides/using-python-with-github-actions
|
||||
|
||||
name: Python package
|
||||
|
||||
on:
|
||||
- push
|
||||
- pull_request
|
||||
|
||||
jobs:
|
||||
build:
|
||||
|
||||
runs-on: ubuntu-latest
|
||||
strategy:
|
||||
fail-fast: false
|
||||
matrix:
|
||||
python-version: [3.7, 3.8, 3.9]
|
||||
|
||||
steps:
|
||||
- uses: actions/checkout@v2
|
||||
- name: Set up Python ${{ matrix.python-version }}
|
||||
uses: actions/setup-python@v2
|
||||
with:
|
||||
python-version: ${{ matrix.python-version }}
|
||||
- name: Install dependencies
|
||||
run: |
|
||||
python -m pip install --upgrade pip
|
||||
python -m pip install flake8 pytest
|
||||
pip install -e .
|
||||
- name: Lint with flake8
|
||||
run: |
|
||||
# stop the build if there are Python syntax errors or undefined names
|
||||
flake8 . --count --select=E9,F63,F7,F82 --show-source --statistics
|
||||
# exit-zero treats all errors as warnings. The GitHub editor is 127 chars wide
|
||||
flake8 . --count --exit-zero --max-complexity=10 --max-line-length=127 --statistics
|
||||
- name: Test with pytest
|
||||
run: |
|
||||
python examples/simple_poisson/simple_poisson.py
|
32
Dockerfile
32
Dockerfile
|
@ -1,27 +1,7 @@
|
|||
FROM pytorch/pytorch:1.7.0-cuda11.0-cudnn8-devel
|
||||
RUN apt-get update && apt-get install -y openssh-server nfs-common && \
|
||||
echo "PermitRootLogin yes" >> /etc/ssh/sshd_config && \
|
||||
(echo '123456'; echo '123456') | passwd root
|
||||
|
||||
RUN pip install -i https://pypi.mirrors.ustc.edu.cn/simple/ transforms3d \
|
||||
typing \
|
||||
numpy \
|
||||
keras \
|
||||
h5py \
|
||||
pandas \
|
||||
zipfile36 \
|
||||
scikit-optimize \
|
||||
pytest \
|
||||
sphinx \
|
||||
matplotlib \
|
||||
myst_parser \
|
||||
sphinx_rtd_theme==0.5.2 \
|
||||
tensorboard==2.4.1 \
|
||||
sympy==1.5.1 \
|
||||
pyevtk==1.1.1 \
|
||||
flask==1.1.2 \
|
||||
requests==2.25.0 \
|
||||
networkx==2.5.1
|
||||
COPY . /idrlnet/
|
||||
RUN cd /idrlnet && pip install -e .
|
||||
ENTRYPOINT service ssh start && bash
|
||||
LABEL maintainer="pengwei"
|
||||
WORKDIR /idrlnet
|
||||
COPY requirements.txt ./
|
||||
RUN pip install -r requirements.txt
|
||||
COPY . .
|
||||
RUN pip install -e .
|
52
README.md
52
README.md
|
@ -1,33 +1,46 @@
|
|||
[![License](https://img.shields.io/github/license/analysiscenter/pydens.svg)](https://www.apache.org/licenses/LICENSE-2.0)
|
||||
[![Python](https://img.shields.io/badge/python-3.8-blue.svg)](https://python.org)
|
||||
[![Documentation Status](https://readthedocs.org/projects/idrlnet/badge/?version=latest)](https://idrlnet.readthedocs.io/en/latest/?badge=latest)
|
||||
|
||||
# IDRLnet
|
||||
|
||||
|
||||
**IDRLnet** is a machine learning library on top of [PyTorch](https://pytorch.org/). Use IDRLnet if you need a machine
|
||||
learning library that solves both forward and inverse differential equations via physics-informed neural
|
||||
networks (PINN). IDRLnet is a flexible framework inspired by [Nvidia Simnet](https://developer.nvidia.com/simnet>).
|
||||
|
||||
## Installation
|
||||
|
||||
Choose one of the following installation methods.
|
||||
|
||||
### PyPI
|
||||
|
||||
Simple installation from PyPI
|
||||
|
||||
```bash
|
||||
pip install -U idrlnet
|
||||
```
|
||||
|
||||
Note: To avoid version conflicts, please use some tools to create a virtual environment first.
|
||||
|
||||
### Docker
|
||||
|
||||
```bash
|
||||
git clone https://github.com/idrl-lab/idrlnet
|
||||
cd idrlnet
|
||||
docker build . -t idrlnet_dev
|
||||
docker run -it -p [EXPOSED_SSH_PORT]:22 -v [CURRENT_WORK_DIR]:/root/pinnnet idrlnet_dev:latest bash
|
||||
docker pull idrl/idrlnet:latest
|
||||
```
|
||||
|
||||
### Anaconda
|
||||
|
||||
```bash
|
||||
|
||||
|
||||
### From Source
|
||||
|
||||
```
|
||||
git clone https://github.com/idrl-lab/idrlnet
|
||||
cd idrlnet
|
||||
conda create -n idrlnet_dev python=3.8 -y
|
||||
conda activate idrlnet_dev
|
||||
pip install -r requirements.txt
|
||||
pip install -e .
|
||||
```
|
||||
|
||||
# IDRLnet
|
||||
|
||||
IDRLnet is a machine learning library on top of [Pytorch](https://www.tensorflow.org/). Use IDRLnet if you need a machine
|
||||
learning library that solves both forward and inverse partial differential equations (PDEs) via physics-informed neural
|
||||
networks (PINN). IDRLnet is a flexible framework inspired by [Nvidia Simnet](https://developer.nvidia.com/simnet>).
|
||||
|
||||
## Features
|
||||
|
||||
|
@ -80,3 +93,16 @@ First off, thanks for taking the time to contribute!
|
|||
|
||||
IDRLnet was originally developed by IDRL lab.
|
||||
|
||||
## Citation
|
||||
Feel free to cite this library.
|
||||
|
||||
```bibtex
|
||||
@article{peng2021idrlnet,
|
||||
title={IDRLnet: A Physics-Informed Neural Network Library},
|
||||
author={Wei Peng and Jun Zhang and Weien Zhou and Xiaoyu Zhao and Wen Yao and Xiaoqian Chen},
|
||||
year={2021},
|
||||
eprint={2107.04320},
|
||||
archivePrefix={arXiv},
|
||||
primaryClass={cs.LG}
|
||||
}
|
||||
```
|
||||
|
|
30
docs/conf.py
30
docs/conf.py
|
@ -13,16 +13,16 @@
|
|||
import os
|
||||
import sys
|
||||
|
||||
sys.path.insert(0, os.path.abspath('..'))
|
||||
sys.path.insert(0, os.path.abspath(".."))
|
||||
|
||||
# -- Project information -----------------------------------------------------
|
||||
|
||||
project = 'idrlnet'
|
||||
copyright = '2021, IDRL'
|
||||
author = 'IDRL'
|
||||
project = "idrlnet"
|
||||
copyright = "2021, IDRL"
|
||||
author = "IDRL"
|
||||
|
||||
# The full version, including alpha/beta/rc tags
|
||||
release = '0.0.1-alpha'
|
||||
release = "0.0.1-rc1"
|
||||
|
||||
# -- General configuration ---------------------------------------------------
|
||||
|
||||
|
@ -34,37 +34,37 @@ extensions = [
|
|||
"sphinx.ext.mathjax",
|
||||
"sphinx.ext.napoleon",
|
||||
"sphinx.ext.viewcode",
|
||||
'myst_parser',
|
||||
'sphinx.ext.autosectionlabel',
|
||||
"myst_parser",
|
||||
"sphinx.ext.autosectionlabel",
|
||||
]
|
||||
|
||||
# Add any paths that contain templates here, relative to this directory.
|
||||
templates_path = ['_templates']
|
||||
templates_path = ["_templates"]
|
||||
|
||||
source_suffix = {
|
||||
'.rst': 'restructuredtext',
|
||||
'.txt': 'markdown',
|
||||
'.md': 'markdown',
|
||||
".rst": "restructuredtext",
|
||||
".txt": "markdown",
|
||||
".md": "markdown",
|
||||
}
|
||||
# List of patterns, relative to source directory, that match files and
|
||||
# directories to ignore when looking for source files.
|
||||
# This pattern also affects html_static_path and html_extra_path.
|
||||
exclude_patterns = ['_build', 'Thumbs.db', '.DS_Store']
|
||||
exclude_patterns = ["_build", "Thumbs.db", ".DS_Store"]
|
||||
|
||||
# -- Options for HTML output -------------------------------------------------
|
||||
|
||||
# The theme to use for HTML and HTML Help pages. See the documentation for
|
||||
# a list of builtin themes.
|
||||
#
|
||||
html_theme = 'sphinx_rtd_theme'
|
||||
html_theme = "sphinx_rtd_theme"
|
||||
|
||||
# Add any paths that contain custom static files (such as style sheets) here,
|
||||
# relative to this directory. They are copied after the builtin static files,
|
||||
# so a file named "default.css" will overwrite the builtin "default.css".
|
||||
html_static_path = ['_static']
|
||||
html_static_path = ["_static"]
|
||||
|
||||
# for MarkdownParser
|
||||
from sphinx_markdown_parser.parser import MarkdownParser
|
||||
from sphinx_markdown_parser.parser import MarkdownParser # noqa
|
||||
|
||||
|
||||
# def setup(app):
|
||||
|
|
|
@ -1,2 +1,11 @@
|
|||
# Cite IDRLnet
|
||||
The paper is to appear on Arxiv.
|
||||
```
|
||||
@misc{peng2021idrlnet,
|
||||
title={IDRLnet: A Physics-Informed Neural Network Library},
|
||||
author={Wei Peng and Jun Zhang and Weien Zhou and Xiaoyu Zhao and Wen Yao and Xiaoqian Chen},
|
||||
year={2021},
|
||||
eprint={2107.04320},
|
||||
archivePrefix={arXiv},
|
||||
primaryClass={cs.LG}
|
||||
}
|
||||
```
|
||||
|
|
|
@ -3,9 +3,9 @@ import sympy as sp
|
|||
import numpy as np
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
x = sp.Symbol('x')
|
||||
s = sp.Symbol('s')
|
||||
f = sp.Function('f')(x)
|
||||
x = sp.Symbol("x")
|
||||
s = sp.Symbol("s")
|
||||
f = sp.Function("f")(x)
|
||||
geo = sc.Line1D(0, 5)
|
||||
|
||||
|
||||
|
@ -19,43 +19,49 @@ def interior():
|
|||
@sc.datanode
|
||||
def init():
|
||||
points = geo.sample_boundary(1, sieve=sp.Eq(x, 0))
|
||||
points['lambda_f'] = 1000 * np.ones_like(points['x'])
|
||||
constraints = {'f': 1}
|
||||
points["lambda_f"] = 1000 * np.ones_like(points["x"])
|
||||
constraints = {"f": 1}
|
||||
return points, constraints
|
||||
|
||||
|
||||
@sc.datanode(name='InteriorInfer')
|
||||
@sc.datanode(name="InteriorInfer")
|
||||
def infer():
|
||||
points = {'x': np.linspace(0, 5, 1000).reshape(-1, 1)}
|
||||
points = {"x": np.linspace(0, 5, 1000).reshape(-1, 1)}
|
||||
return points, {}
|
||||
|
||||
|
||||
netnode = sc.get_net_node(inputs=('x',), outputs=('f',), name='net')
|
||||
exp_lhs = sc.ExpressionNode(expression=f.diff(x) + f, name='lhs')
|
||||
netnode = sc.get_net_node(inputs=("x",), outputs=("f",), name="net")
|
||||
exp_lhs = sc.ExpressionNode(expression=f.diff(x) + f, name="lhs")
|
||||
|
||||
fs = sp.Symbol('fs')
|
||||
exp_rhs = sc.Int1DNode(expression=sp.exp(s - x) * fs, var=s, lb=0, ub=x, expression_name='rhs',
|
||||
funs={'fs': {'eval': netnode,
|
||||
'input_map': {'x': 's'},
|
||||
'output_map': {'f': 'fs'}}},
|
||||
degree=10)
|
||||
diff = sc.Difference(T='lhs', S='rhs', dim=1, time=False)
|
||||
fs = sp.Symbol("fs")
|
||||
exp_rhs = sc.Int1DNode(
|
||||
expression=sp.exp(s - x) * fs,
|
||||
var=s,
|
||||
lb=0,
|
||||
ub=x,
|
||||
expression_name="rhs",
|
||||
funs={"fs": {"eval": netnode, "input_map": {"x": "s"}, "output_map": {"f": "fs"}}},
|
||||
degree=10,
|
||||
)
|
||||
diff = sc.Difference(T="lhs", S="rhs", dim=1, time=False)
|
||||
|
||||
solver = sc.Solver(sample_domains=(interior(), init(), infer()),
|
||||
netnodes=[netnode],
|
||||
pdes=[exp_lhs, exp_rhs, diff],
|
||||
loading=True,
|
||||
max_iter=3000)
|
||||
solver = sc.Solver(
|
||||
sample_domains=(interior(), init(), infer()),
|
||||
netnodes=[netnode],
|
||||
pdes=[exp_lhs, exp_rhs, diff],
|
||||
loading=True,
|
||||
max_iter=3000,
|
||||
)
|
||||
solver.solve()
|
||||
points = solver.infer_step({'InteriorInfer': ['x', 'f']})
|
||||
num_x = points['InteriorInfer']['x'].detach().cpu().numpy().ravel()
|
||||
num_f = points['InteriorInfer']['f'].detach().cpu().numpy().ravel()
|
||||
points = solver.infer_step({"InteriorInfer": ["x", "f"]})
|
||||
num_x = points["InteriorInfer"]["x"].detach().cpu().numpy().ravel()
|
||||
num_f = points["InteriorInfer"]["f"].detach().cpu().numpy().ravel()
|
||||
|
||||
fig = plt.figure(figsize=(8,4))
|
||||
fig = plt.figure(figsize=(8, 4))
|
||||
plt.plot(num_x, num_f)
|
||||
plt.plot(num_x, np.exp(-num_x) * np.cosh(num_x))
|
||||
plt.xlabel('x')
|
||||
plt.ylabel('y')
|
||||
plt.legend(['Prediction', 'Exact'])
|
||||
plt.savefig('ide.png', dpi=1000, bbox_inches='tight')
|
||||
plt.xlabel("x")
|
||||
plt.ylabel("y")
|
||||
plt.legend(["Prediction", "Exact"])
|
||||
plt.savefig("ide.png", dpi=1000, bbox_inches="tight")
|
||||
plt.show()
|
||||
|
|
|
@ -8,16 +8,16 @@ import os
|
|||
import torch
|
||||
|
||||
# parameter phase
|
||||
L = 1.
|
||||
L = 1.0
|
||||
|
||||
# define geometry
|
||||
geo = sc.Line1D(-1.0, 1.0)
|
||||
|
||||
# define sympy varaibles to parametize domain curves
|
||||
t_symbol = Symbol('t')
|
||||
x = Symbol('x')
|
||||
u = sp.Function('u')(x, t_symbol)
|
||||
up = sp.Function('up')(x, t_symbol)
|
||||
t_symbol = Symbol("t")
|
||||
x = Symbol("x")
|
||||
u = sp.Function("u")(x, t_symbol)
|
||||
up = sp.Function("up")(x, t_symbol)
|
||||
time_range = {t_symbol: (0, L)}
|
||||
|
||||
|
||||
|
@ -25,52 +25,62 @@ time_range = {t_symbol: (0, L)}
|
|||
@sc.datanode
|
||||
class AllenInit(sc.SampleDomain):
|
||||
def sampling(self, *args, **kwargs):
|
||||
return geo.sample_interior(density=300, param_ranges={t_symbol: 0.0}), \
|
||||
{'u': x ** 2 * sp.cos(sp.pi * x), 'lambda_u': 100}
|
||||
return geo.sample_interior(density=300, param_ranges={t_symbol: 0.0}), {
|
||||
"u": x ** 2 * sp.cos(sp.pi * x),
|
||||
"lambda_u": 100,
|
||||
}
|
||||
|
||||
|
||||
@sc.datanode
|
||||
class AllenBc(sc.SampleDomain):
|
||||
def sampling(self, *args, **kwargs):
|
||||
return geo.sample_boundary(density=200, sieve=sp.Eq(x, -1), param_ranges=time_range), \
|
||||
{'difference_u_up': 0,
|
||||
'difference_diff_u_diff_up': 0,
|
||||
}
|
||||
return geo.sample_boundary(
|
||||
density=200, sieve=sp.Eq(x, -1), param_ranges=time_range
|
||||
), {
|
||||
"difference_u_up": 0,
|
||||
"difference_diff_u_diff_up": 0,
|
||||
}
|
||||
|
||||
|
||||
@sc.datanode(name='allen_domain')
|
||||
@sc.datanode(name="allen_domain")
|
||||
class AllenEq(sc.SampleDomain):
|
||||
def __init__(self):
|
||||
self.points = geo.sample_interior(density=2000, param_ranges=time_range, low_discrepancy=True)
|
||||
self.points = geo.sample_interior(
|
||||
density=2000, param_ranges=time_range, low_discrepancy=True
|
||||
)
|
||||
|
||||
def sampling(self, *args, **kwargs):
|
||||
constraints = {'AllenCahn_u': 0}
|
||||
constraints = {"AllenCahn_u": 0}
|
||||
return self.points, constraints
|
||||
|
||||
|
||||
@sc.datanode(name='data_evaluate')
|
||||
@sc.datanode(name="data_evaluate")
|
||||
class AllenPointsInference(sc.SampleDomain):
|
||||
def __init__(self):
|
||||
self.points = geo.sample_interior(density=5000, param_ranges=time_range, low_discrepancy=True)
|
||||
self.points = geo.sample_interior(
|
||||
density=5000, param_ranges=time_range, low_discrepancy=True
|
||||
)
|
||||
self.points = sc.Variables(self.points).to_torch_tensor_()
|
||||
self.constraints = {'AllenCahn_u': torch.zeros_like(self.points['x'])}
|
||||
self.constraints = {"AllenCahn_u": torch.zeros_like(self.points["x"])}
|
||||
|
||||
def sampling(self, *args, **kwargs):
|
||||
return self.points, self.constraints
|
||||
|
||||
|
||||
@sc.datanode(name='re_sampling_domain')
|
||||
@sc.datanode(name="re_sampling_domain")
|
||||
class SpaceAdaptiveSampling(sc.SampleDomain):
|
||||
def __init__(self):
|
||||
self.points = geo.sample_interior(density=100, param_ranges=time_range, low_discrepancy=True)
|
||||
self.points = geo.sample_interior(
|
||||
density=100, param_ranges=time_range, low_discrepancy=True
|
||||
)
|
||||
self.points = sc.Variables(self.points).to_torch_tensor_()
|
||||
self.constraints = {'AllenCahn_u': torch.zeros_like(self.points['x'])}
|
||||
self.constraints = {"AllenCahn_u": torch.zeros_like(self.points["x"])}
|
||||
|
||||
def sampling(self, *args, **kwargs):
|
||||
return self.points, self.constraints
|
||||
|
||||
|
||||
@sc.datanode(name='allen_test')
|
||||
@sc.datanode(name="allen_test")
|
||||
def generate_plot_data():
|
||||
x = np.linspace(-1.0, 1.0, 100)
|
||||
t = np.linspace(0, 1.0, 100)
|
||||
|
@ -82,76 +92,122 @@ def generate_plot_data():
|
|||
# computational node phase
|
||||
|
||||
net_u = sc.MLP([2, 128, 128, 128, 128, 2], activation=sc.Activation.tanh)
|
||||
net_u = sc.NetNode(inputs=('x', 't',), outputs=('u',), name='net1', net=net_u)
|
||||
xp = sc.ExpressionNode(name='xp', expression=x + 2)
|
||||
get_tilde_u = sc.get_shared_net_node(net_u, inputs=('xp', 't',), outputs=('up',), name='net2', arch='mlp')
|
||||
net_u = sc.NetNode(
|
||||
inputs=(
|
||||
"x",
|
||||
"t",
|
||||
),
|
||||
outputs=("u",),
|
||||
name="net1",
|
||||
net=net_u,
|
||||
)
|
||||
xp = sc.ExpressionNode(name="xp", expression=x + 2)
|
||||
get_tilde_u = sc.get_shared_net_node(
|
||||
net_u,
|
||||
inputs=(
|
||||
"xp",
|
||||
"t",
|
||||
),
|
||||
outputs=("up",),
|
||||
name="net2",
|
||||
arch="mlp",
|
||||
)
|
||||
|
||||
diff_u = sc.ExpressionNode(expression=u.diff(x), name='diff_u')
|
||||
diff_up = sc.ExpressionNode(expression=up.diff(x), name='diff_up')
|
||||
diff_u = sc.ExpressionNode(expression=u.diff(x), name="diff_u")
|
||||
diff_up = sc.ExpressionNode(expression=up.diff(x), name="diff_up")
|
||||
|
||||
pde = sc.AllenCahnNode(u='u', gamma_1=0.0001, gamma_2=5)
|
||||
pde = sc.AllenCahnNode(u="u", gamma_1=0.0001, gamma_2=5)
|
||||
|
||||
boundary_up = sc.Difference(T='diff_u', S='diff_up')
|
||||
boundary_u = sc.Difference(T='u', S='up')
|
||||
boundary_up = sc.Difference(T="diff_u", S="diff_up")
|
||||
boundary_u = sc.Difference(T="u", S="up")
|
||||
|
||||
|
||||
# Receiver hook phase
|
||||
|
||||
|
||||
class SpaceAdaptiveReceiver(sc.Receiver):
|
||||
def receive_notify(self, solver, message):
|
||||
if sc.Signal.TRAIN_PIPE_END in message.keys() and solver.global_step % 1000 == 0:
|
||||
sc.logger.info('space adaptive sampling...')
|
||||
results = solver.infer_step({'data_evaluate': ['x', 't', 'sdf', 'AllenCahn_u']})
|
||||
residual_data = results['data_evaluate']['AllenCahn_u'].detach().cpu().numpy().ravel()
|
||||
if (
|
||||
sc.Signal.TRAIN_PIPE_END in message.keys()
|
||||
and solver.global_step % 1000 == 0
|
||||
):
|
||||
sc.logger.info("space adaptive sampling...")
|
||||
results = solver.infer_step(
|
||||
{"data_evaluate": ["x", "t", "sdf", "AllenCahn_u"]}
|
||||
)
|
||||
residual_data = (
|
||||
results["data_evaluate"]["AllenCahn_u"].detach().cpu().numpy().ravel()
|
||||
)
|
||||
# sort the points by residual loss
|
||||
index = np.argsort(-1. * np.abs(residual_data))[:200]
|
||||
_points = {key: values[index].detach().cpu().numpy() for key, values in results['data_evaluate'].items()}
|
||||
_points.pop('AllenCahn_u')
|
||||
_points['area'] = np.zeros_like(_points['sdf']) + (1.0 / 200)
|
||||
solver.set_domain_parameter('re_sampling_domain', {'points': _points})
|
||||
index = np.argsort(-1.0 * np.abs(residual_data))[:200]
|
||||
_points = {
|
||||
key: values[index].detach().cpu().numpy()
|
||||
for key, values in results["data_evaluate"].items()
|
||||
}
|
||||
_points.pop("AllenCahn_u")
|
||||
_points["area"] = np.zeros_like(_points["sdf"]) + (1.0 / 200)
|
||||
solver.set_domain_parameter("re_sampling_domain", {"points": _points})
|
||||
|
||||
|
||||
class PostProcessReceiver(sc.Receiver):
|
||||
def __init__(self):
|
||||
if not os.path.exists('image'):
|
||||
os.mkdir('image')
|
||||
if not os.path.exists("image"):
|
||||
os.mkdir("image")
|
||||
|
||||
def receive_notify(self, solver, message):
|
||||
if sc.Signal.TRAIN_PIPE_END in message.keys() and solver.global_step % 1000 == 1:
|
||||
sc.logger.info('Post Processing...')
|
||||
points = s.infer_step({'allen_test': ['x', 't', 'u']})
|
||||
triang_total = tri.Triangulation(points['allen_test']['t'].detach().cpu().numpy().ravel(),
|
||||
points['allen_test']['x'].detach().cpu().numpy().ravel(), )
|
||||
plt.tricontourf(triang_total, points['allen_test']['u'].detach().cpu().numpy().ravel(), 100, vmin=-1,
|
||||
vmax=1)
|
||||
if (
|
||||
sc.Signal.TRAIN_PIPE_END in message.keys()
|
||||
and solver.global_step % 1000 == 1
|
||||
):
|
||||
sc.logger.info("Post Processing...")
|
||||
points = s.infer_step({"allen_test": ["x", "t", "u"]})
|
||||
triang_total = tri.Triangulation(
|
||||
points["allen_test"]["t"].detach().cpu().numpy().ravel(),
|
||||
points["allen_test"]["x"].detach().cpu().numpy().ravel(),
|
||||
)
|
||||
plt.tricontourf(
|
||||
triang_total,
|
||||
points["allen_test"]["u"].detach().cpu().numpy().ravel(),
|
||||
100,
|
||||
vmin=-1,
|
||||
vmax=1,
|
||||
)
|
||||
tc_bar = plt.colorbar()
|
||||
tc_bar.ax.tick_params(labelsize=12)
|
||||
|
||||
_points = solver.get_domain_parameter('re_sampling_domain', 'points')
|
||||
if not isinstance(_points['t'], torch.Tensor):
|
||||
plt.scatter(_points['t'].ravel(), _points['x'].ravel(), marker='x', s=8)
|
||||
_points = solver.get_domain_parameter("re_sampling_domain", "points")
|
||||
if not isinstance(_points["t"], torch.Tensor):
|
||||
plt.scatter(_points["t"].ravel(), _points["x"].ravel(), marker="x", s=8)
|
||||
else:
|
||||
plt.scatter(_points['t'].detach().cpu().numpy().ravel(),
|
||||
_points['x'].detach().cpu().numpy().ravel(), marker='x', s=8)
|
||||
plt.scatter(
|
||||
_points["t"].detach().cpu().numpy().ravel(),
|
||||
_points["x"].detach().cpu().numpy().ravel(),
|
||||
marker="x",
|
||||
s=8,
|
||||
)
|
||||
|
||||
plt.xlabel('$t$')
|
||||
plt.ylabel('$x$')
|
||||
plt.title('$u(x,t)$')
|
||||
plt.savefig(f'image/result_{solver.global_step}.png')
|
||||
plt.xlabel("$t$")
|
||||
plt.ylabel("$x$")
|
||||
plt.title("$u(x,t)$")
|
||||
plt.savefig(f"image/result_{solver.global_step}.png")
|
||||
plt.show()
|
||||
|
||||
|
||||
# Solver phase
|
||||
s = sc.Solver(sample_domains=(AllenInit(),
|
||||
AllenBc(),
|
||||
AllenEq(),
|
||||
AllenPointsInference(),
|
||||
SpaceAdaptiveSampling(),
|
||||
generate_plot_data()),
|
||||
netnodes=[net_u, get_tilde_u],
|
||||
pdes=[pde, xp, diff_up, diff_u, boundary_up, boundary_u],
|
||||
max_iter=60000,
|
||||
loading=True)
|
||||
s = sc.Solver(
|
||||
sample_domains=(
|
||||
AllenInit(),
|
||||
AllenBc(),
|
||||
AllenEq(),
|
||||
AllenPointsInference(),
|
||||
SpaceAdaptiveSampling(),
|
||||
generate_plot_data(),
|
||||
),
|
||||
netnodes=[net_u, get_tilde_u],
|
||||
pdes=[pde, xp, diff_up, diff_u, boundary_up, boundary_u],
|
||||
max_iter=60000,
|
||||
loading=True,
|
||||
)
|
||||
|
||||
s.register_receiver(SpaceAdaptiveReceiver())
|
||||
s.register_receiver(PostProcessReceiver())
|
||||
|
|
|
@ -4,63 +4,82 @@ import matplotlib.pyplot as plt
|
|||
import matplotlib.tri as tri
|
||||
import idrlnet.shortcut as sc
|
||||
|
||||
x = Symbol('x')
|
||||
t_symbol = Symbol('t')
|
||||
x = Symbol("x")
|
||||
t_symbol = Symbol("t")
|
||||
time_range = {t_symbol: (0, 1)}
|
||||
geo = sc.Line1D(-1., 1.)
|
||||
geo = sc.Line1D(-1.0, 1.0)
|
||||
|
||||
|
||||
@sc.datanode(name='burgers_equation')
|
||||
@sc.datanode(name="burgers_equation")
|
||||
def interior_domain():
|
||||
points = geo.sample_interior(10000, bounds={x: (-1., 1.)}, param_ranges=time_range)
|
||||
constraints = {'burgers_u': 0}
|
||||
points = geo.sample_interior(
|
||||
10000, bounds={x: (-1.0, 1.0)}, param_ranges=time_range
|
||||
)
|
||||
constraints = {"burgers_u": 0}
|
||||
return points, constraints
|
||||
|
||||
|
||||
@sc.datanode(name='t_boundary')
|
||||
@sc.datanode(name="t_boundary")
|
||||
def init_domain():
|
||||
points = geo.sample_interior(100, param_ranges={t_symbol: 0.0})
|
||||
constraints = sc.Variables({'u': -sin(math.pi * x)})
|
||||
constraints = sc.Variables({"u": -sin(math.pi * x)})
|
||||
return points, constraints
|
||||
|
||||
|
||||
@sc.datanode(name="x_boundary")
|
||||
def boundary_domain():
|
||||
points = geo.sample_boundary(100, param_ranges=time_range)
|
||||
constraints = sc.Variables({'u': 0})
|
||||
constraints = sc.Variables({"u": 0})
|
||||
return points, constraints
|
||||
|
||||
|
||||
net = sc.get_net_node(inputs=('x', 't',), outputs=('u',), name='net1', arch=sc.Arch.mlp)
|
||||
pde = sc.BurgersNode(u='u', v=0.01 / math.pi)
|
||||
s = sc.Solver(sample_domains=(interior_domain(), init_domain(), boundary_domain()),
|
||||
netnodes=[net], pdes=[pde], max_iter=4000)
|
||||
net = sc.get_net_node(
|
||||
inputs=(
|
||||
"x",
|
||||
"t",
|
||||
),
|
||||
outputs=("u",),
|
||||
name="net1",
|
||||
arch=sc.Arch.mlp,
|
||||
)
|
||||
pde = sc.BurgersNode(u="u", v=0.01 / math.pi)
|
||||
s = sc.Solver(
|
||||
sample_domains=(interior_domain(), init_domain(), boundary_domain()),
|
||||
netnodes=[net],
|
||||
pdes=[pde],
|
||||
max_iter=4000,
|
||||
)
|
||||
s.solve()
|
||||
|
||||
coord = s.infer_step({'burgers_equation': ['x', 't', 'u'], 't_boundary': ['x', 't'],
|
||||
'x_boundary': ['x', 't']})
|
||||
num_x = coord['burgers_equation']['x'].cpu().detach().numpy().ravel()
|
||||
num_t = coord['burgers_equation']['t'].cpu().detach().numpy().ravel()
|
||||
num_u = coord['burgers_equation']['u'].cpu().detach().numpy().ravel()
|
||||
coord = s.infer_step(
|
||||
{
|
||||
"burgers_equation": ["x", "t", "u"],
|
||||
"t_boundary": ["x", "t"],
|
||||
"x_boundary": ["x", "t"],
|
||||
}
|
||||
)
|
||||
num_x = coord["burgers_equation"]["x"].cpu().detach().numpy().ravel()
|
||||
num_t = coord["burgers_equation"]["t"].cpu().detach().numpy().ravel()
|
||||
num_u = coord["burgers_equation"]["u"].cpu().detach().numpy().ravel()
|
||||
|
||||
init_x = coord['t_boundary']['x'].cpu().detach().numpy().ravel()
|
||||
init_t = coord['t_boundary']['t'].cpu().detach().numpy().ravel()
|
||||
boundary_x = coord['x_boundary']['x'].cpu().detach().numpy().ravel()
|
||||
boundary_t = coord['x_boundary']['t'].cpu().detach().numpy().ravel()
|
||||
init_x = coord["t_boundary"]["x"].cpu().detach().numpy().ravel()
|
||||
init_t = coord["t_boundary"]["t"].cpu().detach().numpy().ravel()
|
||||
boundary_x = coord["x_boundary"]["x"].cpu().detach().numpy().ravel()
|
||||
boundary_t = coord["x_boundary"]["t"].cpu().detach().numpy().ravel()
|
||||
|
||||
triang_total = tri.Triangulation(num_t.flatten(), num_x.flatten())
|
||||
u_pre = num_u.flatten()
|
||||
|
||||
fig = plt.figure(figsize=(15, 5))
|
||||
ax1 = fig.add_subplot(221)
|
||||
tcf = ax1.tricontourf(triang_total, u_pre, 100, cmap='jet')
|
||||
tcf = ax1.tricontourf(triang_total, u_pre, 100, cmap="jet")
|
||||
tc_bar = plt.colorbar(tcf)
|
||||
tc_bar.ax.tick_params(labelsize=10)
|
||||
ax1.set_xlabel('$t$')
|
||||
ax1.set_ylabel('$x$')
|
||||
ax1.set_title('$u(x,t)$')
|
||||
ax1.scatter(init_t, init_x, c='black', marker='x', s=8)
|
||||
ax1.scatter(boundary_t, boundary_x, c='black', marker='x', s=8)
|
||||
ax1.set_xlabel("$t$")
|
||||
ax1.set_ylabel("$x$")
|
||||
ax1.set_title("$u(x,t)$")
|
||||
ax1.scatter(init_t, init_x, c="black", marker="x", s=8)
|
||||
ax1.scatter(boundary_t, boundary_x, c="black", marker="x", s=8)
|
||||
plt.xlim(0, 1)
|
||||
plt.ylim(-1, 1)
|
||||
plt.savefig('Burgers.png', dpi=500, bbox_inches='tight', pad_inches=0.02)
|
||||
plt.savefig("Burgers.png", dpi=500, bbox_inches="tight", pad_inches=0.02)
|
||||
|
|
|
@ -3,59 +3,68 @@ import sympy as sp
|
|||
import numpy as np
|
||||
import idrlnet.shortcut as sc
|
||||
|
||||
x = sp.symbols('x')
|
||||
x = sp.symbols("x")
|
||||
Line = sc.Line1D(0, 1)
|
||||
y = sp.Function('y')(x)
|
||||
y = sp.Function("y")(x)
|
||||
|
||||
|
||||
@sc.datanode(name='interior')
|
||||
@sc.datanode(name="interior")
|
||||
class Interior(sc.SampleDomain):
|
||||
def sampling(self, *args, **kwargs):
|
||||
return Line.sample_interior(1000), {'dddd_y': 0}
|
||||
return Line.sample_interior(1000), {"dddd_y": 0}
|
||||
|
||||
|
||||
@sc.datanode(name='left_boundary1')
|
||||
@sc.datanode(name="left_boundary1")
|
||||
class LeftBoundary1(sc.SampleDomain):
|
||||
def sampling(self, *args, **kwargs):
|
||||
return Line.sample_boundary(100, sieve=(sp.Eq(x, 0))), {'y': 0}
|
||||
return Line.sample_boundary(100, sieve=(sp.Eq(x, 0))), {"y": 0}
|
||||
|
||||
|
||||
@sc.datanode(name='left_boundary2')
|
||||
@sc.datanode(name="left_boundary2")
|
||||
class LeftBoundary2(sc.SampleDomain):
|
||||
def sampling(self, *args, **kwargs):
|
||||
return Line.sample_boundary(100, sieve=(sp.Eq(x, 0))), {'d_y': 0}
|
||||
return Line.sample_boundary(100, sieve=(sp.Eq(x, 0))), {"d_y": 0}
|
||||
|
||||
|
||||
@sc.datanode(name='right_boundary1')
|
||||
@sc.datanode(name="right_boundary1")
|
||||
class RightBoundary1(sc.SampleDomain):
|
||||
def sampling(self, *args, **kwargs):
|
||||
return Line.sample_boundary(100, sieve=(sp.Eq(x, 1))), {'dd_y': 0}
|
||||
return Line.sample_boundary(100, sieve=(sp.Eq(x, 1))), {"dd_y": 0}
|
||||
|
||||
|
||||
@sc.datanode(name='right_boundary2')
|
||||
@sc.datanode(name="right_boundary2")
|
||||
class RightBoundary2(sc.SampleDomain):
|
||||
def sampling(self, *args, **kwargs):
|
||||
return Line.sample_boundary(100, sieve=(sp.Eq(x, 1))), {'ddd_y': 0}
|
||||
return Line.sample_boundary(100, sieve=(sp.Eq(x, 1))), {"ddd_y": 0}
|
||||
|
||||
|
||||
@sc.datanode(name='infer')
|
||||
@sc.datanode(name="infer")
|
||||
class Infer(sc.SampleDomain):
|
||||
def sampling(self, *args, **kwargs):
|
||||
return {'x': np.linspace(0, 1, 1000).reshape(-1, 1)}, {}
|
||||
return {"x": np.linspace(0, 1, 1000).reshape(-1, 1)}, {}
|
||||
|
||||
|
||||
net = sc.get_net_node(inputs=('x',), outputs=('y',), name='net', arch=sc.Arch.mlp)
|
||||
net = sc.get_net_node(inputs=("x",), outputs=("y",), name="net", arch=sc.Arch.mlp)
|
||||
|
||||
pde1 = sc.ExpressionNode(name='dddd_y', expression=y.diff(x).diff(x).diff(x).diff(x) + 1)
|
||||
pde2 = sc.ExpressionNode(name='d_y', expression=y.diff(x))
|
||||
pde3 = sc.ExpressionNode(name='dd_y', expression=y.diff(x).diff(x))
|
||||
pde4 = sc.ExpressionNode(name='ddd_y', expression=y.diff(x).diff(x).diff(x))
|
||||
pde1 = sc.ExpressionNode(
|
||||
name="dddd_y", expression=y.diff(x).diff(x).diff(x).diff(x) + 1
|
||||
)
|
||||
pde2 = sc.ExpressionNode(name="d_y", expression=y.diff(x))
|
||||
pde3 = sc.ExpressionNode(name="dd_y", expression=y.diff(x).diff(x))
|
||||
pde4 = sc.ExpressionNode(name="ddd_y", expression=y.diff(x).diff(x).diff(x))
|
||||
|
||||
solver = sc.Solver(
|
||||
sample_domains=(Interior(), LeftBoundary1(), LeftBoundary2(), RightBoundary1(), RightBoundary2()),
|
||||
sample_domains=(
|
||||
Interior(),
|
||||
LeftBoundary1(),
|
||||
LeftBoundary2(),
|
||||
RightBoundary1(),
|
||||
RightBoundary2(),
|
||||
),
|
||||
netnodes=[net],
|
||||
pdes=[pde1, pde2, pde3, pde4],
|
||||
max_iter=2000)
|
||||
max_iter=2000,
|
||||
)
|
||||
solver.solve()
|
||||
|
||||
|
||||
|
@ -65,14 +74,14 @@ def exact(x):
|
|||
|
||||
|
||||
solver.sample_domains = (Infer(),)
|
||||
points = solver.infer_step({'infer': ['x', 'y']})
|
||||
xs = points['infer']['x'].detach().cpu().numpy().ravel()
|
||||
y_pred = points['infer']['y'].detach().cpu().numpy().ravel()
|
||||
plt.plot(xs, y_pred, label='Pred')
|
||||
points = solver.infer_step({"infer": ["x", "y"]})
|
||||
xs = points["infer"]["x"].detach().cpu().numpy().ravel()
|
||||
y_pred = points["infer"]["y"].detach().cpu().numpy().ravel()
|
||||
plt.plot(xs, y_pred, label="Pred")
|
||||
y_exact = exact(xs)
|
||||
plt.plot(xs, y_exact, label='Exact', linestyle='--')
|
||||
plt.plot(xs, y_exact, label="Exact", linestyle="--")
|
||||
plt.legend()
|
||||
plt.xlabel('x')
|
||||
plt.ylabel('w')
|
||||
plt.savefig('Euler_beam.png', dpi=300, bbox_inches='tight')
|
||||
plt.xlabel("x")
|
||||
plt.ylabel("w")
|
||||
plt.savefig("Euler_beam.png", dpi=300, bbox_inches="tight")
|
||||
plt.show()
|
||||
|
|
|
@ -10,104 +10,121 @@ import matplotlib.pyplot as plt
|
|||
L = float(pi)
|
||||
|
||||
geo = sc.Line1D(0, L)
|
||||
t_symbol = Symbol('t')
|
||||
x = Symbol('x')
|
||||
t_symbol = Symbol("t")
|
||||
x = Symbol("x")
|
||||
time_range = {t_symbol: (0, 2 * L)}
|
||||
c = 1.54
|
||||
external_filename = 'external_sample.csv'
|
||||
external_filename = "external_sample.csv"
|
||||
|
||||
|
||||
def generate_observed_data():
|
||||
if os.path.exists(external_filename):
|
||||
return
|
||||
points = geo.sample_interior(density=20,
|
||||
bounds={x: (0, L)},
|
||||
param_ranges=time_range,
|
||||
low_discrepancy=True)
|
||||
points['u'] = np.sin(points['x']) * (np.sin(c * points['t']) + np.cos(c * points['t']))
|
||||
points['u'][np.random.choice(len(points['u']), 10, replace=False)] = 3.
|
||||
points = geo.sample_interior(
|
||||
density=20, bounds={x: (0, L)}, param_ranges=time_range, low_discrepancy=True
|
||||
)
|
||||
points["u"] = np.sin(points["x"]) * (
|
||||
np.sin(c * points["t"]) + np.cos(c * points["t"])
|
||||
)
|
||||
points["u"][np.random.choice(len(points["u"]), 10, replace=False)] = 3.0
|
||||
points = {k: v.ravel() for k, v in points.items()}
|
||||
points = pd.DataFrame.from_dict(points)
|
||||
points.to_csv('external_sample.csv', index=False)
|
||||
points.to_csv("external_sample.csv", index=False)
|
||||
|
||||
|
||||
generate_observed_data()
|
||||
|
||||
|
||||
# @sc.datanode(name='wave_domain')
|
||||
@sc.datanode(name='wave_domain', loss_fn='L1')
|
||||
@sc.datanode(name="wave_domain", loss_fn="L1")
|
||||
class WaveExternal(sc.SampleDomain):
|
||||
def __init__(self):
|
||||
points = pd.read_csv('external_sample.csv')
|
||||
self.points = {col: points[col].to_numpy().reshape(-1, 1) for col in points.columns}
|
||||
self.constraints = {'u': self.points.pop('u')}
|
||||
points = pd.read_csv("external_sample.csv")
|
||||
self.points = {
|
||||
col: points[col].to_numpy().reshape(-1, 1) for col in points.columns
|
||||
}
|
||||
self.constraints = {"u": self.points.pop("u")}
|
||||
|
||||
def sampling(self, *args, **kwargs):
|
||||
return self.points, self.constraints
|
||||
|
||||
|
||||
@sc.datanode(name='wave_external')
|
||||
@sc.datanode(name="wave_external")
|
||||
class WaveEq(sc.SampleDomain):
|
||||
def sampling(self, *args, **kwargs):
|
||||
points = geo.sample_interior(density=1000, bounds={x: (0, L)}, param_ranges=time_range)
|
||||
constraints = {'wave_equation': 0.}
|
||||
points = geo.sample_interior(
|
||||
density=1000, bounds={x: (0, L)}, param_ranges=time_range
|
||||
)
|
||||
constraints = {"wave_equation": 0.0}
|
||||
return points, constraints
|
||||
|
||||
|
||||
@sc.datanode(name='center_infer')
|
||||
@sc.datanode(name="center_infer")
|
||||
class CenterInfer(sc.SampleDomain):
|
||||
def __init__(self):
|
||||
self.points = sc.Variables()
|
||||
self.points['t'] = np.linspace(0, 2 * L, 200).reshape(-1, 1)
|
||||
self.points['x'] = np.ones_like(self.points['t']) * L / 2
|
||||
self.points['area'] = np.ones_like(self.points['t'])
|
||||
self.points["t"] = np.linspace(0, 2 * L, 200).reshape(-1, 1)
|
||||
self.points["x"] = np.ones_like(self.points["t"]) * L / 2
|
||||
self.points["area"] = np.ones_like(self.points["t"])
|
||||
|
||||
def sampling(self, *args, **kwargs):
|
||||
return self.points, {}
|
||||
|
||||
|
||||
net = sc.get_net_node(inputs=('x', 't',), outputs=('u',), name='net1', arch=sc.Arch.mlp)
|
||||
var_c = sc.get_net_node(inputs=('x',), outputs=('c',), arch=sc.Arch.single_var)
|
||||
pde = sc.WaveNode(c='c', dim=1, time=True, u='u')
|
||||
s = sc.Solver(sample_domains=(WaveExternal(), WaveEq()),
|
||||
netnodes=[net, var_c],
|
||||
pdes=[pde],
|
||||
# network_dir='square_network_dir',
|
||||
network_dir='network_dir',
|
||||
max_iter=5000)
|
||||
net = sc.get_net_node(
|
||||
inputs=(
|
||||
"x",
|
||||
"t",
|
||||
),
|
||||
outputs=("u",),
|
||||
name="net1",
|
||||
arch=sc.Arch.mlp,
|
||||
)
|
||||
var_c = sc.get_net_node(inputs=("x",), outputs=("c",), arch=sc.Arch.single_var)
|
||||
pde = sc.WaveNode(c="c", dim=1, time=True, u="u")
|
||||
s = sc.Solver(
|
||||
sample_domains=(WaveExternal(), WaveEq()),
|
||||
netnodes=[net, var_c],
|
||||
pdes=[pde],
|
||||
# network_dir='square_network_dir',
|
||||
network_dir="network_dir",
|
||||
max_iter=5000,
|
||||
)
|
||||
s.solve()
|
||||
|
||||
_, ax = plt.subplots(1, 1, figsize=(8, 4))
|
||||
|
||||
coord = s.infer_step(domain_attr={'wave_domain': ['x', 't', 'u']})
|
||||
num_t = coord['wave_domain']['t'].cpu().detach().numpy().ravel()
|
||||
num_u = coord['wave_domain']['u'].cpu().detach().numpy().ravel()
|
||||
ax.scatter(num_t, num_u, c='r', marker='o', label='predicted points')
|
||||
coord = s.infer_step(domain_attr={"wave_domain": ["x", "t", "u"]})
|
||||
num_t = coord["wave_domain"]["t"].cpu().detach().numpy().ravel()
|
||||
num_u = coord["wave_domain"]["u"].cpu().detach().numpy().ravel()
|
||||
ax.scatter(num_t, num_u, c="r", marker="o", label="predicted points")
|
||||
|
||||
print("true paratmeter c: {:.4f}".format(c))
|
||||
predict_c = var_c.evaluate(torch.Tensor([[1.0]])).item()
|
||||
print("predicted parameter c: {:.4f}".format(predict_c))
|
||||
|
||||
num_t = WaveExternal().sample_fn.points['t'].ravel()
|
||||
num_u = WaveExternal().sample_fn.constraints['u'].ravel()
|
||||
ax.scatter(num_t, num_u, c='b', marker='x', label='observed points')
|
||||
num_t = WaveExternal().sample_fn.points["t"].ravel()
|
||||
num_u = WaveExternal().sample_fn.constraints["u"].ravel()
|
||||
ax.scatter(num_t, num_u, c="b", marker="x", label="observed points")
|
||||
|
||||
s.sample_domains = (CenterInfer(),)
|
||||
points = s.infer_step({'center_infer': ['t', 'x', 'u']})
|
||||
num_t = points['center_infer']['t'].cpu().detach().numpy().ravel()
|
||||
num_u = points['center_infer']['u'].cpu().detach().numpy().ravel()
|
||||
num_x = points['center_infer']['x'].cpu().detach().numpy().ravel()
|
||||
ax.plot(num_t, np.sin(num_x) * (np.sin(c * num_t) + np.cos(c * num_t)), c='k', label='exact')
|
||||
ax.plot(num_t, num_u, '--', c='g', linewidth=4, label='predict')
|
||||
points = s.infer_step({"center_infer": ["t", "x", "u"]})
|
||||
num_t = points["center_infer"]["t"].cpu().detach().numpy().ravel()
|
||||
num_u = points["center_infer"]["u"].cpu().detach().numpy().ravel()
|
||||
num_x = points["center_infer"]["x"].cpu().detach().numpy().ravel()
|
||||
ax.plot(
|
||||
num_t, np.sin(num_x) * (np.sin(c * num_t) + np.cos(c * num_t)), c="k", label="exact"
|
||||
)
|
||||
ax.plot(num_t, num_u, "--", c="g", linewidth=4, label="predict")
|
||||
ax.legend()
|
||||
ax.set_xlabel('t')
|
||||
ax.set_ylabel('u')
|
||||
ax.set_xlabel("t")
|
||||
ax.set_ylabel("u")
|
||||
# ax.set_title(f'Square loss ($x=0.5L$, c={predict_c:.4f}))')
|
||||
ax.set_title(f'L1 loss ($x=0.5L$, c={predict_c:.4f})')
|
||||
ax.set_title(f"L1 loss ($x=0.5L$, c={predict_c:.4f})")
|
||||
ax.grid(True)
|
||||
ax.set_xlim([-0.5, 6.5])
|
||||
ax.set_ylim([-3.5, 4.5])
|
||||
# plt.savefig('square.png', dpi=1000, bbox_inches='tight', pad_inches=0.02)
|
||||
plt.savefig('L1.png', dpi=1000, bbox_inches='tight', pad_inches=0.02)
|
||||
plt.savefig("L1.png", dpi=1000, bbox_inches="tight", pad_inches=0.02)
|
||||
plt.show()
|
||||
plt.close()
|
||||
|
|
|
@ -9,26 +9,30 @@ import math
|
|||
|
||||
import idrlnet.shortcut as sc
|
||||
|
||||
x = sp.Symbol('x')
|
||||
u = sp.Function('u')(x)
|
||||
x = sp.Symbol("x")
|
||||
u = sp.Function("u")(x)
|
||||
geo = sc.Line1D(-1, 0.5)
|
||||
|
||||
|
||||
@sc.datanode(sigma=1000.)
|
||||
@sc.datanode(sigma=1000.0)
|
||||
class Boundary(sc.SampleDomain):
|
||||
def __init__(self):
|
||||
self.points = geo.sample_boundary(1, )
|
||||
self.constraints = {'u': np.cosh(self.points['x'])}
|
||||
self.points = geo.sample_boundary(
|
||||
1,
|
||||
)
|
||||
self.constraints = {"u": np.cosh(self.points["x"])}
|
||||
|
||||
def sampling(self, *args, **kwargs):
|
||||
return self.points, self.constraints
|
||||
|
||||
|
||||
@sc.datanode(loss_fn='L1')
|
||||
@sc.datanode(loss_fn="L1")
|
||||
class Interior(sc.SampleDomain):
|
||||
def sampling(self, *args, **kwargs):
|
||||
points = geo.sample_interior(10000)
|
||||
constraints = {'integral_dx': 0, }
|
||||
constraints = {
|
||||
"integral_dx": 0,
|
||||
}
|
||||
return points, constraints
|
||||
|
||||
|
||||
|
@ -36,8 +40,8 @@ class Interior(sc.SampleDomain):
|
|||
class InteriorInfer(sc.SampleDomain):
|
||||
def __init__(self):
|
||||
self.points = sc.Variables()
|
||||
self.points['x'] = np.linspace(-1, 0.5, 1001, endpoint=True).reshape(-1, 1)
|
||||
self.points['area'] = np.ones_like(self.points['x'])
|
||||
self.points["x"] = np.linspace(-1, 0.5, 1001, endpoint=True).reshape(-1, 1)
|
||||
self.points["area"] = np.ones_like(self.points["x"])
|
||||
|
||||
def sampling(self, *args, **kwargs):
|
||||
return self.points, {}
|
||||
|
@ -46,8 +50,8 @@ class InteriorInfer(sc.SampleDomain):
|
|||
# plot Intermediate results
|
||||
class PlotReceiver(sc.Receiver):
|
||||
def __init__(self):
|
||||
if not os.path.exists('plot'):
|
||||
os.mkdir('plot')
|
||||
if not os.path.exists("plot"):
|
||||
os.mkdir("plot")
|
||||
xx = np.linspace(-1, 0.5, 1001, endpoint=True)
|
||||
self.xx = xx
|
||||
angle = np.linspace(0, math.pi * 2, 100)
|
||||
|
@ -58,28 +62,30 @@ class PlotReceiver(sc.Receiver):
|
|||
zz_mesh = yy * np.sin(angle_mesh)
|
||||
|
||||
fig = plt.figure(figsize=(8, 8))
|
||||
ax = fig.gca(projection='3d')
|
||||
ax = fig.gca(projection="3d")
|
||||
ax.set_zlim3d(-1.25 - 1, 0.75 + 1)
|
||||
ax.set_ylim3d(-2, 2)
|
||||
ax.set_xlim3d(-2, 2)
|
||||
|
||||
my_col = cm.cool((yy * np.ones_like(angle_mesh) - 1.0) / 0.6)
|
||||
ax.plot_surface(yy_mesh, zz_mesh, xx_mesh, facecolors=my_col)
|
||||
ax.view_init(elev=15., azim=0)
|
||||
ax.view_init(elev=15.0, azim=0)
|
||||
ax.dist = 5
|
||||
plt.axis('off')
|
||||
plt.tight_layout(pad=0., w_pad=0., h_pad=.0)
|
||||
plt.savefig(f'plot/p_exact.png')
|
||||
plt.axis("off")
|
||||
plt.tight_layout(pad=0.0, w_pad=0.0, h_pad=0.0)
|
||||
plt.savefig(f"plot/p_exact.png")
|
||||
plt.show()
|
||||
plt.close()
|
||||
self.predict_history = []
|
||||
|
||||
def receive_notify(self, obj: sc.Solver, message: Dict):
|
||||
if sc.Signal.SOLVE_START in message or (sc.Signal.TRAIN_PIPE_END in message and obj.global_step % 200 == 0):
|
||||
if sc.Signal.SOLVE_START in message or (
|
||||
sc.Signal.TRAIN_PIPE_END in message and obj.global_step % 200 == 0
|
||||
):
|
||||
print("plotting")
|
||||
points = s.infer_step({'InteriorInfer': ['x', 'u']})
|
||||
num_x = points['InteriorInfer']['x'].detach().cpu().numpy().ravel()
|
||||
num_u = points['InteriorInfer']['u'].detach().cpu().numpy().ravel()
|
||||
points = s.infer_step({"InteriorInfer": ["x", "u"]})
|
||||
num_x = points["InteriorInfer"]["x"].detach().cpu().numpy().ravel()
|
||||
num_u = points["InteriorInfer"]["u"].detach().cpu().numpy().ravel()
|
||||
angle = np.linspace(0, math.pi * 2, 100)
|
||||
|
||||
xx_mesh, angle_mesh = np.meshgrid(num_x, angle)
|
||||
|
@ -87,28 +93,28 @@ class PlotReceiver(sc.Receiver):
|
|||
zz_mesh = num_u * np.sin(angle_mesh)
|
||||
|
||||
fig = plt.figure(figsize=(8, 8))
|
||||
ax = fig.gca(projection='3d')
|
||||
ax = fig.gca(projection="3d")
|
||||
ax.set_zlim3d(-1.25 - 1, 0.75 + 1)
|
||||
ax.set_ylim3d(-2, 2)
|
||||
ax.set_xlim3d(-2, 2)
|
||||
|
||||
my_col = cm.cool((num_u * np.ones_like(angle_mesh) - 1.0) / 0.6)
|
||||
ax.plot_surface(yy_mesh, zz_mesh, xx_mesh, facecolors=my_col)
|
||||
ax.view_init(elev=15., azim=0)
|
||||
ax.view_init(elev=15.0, azim=0)
|
||||
ax.dist = 5
|
||||
plt.axis('off')
|
||||
plt.tight_layout(pad=0., w_pad=0., h_pad=.0)
|
||||
plt.savefig(f'plot/p_{obj.global_step}.png')
|
||||
plt.axis("off")
|
||||
plt.tight_layout(pad=0.0, w_pad=0.0, h_pad=0.0)
|
||||
plt.savefig(f"plot/p_{obj.global_step}.png")
|
||||
plt.show()
|
||||
plt.close()
|
||||
|
||||
self.predict_history.append((num_u, obj.global_step))
|
||||
if sc.Signal.SOLVE_END in message:
|
||||
try:
|
||||
with open('result.pickle', 'rb') as f:
|
||||
with open("result.pickle", "rb") as f:
|
||||
self.predict_history = pickle.load(f)
|
||||
except:
|
||||
with open('result.pickle', 'wb') as f:
|
||||
with open("result.pickle", "wb") as f:
|
||||
pickle.dump(self.predict_history, f)
|
||||
for yy, step in self.predict_history:
|
||||
if step == 0:
|
||||
|
@ -116,28 +122,35 @@ class PlotReceiver(sc.Receiver):
|
|||
if step == 200:
|
||||
plt.plot(yy, self.xx, label=f"iter={step}")
|
||||
if step == 800:
|
||||
plt.plot(yy[::100], self.xx[::100], '-o', label=f"iter={step}")
|
||||
plt.plot(np.cosh(self.xx)[::100], self.xx[::100], '-x', label='exact')
|
||||
plt.plot([0, np.cosh(-1)], [-1, -1], '--', color='gray')
|
||||
plt.plot([0, np.cosh(0.5)], [0.5, 0.5], '--', color='gray')
|
||||
plt.plot(yy[::100], self.xx[::100], "-o", label=f"iter={step}")
|
||||
plt.plot(np.cosh(self.xx)[::100], self.xx[::100], "-x", label="exact")
|
||||
plt.plot([0, np.cosh(-1)], [-1, -1], "--", color="gray")
|
||||
plt.plot([0, np.cosh(0.5)], [0.5, 0.5], "--", color="gray")
|
||||
plt.legend()
|
||||
plt.xlim([0, 1.7])
|
||||
plt.xlabel('y')
|
||||
plt.ylabel('x')
|
||||
plt.savefig('iterations.png')
|
||||
plt.xlabel("y")
|
||||
plt.ylabel("x")
|
||||
plt.savefig("iterations.png")
|
||||
plt.show()
|
||||
plt.close()
|
||||
|
||||
|
||||
dx_exp = sc.ExpressionNode(expression=sp.Abs(u) * sp.sqrt((u.diff(x)) ** 2 + 1), name='dx')
|
||||
net = sc.get_net_node(inputs=('x',), outputs=('u',), name='net', arch=sc.Arch.mlp)
|
||||
dx_exp = sc.ExpressionNode(
|
||||
expression=sp.Abs(u) * sp.sqrt((u.diff(x)) ** 2 + 1), name="dx"
|
||||
)
|
||||
net = sc.get_net_node(inputs=("x",), outputs=("u",), name="net", arch=sc.Arch.mlp)
|
||||
|
||||
integral = sc.ICNode('dx', dim=1, time=False)
|
||||
integral = sc.ICNode("dx", dim=1, time=False)
|
||||
|
||||
s = sc.Solver(sample_domains=(Boundary(), Interior(), InteriorInfer()),
|
||||
netnodes=[net],
|
||||
init_network_dirs=['pretrain_network_dir'],
|
||||
pdes=[dx_exp, integral, ],
|
||||
max_iter=1500)
|
||||
s = sc.Solver(
|
||||
sample_domains=(Boundary(), Interior(), InteriorInfer()),
|
||||
netnodes=[net],
|
||||
init_network_dirs=["pretrain_network_dir"],
|
||||
pdes=[
|
||||
dx_exp,
|
||||
integral,
|
||||
],
|
||||
max_iter=1500,
|
||||
)
|
||||
s.register_receiver(PlotReceiver())
|
||||
s.solve()
|
||||
|
|
|
@ -3,30 +3,34 @@ import numpy as np
|
|||
import sympy as sp
|
||||
import idrlnet.shortcut as sc
|
||||
|
||||
x = sp.Symbol('x')
|
||||
x = sp.Symbol("x")
|
||||
geo = sc.Line1D(-1, 0.5)
|
||||
|
||||
|
||||
@sc.datanode(loss_fn='L1')
|
||||
@sc.datanode(loss_fn="L1")
|
||||
class Interior(sc.SampleDomain):
|
||||
def sampling(self, *args, **kwargs):
|
||||
points = geo.sample_interior(100)
|
||||
constraints = {'u': (np.cosh(0.5) - np.cosh(-1)) / 1.5 * (x + 1.0) + np.cosh(-1)}
|
||||
constraints = {
|
||||
"u": (np.cosh(0.5) - np.cosh(-1)) / 1.5 * (x + 1.0) + np.cosh(-1)
|
||||
}
|
||||
return points, constraints
|
||||
|
||||
|
||||
net = sc.get_net_node(inputs=('x',), outputs=('u',), name='net', arch=sc.Arch.mlp)
|
||||
net = sc.get_net_node(inputs=("x",), outputs=("u",), name="net", arch=sc.Arch.mlp)
|
||||
|
||||
s = sc.Solver(sample_domains=(Interior(),),
|
||||
netnodes=[net],
|
||||
pdes=[],
|
||||
network_dir='pretrain_network_dir',
|
||||
max_iter=1000)
|
||||
s = sc.Solver(
|
||||
sample_domains=(Interior(),),
|
||||
netnodes=[net],
|
||||
pdes=[],
|
||||
network_dir="pretrain_network_dir",
|
||||
max_iter=1000,
|
||||
)
|
||||
s.solve()
|
||||
|
||||
points = s.infer_step({'Interior': ['x', 'u']})
|
||||
num_x = points['Interior']['x'].detach().cpu().numpy().ravel()
|
||||
num_u = points['Interior']['u'].detach().cpu().numpy().ravel()
|
||||
points = s.infer_step({"Interior": ["x", "u"]})
|
||||
num_x = points["Interior"]["x"].detach().cpu().numpy().ravel()
|
||||
num_u = points["Interior"]["u"].detach().cpu().numpy().ravel()
|
||||
|
||||
xx = np.linspace(-1, 0.5, 1000, endpoint=True)
|
||||
yy = np.cosh(xx)
|
||||
|
|
|
@ -4,18 +4,20 @@ import matplotlib.pyplot as plt
|
|||
import matplotlib.tri as tri
|
||||
import numpy as np
|
||||
|
||||
x, y = sp.symbols('x y')
|
||||
temp = sp.Symbol('temp')
|
||||
x, y = sp.symbols("x y")
|
||||
temp = sp.Symbol("temp")
|
||||
temp_range = {temp: (-0.2, 0.2)}
|
||||
rec = sc.Rectangle((-1., -1.), (1., 1.))
|
||||
rec = sc.Rectangle((-1.0, -1.0), (1.0, 1.0))
|
||||
|
||||
|
||||
@sc.datanode
|
||||
class Right(sc.SampleDomain):
|
||||
# Due to `name` is not specified, Right will be the name of datanode automatically
|
||||
def sampling(self, *args, **kwargs):
|
||||
points = rec.sample_boundary(1000, sieve=(sp.Eq(x, 1.)), param_ranges=temp_range)
|
||||
constraints = sc.Variables({'T': 0.})
|
||||
points = rec.sample_boundary(
|
||||
1000, sieve=(sp.Eq(x, 1.0)), param_ranges=temp_range
|
||||
)
|
||||
constraints = sc.Variables({"T": 0.0})
|
||||
return points, constraints
|
||||
|
||||
|
||||
|
@ -23,16 +25,20 @@ class Right(sc.SampleDomain):
|
|||
class Left(sc.SampleDomain):
|
||||
# Due to `name` is not specified, Left will be the name of datanode automatically
|
||||
def sampling(self, *args, **kwargs):
|
||||
points = rec.sample_boundary(1000, sieve=(sp.Eq(x, -1.)), param_ranges=temp_range)
|
||||
constraints = sc.Variables({'T': temp})
|
||||
points = rec.sample_boundary(
|
||||
1000, sieve=(sp.Eq(x, -1.0)), param_ranges=temp_range
|
||||
)
|
||||
constraints = sc.Variables({"T": temp})
|
||||
return points, constraints
|
||||
|
||||
|
||||
@sc.datanode(name="up_down")
|
||||
class UpDownBoundaryDomain(sc.SampleDomain):
|
||||
def sampling(self, *args, **kwargs):
|
||||
points = rec.sample_boundary(1000, sieve=((x > -1.) & (x < 1.)), param_ranges=temp_range)
|
||||
constraints = sc.Variables({'normal_gradient_T': 0.})
|
||||
points = rec.sample_boundary(
|
||||
1000, sieve=((x > -1.0) & (x < 1.0)), param_ranges=temp_range
|
||||
)
|
||||
constraints = sc.Variables({"normal_gradient_T": 0.0})
|
||||
return points, constraints
|
||||
|
||||
|
||||
|
@ -43,47 +49,53 @@ class HeatDomain(sc.SampleDomain):
|
|||
|
||||
def sampling(self, *args, **kwargs):
|
||||
points = rec.sample_interior(self.points, param_ranges=temp_range)
|
||||
constraints = sc.Variables({'diffusion_T': 1.})
|
||||
constraints = sc.Variables({"diffusion_T": 1.0})
|
||||
return points, constraints
|
||||
|
||||
|
||||
net = sc.get_net_node(inputs=('x', 'y', 'temp'), outputs=('T',), name='net1', arch=sc.Arch.mlp)
|
||||
pde = sc.DiffusionNode(T='T', D=1., Q=0., dim=2, time=False)
|
||||
grad = sc.NormalGradient('T', dim=2, time=False)
|
||||
s = sc.Solver(sample_domains=(HeatDomain(), Left(), Right(), UpDownBoundaryDomain()),
|
||||
netnodes=[net],
|
||||
pdes=[pde, grad],
|
||||
max_iter=3000)
|
||||
net = sc.get_net_node(
|
||||
inputs=("x", "y", "temp"), outputs=("T",), name="net1", arch=sc.Arch.mlp
|
||||
)
|
||||
pde = sc.DiffusionNode(T="T", D=1.0, Q=0.0, dim=2, time=False)
|
||||
grad = sc.NormalGradient("T", dim=2, time=False)
|
||||
s = sc.Solver(
|
||||
sample_domains=(HeatDomain(), Left(), Right(), UpDownBoundaryDomain()),
|
||||
netnodes=[net],
|
||||
pdes=[pde, grad],
|
||||
max_iter=3000,
|
||||
)
|
||||
s.solve()
|
||||
|
||||
|
||||
def infer_temp(temp_num, file_suffix=None):
|
||||
temp_range[temp] = temp_num
|
||||
s.set_domain_parameter('heat_domain', {'points': 10000})
|
||||
coord = s.infer_step({'heat_domain': ['x', 'y', 'T']})
|
||||
num_x = coord['heat_domain']['x'].cpu().detach().numpy().ravel()
|
||||
num_y = coord['heat_domain']['y'].cpu().detach().numpy().ravel()
|
||||
num_Tp = coord['heat_domain']['T'].cpu().detach().numpy().ravel()
|
||||
s.set_domain_parameter("heat_domain", {"points": 10000})
|
||||
coord = s.infer_step({"heat_domain": ["x", "y", "T"]})
|
||||
num_x = coord["heat_domain"]["x"].cpu().detach().numpy().ravel()
|
||||
num_y = coord["heat_domain"]["y"].cpu().detach().numpy().ravel()
|
||||
num_Tp = coord["heat_domain"]["T"].cpu().detach().numpy().ravel()
|
||||
|
||||
# Ground truth
|
||||
num_T = -(num_x + 1 + temp_num) * (num_x - 1.) / 2
|
||||
num_T = -(num_x + 1 + temp_num) * (num_x - 1.0) / 2
|
||||
|
||||
fig, ax = plt.subplots(1, 3, figsize=(10, 3))
|
||||
triang_total = tri.Triangulation(num_x, num_y)
|
||||
ax[0].tricontourf(triang_total, num_Tp, 100, cmap='hot', vmin=-0.2, vmax=1.21 / 2)
|
||||
ax[0].axis('off')
|
||||
ax[0].set_title(f'prediction($T_l={temp_num:.2f}$)')
|
||||
ax[1].tricontourf(triang_total, num_T, 100, cmap='hot', vmin=-0.2, vmax=1.21 / 2)
|
||||
ax[1].axis('off')
|
||||
ax[1].set_title(f'ground truth($T_l={temp_num:.2f}$)')
|
||||
ax[2].tricontourf(triang_total, np.abs(num_T - num_Tp), 100, cmap='hot', vmin=0, vmax=1.21 / 2)
|
||||
ax[2].axis('off')
|
||||
ax[2].set_title('absolute error')
|
||||
ax[0].tricontourf(triang_total, num_Tp, 100, cmap="hot", vmin=-0.2, vmax=1.21 / 2)
|
||||
ax[0].axis("off")
|
||||
ax[0].set_title(f"prediction($T_l={temp_num:.2f}$)")
|
||||
ax[1].tricontourf(triang_total, num_T, 100, cmap="hot", vmin=-0.2, vmax=1.21 / 2)
|
||||
ax[1].axis("off")
|
||||
ax[1].set_title(f"ground truth($T_l={temp_num:.2f}$)")
|
||||
ax[2].tricontourf(
|
||||
triang_total, np.abs(num_T - num_Tp), 100, cmap="hot", vmin=0, vmax=1.21 / 2
|
||||
)
|
||||
ax[2].axis("off")
|
||||
ax[2].set_title("absolute error")
|
||||
if file_suffix is None:
|
||||
plt.savefig(f'poisson_{temp_num:.2f}.png', dpi=300, bbox_inches='tight')
|
||||
plt.savefig(f"poisson_{temp_num:.2f}.png", dpi=300, bbox_inches="tight")
|
||||
plt.show()
|
||||
else:
|
||||
plt.savefig(f'poisson_{file_suffix}.png', dpi=300, bbox_inches='tight')
|
||||
plt.savefig(f"poisson_{file_suffix}.png", dpi=300, bbox_inches="tight")
|
||||
plt.show()
|
||||
|
||||
|
||||
|
|
|
@ -4,24 +4,24 @@ import matplotlib.pyplot as plt
|
|||
import matplotlib.tri as tri
|
||||
import numpy as np
|
||||
|
||||
x, y = sp.symbols('x y')
|
||||
rec = sc.Rectangle((-1., -1.), (1., 1.))
|
||||
x, y = sp.symbols("x y")
|
||||
rec = sc.Rectangle((-1.0, -1.0), (1.0, 1.0))
|
||||
|
||||
|
||||
@sc.datanode
|
||||
class LeftRight(sc.SampleDomain):
|
||||
# Due to `name` is not specified, LeftRight will be the name of datanode automatically
|
||||
def sampling(self, *args, **kwargs):
|
||||
points = rec.sample_boundary(1000, sieve=((y > -1.) & (y < 1.)))
|
||||
constraints = {'T': 0.}
|
||||
points = rec.sample_boundary(1000, sieve=((y > -1.0) & (y < 1.0)))
|
||||
constraints = {"T": 0.0}
|
||||
return points, constraints
|
||||
|
||||
|
||||
@sc.datanode(name="up_down")
|
||||
class UpDownBoundaryDomain(sc.SampleDomain):
|
||||
def sampling(self, *args, **kwargs):
|
||||
points = rec.sample_boundary(1000, sieve=((x > -1.) & (x < 1.)))
|
||||
constraints = {'normal_gradient_T': 0.}
|
||||
points = rec.sample_boundary(1000, sieve=((x > -1.0) & (x < 1.0)))
|
||||
constraints = {"normal_gradient_T": 0.0}
|
||||
return points, constraints
|
||||
|
||||
|
||||
|
@ -32,39 +32,51 @@ class HeatDomain(sc.SampleDomain):
|
|||
|
||||
def sampling(self, *args, **kwargs):
|
||||
points = rec.sample_interior(self.points)
|
||||
constraints = {'diffusion_T': 1.}
|
||||
constraints = {"diffusion_T": 1.0}
|
||||
return points, constraints
|
||||
|
||||
|
||||
net = sc.get_net_node(inputs=('x', 'y',), outputs=('T',), name='net1', arch=sc.Arch.mlp)
|
||||
pde = sc.DiffusionNode(T='T', D=1., Q=0., dim=2, time=False)
|
||||
grad = sc.NormalGradient('T', dim=2, time=False)
|
||||
s = sc.Solver(sample_domains=(HeatDomain(), LeftRight(), UpDownBoundaryDomain()),
|
||||
netnodes=[net],
|
||||
pdes=[pde, grad],
|
||||
max_iter=1000)
|
||||
net = sc.get_net_node(
|
||||
inputs=(
|
||||
"x",
|
||||
"y",
|
||||
),
|
||||
outputs=("T",),
|
||||
name="net1",
|
||||
arch=sc.Arch.mlp,
|
||||
)
|
||||
pde = sc.DiffusionNode(T="T", D=1.0, Q=0.0, dim=2, time=False)
|
||||
grad = sc.NormalGradient("T", dim=2, time=False)
|
||||
s = sc.Solver(
|
||||
sample_domains=(HeatDomain(), LeftRight(), UpDownBoundaryDomain()),
|
||||
netnodes=[net],
|
||||
pdes=[pde, grad],
|
||||
max_iter=1000,
|
||||
)
|
||||
s.solve()
|
||||
|
||||
# Inference
|
||||
s.set_domain_parameter('heat_domain', {'points': 10000})
|
||||
coord = s.infer_step({'heat_domain': ['x', 'y', 'T']})
|
||||
num_x = coord['heat_domain']['x'].cpu().detach().numpy().ravel()
|
||||
num_y = coord['heat_domain']['y'].cpu().detach().numpy().ravel()
|
||||
num_Tp = coord['heat_domain']['T'].cpu().detach().numpy().ravel()
|
||||
s.set_domain_parameter("heat_domain", {"points": 10000})
|
||||
coord = s.infer_step({"heat_domain": ["x", "y", "T"]})
|
||||
num_x = coord["heat_domain"]["x"].cpu().detach().numpy().ravel()
|
||||
num_y = coord["heat_domain"]["y"].cpu().detach().numpy().ravel()
|
||||
num_Tp = coord["heat_domain"]["T"].cpu().detach().numpy().ravel()
|
||||
|
||||
# Ground truth
|
||||
num_T = -num_x * num_x / 2 + 0.5
|
||||
|
||||
fig, ax = plt.subplots(1, 3, figsize=(10, 3))
|
||||
triang_total = tri.Triangulation(num_x, num_y)
|
||||
ax[0].tricontourf(triang_total, num_Tp, 100, cmap='hot', vmin=0, vmax=0.5)
|
||||
ax[0].axis('off')
|
||||
ax[0].set_title('prediction')
|
||||
ax[1].tricontourf(triang_total, num_T, 100, cmap='hot', vmin=0, vmax=0.5)
|
||||
ax[1].axis('off')
|
||||
ax[1].set_title('ground truth')
|
||||
ax[2].tricontourf(triang_total, np.abs(num_T - num_Tp), 100, cmap='hot', vmin=0, vmax=0.5)
|
||||
ax[2].axis('off')
|
||||
ax[2].set_title('absolute error')
|
||||
ax[0].tricontourf(triang_total, num_Tp, 100, cmap="hot", vmin=0, vmax=0.5)
|
||||
ax[0].axis("off")
|
||||
ax[0].set_title("prediction")
|
||||
ax[1].tricontourf(triang_total, num_T, 100, cmap="hot", vmin=0, vmax=0.5)
|
||||
ax[1].axis("off")
|
||||
ax[1].set_title("ground truth")
|
||||
ax[2].tricontourf(
|
||||
triang_total, np.abs(num_T - num_Tp), 100, cmap="hot", vmin=0, vmax=0.5
|
||||
)
|
||||
ax[2].axis("off")
|
||||
ax[2].set_title("absolute error")
|
||||
|
||||
plt.savefig('simple_poisson.png', dpi=300, bbox_inches='tight')
|
||||
plt.savefig("simple_poisson.png", dpi=300, bbox_inches="tight")
|
||||
|
|
|
@ -1,15 +1,16 @@
|
|||
import torch
|
||||
|
||||
# todo more careful check
|
||||
GPU_ENABLED = True
|
||||
if torch.cuda.is_available():
|
||||
try:
|
||||
_ = torch.Tensor([0., 0.]).cuda()
|
||||
torch.set_default_tensor_type('torch.cuda.FloatTensor')
|
||||
print('gpu available')
|
||||
_ = torch.Tensor([0.0, 0.0]).cuda()
|
||||
torch.set_default_tensor_type("torch.cuda.FloatTensor")
|
||||
print("gpu available")
|
||||
GPU_ENABLED = True
|
||||
except:
|
||||
print('gpu not available')
|
||||
print("gpu not available")
|
||||
GPU_ENABLED = False
|
||||
else:
|
||||
print('gpu not available')
|
||||
print("gpu not available")
|
||||
GPU_ENABLED = False
|
||||
|
|
|
@ -15,14 +15,28 @@ def indicator(xn: torch.Tensor, *axis_bounds):
|
|||
i = 0
|
||||
lb, ub, lb_eq = axis_bounds[0]
|
||||
if lb_eq:
|
||||
indic = torch.logical_and(xn[:, i:i + 1] >= axis_bounds[0][0], axis_bounds[0][1] >= xn[:, i:i + 1])
|
||||
indic = torch.logical_and(
|
||||
xn[:, i : i + 1] >= axis_bounds[0][0], axis_bounds[0][1] >= xn[:, i : i + 1]
|
||||
)
|
||||
else:
|
||||
indic = torch.logical_and(xn[:, i:i + 1] > axis_bounds[0][0], axis_bounds[0][1] >= xn[:, i:i + 1])
|
||||
indic = torch.logical_and(
|
||||
xn[:, i : i + 1] > axis_bounds[0][0], axis_bounds[0][1] >= xn[:, i : i + 1]
|
||||
)
|
||||
for i, (lb, ub, lb_eq) in enumerate(axis_bounds[1:]):
|
||||
if lb_eq:
|
||||
indic = torch.logical_and(indic, torch.logical_and(xn[:, i + 1:i + 2] >= lb, ub >= xn[:, i + 1:i + 2]))
|
||||
indic = torch.logical_and(
|
||||
indic,
|
||||
torch.logical_and(
|
||||
xn[:, i + 1 : i + 2] >= lb, ub >= xn[:, i + 1 : i + 2]
|
||||
),
|
||||
)
|
||||
else:
|
||||
indic = torch.logical_and(indic, torch.logical_and(xn[:, i + 1:i + 2] > lb, ub >= xn[:, i + 1:i + 2]))
|
||||
indic = torch.logical_and(
|
||||
indic,
|
||||
torch.logical_and(
|
||||
xn[:, i + 1 : i + 2] > lb, ub >= xn[:, i + 1 : i + 2]
|
||||
),
|
||||
)
|
||||
return indic
|
||||
|
||||
|
||||
|
@ -34,8 +48,8 @@ class NetEval(torch.nn.Module):
|
|||
self.n_columns = len(self.columns) - 1
|
||||
self.n_rows = len(self.rows) - 1
|
||||
self.nets = []
|
||||
if 'net_generator' in kwargs.keys():
|
||||
net_gen = kwargs.pop('net_generator')
|
||||
if "net_generator" in kwargs.keys():
|
||||
net_gen = kwargs.pop("net_generator")
|
||||
else:
|
||||
net_gen = lambda: mlp.MLP([n_inputs, 20, 20, 20, 20, n_outputs])
|
||||
for i in range(self.n_columns):
|
||||
|
@ -50,8 +64,18 @@ class NetEval(torch.nn.Module):
|
|||
y = 0
|
||||
for i in range(self.n_columns):
|
||||
for j in range(self.n_rows):
|
||||
y += indicator(xn, (self.columns[i], self.columns[i + 1], True if i == 0 else False),
|
||||
(self.rows[j], self.rows[j + 1], True if j == 0 else False)) * self.nets[i][j](x)
|
||||
y += (
|
||||
indicator(
|
||||
xn,
|
||||
(
|
||||
self.columns[i],
|
||||
self.columns[i + 1],
|
||||
True if i == 0 else False,
|
||||
),
|
||||
(self.rows[j], self.rows[j + 1], True if j == 0 else False),
|
||||
)
|
||||
* self.nets[i][j](x)
|
||||
)
|
||||
return y
|
||||
|
||||
|
||||
|
@ -59,7 +83,10 @@ class Interface:
|
|||
def __init__(self, points1, points2, nr, outputs, i1, j1, i2, j2, overlap=0.2):
|
||||
x_min, x_max = min(points1[0], points2[0]), max(points1[0], points2[0])
|
||||
y_min, y_max = min(points1[1], points2[1]), max(points1[1], points2[1])
|
||||
self.geo = Rectangle((x_min - overlap / 2, y_min - overlap / 2), (x_max + overlap / 2, y_max + overlap / 2))
|
||||
self.geo = Rectangle(
|
||||
(x_min - overlap / 2, y_min - overlap / 2),
|
||||
(x_max + overlap / 2, y_max + overlap / 2),
|
||||
)
|
||||
self.nr = nr
|
||||
self.outputs = outputs
|
||||
self.i1 = i1
|
||||
|
@ -69,16 +96,26 @@ class Interface:
|
|||
|
||||
def __call__(self, *args, **kwargs):
|
||||
points = self.geo.sample_boundary(self.nr)
|
||||
return points, {f'difference_{output}_{self.i1}_{self.j1}_{output}_{self.i2}_{self.j2}': 0
|
||||
for output in self.outputs}
|
||||
return points, {
|
||||
f"difference_{output}_{self.i1}_{self.j1}_{output}_{self.i2}_{self.j2}": 0
|
||||
for output in self.outputs
|
||||
}
|
||||
|
||||
|
||||
class NetGridNode(NetNode):
|
||||
def __init__(self, inputs: Union[Tuple, List[str]], outputs: Union[Tuple, List[str]],
|
||||
x_segments: List[float] = None, y_segments: List[float] = None,
|
||||
z_segments: List[float] = None, t_segments: List[float] = None, columns: List[float] = None,
|
||||
rows: List[float] = None, *args,
|
||||
**kwargs):
|
||||
def __init__(
|
||||
self,
|
||||
inputs: Union[Tuple, List[str]],
|
||||
outputs: Union[Tuple, List[str]],
|
||||
x_segments: List[float] = None,
|
||||
y_segments: List[float] = None,
|
||||
z_segments: List[float] = None,
|
||||
t_segments: List[float] = None,
|
||||
columns: List[float] = None,
|
||||
rows: List[float] = None,
|
||||
*args,
|
||||
**kwargs,
|
||||
):
|
||||
if columns is None:
|
||||
columns = []
|
||||
if rows is None:
|
||||
|
@ -87,8 +124,16 @@ class NetGridNode(NetNode):
|
|||
fixed = False
|
||||
self.columns = columns
|
||||
self.rows = rows
|
||||
self.main_net = NetEval(n_inputs=len(inputs), n_outputs=len(outputs), columns=columns, rows=rows, **kwargs)
|
||||
super(NetGridNode, self).__init__(inputs, outputs, self.main_net, fixed, require_no_grad, *args, **kwargs)
|
||||
self.main_net = NetEval(
|
||||
n_inputs=len(inputs),
|
||||
n_outputs=len(outputs),
|
||||
columns=columns,
|
||||
rows=rows,
|
||||
**kwargs,
|
||||
)
|
||||
super(NetGridNode, self).__init__(
|
||||
inputs, outputs, self.main_net, fixed, require_no_grad, *args, **kwargs
|
||||
)
|
||||
|
||||
def get_grid(self, overlap, nr_points_per_interface_area=100):
|
||||
n_columns = self.main_net.n_columns
|
||||
|
@ -98,54 +143,119 @@ class NetGridNode(NetNode):
|
|||
constraints = []
|
||||
for i in range(n_columns):
|
||||
for j in range(n_rows):
|
||||
nn = NetNode(inputs=self.inputs,
|
||||
outputs=tuple(f'{output}_{i}_{j}' for output in self.outputs),
|
||||
net=self.main_net.nets[i][j],
|
||||
name=f'{self.name}[{i}][{j}]')
|
||||
nn = NetNode(
|
||||
inputs=self.inputs,
|
||||
outputs=tuple(f"{output}_{i}_{j}" for output in self.outputs),
|
||||
net=self.main_net.nets[i][j],
|
||||
name=f"{self.name}[{i}][{j}]",
|
||||
)
|
||||
nn.is_reference = True
|
||||
netnodes.append(nn)
|
||||
if i > 0:
|
||||
for output in self.outputs:
|
||||
diff_Node = Difference(f'{output}_{i - 1}_{j}', f'{output}_{i}_{j}', dim=2, time=False)
|
||||
diff_Node = Difference(
|
||||
f"{output}_{i - 1}_{j}",
|
||||
f"{output}_{i}_{j}",
|
||||
dim=2,
|
||||
time=False,
|
||||
)
|
||||
eqs.append(diff_Node)
|
||||
|
||||
interface = Interface((self.columns[i], self.rows[j]), (self.columns[i], self.rows[j + 1]),
|
||||
nr_points_per_interface_area, self.outputs, i - 1, j, i, j, overlap=overlap)
|
||||
interface = Interface(
|
||||
(self.columns[i], self.rows[j]),
|
||||
(self.columns[i], self.rows[j + 1]),
|
||||
nr_points_per_interface_area,
|
||||
self.outputs,
|
||||
i - 1,
|
||||
j,
|
||||
i,
|
||||
j,
|
||||
overlap=overlap,
|
||||
)
|
||||
|
||||
constraints.append(get_data_node(interface, name=f'interface[{i - 1}][{j}]_[{i}][{j}]'))
|
||||
constraints.append(
|
||||
get_data_node(
|
||||
interface, name=f"interface[{i - 1}][{j}]_[{i}][{j}]"
|
||||
)
|
||||
)
|
||||
if j > 0:
|
||||
for output in self.outputs:
|
||||
diff_Node = Difference(f'{output}_{i}_{j - 1}', f'{output}_{i}_{j}', dim=2, time=False)
|
||||
diff_Node = Difference(
|
||||
f"{output}_{i}_{j - 1}",
|
||||
f"{output}_{i}_{j}",
|
||||
dim=2,
|
||||
time=False,
|
||||
)
|
||||
eqs.append(diff_Node)
|
||||
|
||||
interface = Interface((self.columns[i], self.rows[j]), (self.columns[i + 1], self.rows[j]),
|
||||
nr_points_per_interface_area, self.outputs, i, j - 1, i, j, overlap=overlap)
|
||||
interface = Interface(
|
||||
(self.columns[i], self.rows[j]),
|
||||
(self.columns[i + 1], self.rows[j]),
|
||||
nr_points_per_interface_area,
|
||||
self.outputs,
|
||||
i,
|
||||
j - 1,
|
||||
i,
|
||||
j,
|
||||
overlap=overlap,
|
||||
)
|
||||
|
||||
constraints.append(get_data_node(interface, name=f'interface[{i}][{j - 1}]_[{i}][{j}]'))
|
||||
constraints.append(
|
||||
get_data_node(
|
||||
interface, name=f"interface[{i}][{j - 1}]_[{i}][{j}]"
|
||||
)
|
||||
)
|
||||
return netnodes, eqs, constraints
|
||||
|
||||
|
||||
def get_net_reg_grid_2d(inputs: Union[Tuple, List[str]], outputs: Union[Tuple, List[str]], name: str,
|
||||
columns: List[float], rows: List[float], **kwargs):
|
||||
if 'overlap' in kwargs.keys():
|
||||
overlap = kwargs.pop('overlap')
|
||||
def get_net_reg_grid_2d(
|
||||
inputs: Union[Tuple, List[str]],
|
||||
outputs: Union[Tuple, List[str]],
|
||||
name: str,
|
||||
columns: List[float],
|
||||
rows: List[float],
|
||||
**kwargs,
|
||||
):
|
||||
if "overlap" in kwargs.keys():
|
||||
overlap = kwargs.pop("overlap")
|
||||
else:
|
||||
overlap = 0.2
|
||||
net = NetGridNode(inputs=inputs, outputs=outputs, columns=columns, rows=rows, name=name, **kwargs)
|
||||
nets, eqs, interfaces = net.get_grid(nr_points_per_interface_area=1000, overlap=overlap)
|
||||
net = NetGridNode(
|
||||
inputs=inputs, outputs=outputs, columns=columns, rows=rows, name=name, **kwargs
|
||||
)
|
||||
nets, eqs, interfaces = net.get_grid(
|
||||
nr_points_per_interface_area=1000, overlap=overlap
|
||||
)
|
||||
nets.append(net)
|
||||
return nets, eqs, interfaces
|
||||
|
||||
|
||||
def get_net_reg_grid(inputs: Union[Tuple, List[str]], outputs: Union[Tuple, List[str]], name: str,
|
||||
x_segments: List[float] = None, y_segments: List[float] = None, z_segments: List[float] = None,
|
||||
t_segments: List[float] = None, **kwargs):
|
||||
if 'overlap' in kwargs.keys():
|
||||
overlap = kwargs.pop('overlap')
|
||||
def get_net_reg_grid(
|
||||
inputs: Union[Tuple, List[str]],
|
||||
outputs: Union[Tuple, List[str]],
|
||||
name: str,
|
||||
x_segments: List[float] = None,
|
||||
y_segments: List[float] = None,
|
||||
z_segments: List[float] = None,
|
||||
t_segments: List[float] = None,
|
||||
**kwargs,
|
||||
):
|
||||
if "overlap" in kwargs.keys():
|
||||
overlap = kwargs.pop("overlap")
|
||||
else:
|
||||
overlap = 0.2
|
||||
net = NetGridNode(inputs=inputs, outputs=outputs, x_segments=x_segments, y_segments=y_segments,
|
||||
z_segments=z_segments, t_segments=t_segments, name=name, **kwargs)
|
||||
nets, eqs, interfaces = net.get_grid(nr_points_per_interface_area=1000, overlap=overlap)
|
||||
net = NetGridNode(
|
||||
inputs=inputs,
|
||||
outputs=outputs,
|
||||
x_segments=x_segments,
|
||||
y_segments=y_segments,
|
||||
z_segments=z_segments,
|
||||
t_segments=t_segments,
|
||||
name=name,
|
||||
**kwargs,
|
||||
)
|
||||
nets, eqs, interfaces = net.get_grid(
|
||||
nr_points_per_interface_area=1000, overlap=overlap
|
||||
)
|
||||
nets.append(net)
|
||||
return nets, eqs, interfaces
|
||||
|
|
|
@ -5,35 +5,40 @@ import math
|
|||
import torch
|
||||
from idrlnet.header import logger
|
||||
|
||||
__all__ = ['Activation', 'Initializer', 'get_activation_layer', 'get_linear_layer']
|
||||
__all__ = ["Activation", "Initializer", "get_activation_layer", "get_linear_layer"]
|
||||
|
||||
|
||||
class Activation(enum.Enum):
|
||||
relu = 'relu'
|
||||
silu = 'silu'
|
||||
selu = 'selu'
|
||||
sigmoid = 'sigmoid'
|
||||
tanh = 'tanh'
|
||||
swish = 'swish'
|
||||
poly = 'poly'
|
||||
sin = 'sin'
|
||||
leaky_relu = 'leaky_relu'
|
||||
relu = "relu"
|
||||
silu = "silu"
|
||||
selu = "selu"
|
||||
sigmoid = "sigmoid"
|
||||
tanh = "tanh"
|
||||
swish = "swish"
|
||||
poly = "poly"
|
||||
sin = "sin"
|
||||
leaky_relu = "leaky_relu"
|
||||
|
||||
|
||||
class Initializer(enum.Enum):
|
||||
Xavier_uniform = 'Xavier_uniform'
|
||||
constant = 'constant'
|
||||
kaiming_uniform = 'kaiming_uniform'
|
||||
default = 'default'
|
||||
Xavier_uniform = "Xavier_uniform"
|
||||
constant = "constant"
|
||||
kaiming_uniform = "kaiming_uniform"
|
||||
default = "default"
|
||||
|
||||
|
||||
def get_linear_layer(input_dim: int, output_dim: int, weight_norm=False,
|
||||
initializer: Initializer = Initializer.Xavier_uniform, *args,
|
||||
**kwargs):
|
||||
def get_linear_layer(
|
||||
input_dim: int,
|
||||
output_dim: int,
|
||||
weight_norm=False,
|
||||
initializer: Initializer = Initializer.Xavier_uniform,
|
||||
*args,
|
||||
**kwargs,
|
||||
):
|
||||
layer = torch.nn.Linear(input_dim, output_dim)
|
||||
init_method = InitializerFactory.get_initializer(initializer=initializer, **kwargs)
|
||||
init_method(layer.weight)
|
||||
torch.nn.init.constant_(layer.bias, 0.)
|
||||
torch.nn.init.constant_(layer.bias, 0.0)
|
||||
if weight_norm:
|
||||
layer = torch.nn.utils.weight_norm(layer)
|
||||
return layer
|
||||
|
@ -81,8 +86,10 @@ class ActivationFactory:
|
|||
elif activation == Activation.silu:
|
||||
return Silu()
|
||||
else:
|
||||
logger.error(f'Activation {activation} is not supported!')
|
||||
raise NotImplementedError('Activation ' + activation.name + ' is not supported')
|
||||
logger.error(f"Activation {activation} is not supported!")
|
||||
raise NotImplementedError(
|
||||
"Activation " + activation.name + " is not supported"
|
||||
)
|
||||
|
||||
|
||||
class Silu:
|
||||
|
@ -105,8 +112,12 @@ def leaky_relu(x, leak=0.1):
|
|||
def triangle_wave(x):
|
||||
y = 0.0
|
||||
for i in range(3):
|
||||
y += (-1.0) ** (i) * torch.sin(2.0 * math.pi * (2.0 * i + 1.0) * x) / (2.0 * i + 1.0) ** (2)
|
||||
y = 0.5 * (8 / (math.pi ** 2) * y) + .5
|
||||
y += (
|
||||
(-1.0) ** (i)
|
||||
* torch.sin(2.0 * math.pi * (2.0 * i + 1.0) * x)
|
||||
/ (2.0 * i + 1.0) ** (2)
|
||||
)
|
||||
y = 0.5 * (8 / (math.pi ** 2) * y) + 0.5
|
||||
return y
|
||||
|
||||
|
||||
|
@ -139,11 +150,15 @@ class InitializerFactory:
|
|||
if initializer == Initializer.Xavier_uniform:
|
||||
return torch.nn.init.xavier_uniform_
|
||||
elif initializer == Initializer.constant:
|
||||
return lambda x: torch.nn.init.constant_(x, kwargs['constant'])
|
||||
return lambda x: torch.nn.init.constant_(x, kwargs["constant"])
|
||||
elif initializer == Initializer.kaiming_uniform:
|
||||
return lambda x: torch.nn.init.kaiming_uniform_(x, mode='fan_in', nonlinearity='relu')
|
||||
return lambda x: torch.nn.init.kaiming_uniform_(
|
||||
x, mode="fan_in", nonlinearity="relu"
|
||||
)
|
||||
elif initializer == Initializer.default:
|
||||
return lambda x: x
|
||||
else:
|
||||
logger.error('initialization ' + initializer.name + ' is not supported')
|
||||
raise NotImplementedError('initialization ' + initializer.name + ' is not supported')
|
||||
logger.error("initialization " + initializer.name + " is not supported")
|
||||
raise NotImplementedError(
|
||||
"initialization " + initializer.name + " is not supported"
|
||||
)
|
||||
|
|
|
@ -3,7 +3,12 @@
|
|||
import torch
|
||||
import math
|
||||
from collections import OrderedDict
|
||||
from idrlnet.architecture.layer import get_linear_layer, get_activation_layer, Initializer, Activation
|
||||
from idrlnet.architecture.layer import (
|
||||
get_linear_layer,
|
||||
get_activation_layer,
|
||||
Initializer,
|
||||
Activation,
|
||||
)
|
||||
from typing import List, Union, Tuple
|
||||
from idrlnet.header import logger
|
||||
from idrlnet.net import NetNode
|
||||
|
@ -28,25 +33,36 @@ class MLP(torch.nn.Module):
|
|||
:param kwargs:
|
||||
"""
|
||||
|
||||
def __init__(self, n_seq: List[int], activation: Union[Activation, List[Activation]] = Activation.swish,
|
||||
initialization: Initializer = Initializer.kaiming_uniform,
|
||||
weight_norm: bool = True, name: str = 'mlp', *args, **kwargs):
|
||||
def __init__(
|
||||
self,
|
||||
n_seq: List[int],
|
||||
activation: Union[Activation, List[Activation]] = Activation.swish,
|
||||
initialization: Initializer = Initializer.kaiming_uniform,
|
||||
weight_norm: bool = True,
|
||||
name: str = "mlp",
|
||||
*args,
|
||||
**kwargs,
|
||||
):
|
||||
super().__init__()
|
||||
self.layers = OrderedDict()
|
||||
current_activation = ''
|
||||
current_activation = ""
|
||||
assert isinstance(n_seq, Activation) or isinstance(n_seq, list)
|
||||
for i in range(len(n_seq) - 1):
|
||||
if isinstance(activation, list):
|
||||
current_activation = activation[i]
|
||||
elif i < len(n_seq) - 2:
|
||||
current_activation = activation
|
||||
self.layers['{}_{}'.format(name, i)] = get_linear_layer(n_seq[i], n_seq[i + 1], weight_norm, initialization,
|
||||
*args, **kwargs)
|
||||
if (isinstance(activation, Activation) and i < len(n_seq) - 2) or isinstance(activation, list):
|
||||
if current_activation == 'none':
|
||||
self.layers["{}_{}".format(name, i)] = get_linear_layer(
|
||||
n_seq[i], n_seq[i + 1], weight_norm, initialization, *args, **kwargs
|
||||
)
|
||||
if (
|
||||
isinstance(activation, Activation) and i < len(n_seq) - 2
|
||||
) or isinstance(activation, list):
|
||||
if current_activation == "none":
|
||||
continue
|
||||
self.layers['{}_{}_activation'.format(name, i)] = get_activation_layer(current_activation, *args,
|
||||
**kwargs)
|
||||
self.layers["{}_{}_activation".format(name, i)] = get_activation_layer(
|
||||
current_activation, *args, **kwargs
|
||||
)
|
||||
self.layers = torch.nn.ModuleDict(self.layers)
|
||||
|
||||
def forward(self, x):
|
||||
|
@ -61,8 +77,15 @@ class MLP(torch.nn.Module):
|
|||
|
||||
|
||||
class Siren(torch.nn.Module):
|
||||
def __init__(self, n_seq: List[int], first_omega: float = 30.0,
|
||||
omega: float = 30.0, name: str = 'siren', *args, **kwargs):
|
||||
def __init__(
|
||||
self,
|
||||
n_seq: List[int],
|
||||
first_omega: float = 30.0,
|
||||
omega: float = 30.0,
|
||||
name: str = "siren",
|
||||
*args,
|
||||
**kwargs,
|
||||
):
|
||||
super().__init__()
|
||||
self.layers = OrderedDict()
|
||||
self.first_omega = first_omega
|
||||
|
@ -70,24 +93,37 @@ class Siren(torch.nn.Module):
|
|||
assert isinstance(n_seq, str) or isinstance(n_seq, list)
|
||||
for i in range(len(n_seq) - 1):
|
||||
if i == 0:
|
||||
self.layers['{}_{}'.format(name, i)] = self.get_siren_layer(n_seq[i], n_seq[i + 1], True, first_omega)
|
||||
self.layers["{}_{}".format(name, i)] = self.get_siren_layer(
|
||||
n_seq[i], n_seq[i + 1], True, first_omega
|
||||
)
|
||||
else:
|
||||
self.layers['{}_{}'.format(name, i)] = self.get_siren_layer(n_seq[i], n_seq[i + 1], False, omega)
|
||||
self.layers["{}_{}".format(name, i)] = self.get_siren_layer(
|
||||
n_seq[i], n_seq[i + 1], False, omega
|
||||
)
|
||||
if i < (len(n_seq) - 2):
|
||||
self.layers['{}_{}_activation'.format(name, i)] = get_activation_layer(Activation.sin, *args, **kwargs)
|
||||
self.layers["{}_{}_activation".format(name, i)] = get_activation_layer(
|
||||
Activation.sin, *args, **kwargs
|
||||
)
|
||||
|
||||
self.layers = torch.nn.ModuleDict(self.layers)
|
||||
|
||||
@staticmethod
|
||||
def get_siren_layer(input_dim: int, output_dim: int, is_first: bool, omega_0: float):
|
||||
def get_siren_layer(
|
||||
input_dim: int, output_dim: int, is_first: bool, omega_0: float
|
||||
):
|
||||
layer = torch.nn.Linear(input_dim, output_dim)
|
||||
dim = input_dim
|
||||
if is_first:
|
||||
torch.nn.init.uniform_(layer.weight.data, -1.0 / dim, 1.0 / dim)
|
||||
else:
|
||||
torch.nn.init.uniform_(layer.weight.data, -1.0 * math.sqrt(6.0 / dim) / omega_0,
|
||||
math.sqrt(6.0 / dim) / omega_0)
|
||||
torch.nn.init.uniform_(layer.bias.data, -1 * math.sqrt(1 / dim), math.sqrt(1 / dim))
|
||||
torch.nn.init.uniform_(
|
||||
layer.weight.data,
|
||||
-1.0 * math.sqrt(6.0 / dim) / omega_0,
|
||||
math.sqrt(6.0 / dim) / omega_0,
|
||||
)
|
||||
torch.nn.init.uniform_(
|
||||
layer.bias.data, -1 * math.sqrt(1 / dim), math.sqrt(1 / dim)
|
||||
)
|
||||
return layer
|
||||
|
||||
def forward(self, x):
|
||||
|
@ -113,7 +149,7 @@ class SingleVar(torch.nn.Module):
|
|||
self.value = torch.nn.Parameter(torch.Tensor([initialization]))
|
||||
|
||||
def forward(self, x) -> torch.Tensor:
|
||||
return x[:, :1] * 0. + self.value
|
||||
return x[:, :1] * 0.0 + self.value
|
||||
|
||||
def get_value(self) -> torch.Tensor:
|
||||
return self.value
|
||||
|
@ -135,7 +171,7 @@ class BoundedSingleVar(torch.nn.Module):
|
|||
self.ub, self.lb = upper_bound, lower_bound
|
||||
|
||||
def forward(self, x) -> torch.Tensor:
|
||||
return x[:, :1] * 0. + self.layer(self.value) * (self.ub - self.lb) + self.lb
|
||||
return x[:, :1] * 0.0 + self.layer(self.value) * (self.ub - self.lb) + self.lb
|
||||
|
||||
def get_value(self) -> torch.Tensor:
|
||||
return self.layer(self.value) * (self.ub - self.lb) + self.lb
|
||||
|
@ -144,18 +180,22 @@ class BoundedSingleVar(torch.nn.Module):
|
|||
class Arch(enum.Enum):
|
||||
"""Enumerate pre-defined neural networks."""
|
||||
|
||||
mlp = 'mlp'
|
||||
toy = 'toy'
|
||||
mlp_xl = 'mlp_xl'
|
||||
single_var = 'single_var'
|
||||
bounded_single_var = 'bounded_single_var'
|
||||
siren = 'siren'
|
||||
mlp = "mlp"
|
||||
toy = "toy"
|
||||
mlp_xl = "mlp_xl"
|
||||
single_var = "single_var"
|
||||
bounded_single_var = "bounded_single_var"
|
||||
siren = "siren"
|
||||
|
||||
|
||||
def get_net_node(inputs: Union[Tuple[str, ...], List[str]], outputs: Union[Tuple[str, ...], List[str]],
|
||||
arch: Arch = None, name=None,
|
||||
*args,
|
||||
**kwargs) -> NetNode:
|
||||
def get_net_node(
|
||||
inputs: Union[Tuple[str, ...], List[str]],
|
||||
outputs: Union[Tuple[str, ...], List[str]],
|
||||
arch: Arch = None,
|
||||
name=None,
|
||||
*args,
|
||||
**kwargs,
|
||||
) -> NetNode:
|
||||
"""Get a net node wrapping networks with pre-defined configurations
|
||||
|
||||
:param inputs: Input symbols for the generated node.
|
||||
|
@ -175,36 +215,65 @@ def get_net_node(inputs: Union[Tuple[str, ...], List[str]], outputs: Union[Tuple
|
|||
:return:
|
||||
"""
|
||||
arch = Arch.mlp if arch is None else arch
|
||||
if 'evaluate' in kwargs.keys():
|
||||
evaluate = kwargs.pop('evaluate')
|
||||
if "evaluate" in kwargs.keys():
|
||||
evaluate = kwargs.pop("evaluate")
|
||||
else:
|
||||
if arch == Arch.mlp:
|
||||
seq = kwargs['seq'] if 'seq' in kwargs.keys() else [len(inputs), 20, 20, 20, 20, len(outputs)]
|
||||
evaluate = MLP(n_seq=seq, activation=Activation.swish, initialization=Initializer.kaiming_uniform,
|
||||
weight_norm=True)
|
||||
seq = (
|
||||
kwargs["seq"]
|
||||
if "seq" in kwargs.keys()
|
||||
else [len(inputs), 20, 20, 20, 20, len(outputs)]
|
||||
)
|
||||
evaluate = MLP(
|
||||
n_seq=seq,
|
||||
activation=Activation.swish,
|
||||
initialization=Initializer.kaiming_uniform,
|
||||
weight_norm=True,
|
||||
)
|
||||
elif arch == Arch.toy:
|
||||
evaluate = SimpleExpr("nothing")
|
||||
elif arch == Arch.mlp_xl or arch == 'fc':
|
||||
seq = kwargs['seq'] if 'seq' in kwargs.keys() else [len(inputs), 512, 512, 512, 512, 512, 512, len(outputs)]
|
||||
evaluate = MLP(n_seq=seq, activation=Activation.silu, initialization=Initializer.kaiming_uniform,
|
||||
weight_norm=True)
|
||||
elif arch == Arch.mlp_xl or arch == "fc":
|
||||
seq = (
|
||||
kwargs["seq"]
|
||||
if "seq" in kwargs.keys()
|
||||
else [len(inputs), 512, 512, 512, 512, 512, 512, len(outputs)]
|
||||
)
|
||||
evaluate = MLP(
|
||||
n_seq=seq,
|
||||
activation=Activation.silu,
|
||||
initialization=Initializer.kaiming_uniform,
|
||||
weight_norm=True,
|
||||
)
|
||||
elif arch == Arch.single_var:
|
||||
evaluate = SingleVar(initialization=kwargs.get('initialization', 1.))
|
||||
evaluate = SingleVar(initialization=kwargs.get("initialization", 1.0))
|
||||
elif arch == Arch.bounded_single_var:
|
||||
evaluate = BoundedSingleVar(lower_bound=kwargs['lower_bound'], upper_bound=kwargs['upper_bound'])
|
||||
evaluate = BoundedSingleVar(
|
||||
lower_bound=kwargs["lower_bound"], upper_bound=kwargs["upper_bound"]
|
||||
)
|
||||
elif arch == Arch.siren:
|
||||
seq = kwargs['seq'] if 'seq' in kwargs.keys() else [len(inputs), 512, 512, 512, 512, 512, 512, len(outputs)]
|
||||
seq = (
|
||||
kwargs["seq"]
|
||||
if "seq" in kwargs.keys()
|
||||
else [len(inputs), 512, 512, 512, 512, 512, 512, len(outputs)]
|
||||
)
|
||||
evaluate = Siren(n_seq=seq)
|
||||
else:
|
||||
logger.error(f'{arch} is not supported!')
|
||||
raise NotImplementedError(f'{arch} is not supported!')
|
||||
nn = NetNode(inputs=inputs, outputs=outputs, net=evaluate, name=name, *args, **kwargs)
|
||||
logger.error(f"{arch} is not supported!")
|
||||
raise NotImplementedError(f"{arch} is not supported!")
|
||||
nn = NetNode(
|
||||
inputs=inputs, outputs=outputs, net=evaluate, name=name, *args, **kwargs
|
||||
)
|
||||
return nn
|
||||
|
||||
|
||||
def get_shared_net_node(shared_node: NetNode, inputs: Union[Tuple[str, ...], List[str]],
|
||||
outputs: Union[Tuple[str, ...], List[str]], name=None, *args,
|
||||
**kwargs) -> NetNode:
|
||||
def get_shared_net_node(
|
||||
shared_node: NetNode,
|
||||
inputs: Union[Tuple[str, ...], List[str]],
|
||||
outputs: Union[Tuple[str, ...], List[str]],
|
||||
name=None,
|
||||
*args,
|
||||
**kwargs,
|
||||
) -> NetNode:
|
||||
"""Construct a netnode, the net of which is shared by a given netnode. One can specify different inputs and outputs
|
||||
just like an independent netnode. However, the net parameters may have multiple references. Thus the step
|
||||
operations during optimization should only be applied once.
|
||||
|
@ -221,22 +290,29 @@ def get_shared_net_node(shared_node: NetNode, inputs: Union[Tuple[str, ...], Lis
|
|||
:param kwargs:
|
||||
:return:
|
||||
"""
|
||||
nn = NetNode(inputs, outputs, shared_node.net, is_reference=True, name=name, *args, **kwargs)
|
||||
nn = NetNode(
|
||||
inputs, outputs, shared_node.net, is_reference=True, name=name, *args, **kwargs
|
||||
)
|
||||
return nn
|
||||
|
||||
|
||||
def get_inter_name(length: int, prefix: str):
|
||||
return [prefix + f'_{i}' for i in range(length)]
|
||||
return [prefix + f"_{i}" for i in range(length)]
|
||||
|
||||
|
||||
class SimpleExpr(torch.nn.Module):
|
||||
"""This class is for testing. One can override SimpleExper.forward to represent complex formulas."""
|
||||
|
||||
def __init__(self, expr, name='expr'):
|
||||
def __init__(self, expr, name="expr"):
|
||||
super().__init__()
|
||||
self.evaluate = expr
|
||||
self.name = name
|
||||
self._placeholder = torch.nn.Parameter(torch.Tensor([0.0]))
|
||||
|
||||
def forward(self, x):
|
||||
return self._placeholder + x[:, :1] * x[:, :1] / 2 + x[:, 1:] * x[:, 1:] / 2 - self._placeholder
|
||||
return (
|
||||
self._placeholder
|
||||
+ x[:, :1] * x[:, :1] / 2
|
||||
+ x[:, 1:] * x[:, 1:] / 2
|
||||
- self._placeholder
|
||||
)
|
||||
|
|
|
@ -7,13 +7,13 @@ from torch.utils.tensorboard import SummaryWriter
|
|||
from idrlnet.receivers import Receiver, Signal
|
||||
from idrlnet.variable import Variables
|
||||
|
||||
__all__ = ['GradientReceiver', 'SummaryReceiver', 'HandleResultReceiver']
|
||||
__all__ = ["GradientReceiver", "SummaryReceiver", "HandleResultReceiver"]
|
||||
|
||||
|
||||
class GradientReceiver(Receiver):
|
||||
"""Register the receiver to monitor gradient norm on the Tensorboard."""
|
||||
|
||||
def receive_notify(self, solver: 'Solver', message):
|
||||
def receive_notify(self, solver: "Solver", message): # noqa
|
||||
if not (Signal.TRAIN_PIPE_END in message):
|
||||
return
|
||||
for netnode in solver.netnodes:
|
||||
|
@ -23,9 +23,11 @@ class GradientReceiver(Receiver):
|
|||
for p in model.parameters():
|
||||
param_norm = p.grad.data.norm(2)
|
||||
total_norm += param_norm.item() ** 2
|
||||
total_norm = total_norm ** (1. / 2)
|
||||
total_norm = total_norm ** (1.0 / 2)
|
||||
assert isinstance(solver.receivers[0], SummaryWriter)
|
||||
solver.summary_receiver.add_scalar('gradient/total_norm', total_norm, solver.global_step)
|
||||
solver.summary_receiver.add_scalar(
|
||||
"gradient/total_norm", total_norm, solver.global_step
|
||||
)
|
||||
|
||||
|
||||
class SummaryReceiver(SummaryWriter, Receiver):
|
||||
|
@ -34,15 +36,19 @@ class SummaryReceiver(SummaryWriter, Receiver):
|
|||
def __init__(self, *args, **kwargs):
|
||||
SummaryWriter.__init__(self, *args, **kwargs)
|
||||
|
||||
def receive_notify(self, solver: 'Solver', message: Dict):
|
||||
def receive_notify(self, solver: "Solver", message: Dict): # noqa
|
||||
if Signal.AFTER_COMPUTE_LOSS in message.keys():
|
||||
loss_component = message[Signal.AFTER_COMPUTE_LOSS]
|
||||
self.add_scalars('loss_overview', loss_component, solver.global_step)
|
||||
self.add_scalars("loss_overview", loss_component, solver.global_step)
|
||||
for key, value in loss_component.items():
|
||||
self.add_scalar(f'loss_component/{key}', value, solver.global_step)
|
||||
self.add_scalar(f"loss_component/{key}", value, solver.global_step)
|
||||
if Signal.TRAIN_PIPE_END in message.keys():
|
||||
for i, optimizer in enumerate(solver.optimizers):
|
||||
self.add_scalar(f'optimizer/lr_{i}', optimizer.param_groups[0]['lr'], solver.global_step)
|
||||
self.add_scalar(
|
||||
f"optimizer/lr_{i}",
|
||||
optimizer.param_groups[0]["lr"],
|
||||
solver.global_step,
|
||||
)
|
||||
|
||||
|
||||
class HandleResultReceiver(Receiver):
|
||||
|
@ -51,11 +57,13 @@ class HandleResultReceiver(Receiver):
|
|||
def __init__(self, result_dir):
|
||||
self.result_dir = result_dir
|
||||
|
||||
def receive_notify(self, solver: 'Solver', message: Dict):
|
||||
def receive_notify(self, solver: "Solver", message: Dict): # noqa
|
||||
if Signal.SOLVE_END in message.keys():
|
||||
samples = solver.sample_variables_from_domains()
|
||||
in_var, _, lambda_out = solver.generate_in_out_dict(samples)
|
||||
pred_out_sample = solver.forward_through_all_graph(in_var, solver.outvar_dict_index)
|
||||
pred_out_sample = solver.forward_through_all_graph(
|
||||
in_var, solver.outvar_dict_index
|
||||
)
|
||||
diff_out_sample = {key: Variables() for key in pred_out_sample}
|
||||
results_path = pathlib.Path(self.result_dir)
|
||||
results_path.mkdir(exist_ok=True, parents=True)
|
||||
|
@ -65,7 +73,15 @@ class HandleResultReceiver(Receiver):
|
|||
pred_out_sample[key][_key] = samples[key][_key]
|
||||
diff_out_sample[key][_key] = samples[key][_key]
|
||||
else:
|
||||
diff_out_sample[key][_key] = pred_out_sample[key][_key] - samples[key][_key]
|
||||
samples[key].save(os.path.join(results_path, f'{key}_true'), ['vtu', 'np', 'csv'])
|
||||
pred_out_sample[key].save(os.path.join(results_path, f'{key}_pred'), ['vtu', 'np', 'csv'])
|
||||
diff_out_sample[key].save(os.path.join(results_path, f'{key}_diff'), ['vtu', 'np', 'csv'])
|
||||
diff_out_sample[key][_key] = (
|
||||
pred_out_sample[key][_key] - samples[key][_key]
|
||||
)
|
||||
samples[key].save(
|
||||
os.path.join(results_path, f"{key}_true"), ["vtu", "np", "csv"]
|
||||
)
|
||||
pred_out_sample[key].save(
|
||||
os.path.join(results_path, f"{key}_pred"), ["vtu", "np", "csv"]
|
||||
)
|
||||
diff_out_sample[key].save(
|
||||
os.path.join(results_path, f"{key}_diff"), ["vtu", "np", "csv"]
|
||||
)
|
||||
|
|
|
@ -36,6 +36,7 @@ class DataNode(Node):
|
|||
:param args:
|
||||
:param kwargs:
|
||||
"""
|
||||
|
||||
counter = 0
|
||||
|
||||
@property
|
||||
|
@ -87,18 +88,27 @@ class DataNode(Node):
|
|||
try:
|
||||
output_vars[key] = lambdify_np(value, input_vars)(**input_vars)
|
||||
except:
|
||||
logger.error('unsupported constraints type.')
|
||||
raise ValueError('unsupported constraints type.')
|
||||
logger.error("unsupported constraints type.")
|
||||
raise ValueError("unsupported constraints type.")
|
||||
|
||||
try:
|
||||
return Variables({**input_vars, **output_vars}).to_torch_tensor_()
|
||||
except:
|
||||
return Variables({**input_vars, **output_vars})
|
||||
|
||||
def __init__(self, inputs: Union[Tuple[str, ...], List[str]], outputs: Union[Tuple[str, ...], List[str]],
|
||||
sample_fn: Callable, loss_fn: str = 'square', lambda_outputs: Union[Tuple[str, ...], List[str]] = None,
|
||||
name=None, sigma=1.0, var_sigma=False,
|
||||
*args, **kwargs):
|
||||
def __init__(
|
||||
self,
|
||||
inputs: Union[Tuple[str, ...], List[str]],
|
||||
outputs: Union[Tuple[str, ...], List[str]],
|
||||
sample_fn: Callable,
|
||||
loss_fn: str = "square",
|
||||
lambda_outputs: Union[Tuple[str, ...], List[str]] = None,
|
||||
name=None,
|
||||
sigma=1.0,
|
||||
var_sigma=False,
|
||||
*args,
|
||||
**kwargs,
|
||||
):
|
||||
self.inputs: Union[Tuple, List[str]] = inputs
|
||||
self.outputs: Union[Tuple, List[str]] = outputs
|
||||
self.lambda_outputs = lambda_outputs
|
||||
|
@ -113,13 +123,22 @@ class DataNode(Node):
|
|||
self.loss_fn = loss_fn
|
||||
|
||||
def __str__(self):
|
||||
str_list = ["DataNode properties:\n"
|
||||
"lambda_outputs: {}\n".format(self.lambda_outputs)]
|
||||
return super().__str__() + ''.join(str_list)
|
||||
str_list = [
|
||||
"DataNode properties:\n" "lambda_outputs: {}\n".format(self.lambda_outputs)
|
||||
]
|
||||
return super().__str__() + "".join(str_list)
|
||||
|
||||
|
||||
def get_data_node(fun: Callable, name=None, loss_fn='square', sigma=1., var_sigma=False, *args, **kwargs) -> DataNode:
|
||||
""" Construct a datanode from sampling functions.
|
||||
def get_data_node(
|
||||
fun: Callable,
|
||||
name=None,
|
||||
loss_fn="square",
|
||||
sigma=1.0,
|
||||
var_sigma=False,
|
||||
*args,
|
||||
**kwargs,
|
||||
) -> DataNode:
|
||||
"""Construct a datanode from sampling functions.
|
||||
|
||||
:param fun: Each call of the Callable object should return a sampling dict.
|
||||
:type fun: Callable
|
||||
|
@ -135,26 +154,56 @@ def get_data_node(fun: Callable, name=None, loss_fn='square', sigma=1., var_sigm
|
|||
in_, out_ = fun()
|
||||
inputs = list(in_.keys())
|
||||
outputs = list(out_.keys())
|
||||
lambda_outputs = list(filter(lambda x: x.startswith('lambda_'), outputs))
|
||||
outputs = list(filter(lambda x: not x.startswith('lambda_'), outputs))
|
||||
name = (fun.__name__ if inspect.isfunction(fun) else type(fun).__name__) if name is None else name
|
||||
dn = DataNode(inputs=inputs, outputs=outputs, sample_fn=fun, lambda_outputs=lambda_outputs, loss_fn=loss_fn,
|
||||
name=name, sigma=sigma, var_sigma=var_sigma, *args, **kwargs)
|
||||
lambda_outputs = list(filter(lambda x: x.startswith("lambda_"), outputs))
|
||||
outputs = list(filter(lambda x: not x.startswith("lambda_"), outputs))
|
||||
name = (
|
||||
(fun.__name__ if inspect.isfunction(fun) else type(fun).__name__)
|
||||
if name is None
|
||||
else name
|
||||
)
|
||||
dn = DataNode(
|
||||
inputs=inputs,
|
||||
outputs=outputs,
|
||||
sample_fn=fun,
|
||||
lambda_outputs=lambda_outputs,
|
||||
loss_fn=loss_fn,
|
||||
name=name,
|
||||
sigma=sigma,
|
||||
var_sigma=var_sigma,
|
||||
*args,
|
||||
**kwargs,
|
||||
)
|
||||
return dn
|
||||
|
||||
|
||||
def datanode(_fun: Callable = None, name=None, loss_fn='square', sigma=1., var_sigma=False, **kwargs):
|
||||
def datanode(
|
||||
_fun: Callable = None,
|
||||
name=None,
|
||||
loss_fn="square",
|
||||
sigma=1.0,
|
||||
var_sigma=False,
|
||||
**kwargs,
|
||||
):
|
||||
"""As an alternative, decorate Callable classes as Datanode."""
|
||||
|
||||
def wrap(fun):
|
||||
if inspect.isclass(fun):
|
||||
assert issubclass(fun, SampleDomain), f"{fun} should be subclass of .data.Sample"
|
||||
assert issubclass(
|
||||
fun, SampleDomain
|
||||
), f"{fun} should be subclass of .data.Sample"
|
||||
fun = fun()
|
||||
assert isinstance(fun, Callable)
|
||||
|
||||
@functools.wraps(fun)
|
||||
def wrapped_fun():
|
||||
dn = get_data_node(fun, name=name, loss_fn=loss_fn, sigma=sigma, var_sigma=var_sigma, **kwargs)
|
||||
dn = get_data_node(
|
||||
fun,
|
||||
name=name,
|
||||
loss_fn=loss_fn,
|
||||
sigma=sigma,
|
||||
var_sigma=var_sigma,
|
||||
**kwargs,
|
||||
)
|
||||
return dn
|
||||
|
||||
return wrapped_fun
|
||||
|
@ -163,9 +212,12 @@ def datanode(_fun: Callable = None, name=None, loss_fn='square', sigma=1., var_s
|
|||
|
||||
|
||||
def get_data_nodes(funs: List[Callable], *args, **kwargs) -> Tuple[DataNode]:
|
||||
if 'names' in kwargs:
|
||||
names = kwargs.pop('names')
|
||||
return tuple(get_data_node(fun, name=name, *args, **kwargs) for fun, name in zip(funs, names))
|
||||
if "names" in kwargs:
|
||||
names = kwargs.pop("names")
|
||||
return tuple(
|
||||
get_data_node(fun, name=name, *args, **kwargs)
|
||||
for fun, name in zip(funs, names)
|
||||
)
|
||||
else:
|
||||
return tuple(get_data_node(fun, *args, **kwargs) for fun in funs)
|
||||
|
||||
|
|
|
@ -23,7 +23,7 @@ class CheckMeta(type):
|
|||
|
||||
class AbsGeoObj(metaclass=abc.ABCMeta):
|
||||
@abc.abstractmethod
|
||||
def rotation(self, angle: float, axis: str = 'z'):
|
||||
def rotation(self, angle: float, axis: str = "z"):
|
||||
pass
|
||||
|
||||
@abc.abstractmethod
|
||||
|
@ -43,16 +43,24 @@ class Edge(AbsGeoObj):
|
|||
|
||||
@property
|
||||
def axes(self) -> List[str]:
|
||||
return [key for key in self.functions if not key.startswith('normal')]
|
||||
return [key for key in self.functions if not key.startswith("normal")]
|
||||
|
||||
def rotation(self, angle: float, axis: str = 'z'):
|
||||
assert len(self.axes) > 1, 'Cannot rotate a object with dim<2'
|
||||
def rotation(self, angle: float, axis: str = "z"):
|
||||
assert len(self.axes) > 1, "Cannot rotate a object with dim<2"
|
||||
rotated_dims = [key for key in self.axes if key != axis]
|
||||
rd1, rd2, n = rotated_dims[0], rotated_dims[1], 'normal_'
|
||||
self.functions[rd1] = (cos(angle) * self.functions[rd1] - sin(angle) * self.functions[rd2])
|
||||
self.functions[n + rd1] = cos(angle) * self.functions[n + rd1] - sin(angle) * self.functions[n + rd2]
|
||||
self.functions[rd2] = (sin(angle) * self.functions[rd1] + cos(angle) * self.functions[rd2])
|
||||
self.functions[n + rd2] = sin(angle) * self.functions[n + rd1] + cos(angle) * self.functions[n + rd2]
|
||||
rd1, rd2, n = rotated_dims[0], rotated_dims[1], "normal_"
|
||||
self.functions[rd1] = (
|
||||
cos(angle) * self.functions[rd1] - sin(angle) * self.functions[rd2]
|
||||
)
|
||||
self.functions[n + rd1] = (
|
||||
cos(angle) * self.functions[n + rd1] - sin(angle) * self.functions[n + rd2]
|
||||
)
|
||||
self.functions[rd2] = (
|
||||
sin(angle) * self.functions[rd1] + cos(angle) * self.functions[rd2]
|
||||
)
|
||||
self.functions[n + rd2] = (
|
||||
sin(angle) * self.functions[n + rd1] + cos(angle) * self.functions[n + rd2]
|
||||
)
|
||||
return self
|
||||
|
||||
def scaling(self, scale: float):
|
||||
|
@ -62,20 +70,28 @@ class Edge(AbsGeoObj):
|
|||
return self
|
||||
|
||||
def translation(self, direction):
|
||||
assert len(direction) == len(self.axes), 'Moving direction must have the save dimension with the object'
|
||||
assert len(direction) == len(
|
||||
self.axes
|
||||
), "Moving direction must have the save dimension with the object"
|
||||
for key, x in zip(self.axes, direction):
|
||||
self.functions[key] += x
|
||||
return self
|
||||
|
||||
def sample(self, density: int, param_ranges=None, low_discrepancy=False) -> Dict[str, np.ndarray]:
|
||||
def sample(
|
||||
self, density: int, param_ranges=None, low_discrepancy=False
|
||||
) -> Dict[str, np.ndarray]:
|
||||
param_ranges = {} if param_ranges is None else param_ranges
|
||||
inputs = {**self.ranges, **param_ranges}.keys()
|
||||
area_fn = lambdify_np(self.area, inputs)
|
||||
param_points = _ranged_sample(100, ranges={**self.ranges, **param_ranges})
|
||||
nr_points = int(density * (np.mean(area_fn(**param_points))))
|
||||
|
||||
lambdify_functions = {'area': lambda **x: area_fn(**x) / next(iter(x.values())).shape[0]}
|
||||
param_points = _ranged_sample(nr_points, {**self.ranges, **param_ranges}, low_discrepancy)
|
||||
lambdify_functions = {
|
||||
"area": lambda **x: area_fn(**x) / next(iter(x.values())).shape[0]
|
||||
}
|
||||
param_points = _ranged_sample(
|
||||
nr_points, {**self.ranges, **param_ranges}, low_discrepancy
|
||||
)
|
||||
data_var = {}
|
||||
|
||||
for key, function in self.functions.items():
|
||||
|
@ -105,104 +121,138 @@ class Geometry(AbsGeoObj, metaclass=AbsCheckMix):
|
|||
if type(self) in [Geometry, Geometry1D, Geometry2D, Geometry3D]:
|
||||
return
|
||||
if self.edges is None:
|
||||
raise NotImplementedError('Geometry must define edges')
|
||||
raise NotImplementedError("Geometry must define edges")
|
||||
if self.bounds is None:
|
||||
raise NotImplementedError('Geometry must define bounds')
|
||||
raise NotImplementedError("Geometry must define bounds")
|
||||
if self.sdf is None:
|
||||
raise NotImplementedError('Geometry must define sdf')
|
||||
raise NotImplementedError("Geometry must define sdf")
|
||||
|
||||
@property
|
||||
def axes(self) -> List[str]:
|
||||
return self.edges[0].axes
|
||||
|
||||
def translation(self, direction: Union[List, Tuple]) -> 'Geometry':
|
||||
def translation(self, direction: Union[List, Tuple]) -> "Geometry":
|
||||
assert len(direction) == len(self.axes)
|
||||
[edge.translation(direction) for edge in self.edges]
|
||||
self.sdf = self.sdf.subs([(Symbol(dim), Symbol(dim) - x) for dim, x in zip(self.axes, direction)])
|
||||
self.bounds = {dim: (self.bounds[dim][0] + x, self.bounds[dim][1] + x) for dim, x in zip(self.axes, direction)}
|
||||
self.sdf = self.sdf.subs(
|
||||
[(Symbol(dim), Symbol(dim) - x) for dim, x in zip(self.axes, direction)]
|
||||
)
|
||||
self.bounds = {
|
||||
dim: (self.bounds[dim][0] + x, self.bounds[dim][1] + x)
|
||||
for dim, x in zip(self.axes, direction)
|
||||
}
|
||||
return self
|
||||
|
||||
def rotation(self, angle: float, axis: str = 'z', center=None) -> 'Geometry':
|
||||
def rotation(self, angle: float, axis: str = "z", center=None) -> "Geometry":
|
||||
if center is not None:
|
||||
self.translation([-x for x in center])
|
||||
|
||||
[edge.rotation(angle, axis) for edge in self.edges]
|
||||
rotated_dims = [key for key in self.axes if key != axis]
|
||||
sp_0 = Symbol(rotated_dims[0])
|
||||
_sp_0 = Symbol('tmp_0')
|
||||
_sp_0 = Symbol("tmp_0")
|
||||
sp_1 = Symbol(rotated_dims[1])
|
||||
_sp_1 = Symbol('tmp_1')
|
||||
self.sdf = self.sdf.subs({sp_0: cos(angle) * _sp_0 + sin(angle) * _sp_1,
|
||||
sp_1: - sin(angle) * _sp_0 + cos(angle) * _sp_1})
|
||||
_sp_1 = Symbol("tmp_1")
|
||||
self.sdf = self.sdf.subs(
|
||||
{
|
||||
sp_0: cos(angle) * _sp_0 + sin(angle) * _sp_1,
|
||||
sp_1: -sin(angle) * _sp_0 + cos(angle) * _sp_1,
|
||||
}
|
||||
)
|
||||
self.sdf = self.sdf.subs({_sp_0: sp_0, _sp_1: sp_1})
|
||||
self.bounds[rotated_dims[0]], self.bounds[rotated_dims[1]] = _rotate_rec(self.bounds[rotated_dims[0]],
|
||||
self.bounds[rotated_dims[1]],
|
||||
angle=angle)
|
||||
self.bounds[rotated_dims[0]], self.bounds[rotated_dims[1]] = _rotate_rec(
|
||||
self.bounds[rotated_dims[0]], self.bounds[rotated_dims[1]], angle=angle
|
||||
)
|
||||
if center is not None:
|
||||
self.translation(center)
|
||||
return self
|
||||
|
||||
def scaling(self, scale: float, center: Tuple = None) -> 'Geometry':
|
||||
assert scale > 0, 'scaling must be positive'
|
||||
def scaling(self, scale: float, center: Tuple = None) -> "Geometry":
|
||||
assert scale > 0, "scaling must be positive"
|
||||
if center is not None:
|
||||
self.translation(tuple([-x for x in center]))
|
||||
[edge.scaling(scale) for edge in self.edges]
|
||||
self.sdf = self.sdf.subs({Symbol(dim): Symbol(dim) / scale for dim in self.axes})
|
||||
self.sdf = self.sdf.subs(
|
||||
{Symbol(dim): Symbol(dim) / scale for dim in self.axes}
|
||||
)
|
||||
self.sdf = scale * self.sdf
|
||||
for dim in self.axes:
|
||||
self.bounds[dim] = (self.bounds[dim][0] * scale, self.bounds[dim][1] * scale)
|
||||
self.bounds[dim] = (
|
||||
self.bounds[dim][0] * scale,
|
||||
self.bounds[dim][1] * scale,
|
||||
)
|
||||
if center is not None:
|
||||
self.translation(center)
|
||||
return self
|
||||
|
||||
def duplicate(self) -> 'Geometry':
|
||||
def duplicate(self) -> "Geometry":
|
||||
return copy.deepcopy(self)
|
||||
|
||||
def sample_boundary(self, density: int, sieve=None, param_ranges: Dict = None, low_discrepancy=False) -> Dict[
|
||||
str, np.ndarray]:
|
||||
def sample_boundary(
|
||||
self, density: int, sieve=None, param_ranges: Dict = None, low_discrepancy=False
|
||||
) -> Dict[str, np.ndarray]:
|
||||
param_ranges = dict() if param_ranges is None else param_ranges
|
||||
points_list = [edge.sample(density, param_ranges, low_discrepancy) for edge in
|
||||
self.edges]
|
||||
points = reduce(lambda e1, e2: {_k: np.concatenate([e1[_k], e2[_k]], axis=0) for _k in e1}, points_list)
|
||||
points_list = [
|
||||
edge.sample(density, param_ranges, low_discrepancy) for edge in self.edges
|
||||
]
|
||||
points = reduce(
|
||||
lambda e1, e2: {_k: np.concatenate([e1[_k], e2[_k]], axis=0) for _k in e1},
|
||||
points_list,
|
||||
)
|
||||
points = self._sieve_points(points, sieve, sign=-1, tol=1e-4)
|
||||
return points
|
||||
|
||||
def _sieve_points(self, points, sieve, tol=1e-4, sign=1.):
|
||||
def _sieve_points(self, points, sieve, tol=1e-4, sign=1.0):
|
||||
|
||||
sdf_fn = lambdify_np(self.sdf, points.keys())
|
||||
points['sdf'] = sdf_fn(**points)
|
||||
points["sdf"] = sdf_fn(**points)
|
||||
|
||||
criteria_fn = lambdify_np(True if sieve is None else sieve, points.keys())
|
||||
criteria_index = np.logical_and(np.greater(points['sdf'], -tol), criteria_fn(**points))
|
||||
criteria_index = np.logical_and(
|
||||
np.greater(points["sdf"], -tol), criteria_fn(**points)
|
||||
)
|
||||
if sign == -1:
|
||||
criteria_index = np.logical_and(np.less(points['sdf'], tol), criteria_index)
|
||||
criteria_index = np.logical_and(np.less(points["sdf"], tol), criteria_index)
|
||||
points = {k: v[criteria_index[:, 0], :] for k, v in points.items()}
|
||||
return points
|
||||
|
||||
def sample_interior(self, density: int, bounds: Dict = None, sieve=None, param_ranges: Dict = None,
|
||||
low_discrepancy=False) -> Dict[str, np.ndarray]:
|
||||
def sample_interior(
|
||||
self,
|
||||
density: int,
|
||||
bounds: Dict = None,
|
||||
sieve=None,
|
||||
param_ranges: Dict = None,
|
||||
low_discrepancy=False,
|
||||
) -> Dict[str, np.ndarray]:
|
||||
bounds = self.bounds if bounds is None else bounds
|
||||
bounds = {Symbol(key) if isinstance(key, str) else key: value for key, value in bounds.items()}
|
||||
bounds = {
|
||||
Symbol(key) if isinstance(key, str) else key: value
|
||||
for key, value in bounds.items()
|
||||
}
|
||||
param_ranges = {} if param_ranges is None else param_ranges
|
||||
measure = np.prod([value[1] - value[0] for value in bounds.values()])
|
||||
nr_points = int(measure * density)
|
||||
|
||||
points = _ranged_sample(nr_points, {**bounds, **param_ranges}, low_discrepancy=low_discrepancy)
|
||||
points = _ranged_sample(
|
||||
nr_points, {**bounds, **param_ranges}, low_discrepancy=low_discrepancy
|
||||
)
|
||||
assert len(points.keys()) >= 0, "No points have been sampled!"
|
||||
|
||||
points = self._sieve_points(points, sieve, tol=0.)
|
||||
points = self._sieve_points(points, sieve, tol=0.0)
|
||||
|
||||
points['area'] = np.zeros_like(points['sdf']) + (1.0 / density)
|
||||
points["area"] = np.zeros_like(points["sdf"]) + (1.0 / density)
|
||||
return points
|
||||
|
||||
def __add__(self, other: 'Geometry') -> 'Geometry':
|
||||
def __add__(self, other: "Geometry") -> "Geometry":
|
||||
geo = self.generate_geo_obj(other)
|
||||
geo.edges = self.edges + other.edges
|
||||
geo.sdf = WrapMax(self.sdf, other.sdf)
|
||||
geo.bounds = dict()
|
||||
for key, value in self.bounds.items():
|
||||
geo.bounds[key] = (
|
||||
min(other.bounds[key][0], self.bounds[key][0]), max(other.bounds[key][1], self.bounds[key][1]))
|
||||
min(other.bounds[key][0], self.bounds[key][0]),
|
||||
max(other.bounds[key][1], self.bounds[key][1]),
|
||||
)
|
||||
return geo
|
||||
|
||||
def generate_geo_obj(self, other=None):
|
||||
|
@ -219,7 +269,7 @@ class Geometry(AbsGeoObj, metaclass=AbsCheckMix):
|
|||
raise TypeError
|
||||
return geo
|
||||
|
||||
def __sub__(self, other: 'Geometry') -> 'Geometry':
|
||||
def __sub__(self, other: "Geometry") -> "Geometry":
|
||||
geo = self.generate_geo_obj(other)
|
||||
|
||||
geo.edges = self.edges + [_inverse_edge(edge) for edge in other.edges]
|
||||
|
@ -229,22 +279,24 @@ class Geometry(AbsGeoObj, metaclass=AbsCheckMix):
|
|||
geo.bounds[key] = (self.bounds[key][0], self.bounds[key][1])
|
||||
return geo
|
||||
|
||||
def __invert__(self) -> 'Geometry':
|
||||
def __invert__(self) -> "Geometry":
|
||||
geo = self.generate_geo_obj()
|
||||
geo.edges = [_inverse_edge(edge) for edge in self.edges]
|
||||
geo.sdf = WrapMul(-1, self.sdf)
|
||||
for key, value in self.bounds.items():
|
||||
geo.bounds[key] = (-float('inf'), float('inf'))
|
||||
geo.bounds[key] = (-float("inf"), float("inf"))
|
||||
return geo
|
||||
|
||||
def __and__(self, other: 'Geometry') -> 'Geometry':
|
||||
def __and__(self, other: "Geometry") -> "Geometry":
|
||||
geo = self.generate_geo_obj(other)
|
||||
geo.edges = self.edges + other.edges
|
||||
geo.sdf = WrapMin(self.sdf, other.sdf)
|
||||
geo.bounds = dict()
|
||||
for key, value in self.bounds.items():
|
||||
geo.bounds[key] = (
|
||||
max(other.bounds[key][0], self.bounds[key][0]), min(other.bounds[key][1], self.bounds[key][1]))
|
||||
max(other.bounds[key][0], self.bounds[key][0]),
|
||||
min(other.bounds[key][1], self.bounds[key][1]),
|
||||
)
|
||||
return geo
|
||||
|
||||
|
||||
|
@ -261,14 +313,16 @@ class Geometry3D(Geometry):
|
|||
|
||||
|
||||
# todo: sample in cuda device
|
||||
def _ranged_sample(batch_size: int, ranges: Dict, low_discrepancy: bool = False) -> Dict[str, np.ndarray]:
|
||||
def _ranged_sample(
|
||||
batch_size: int, ranges: Dict, low_discrepancy: bool = False
|
||||
) -> Dict[str, np.ndarray]:
|
||||
points = dict()
|
||||
low_discrepancy_stack = []
|
||||
for key, value in ranges.items():
|
||||
if isinstance(value, (float, int)):
|
||||
samples = np.ones((batch_size, 1)) * value
|
||||
elif isinstance(value, tuple):
|
||||
assert len(value) == 2, 'Tuple: length of range should be 2!'
|
||||
assert len(value) == 2, "Tuple: length of range should be 2!"
|
||||
if low_discrepancy:
|
||||
low_discrepancy_stack.append((key.name, value))
|
||||
continue
|
||||
|
@ -277,10 +331,12 @@ def _ranged_sample(batch_size: int, ranges: Dict, low_discrepancy: bool = False)
|
|||
elif isinstance(value, collections.Callable):
|
||||
samples = value(batch_size)
|
||||
else:
|
||||
raise TypeError(f'range type {type(value)} not supported!')
|
||||
raise TypeError(f"range type {type(value)} not supported!")
|
||||
points[key.name] = samples
|
||||
if low_discrepancy:
|
||||
low_discrepancy_points_dict = _low_discrepancy_sampling(batch_size, low_discrepancy_stack)
|
||||
low_discrepancy_points_dict = _low_discrepancy_sampling(
|
||||
batch_size, low_discrepancy_stack
|
||||
)
|
||||
points.update(low_discrepancy_points_dict)
|
||||
for key, v in points.items():
|
||||
points[key] = v.astype(np.float64)
|
||||
|
@ -289,8 +345,8 @@ def _ranged_sample(batch_size: int, ranges: Dict, low_discrepancy: bool = False)
|
|||
|
||||
def _rotate_rec(x: Tuple, y: Tuple, angle: float):
|
||||
points = itertools.product(x, y)
|
||||
min_x, min_y = float('inf'), float('inf')
|
||||
max_x, max_y = -float('inf'), -float('inf')
|
||||
min_x, min_y = float("inf"), float("inf")
|
||||
max_x, max_y = -float("inf"), -float("inf")
|
||||
try:
|
||||
for x, y in points:
|
||||
new_x = cos(angle) * x - sin(angle) * y
|
||||
|
@ -327,7 +383,11 @@ def _low_discrepancy_sampling(n_points, low_discrepancy_stack: List[Tuple]):
|
|||
|
||||
for i in range(len(q) - 1):
|
||||
for j in range(dims):
|
||||
x[q[i]:q[i + 1], j] = (x[q[i]:q[i + 1], j] - rmin[j]) / 2 + rmin[j] + ((i >> j) & 1) * bi_range
|
||||
x[q[i] : q[i + 1], j] = (
|
||||
(x[q[i] : q[i + 1], j] - rmin[j]) / 2
|
||||
+ rmin[j]
|
||||
+ ((i >> j) & 1) * bi_range
|
||||
)
|
||||
rmin_sub = [v + bi_range * ((i >> j) & 1) for j, v in enumerate(rmin)]
|
||||
uniform(x, q[i], q[i + 1], rmin_sub, bi_range=bi_range / 2)
|
||||
return x
|
||||
|
@ -337,11 +397,15 @@ def _low_discrepancy_sampling(n_points, low_discrepancy_stack: List[Tuple]):
|
|||
uniform(points, start=0, end=n, rmin=[0] * dim)
|
||||
points_dict = {}
|
||||
for i, (key, bi_range) in enumerate(low_discrepancy_stack):
|
||||
points_dict[key] = points[:, i:i + 1] * (bi_range[1] - bi_range[0]) + bi_range[0]
|
||||
points_dict[key] = (
|
||||
points[:, i : i + 1] * (bi_range[1] - bi_range[0]) + bi_range[0]
|
||||
)
|
||||
return points_dict
|
||||
|
||||
|
||||
def _inverse_edge(edge: Edge):
|
||||
new_functions = {k: -v if k.startswith('normal_') else v for k, v in edge.functions.items()}
|
||||
new_functions = {
|
||||
k: -v if k.startswith("normal_") else v for k, v in edge.functions.items()
|
||||
}
|
||||
edge = Edge(functions=new_functions, ranges=edge.ranges, area=edge.area)
|
||||
return edge
|
||||
|
|
|
@ -1,28 +1,42 @@
|
|||
""" A simple factory for constructing Geometric Objects"""
|
||||
|
||||
from .geo import Geometry
|
||||
from .geo_obj import Line1D, Line, Tube2D, Rectangle, Circle, Plane, Tube3D, Box, Sphere, Cylinder, CircularTube, \
|
||||
Triangle, Heart
|
||||
from .geo_obj import (
|
||||
Line1D,
|
||||
Line,
|
||||
Tube2D,
|
||||
Rectangle,
|
||||
Circle,
|
||||
Plane,
|
||||
Tube3D,
|
||||
Box,
|
||||
Sphere,
|
||||
Cylinder,
|
||||
CircularTube,
|
||||
Triangle,
|
||||
Heart,
|
||||
)
|
||||
|
||||
__all__ = ['GeometryBuilder']
|
||||
__all__ = ["GeometryBuilder"]
|
||||
|
||||
|
||||
class GeometryBuilder:
|
||||
GEOMAP = {'Line1D': Line1D,
|
||||
'Line': Line,
|
||||
'Rectangle': Rectangle,
|
||||
'Circle': Circle,
|
||||
'Channel2D': Tube2D,
|
||||
'Plane': Plane,
|
||||
'Sphere': Sphere,
|
||||
'Box': Box,
|
||||
'Channel': Tube3D,
|
||||
'Channel3D': Tube3D,
|
||||
'Cylinder': Cylinder,
|
||||
'CircularTube': CircularTube,
|
||||
'Triangle': Triangle,
|
||||
'Heart': Heart,
|
||||
}
|
||||
GEOMAP = {
|
||||
"Line1D": Line1D,
|
||||
"Line": Line,
|
||||
"Rectangle": Rectangle,
|
||||
"Circle": Circle,
|
||||
"Channel2D": Tube2D,
|
||||
"Plane": Plane,
|
||||
"Sphere": Sphere,
|
||||
"Box": Box,
|
||||
"Channel": Tube3D,
|
||||
"Channel3D": Tube3D,
|
||||
"Cylinder": Cylinder,
|
||||
"CircularTube": CircularTube,
|
||||
"Triangle": Triangle,
|
||||
"Heart": Heart,
|
||||
}
|
||||
|
||||
@staticmethod
|
||||
def get_geometry(geo: str, **kwargs) -> Geometry:
|
||||
|
@ -33,5 +47,7 @@ class GeometryBuilder:
|
|||
:return: A geometry object with given kwargs.
|
||||
:rtype: Geometry
|
||||
"""
|
||||
assert geo in GeometryBuilder.GEOMAP.keys(), f'The geometry {geo} not implemented!'
|
||||
assert (
|
||||
geo in GeometryBuilder.GEOMAP.keys()
|
||||
), f"The geometry {geo} not implemented!"
|
||||
return GeometryBuilder.GEOMAP[geo](**kwargs)
|
||||
|
|
File diff suppressed because it is too large
Load Diff
|
@ -10,7 +10,7 @@ from functools import reduce
|
|||
import collections
|
||||
from sympy import Max, Min, Mul
|
||||
|
||||
__all__ = ['lambdify_np']
|
||||
__all__ = ["lambdify_np"]
|
||||
|
||||
|
||||
class WrapSympy:
|
||||
|
@ -20,10 +20,14 @@ class WrapSympy:
|
|||
def _wrapper_guide(args):
|
||||
func_1 = args[0]
|
||||
func_2 = args[1]
|
||||
cond_1 = (isinstance(func_1, WrapSympy) and not func_1.is_sympy)
|
||||
cond_1 = isinstance(func_1, WrapSympy) and not func_1.is_sympy
|
||||
cond_2 = isinstance(func_2, WrapSympy) and not func_2.is_sympy
|
||||
cond_3 = (not isinstance(func_1, WrapSympy)) and isinstance(func_1, collections.Callable)
|
||||
cond_4 = (not isinstance(func_2, WrapSympy)) and isinstance(func_2, collections.Callable)
|
||||
cond_3 = (not isinstance(func_1, WrapSympy)) and isinstance(
|
||||
func_1, collections.Callable
|
||||
)
|
||||
cond_4 = (not isinstance(func_2, WrapSympy)) and isinstance(
|
||||
func_2, collections.Callable
|
||||
)
|
||||
return cond_1 or cond_2 or cond_3 or cond_4, func_1, func_2
|
||||
|
||||
|
||||
|
@ -111,8 +115,11 @@ def _try_float(fn):
|
|||
|
||||
def _constant_bool(boolean: bool):
|
||||
def fn(**x):
|
||||
return np.ones_like(next(iter(x.items()))[1], dtype=bool) if boolean else np.zeros_like(
|
||||
next(iter(x.items()))[1], dtype=bool)
|
||||
return (
|
||||
np.ones_like(next(iter(x.items()))[1], dtype=bool)
|
||||
if boolean
|
||||
else np.zeros_like(next(iter(x.items()))[1], dtype=bool)
|
||||
)
|
||||
|
||||
return fn
|
||||
|
||||
|
@ -128,7 +135,7 @@ def lambdify_np(f, r: Iterable):
|
|||
if isinstance(r, dict):
|
||||
r = r.keys()
|
||||
if isinstance(f, WrapSympy) and f.is_sympy:
|
||||
lambdify_f = lambdify([k for k in r], f, [PLACEHOLDER, 'numpy'])
|
||||
lambdify_f = lambdify([k for k in r], f, [PLACEHOLDER, "numpy"])
|
||||
lambdify_f.input_keys = [k for k in r]
|
||||
return lambdify_f
|
||||
if isinstance(f, WrapSympy) and not f.is_sympy:
|
||||
|
@ -141,30 +148,31 @@ def lambdify_np(f, r: Iterable):
|
|||
if isinstance(f, float):
|
||||
return _constant_float(f)
|
||||
else:
|
||||
lambdify_f = lambdify([k for k in r], f, [PLACEHOLDER, 'numpy'])
|
||||
lambdify_f = lambdify([k for k in r], f, [PLACEHOLDER, "numpy"])
|
||||
lambdify_f.input_keys = [k for k in r]
|
||||
return lambdify_f
|
||||
|
||||
|
||||
PLACEHOLDER = {'amin': lambda x: reduce(lambda y, z: np.minimum(y, z), x),
|
||||
'amax': lambda x: reduce(lambda y, z: np.maximum(y, z), x),
|
||||
'Min': lambda *x: reduce(lambda y, z: np.minimum(y, z), x),
|
||||
'Max': lambda *x: reduce(lambda y, z: np.maximum(y, z), x),
|
||||
'Heaviside': lambda x: np.heaviside(x, 0),
|
||||
'equal': lambda x, y: np.isclose(x, y),
|
||||
'Xor': np.logical_xor,
|
||||
'cos': np.cos,
|
||||
'sin': np.sin,
|
||||
'tan': np.tan,
|
||||
'exp': np.exp,
|
||||
'sqrt': np.sqrt,
|
||||
'log': np.log,
|
||||
'sinh': np.sinh,
|
||||
'cosh': np.cosh,
|
||||
'tanh': np.tanh,
|
||||
'asin': np.arcsin,
|
||||
'acos': np.arccos,
|
||||
'atan': np.arctan,
|
||||
'Abs': np.abs,
|
||||
'DiracDelta': np.zeros_like,
|
||||
}
|
||||
PLACEHOLDER = {
|
||||
"amin": lambda x: reduce(lambda y, z: np.minimum(y, z), x),
|
||||
"amax": lambda x: reduce(lambda y, z: np.maximum(y, z), x),
|
||||
"Min": lambda *x: reduce(lambda y, z: np.minimum(y, z), x),
|
||||
"Max": lambda *x: reduce(lambda y, z: np.maximum(y, z), x),
|
||||
"Heaviside": lambda x: np.heaviside(x, 0),
|
||||
"equal": lambda x, y: np.isclose(x, y),
|
||||
"Xor": np.logical_xor,
|
||||
"cos": np.cos,
|
||||
"sin": np.sin,
|
||||
"tan": np.tan,
|
||||
"exp": np.exp,
|
||||
"sqrt": np.sqrt,
|
||||
"log": np.log,
|
||||
"sinh": np.sinh,
|
||||
"cosh": np.cosh,
|
||||
"tanh": np.tanh,
|
||||
"asin": np.arcsin,
|
||||
"acos": np.arccos,
|
||||
"atan": np.arctan,
|
||||
"Abs": np.abs,
|
||||
"DiracDelta": np.zeros_like,
|
||||
}
|
||||
|
|
139
idrlnet/graph.py
139
idrlnet/graph.py
|
@ -13,15 +13,15 @@ from idrlnet.header import logger, DIFF_SYMBOL
|
|||
from idrlnet.pde import PdeNode
|
||||
from idrlnet.net import NetNode
|
||||
|
||||
__all__ = ['ComputableNodeList', 'Vertex', 'VertexTaskPipeline']
|
||||
x, y = sp.symbols('x y')
|
||||
__all__ = ["ComputableNodeList", "Vertex", "VertexTaskPipeline"]
|
||||
x, y = sp.symbols("x y")
|
||||
ComputableNodeList = [List[Union[PdeNode, NetNode]]]
|
||||
|
||||
|
||||
class Vertex(Node):
|
||||
counter = 0
|
||||
|
||||
def __init__(self, pre=None, next=None, node=None, ntype='c'):
|
||||
def __init__(self, pre=None, next=None, node=None, ntype="c"):
|
||||
node = Node() if node is None else node
|
||||
self.__dict__ = node.__dict__.copy()
|
||||
self.index = type(self).counter
|
||||
|
@ -29,7 +29,7 @@ class Vertex(Node):
|
|||
self.pre = pre if pre is not None else set()
|
||||
self.next = next if pre is not None else set()
|
||||
self.ntype = ntype
|
||||
assert self.ntype in ('d', 'c', 'r')
|
||||
assert self.ntype in ("d", "c", "r")
|
||||
|
||||
def __eq__(self, other):
|
||||
return self.index == other.index
|
||||
|
@ -38,8 +38,11 @@ class Vertex(Node):
|
|||
return self.index
|
||||
|
||||
def __str__(self):
|
||||
info = f"index: {self.index}\n" + f"pre: {[node.index for node in self.pre]}\n" \
|
||||
+ f"next: {[node.index for node in self.next]}\n"
|
||||
info = (
|
||||
f"index: {self.index}\n"
|
||||
+ f"pre: {[node.index for node in self.pre]}\n"
|
||||
+ f"next: {[node.index for node in self.next]}\n"
|
||||
)
|
||||
return super().__str__() + info
|
||||
|
||||
|
||||
|
@ -54,7 +57,9 @@ class VertexTaskPipeline:
|
|||
def evaluation_order_list(self, evaluation_order_list):
|
||||
self._evaluation_order_list = evaluation_order_list
|
||||
|
||||
def __init__(self, nodes: ComputableNodeList, invar: Variables, req_names: List[str]):
|
||||
def __init__(
|
||||
self, nodes: ComputableNodeList, invar: Variables, req_names: List[str]
|
||||
):
|
||||
self.nodes = nodes
|
||||
self.req_names = req_names
|
||||
self.computable = set(invar.keys())
|
||||
|
@ -74,14 +79,14 @@ class VertexTaskPipeline:
|
|||
final_graph_node.inputs = [req_name]
|
||||
final_graph_node.derivatives = tuple()
|
||||
final_graph_node.outputs = tuple()
|
||||
final_graph_node.name = f'<{req_name}>'
|
||||
final_graph_node.ntype = 'r'
|
||||
final_graph_node.name = f"<{req_name}>"
|
||||
final_graph_node.ntype = "r"
|
||||
graph_nodes.add(final_graph_node)
|
||||
req_name_dict[req_name].append(final_graph_node)
|
||||
required_stack.append(final_graph_node)
|
||||
final_graph_node.evaluate = lambda x: x
|
||||
|
||||
logger.info('Constructing computation graph...')
|
||||
logger.info("Constructing computation graph...")
|
||||
while len(req_name_dict) > 0:
|
||||
to_be_removed = set()
|
||||
to_be_added = defaultdict(list)
|
||||
|
@ -96,14 +101,20 @@ class VertexTaskPipeline:
|
|||
continue
|
||||
for output in gn.outputs:
|
||||
output = tuple(output.split(DIFF_SYMBOL))
|
||||
if len(output) <= len(req_name) and req_name[:len(output)] == output and len(
|
||||
output) > match_score:
|
||||
if (
|
||||
len(output) <= len(req_name)
|
||||
and req_name[: len(output)] == output
|
||||
and len(output) > match_score
|
||||
):
|
||||
match_score = len(output)
|
||||
match_gn = gn
|
||||
for p_in in invar.keys():
|
||||
p_in = tuple(p_in.split(DIFF_SYMBOL))
|
||||
if len(p_in) <= len(req_name) and req_name[:len(p_in)] == p_in and len(
|
||||
p_in) > match_score:
|
||||
if (
|
||||
len(p_in) <= len(req_name)
|
||||
and req_name[: len(p_in)] == p_in
|
||||
and len(p_in) > match_score
|
||||
):
|
||||
match_score = len(p_in)
|
||||
match_gn = None
|
||||
for sub_gn in req_name_dict[DIFF_SYMBOL.join(req_name)]:
|
||||
|
@ -112,9 +123,13 @@ class VertexTaskPipeline:
|
|||
raise Exception("Can't be computed: " + DIFF_SYMBOL.join(req_name))
|
||||
elif match_gn is not None:
|
||||
for sub_gn in req_name_dict[DIFF_SYMBOL.join(req_name)]:
|
||||
logger.info(f'{sub_gn.name}.{DIFF_SYMBOL.join(req_name)} <---- {match_gn.name}')
|
||||
logger.info(
|
||||
f"{sub_gn.name}.{DIFF_SYMBOL.join(req_name)} <---- {match_gn.name}"
|
||||
)
|
||||
match_gn.next.add(sub_gn)
|
||||
self.egde_data[(match_gn.name, sub_gn.name)].add(DIFF_SYMBOL.join(req_name))
|
||||
self.egde_data[(match_gn.name, sub_gn.name)].add(
|
||||
DIFF_SYMBOL.join(req_name)
|
||||
)
|
||||
required_stack.append(match_gn)
|
||||
for sub_gn in req_name_dict[DIFF_SYMBOL.join(req_name)]:
|
||||
sub_gn.pre.add(match_gn)
|
||||
|
@ -148,51 +163,91 @@ class VertexTaskPipeline:
|
|||
node.name = key
|
||||
node.outputs = (key,)
|
||||
node.inputs = tuple()
|
||||
node.ntype = 'd'
|
||||
node.ntype = "d"
|
||||
self._graph_node_table[key] = node
|
||||
logger.info('Computation graph constructed.')
|
||||
logger.info("Computation graph constructed.")
|
||||
|
||||
def operation_order(self, invar: Variables):
|
||||
for node in self.evaluation_order_list:
|
||||
if not set(node.derivatives).issubset(invar.keys()):
|
||||
invar.differentiate_(independent_var=invar, required_derivatives=node.derivatives)
|
||||
invar.update(node.evaluate({**invar.subset(node.inputs), **invar.subset(node.derivatives)}))
|
||||
invar.differentiate_(
|
||||
independent_var=invar, required_derivatives=node.derivatives
|
||||
)
|
||||
invar.update(
|
||||
node.evaluate(
|
||||
{**invar.subset(node.inputs), **invar.subset(node.derivatives)}
|
||||
)
|
||||
)
|
||||
|
||||
def forward_pipeline(self, invar: Variables, req_names: List[str] = None) -> Variables:
|
||||
def forward_pipeline(
|
||||
self, invar: Variables, req_names: List[str] = None
|
||||
) -> Variables:
|
||||
if req_names is None or set(req_names).issubset(set(self.computable)):
|
||||
outvar = copy(invar)
|
||||
self.operation_order(outvar)
|
||||
return outvar.subset(self.req_names if req_names is None else req_names)
|
||||
else:
|
||||
logger.info('The existing graph fails. Construct a temporary graph...')
|
||||
return VertexTaskPipeline(self.nodes, invar, req_names).forward_pipeline(invar)
|
||||
logger.info("The existing graph fails. Construct a temporary graph...")
|
||||
return VertexTaskPipeline(self.nodes, invar, req_names).forward_pipeline(
|
||||
invar
|
||||
)
|
||||
|
||||
def to_json(self):
|
||||
pass
|
||||
|
||||
def display(self, filename: str = None):
|
||||
_, ax = plt.subplots(1, 1, figsize=(8, 8))
|
||||
ax.axis('off')
|
||||
ax.axis("off")
|
||||
pos = nx.spring_layout(self.G, k=10 / (math.sqrt(self.G.order()) + 0.1))
|
||||
nx.draw_networkx_nodes(self.G, pos,
|
||||
nodelist=list(
|
||||
node for node in self.G.nodes if self._graph_node_table[node].ntype == 'c'),
|
||||
cmap=plt.get_cmap('jet'),
|
||||
node_size=1300, node_color="pink", alpha=0.5)
|
||||
nx.draw_networkx_nodes(self.G, pos,
|
||||
nodelist=list(
|
||||
node for node in self.G.nodes if self._graph_node_table[node].ntype == 'r'),
|
||||
cmap=plt.get_cmap('jet'),
|
||||
node_size=1300, node_color="green", alpha=0.3)
|
||||
nx.draw_networkx_nodes(self.G, pos,
|
||||
nodelist=list(
|
||||
node for node in self.G.nodes if self._graph_node_table[node].ntype == 'd'),
|
||||
cmap=plt.get_cmap('jet'),
|
||||
node_size=1300, node_color="blue", alpha=0.3)
|
||||
nx.draw_networkx_edges(self.G, pos, edge_color='r', arrows=True, arrowsize=30, arrowstyle="-|>")
|
||||
nx.draw_networkx_nodes(
|
||||
self.G,
|
||||
pos,
|
||||
nodelist=list(
|
||||
node
|
||||
for node in self.G.nodes
|
||||
if self._graph_node_table[node].ntype == "c"
|
||||
),
|
||||
cmap=plt.get_cmap("jet"),
|
||||
node_size=1300,
|
||||
node_color="pink",
|
||||
alpha=0.5,
|
||||
)
|
||||
nx.draw_networkx_nodes(
|
||||
self.G,
|
||||
pos,
|
||||
nodelist=list(
|
||||
node
|
||||
for node in self.G.nodes
|
||||
if self._graph_node_table[node].ntype == "r"
|
||||
),
|
||||
cmap=plt.get_cmap("jet"),
|
||||
node_size=1300,
|
||||
node_color="green",
|
||||
alpha=0.3,
|
||||
)
|
||||
nx.draw_networkx_nodes(
|
||||
self.G,
|
||||
pos,
|
||||
nodelist=list(
|
||||
node
|
||||
for node in self.G.nodes
|
||||
if self._graph_node_table[node].ntype == "d"
|
||||
),
|
||||
cmap=plt.get_cmap("jet"),
|
||||
node_size=1300,
|
||||
node_color="blue",
|
||||
alpha=0.3,
|
||||
)
|
||||
nx.draw_networkx_edges(
|
||||
self.G, pos, edge_color="r", arrows=True, arrowsize=30, arrowstyle="-|>"
|
||||
)
|
||||
nx.draw_networkx_labels(self.G, pos)
|
||||
nx.draw_networkx_edge_labels(self.G, pos, edge_labels={k: ", ".join(v) for k, v in self.egde_data.items()},
|
||||
font_size=10)
|
||||
nx.draw_networkx_edge_labels(
|
||||
self.G,
|
||||
pos,
|
||||
edge_labels={k: ", ".join(v) for k, v in self.egde_data.items()},
|
||||
font_size=10,
|
||||
)
|
||||
if filename is None:
|
||||
plt.show()
|
||||
else:
|
||||
|
|
|
@ -14,7 +14,7 @@ class TestFun:
|
|||
self.registered.append(self)
|
||||
|
||||
def __call__(self, *args, **kwargs):
|
||||
print(str(self.fun.__name__).center(50, '*'))
|
||||
print(str(self.fun.__name__).center(50, "*"))
|
||||
self.fun()
|
||||
|
||||
@staticmethod
|
||||
|
@ -36,7 +36,12 @@ def testmemo(fun):
|
|||
|
||||
testmemo.memo = set()
|
||||
|
||||
log_format = '[%(asctime)s] [%(levelname)s] %(message)s'
|
||||
handlers = [logging.FileHandler('train.log', mode='a'), logging.StreamHandler()]
|
||||
logging.basicConfig(format=log_format, level=logging.INFO, datefmt='%d-%b-%y %H:%M:%S', handlers=handlers)
|
||||
log_format = "[%(asctime)s] [%(levelname)s] %(message)s"
|
||||
handlers = [logging.FileHandler("train.log", mode="a"), logging.StreamHandler()]
|
||||
logging.basicConfig(
|
||||
format=log_format,
|
||||
level=logging.INFO,
|
||||
datefmt="%d-%b-%y %H:%M:%S",
|
||||
handlers=handlers,
|
||||
)
|
||||
logger = logging.getLogger(__name__)
|
||||
|
|
|
@ -4,11 +4,11 @@ from idrlnet.node import Node
|
|||
from typing import Tuple, List, Dict, Union
|
||||
from contextlib import ExitStack
|
||||
|
||||
__all__ = ['NetNode']
|
||||
__all__ = ["NetNode"]
|
||||
|
||||
|
||||
class WrapEvaluate:
|
||||
def __init__(self, binding_node: 'NetNode'):
|
||||
def __init__(self, binding_node: "NetNode"):
|
||||
self.binding_node = binding_node
|
||||
|
||||
def __call__(self, inputs):
|
||||
|
@ -16,15 +16,23 @@ class WrapEvaluate:
|
|||
if isinstance(inputs, dict):
|
||||
keep_type = dict
|
||||
inputs = torch.cat(
|
||||
[torch.tensor(inputs[key], dtype=torch.float32) if not isinstance(inputs[key], torch.Tensor) else
|
||||
inputs[
|
||||
key] for key in inputs], dim=1)
|
||||
[
|
||||
torch.tensor(inputs[key], dtype=torch.float32)
|
||||
if not isinstance(inputs[key], torch.Tensor)
|
||||
else inputs[key]
|
||||
for key in inputs
|
||||
],
|
||||
dim=1,
|
||||
)
|
||||
with ExitStack() as es:
|
||||
if self.binding_node.require_no_grad:
|
||||
es.enter_context(torch.no_grad())
|
||||
output_var = self.binding_node.net(inputs)
|
||||
if keep_type == dict:
|
||||
output_var = {outkey: output_var[:, i:i + 1] for i, outkey in enumerate(self.binding_node.outputs)}
|
||||
output_var = {
|
||||
outkey: output_var[:, i : i + 1]
|
||||
for i, outkey in enumerate(self.binding_node.outputs)
|
||||
}
|
||||
return output_var
|
||||
|
||||
|
||||
|
@ -63,9 +71,18 @@ class NetNode(Node):
|
|||
def net(self, net):
|
||||
self._net = net
|
||||
|
||||
def __init__(self, inputs: Union[Tuple, List[str]], outputs: Union[Tuple, List[str]],
|
||||
net: torch.nn.Module, fixed: bool = False, require_no_grad: bool = False, is_reference=False,
|
||||
name=None, *args, **kwargs):
|
||||
def __init__(
|
||||
self,
|
||||
inputs: Union[Tuple, List[str]],
|
||||
outputs: Union[Tuple, List[str]],
|
||||
net: torch.nn.Module,
|
||||
fixed: bool = False,
|
||||
require_no_grad: bool = False,
|
||||
is_reference=False,
|
||||
name=None,
|
||||
*args,
|
||||
**kwargs
|
||||
):
|
||||
self.is_reference = is_reference
|
||||
self.inputs: Union[Tuple, List[str]] = inputs
|
||||
self.outputs: Union[Tuple, List[str]] = outputs
|
||||
|
@ -89,5 +106,5 @@ class NetNode(Node):
|
|||
def load_state_dict(self, state_dict: Dict[str, torch.Tensor], strict: bool = True):
|
||||
return self.net.load_state_dict(state_dict, strict)
|
||||
|
||||
def state_dict(self, destination=None, prefix: str = '', keep_vars: bool = False):
|
||||
def state_dict(self, destination=None, prefix: str = "", keep_vars: bool = False):
|
||||
return self.net.state_dict(destination, prefix, keep_vars)
|
||||
|
|
|
@ -5,7 +5,7 @@ from idrlnet.torch_util import torch_lambdify
|
|||
from idrlnet.variable import Variables
|
||||
from idrlnet.header import DIFF_SYMBOL
|
||||
|
||||
__all__ = ['Node']
|
||||
__all__ = ["Node"]
|
||||
|
||||
|
||||
class Node(object):
|
||||
|
@ -58,7 +58,7 @@ class Node(object):
|
|||
try:
|
||||
return self._name
|
||||
except:
|
||||
self._name = 'Node' + str(id(self))
|
||||
self._name = "Node" + str(id(self))
|
||||
return self._name
|
||||
|
||||
@name.setter
|
||||
|
@ -66,23 +66,33 @@ class Node(object):
|
|||
self._name = name
|
||||
|
||||
@classmethod
|
||||
def new_node(cls, name: str = None, tf_eq: Callable = None, free_symbols: List[str] = None, *args,
|
||||
**kwargs) -> 'Node':
|
||||
def new_node(
|
||||
cls,
|
||||
name: str = None,
|
||||
tf_eq: Callable = None,
|
||||
free_symbols: List[str] = None,
|
||||
*args,
|
||||
**kwargs
|
||||
) -> "Node":
|
||||
node = cls()
|
||||
node.evaluate = LambdaTorchFun(free_symbols, tf_eq, name)
|
||||
node.inputs = [x for x in free_symbols if DIFF_SYMBOL not in x]
|
||||
node.derivatives = [x for x in free_symbols if DIFF_SYMBOL in x]
|
||||
node.outputs = [name, ]
|
||||
node.outputs = [
|
||||
name,
|
||||
]
|
||||
node.name = name
|
||||
return node
|
||||
|
||||
def __str__(self):
|
||||
str_list = ["Basic properties:\n",
|
||||
"name: {}\n".format(self.name),
|
||||
"inputs: {}\n".format(self.inputs),
|
||||
"derivatives: {}\n".format(self.derivatives),
|
||||
"outputs: {}\n".format(self.outputs), ]
|
||||
return ''.join(str_list)
|
||||
str_list = [
|
||||
"Basic properties:\n",
|
||||
"name: {}\n".format(self.name),
|
||||
"inputs: {}\n".format(self.inputs),
|
||||
"derivatives: {}\n".format(self.derivatives),
|
||||
"outputs: {}\n".format(self.outputs),
|
||||
]
|
||||
return "".join(str_list)
|
||||
|
||||
|
||||
class LambdaTorchFun:
|
||||
|
|
|
@ -6,7 +6,7 @@ import inspect
|
|||
import math
|
||||
from typing import Dict
|
||||
|
||||
__all__ = ['get_available_class', 'Optimizable']
|
||||
__all__ = ["get_available_class", "Optimizable"]
|
||||
|
||||
|
||||
def get_available_class(module, class_name) -> Dict[str, type]:
|
||||
|
@ -19,20 +19,28 @@ def get_available_class(module, class_name) -> Dict[str, type]:
|
|||
:return: A dict mapping from subclass.name to subclass
|
||||
:rtype: Dict[str, type]
|
||||
"""
|
||||
return dict(filter(
|
||||
lambda x: inspect.isclass(x[1])
|
||||
and issubclass(x[1], class_name)
|
||||
and (not x[1] == class_name),
|
||||
inspect.getmembers(module)))
|
||||
return dict(
|
||||
filter(
|
||||
lambda x: inspect.isclass(x[1])
|
||||
and issubclass(x[1], class_name)
|
||||
and (not x[1] == class_name),
|
||||
inspect.getmembers(module),
|
||||
)
|
||||
)
|
||||
|
||||
|
||||
class Optimizable(metaclass=abc.ABCMeta):
|
||||
"""An abstract class for organizing optimization related configuration and operations.
|
||||
The interface is implemented by solver.Solver
|
||||
"""
|
||||
OPTIMIZER_MAP = get_available_class(module=torch.optim, class_name=torch.optim.Optimizer)
|
||||
SCHEDULE_MAP = get_available_class(module=torch.optim.lr_scheduler,
|
||||
class_name=torch.optim.lr_scheduler._LRScheduler)
|
||||
|
||||
OPTIMIZER_MAP = get_available_class(
|
||||
module=torch.optim, class_name=torch.optim.Optimizer
|
||||
)
|
||||
SCHEDULE_MAP = get_available_class(
|
||||
module=torch.optim.lr_scheduler,
|
||||
class_name=torch.optim.lr_scheduler._LRScheduler,
|
||||
)
|
||||
|
||||
@property
|
||||
def optimizers(self):
|
||||
|
@ -60,23 +68,25 @@ class Optimizable(metaclass=abc.ABCMeta):
|
|||
self.configure_optimizers()
|
||||
|
||||
def parse_optimizer(self, **kwargs):
|
||||
default_config = dict(optimizer='Adam', lr=1e-3)
|
||||
default_config.update(kwargs.get('opt_config', {}))
|
||||
default_config = dict(optimizer="Adam", lr=1e-3)
|
||||
default_config.update(kwargs.get("opt_config", {}))
|
||||
self.optimizer_config = default_config
|
||||
|
||||
def parse_lr_schedule(self, **kwargs):
|
||||
default_config = dict(scheduler='ExponentialLR', gamma=math.pow(0.95, 0.001), last_epoch=-1)
|
||||
default_config.update(kwargs.get('schedule_config', {}))
|
||||
default_config = dict(
|
||||
scheduler="ExponentialLR", gamma=math.pow(0.95, 0.001), last_epoch=-1
|
||||
)
|
||||
default_config.update(kwargs.get("schedule_config", {}))
|
||||
self.schedule_config = default_config
|
||||
|
||||
def __str__(self):
|
||||
if 'optimizer_config' in self.__dict__:
|
||||
if "optimizer_config" in self.__dict__:
|
||||
opt_str = str(self.optimizer_config)
|
||||
else:
|
||||
opt_str = str('optimizer is empty...')
|
||||
opt_str = str("optimizer is empty...")
|
||||
|
||||
if 'schedule_config' in self.__dict__:
|
||||
if "schedule_config" in self.__dict__:
|
||||
schedule_str = str(self.schedule_config)
|
||||
else:
|
||||
schedule_str = str('scheduler is empty...')
|
||||
schedule_str = str("scheduler is empty...")
|
||||
return "\n".join([opt_str, schedule_str])
|
||||
|
|
|
@ -6,7 +6,7 @@ from idrlnet.torch_util import _replace_derivatives
|
|||
from idrlnet.header import DIFF_SYMBOL
|
||||
from idrlnet.variable import Variables
|
||||
|
||||
__all__ = ['PdeNode', 'ExpressionNode']
|
||||
__all__ = ["PdeNode", "ExpressionNode"]
|
||||
|
||||
|
||||
class PdeEvaluate:
|
||||
|
@ -18,8 +18,11 @@ class PdeEvaluate:
|
|||
def __call__(self, inputs: Variables) -> Variables:
|
||||
result = Variables()
|
||||
for node in self.binding_pde.sub_nodes:
|
||||
sub_inputs = {k: v for k, v in Variables(inputs).items() if
|
||||
k in node.inputs or k in node.derivatives}
|
||||
sub_inputs = {
|
||||
k: v
|
||||
for k, v in Variables(inputs).items()
|
||||
if k in node.inputs or k in node.derivatives
|
||||
}
|
||||
r = node.evaluate(sub_inputs)
|
||||
result.update(r)
|
||||
return result
|
||||
|
@ -53,9 +56,9 @@ class PdeNode(Node):
|
|||
|
||||
def __init__(self, suffix: str = "", **kwargs):
|
||||
if len(suffix) > 0:
|
||||
self.suffix = '[' + kwargs['suffix'] + ']' # todo: check prefix
|
||||
self.suffix = "[" + kwargs["suffix"] + "]" # todo: check prefix
|
||||
else:
|
||||
self.suffix = ''
|
||||
self.suffix = ""
|
||||
self.name = type(self).__name__ + self.suffix
|
||||
self.evaluate = PdeEvaluate(self)
|
||||
|
||||
|
@ -77,8 +80,10 @@ class PdeNode(Node):
|
|||
|
||||
def __str__(self):
|
||||
subnode_str = "\n\n".join(
|
||||
str(sub_node) + "Equation: \n" + str(self.equations[sub_node.name]) for sub_node in self.sub_nodes)
|
||||
return super().__str__() + "subnodes".center(30, '-') + '\n' + subnode_str
|
||||
str(sub_node) + "Equation: \n" + str(self.equations[sub_node.name])
|
||||
for sub_node in self.sub_nodes
|
||||
)
|
||||
return super().__str__() + "subnodes".center(30, "-") + "\n" + subnode_str
|
||||
|
||||
|
||||
# todo: test required
|
||||
|
|
|
@ -5,7 +5,14 @@ from sympy import Function, Number, symbols
|
|||
|
||||
from idrlnet.pde import PdeNode
|
||||
|
||||
__all__ = ['DiffusionNode', 'NavierStokesNode', 'WaveNode', 'BurgersNode', 'SchrodingerNode', 'AllenCahnNode']
|
||||
__all__ = [
|
||||
"DiffusionNode",
|
||||
"NavierStokesNode",
|
||||
"WaveNode",
|
||||
"BurgersNode",
|
||||
"SchrodingerNode",
|
||||
"AllenCahnNode",
|
||||
]
|
||||
|
||||
|
||||
def symbolize(s, input_variables=None):
|
||||
|
@ -19,134 +26,172 @@ def symbolize(s, input_variables=None):
|
|||
|
||||
|
||||
class DiffusionNode(PdeNode):
|
||||
def __init__(self, T='T', D='D', Q=0, dim=3, time=True, **kwargs):
|
||||
def __init__(self, T="T", D="D", Q=0, dim=3, time=True, **kwargs):
|
||||
super().__init__(**kwargs)
|
||||
self.T = T
|
||||
x, y, z, t = symbols('x y z t')
|
||||
input_variables = {'x': x, 'y': y, 'z': z, 't': t}
|
||||
x, y, z, t = symbols("x y z t")
|
||||
input_variables = {"x": x, "y": y, "z": z, "t": t}
|
||||
assert type(T) == str, "T should be string"
|
||||
|
||||
T = symbolize(T, input_variables=input_variables)
|
||||
D = symbolize(D, input_variables=input_variables)
|
||||
Q = symbolize(Q, input_variables=input_variables)
|
||||
|
||||
self.equations = {'diffusion_' + self.T: -Q}
|
||||
self.equations = {"diffusion_" + self.T: -Q}
|
||||
if time:
|
||||
self.equations['diffusion_' + self.T] += T.diff(t)
|
||||
self.equations["diffusion_" + self.T] += T.diff(t)
|
||||
coord = [x, y, z]
|
||||
for i in range(dim):
|
||||
s = coord[i]
|
||||
self.equations['diffusion_' + self.T] -= (D * T.diff(s)).diff(s)
|
||||
self.equations["diffusion_" + self.T] -= (D * T.diff(s)).diff(s)
|
||||
self.make_nodes()
|
||||
|
||||
|
||||
class NavierStokesNode(PdeNode):
|
||||
def __init__(self, nu=0.1, rho=1., dim=2., time=False, **kwargs):
|
||||
def __init__(self, nu=0.1, rho=1.0, dim=2.0, time=False, **kwargs):
|
||||
super().__init__(**kwargs)
|
||||
self.dim = dim
|
||||
assert self.dim in [2, 3], "dim should be 2 or 3"
|
||||
self.time = time
|
||||
x, y, z, t = symbols('x y z t')
|
||||
input_variables = {'x': x, 'y': y, 'z': z, 't': t}
|
||||
x, y, z, t = symbols("x y z t")
|
||||
input_variables = {"x": x, "y": y, "z": z, "t": t}
|
||||
if self.dim == 2:
|
||||
input_variables.pop('z')
|
||||
input_variables.pop("z")
|
||||
if not self.time:
|
||||
input_variables.pop('t')
|
||||
input_variables.pop("t")
|
||||
|
||||
u = symbolize('u', input_variables)
|
||||
v = symbolize('v', input_variables)
|
||||
w = symbolize('w', input_variables) if self.dim == 3 else Number(0)
|
||||
p = symbolize('p', input_variables)
|
||||
u = symbolize("u", input_variables)
|
||||
v = symbolize("v", input_variables)
|
||||
w = symbolize("w", input_variables) if self.dim == 3 else Number(0)
|
||||
p = symbolize("p", input_variables)
|
||||
nu = symbolize(nu, input_variables)
|
||||
rho = symbolize(rho, input_variables)
|
||||
mu = rho * nu
|
||||
self.equations = {'continuity': rho.diff(t) + (rho * u).diff(x) + (rho * v).diff(y) + (rho * w).diff(z),
|
||||
'momentum_x': ((rho * u).diff(t)
|
||||
+ (u * ((rho * u).diff(x)) + v * ((rho * u).diff(y)) + w * ((rho * u).diff(z)))
|
||||
+ p.diff(x)
|
||||
- (mu * u.diff(x)).diff(x)
|
||||
- (mu * u.diff(y)).diff(y)
|
||||
- (mu * u.diff(z)).diff(z)),
|
||||
'momentum_y': ((rho * v).diff(t)
|
||||
+ (u * ((rho * v).diff(x)) + v * ((rho * v).diff(y)) + w * ((rho * v).diff(z)))
|
||||
+ p.diff(y)
|
||||
- (mu * v.diff(x)).diff(x)
|
||||
- (mu * v.diff(y)).diff(y)
|
||||
- (mu * v.diff(z)).diff(z)), }
|
||||
self.equations = {
|
||||
"continuity": rho.diff(t)
|
||||
+ (rho * u).diff(x)
|
||||
+ (rho * v).diff(y)
|
||||
+ (rho * w).diff(z),
|
||||
"momentum_x": (
|
||||
(rho * u).diff(t)
|
||||
+ (
|
||||
u * ((rho * u).diff(x))
|
||||
+ v * ((rho * u).diff(y))
|
||||
+ w * ((rho * u).diff(z))
|
||||
)
|
||||
+ p.diff(x)
|
||||
- (mu * u.diff(x)).diff(x)
|
||||
- (mu * u.diff(y)).diff(y)
|
||||
- (mu * u.diff(z)).diff(z)
|
||||
),
|
||||
"momentum_y": (
|
||||
(rho * v).diff(t)
|
||||
+ (
|
||||
u * ((rho * v).diff(x))
|
||||
+ v * ((rho * v).diff(y))
|
||||
+ w * ((rho * v).diff(z))
|
||||
)
|
||||
+ p.diff(y)
|
||||
- (mu * v.diff(x)).diff(x)
|
||||
- (mu * v.diff(y)).diff(y)
|
||||
- (mu * v.diff(z)).diff(z)
|
||||
),
|
||||
}
|
||||
|
||||
if self.dim == 3:
|
||||
self.equations['momentum_z'] = ((rho * w).diff(t)
|
||||
+ (u * ((rho * w).diff(x)) + v * ((rho * w).diff(y)) + w * (
|
||||
(rho * w).diff(z))) + p.diff(z) - (mu * w.diff(x)).diff(x) - (mu * w.diff(y)).diff(y) - (
|
||||
mu * w.diff(z)).diff(z))
|
||||
self.equations["momentum_z"] = (
|
||||
(rho * w).diff(t)
|
||||
+ (
|
||||
u * ((rho * w).diff(x))
|
||||
+ v * ((rho * w).diff(y))
|
||||
+ w * ((rho * w).diff(z))
|
||||
)
|
||||
+ p.diff(z)
|
||||
- (mu * w.diff(x)).diff(x)
|
||||
- (mu * w.diff(y)).diff(y)
|
||||
- (mu * w.diff(z)).diff(z)
|
||||
)
|
||||
self.make_nodes()
|
||||
|
||||
|
||||
class WaveNode(PdeNode):
|
||||
def __init__(self, u='u', c='c', dim=3, time=True, **kwargs):
|
||||
def __init__(self, u="u", c="c", dim=3, time=True, **kwargs):
|
||||
super().__init__(**kwargs)
|
||||
self.u = u
|
||||
self.dim = dim
|
||||
self.time = time
|
||||
x, y, z, t = symbols('x y z t')
|
||||
input_variables = {'x': x, 'y': y, 'z': z, 't': t}
|
||||
x, y, z, t = symbols("x y z t")
|
||||
input_variables = {"x": x, "y": y, "z": z, "t": t}
|
||||
assert self.dim in [1, 2, 3], "dim should be 1, 2 or 3."
|
||||
if self.dim == 1:
|
||||
input_variables.pop('y')
|
||||
input_variables.pop('z')
|
||||
input_variables.pop("y")
|
||||
input_variables.pop("z")
|
||||
elif self.dim == 2:
|
||||
input_variables.pop('z')
|
||||
input_variables.pop("z")
|
||||
if not self.time:
|
||||
input_variables.pop('t')
|
||||
input_variables.pop("t")
|
||||
assert type(u) == str, "u should be string"
|
||||
u = symbolize(u, input_variables)
|
||||
c = symbolize(c, input_variables)
|
||||
self.equations = {'wave_equation': (u.diff(t, 2)
|
||||
- (c ** 2 * u.diff(x)).diff(x)
|
||||
- (c ** 2 * u.diff(y)).diff(y)
|
||||
- (c ** 2 * u.diff(z)).diff(z))}
|
||||
self.equations = {
|
||||
"wave_equation": (
|
||||
u.diff(t, 2)
|
||||
- (c ** 2 * u.diff(x)).diff(x)
|
||||
- (c ** 2 * u.diff(y)).diff(y)
|
||||
- (c ** 2 * u.diff(z)).diff(z)
|
||||
)
|
||||
}
|
||||
self.make_nodes()
|
||||
|
||||
|
||||
class BurgersNode(PdeNode):
|
||||
def __init__(self, u: str = 'u', v='v'):
|
||||
def __init__(self, u: str = "u", v="v"):
|
||||
super().__init__()
|
||||
x, t = symbols('x t')
|
||||
input_variables = {'x': x, 't': t}
|
||||
x, t = symbols("x t")
|
||||
input_variables = {"x": x, "t": t}
|
||||
|
||||
assert type(u) == str, "u needs to be string"
|
||||
u = symbolize(u, input_variables)
|
||||
v = symbolize(v, input_variables)
|
||||
|
||||
self.equations = {f'burgers_{str(u)}': (u.diff(t) + u * u.diff(x) - v * (u.diff(x)).diff(x))}
|
||||
self.equations = {
|
||||
f"burgers_{str(u)}": (u.diff(t) + u * u.diff(x) - v * (u.diff(x)).diff(x))
|
||||
}
|
||||
self.make_nodes()
|
||||
|
||||
|
||||
class SchrodingerNode(PdeNode):
|
||||
def __init__(self, u='u', v='v', c=0.5):
|
||||
def __init__(self, u="u", v="v", c=0.5):
|
||||
super().__init__()
|
||||
self.c = c
|
||||
x, t = symbols('x t')
|
||||
input_variables = {'x': x, 't': t}
|
||||
x, t = symbols("x t")
|
||||
input_variables = {"x": x, "t": t}
|
||||
|
||||
assert type(u) == str, "u should be string"
|
||||
u = symbolize(u, input_variables)
|
||||
|
||||
assert type(v) == str, "v should be string"
|
||||
v = symbolize(v, input_variables)
|
||||
self.equations = {'real': u.diff(t) + self.c * v.diff(x, 2) + (u ** 2 + v ** 2) * v,
|
||||
'imaginary': v.diff(t) - self.c * u.diff(x, 2) - (u ** 2 + v ** 2) * u}
|
||||
self.equations = {
|
||||
"real": u.diff(t) + self.c * v.diff(x, 2) + (u ** 2 + v ** 2) * v,
|
||||
"imaginary": v.diff(t) - self.c * u.diff(x, 2) - (u ** 2 + v ** 2) * u,
|
||||
}
|
||||
self.make_nodes()
|
||||
|
||||
|
||||
class AllenCahnNode(PdeNode):
|
||||
def __init__(self, u='u', gamma_1=0.0001, gamma_2=5):
|
||||
def __init__(self, u="u", gamma_1=0.0001, gamma_2=5):
|
||||
super().__init__()
|
||||
self.gama_1 = gamma_1
|
||||
self.gama_2 = gamma_2
|
||||
x, t = symbols('x t')
|
||||
input_variables = {'x': x, 't': t}
|
||||
x, t = symbols("x t")
|
||||
input_variables = {"x": x, "t": t}
|
||||
assert type(u) == str, "u should be string"
|
||||
u = symbolize(u, input_variables)
|
||||
self.equations = {'AllenCahn_' + str(u): u.diff(t) - self.gama_1 * u.diff(x, 2) - self.gama_2 * (u - u ** 3)}
|
||||
self.equations = {
|
||||
"AllenCahn_"
|
||||
+ str(u): u.diff(t)
|
||||
- self.gama_1 * u.diff(x, 2)
|
||||
- self.gama_2 * (u - u ** 3)
|
||||
}
|
||||
self.make_nodes()
|
||||
|
|
|
@ -11,7 +11,16 @@ from typing import Union, List
|
|||
from idrlnet.torch_util import integral, _replace_derivatives, torch_lambdify
|
||||
from idrlnet.variable import Variables
|
||||
|
||||
__all__ = ['NormalGradient', 'Difference', 'Derivative', 'Curl', 'Divergence', 'ICNode', 'Int1DNode', 'IntEq']
|
||||
__all__ = [
|
||||
"NormalGradient",
|
||||
"Difference",
|
||||
"Derivative",
|
||||
"Curl",
|
||||
"Divergence",
|
||||
"ICNode",
|
||||
"Int1DNode",
|
||||
"IntEq",
|
||||
]
|
||||
|
||||
|
||||
class NormalGradient(PdeNode):
|
||||
|
@ -21,48 +30,53 @@ class NormalGradient(PdeNode):
|
|||
self.dim = dim
|
||||
self.time = time
|
||||
|
||||
x, y, z, normal_x, normal_y, normal_z, t = symbols('x y z normal_x normal_y normal_z t')
|
||||
x, y, z, normal_x, normal_y, normal_z, t = symbols(
|
||||
"x y z normal_x normal_y normal_z t"
|
||||
)
|
||||
|
||||
input_variables = {'x': x,
|
||||
'y': y,
|
||||
'z': z,
|
||||
't': t}
|
||||
input_variables = {"x": x, "y": y, "z": z, "t": t}
|
||||
if self.dim == 1:
|
||||
input_variables.pop('y')
|
||||
input_variables.pop('z')
|
||||
input_variables.pop("y")
|
||||
input_variables.pop("z")
|
||||
elif self.dim == 2:
|
||||
input_variables.pop('z')
|
||||
input_variables.pop("z")
|
||||
if not self.time:
|
||||
input_variables.pop('t')
|
||||
input_variables.pop("t")
|
||||
|
||||
T = Function(T)(*input_variables)
|
||||
|
||||
self.equations = {'normal_gradient_' + self.T: (normal_x * T.diff(x)
|
||||
+ normal_y * T.diff(y)
|
||||
+ normal_z * T.diff(z))}
|
||||
self.equations = {
|
||||
"normal_gradient_"
|
||||
+ self.T: (
|
||||
normal_x * T.diff(x) + normal_y * T.diff(y) + normal_z * T.diff(z)
|
||||
)
|
||||
}
|
||||
self.make_nodes()
|
||||
|
||||
|
||||
class Difference(PdeNode):
|
||||
def __init__(self, T: Union[str, Symbol, float, int], S: Union[str, Symbol, float, int], dim=3, time=True):
|
||||
def __init__(
|
||||
self,
|
||||
T: Union[str, Symbol, float, int],
|
||||
S: Union[str, Symbol, float, int],
|
||||
dim=3,
|
||||
time=True,
|
||||
):
|
||||
super().__init__()
|
||||
self.T = T
|
||||
self.S = S
|
||||
self.dim = dim
|
||||
self.time = time
|
||||
x, y, z = symbols('x y z')
|
||||
t = Symbol('t')
|
||||
input_variables = {'x': x,
|
||||
'y': y,
|
||||
'z': z,
|
||||
't': t}
|
||||
x, y, z = symbols("x y z")
|
||||
t = Symbol("t")
|
||||
input_variables = {"x": x, "y": y, "z": z, "t": t}
|
||||
if self.dim == 1:
|
||||
input_variables.pop('y')
|
||||
input_variables.pop('z')
|
||||
input_variables.pop("y")
|
||||
input_variables.pop("z")
|
||||
elif self.dim == 2:
|
||||
input_variables.pop('z')
|
||||
input_variables.pop("z")
|
||||
if not self.time:
|
||||
input_variables.pop('t')
|
||||
input_variables.pop("t")
|
||||
|
||||
# variables to set the gradients (example Temperature)
|
||||
T = Function(T)(*input_variables)
|
||||
|
@ -70,32 +84,35 @@ class Difference(PdeNode):
|
|||
|
||||
# set equations
|
||||
self.equations = {}
|
||||
self.equations['difference_' + self.T + '_' + self.S] = T - S
|
||||
self.equations["difference_" + self.T + "_" + self.S] = T - S
|
||||
self.make_nodes()
|
||||
|
||||
|
||||
class Derivative(PdeNode):
|
||||
def __init__(self, T: Union[str, Symbol, float, int], p: Union[str, Symbol], S: Union[str, Symbol, float, int] = 0.,
|
||||
dim=3, time=True):
|
||||
def __init__(
|
||||
self,
|
||||
T: Union[str, Symbol, float, int],
|
||||
p: Union[str, Symbol],
|
||||
S: Union[str, Symbol, float, int] = 0.0,
|
||||
dim=3,
|
||||
time=True,
|
||||
):
|
||||
super().__init__()
|
||||
self.T = T
|
||||
self.S = S
|
||||
self.dim = dim
|
||||
self.time = time
|
||||
x, y, z = symbols('x y z')
|
||||
t = Symbol('t')
|
||||
x, y, z = symbols("x y z")
|
||||
t = Symbol("t")
|
||||
|
||||
input_variables = {'x': x,
|
||||
'y': y,
|
||||
'z': z,
|
||||
't': t}
|
||||
input_variables = {"x": x, "y": y, "z": z, "t": t}
|
||||
if self.dim == 1:
|
||||
input_variables.pop('y')
|
||||
input_variables.pop('z')
|
||||
input_variables.pop("y")
|
||||
input_variables.pop("z")
|
||||
elif self.dim == 2:
|
||||
input_variables.pop('z')
|
||||
input_variables.pop("z")
|
||||
if not self.time:
|
||||
input_variables.pop('t')
|
||||
input_variables.pop("t")
|
||||
if type(S) is str:
|
||||
S = Function(S)(*input_variables)
|
||||
elif type(S) in [float, int]:
|
||||
|
@ -105,9 +122,11 @@ class Derivative(PdeNode):
|
|||
T = Function(T)(*input_variables)
|
||||
self.equations = {}
|
||||
if isinstance(S, Function):
|
||||
self.equations['derivative_' + self.T + ':' + str(p) + '_' + str(self.S)] = T.diff(p) - S
|
||||
self.equations[
|
||||
"derivative_" + self.T + ":" + str(p) + "_" + str(self.S)
|
||||
] = (T.diff(p) - S)
|
||||
else:
|
||||
self.equations['derivative_' + self.T + ':' + str(p)] = T.diff(p) - S
|
||||
self.equations["derivative_" + self.T + ":" + str(p)] = T.diff(p) - S
|
||||
self.make_nodes()
|
||||
|
||||
|
||||
|
@ -115,9 +134,9 @@ class Curl(PdeNode):
|
|||
def __init__(self, vector, curl_name=None):
|
||||
super().__init__()
|
||||
if curl_name is None:
|
||||
curl_name = ['u', 'v', 'w']
|
||||
x, y, z = symbols('x y z')
|
||||
input_variables = {'x': x, 'y': y, 'z': z}
|
||||
curl_name = ["u", "v", "w"]
|
||||
x, y, z = symbols("x y z")
|
||||
input_variables = {"x": x, "y": y, "z": z}
|
||||
|
||||
v_0 = vector[0]
|
||||
v_1 = vector[1]
|
||||
|
@ -146,11 +165,11 @@ class Curl(PdeNode):
|
|||
|
||||
|
||||
class Divergence(PdeNode):
|
||||
def __init__(self, vector, div_name='div_v'):
|
||||
def __init__(self, vector, div_name="div_v"):
|
||||
super().__init__()
|
||||
x, y, z = symbols('x y z')
|
||||
x, y, z = symbols("x y z")
|
||||
|
||||
input_variables = {'x': x, 'y': y, 'z': z}
|
||||
input_variables = {"x": x, "y": y, "z": z}
|
||||
|
||||
v_0 = vector[0]
|
||||
v_1 = vector[1]
|
||||
|
@ -174,9 +193,13 @@ class Divergence(PdeNode):
|
|||
|
||||
|
||||
class ICNode(PdeNode):
|
||||
def __init__(self, T: Union[str, Symbol, int, float, List[Union[str, Symbol, int, float]]], dim: int = 2,
|
||||
time: bool = False,
|
||||
reduce_name: str = None):
|
||||
def __init__(
|
||||
self,
|
||||
T: Union[str, Symbol, int, float, List[Union[str, Symbol, int, float]]],
|
||||
dim: int = 2,
|
||||
time: bool = False,
|
||||
reduce_name: str = None,
|
||||
):
|
||||
super().__init__()
|
||||
if reduce_name is None:
|
||||
reduce_name = str(T)
|
||||
|
@ -185,28 +208,26 @@ class ICNode(PdeNode):
|
|||
self.time = time
|
||||
self.reduce_name = reduce_name
|
||||
|
||||
x, y, z = symbols('x y z')
|
||||
normal_x = Symbol('normal_x')
|
||||
normal_y = Symbol('normal_y')
|
||||
normal_z = Symbol('normal_z')
|
||||
area = Symbol('area')
|
||||
x, y, z = symbols("x y z")
|
||||
normal_x = Symbol("normal_x")
|
||||
normal_y = Symbol("normal_y")
|
||||
normal_z = Symbol("normal_z")
|
||||
area = Symbol("area")
|
||||
|
||||
t = Symbol('t')
|
||||
t = Symbol("t")
|
||||
|
||||
input_variables = {'x': x,
|
||||
'y': y,
|
||||
'z': z,
|
||||
't': t}
|
||||
input_variables = {"x": x, "y": y, "z": z, "t": t}
|
||||
if self.dim == 1:
|
||||
input_variables.pop('y')
|
||||
input_variables.pop('z')
|
||||
input_variables.pop("y")
|
||||
input_variables.pop("z")
|
||||
elif self.dim == 2:
|
||||
input_variables.pop('z')
|
||||
input_variables.pop("z")
|
||||
if not self.time:
|
||||
input_variables.pop('t')
|
||||
input_variables.pop("t")
|
||||
|
||||
def sympify_T(T: Union[str, Symbol, int, float, List[Union[str, Symbol, int, float]]]) -> Union[
|
||||
Symbol, List[Symbol]]:
|
||||
def sympify_T(
|
||||
T: Union[str, Symbol, int, float, List[Union[str, Symbol, int, float]]]
|
||||
) -> Union[Symbol, List[Symbol]]:
|
||||
if isinstance(T, list):
|
||||
return [sympify_T(_T) for _T in T]
|
||||
elif type(T) is str:
|
||||
|
@ -220,23 +241,33 @@ class ICNode(PdeNode):
|
|||
self.equations = {}
|
||||
if isinstance(T, list):
|
||||
if self.dim == 3:
|
||||
self.equations['integral_' + self.reduce_name] = integral((normal_x * T[0]
|
||||
+ normal_y * T[1]
|
||||
+ normal_z * T[2]) * area)
|
||||
self.equations["integral_" + self.reduce_name] = integral(
|
||||
(normal_x * T[0] + normal_y * T[1] + normal_z * T[2]) * area
|
||||
)
|
||||
if self.dim == 2:
|
||||
self.equations['integral_' + self.reduce_name] = integral((normal_x * T[0]
|
||||
+ normal_y * T[1]) * area)
|
||||
self.equations["integral_" + self.reduce_name] = integral(
|
||||
(normal_x * T[0] + normal_y * T[1]) * area
|
||||
)
|
||||
else:
|
||||
self.equations['integral_' + self.reduce_name] = integral(T * area)
|
||||
self.equations["integral_" + self.reduce_name] = integral(T * area)
|
||||
self.make_nodes()
|
||||
|
||||
|
||||
class Int1DNode(PdeNode):
|
||||
counter = 0
|
||||
|
||||
def __init__(self, expression, expression_name, lb, ub, var: Union[str, sp.Symbol] = 's', degree=20, **kwargs):
|
||||
def __init__(
|
||||
self,
|
||||
expression,
|
||||
expression_name,
|
||||
lb,
|
||||
ub,
|
||||
var: Union[str, sp.Symbol] = "s",
|
||||
degree=20,
|
||||
**kwargs
|
||||
):
|
||||
super().__init__(**kwargs)
|
||||
x = sp.Symbol('x')
|
||||
x = sp.Symbol("x")
|
||||
self.equations = {}
|
||||
self.var = sp.Symbol(var) if isinstance(var, str) else var
|
||||
self.degree = degree
|
||||
|
@ -265,13 +296,19 @@ class Int1DNode(PdeNode):
|
|||
else:
|
||||
raise
|
||||
|
||||
if 'funs' in kwargs.keys():
|
||||
self.funs = kwargs['funs']
|
||||
if "funs" in kwargs.keys():
|
||||
self.funs = kwargs["funs"]
|
||||
else:
|
||||
self.funs = {}
|
||||
self.computable_name = set(*[fun['output_map'].values() for _, fun in self.funs.items()])
|
||||
self.computable_name = set(
|
||||
*[fun["output_map"].values() for _, fun in self.funs.items()]
|
||||
)
|
||||
self.fun_require_input = set(
|
||||
*[set(fun['eval'].inputs) - set(fun['input_map'].keys()) for _, fun in self.funs.items()])
|
||||
*[
|
||||
set(fun["eval"].inputs) - set(fun["input_map"].keys())
|
||||
for _, fun in self.funs.items()
|
||||
]
|
||||
)
|
||||
|
||||
self.make_nodes()
|
||||
|
||||
|
@ -300,13 +337,22 @@ class Int1DNode(PdeNode):
|
|||
self.derivatives = []
|
||||
self.outputs = [x for x in name_set]
|
||||
|
||||
def new_node(self, name: str = None, tf_eq: sp.Expr = None, free_symbols: List[str] = None, *args, **kwargs):
|
||||
def new_node(
|
||||
self,
|
||||
name: str = None,
|
||||
tf_eq: sp.Expr = None,
|
||||
free_symbols: List[str] = None,
|
||||
*args,
|
||||
**kwargs
|
||||
):
|
||||
out_symbols = [x for x in free_symbols if x not in self.funs.keys()]
|
||||
lb_lambda = torch_lambdify(out_symbols, self.lb)
|
||||
ub_lambda = torch_lambdify(out_symbols, self.ub)
|
||||
eq_lambda = torch_lambdify([*free_symbols, self.var.name], tf_eq)
|
||||
node = Node()
|
||||
node.evaluate = IntEq(self, lb_lambda, ub_lambda, out_symbols, free_symbols, eq_lambda, name)
|
||||
node.evaluate = IntEq(
|
||||
self, lb_lambda, ub_lambda, out_symbols, free_symbols, eq_lambda, name
|
||||
)
|
||||
node.inputs = [x for x in free_symbols if x not in self.funs.keys()]
|
||||
node.derivatives = []
|
||||
node.outputs = [name]
|
||||
|
@ -315,7 +361,16 @@ class Int1DNode(PdeNode):
|
|||
|
||||
|
||||
class IntEq:
|
||||
def __init__(self, binding_node, lb_lambda, ub_lambda, out_symbols, free_symbols, eq_lambda, name):
|
||||
def __init__(
|
||||
self,
|
||||
binding_node,
|
||||
lb_lambda,
|
||||
ub_lambda,
|
||||
out_symbols,
|
||||
free_symbols,
|
||||
eq_lambda,
|
||||
name,
|
||||
):
|
||||
self.binding_node = binding_node
|
||||
self.lb_lambda = lb_lambda
|
||||
self.ub_lambda = ub_lambda
|
||||
|
@ -326,8 +381,12 @@ class IntEq:
|
|||
|
||||
def __call__(self, var: Variables):
|
||||
var = {k: v for k, v in var.items()}
|
||||
lb_value = self.lb_lambda(**{k: v for k, v in var.items() if k in self.out_symbols})
|
||||
ub_value = self.ub_lambda(**{k: v for k, v in var.items() if k in self.out_symbols})
|
||||
lb_value = self.lb_lambda(
|
||||
**{k: v for k, v in var.items() if k in self.out_symbols}
|
||||
)
|
||||
ub_value = self.ub_lambda(
|
||||
**{k: v for k, v in var.items() if k in self.out_symbols}
|
||||
)
|
||||
|
||||
xx = dict()
|
||||
for syp in self.free_symbols:
|
||||
|
@ -347,19 +406,21 @@ class IntEq:
|
|||
|
||||
new_var = dict()
|
||||
for _, fun in self.binding_node.funs.items():
|
||||
input_map = fun['input_map']
|
||||
output_map = fun['output_map']
|
||||
input_map = fun["input_map"]
|
||||
output_map = fun["output_map"]
|
||||
tmp_var = dict()
|
||||
for k, v in xx.items():
|
||||
tmp_var[k] = v
|
||||
for k, v in input_map.items():
|
||||
tmp_var[k] = quad_s
|
||||
res = fun['eval'].evaluate(tmp_var)
|
||||
res = fun["eval"].evaluate(tmp_var)
|
||||
for k, v in output_map.items():
|
||||
res[v] = res.pop(k)
|
||||
new_var.update(res)
|
||||
xx.update(new_var)
|
||||
|
||||
values = quad_w * self.eq_lambda(**dict(**{self.binding_node.var.name: quad_s}, **xx))
|
||||
values = quad_w * self.eq_lambda(
|
||||
**dict(**{self.binding_node.var.name: quad_s}, **xx)
|
||||
)
|
||||
values = values.reshape(shape)
|
||||
return {self.name: values.sum(1, keepdim=True)}
|
||||
|
|
|
@ -6,20 +6,20 @@ from typing import Dict, List
|
|||
|
||||
|
||||
class Signal(Enum):
|
||||
REGISTER = 'signal_register'
|
||||
SOLVE_START = 'signal_solve_start'
|
||||
TRAIN_PIPE_START = 'signal_train_pipe_start'
|
||||
BEFORE_COMPUTE_LOSS = 'before_compute_loss'
|
||||
AFTER_COMPUTE_LOSS = 'compute_loss'
|
||||
BEFORE_BACKWARD = 'signal_before_backward'
|
||||
TRAIN_PIPE_END = 'signal_train_pipe_end'
|
||||
SOLVE_END = 'signal_solve_end'
|
||||
REGISTER = "signal_register"
|
||||
SOLVE_START = "signal_solve_start"
|
||||
TRAIN_PIPE_START = "signal_train_pipe_start"
|
||||
BEFORE_COMPUTE_LOSS = "before_compute_loss"
|
||||
AFTER_COMPUTE_LOSS = "compute_loss"
|
||||
BEFORE_BACKWARD = "signal_before_backward"
|
||||
TRAIN_PIPE_END = "signal_train_pipe_end"
|
||||
SOLVE_END = "signal_solve_end"
|
||||
|
||||
|
||||
class Receiver(metaclass=abc.ABCMeta):
|
||||
@abc.abstractmethod
|
||||
def receive_notify(self, obj: object, message: Dict):
|
||||
raise NotImplementedError('Method receive_notify() not implemented!')
|
||||
raise NotImplementedError("Method receive_notify() not implemented!")
|
||||
|
||||
|
||||
class Notifier:
|
||||
|
|
|
@ -15,7 +15,7 @@ from idrlnet.variable import Variables, DomainVariables
|
|||
from idrlnet.graph import VertexTaskPipeline
|
||||
import idrlnet
|
||||
|
||||
__all__ = ['Solver']
|
||||
__all__ = ["Solver"]
|
||||
|
||||
|
||||
class Solver(Notifier, Optimizable):
|
||||
|
@ -65,20 +65,23 @@ class Solver(Notifier, Optimizable):
|
|||
:param kwargs:
|
||||
"""
|
||||
|
||||
def __init__(self, sample_domains: Tuple[Union[DataNode, SampleDomain], ...],
|
||||
netnodes: List[NetNode],
|
||||
pdes: Optional[List] = None,
|
||||
network_dir: str = './network_dir',
|
||||
summary_dir: Optional[str] = None,
|
||||
max_iter: int = 1000,
|
||||
save_freq: int = 100,
|
||||
print_freq: int = 10,
|
||||
loading: bool = True,
|
||||
init_network_dirs: Optional[List[str]] = None,
|
||||
opt_config: Dict = None,
|
||||
schedule_config: Dict = None,
|
||||
result_dir='train_domain/results',
|
||||
**kwargs):
|
||||
def __init__(
|
||||
self,
|
||||
sample_domains: Tuple[Union[DataNode, SampleDomain], ...],
|
||||
netnodes: List[NetNode],
|
||||
pdes: Optional[List] = None,
|
||||
network_dir: str = "./network_dir",
|
||||
summary_dir: Optional[str] = None,
|
||||
max_iter: int = 1000,
|
||||
save_freq: int = 100,
|
||||
print_freq: int = 10,
|
||||
loading: bool = True,
|
||||
init_network_dirs: Optional[List[str]] = None,
|
||||
opt_config: Dict = None,
|
||||
schedule_config: Dict = None,
|
||||
result_dir="train_domain/results",
|
||||
**kwargs,
|
||||
):
|
||||
|
||||
self.network_dir: str = network_dir
|
||||
self.domain_losses = {domain.name: domain.loss_fn for domain in sample_domains}
|
||||
|
@ -96,8 +99,16 @@ class Solver(Notifier, Optimizable):
|
|||
self.save_freq = save_freq
|
||||
self.print_freq = print_freq
|
||||
try:
|
||||
self.parse_configure(**{**({"opt_config": opt_config} if opt_config is not None else {}),
|
||||
**({"schedule_config": schedule_config} if schedule_config is not None else {})})
|
||||
self.parse_configure(
|
||||
**{
|
||||
**({"opt_config": opt_config} if opt_config is not None else {}),
|
||||
**(
|
||||
{"schedule_config": schedule_config}
|
||||
if schedule_config is not None
|
||||
else {}
|
||||
),
|
||||
}
|
||||
)
|
||||
except Exception:
|
||||
logger.error("Optimizer configuration failed")
|
||||
raise
|
||||
|
@ -109,7 +120,10 @@ class Solver(Notifier, Optimizable):
|
|||
pass
|
||||
self.sample_domains: Tuple[DataNode, ...] = sample_domains
|
||||
self.summary_dir = self.network_dir if summary_dir is None else summary_dir
|
||||
self.receivers: List[Receiver] = [SummaryReceiver(self.summary_dir), HandleResultReceiver(result_dir)]
|
||||
self.receivers: List[Receiver] = [
|
||||
SummaryReceiver(self.summary_dir),
|
||||
HandleResultReceiver(result_dir),
|
||||
]
|
||||
|
||||
@property
|
||||
def network_dir(self):
|
||||
|
@ -136,12 +150,23 @@ class Solver(Notifier, Optimizable):
|
|||
:return: A list of trainable parameters.
|
||||
:rtype: List[torch.nn.parameter.Parameter]
|
||||
"""
|
||||
parameter_list = list(map(lambda _net_node: {'params': _net_node.net.parameters()},
|
||||
filter(lambda _net_node: not _net_node.is_reference and (not _net_node.fixed),
|
||||
self.netnodes)))
|
||||
parameter_list = list(
|
||||
map(
|
||||
lambda _net_node: {"params": _net_node.net.parameters()},
|
||||
filter(
|
||||
lambda _net_node: not _net_node.is_reference
|
||||
and (not _net_node.fixed),
|
||||
self.netnodes,
|
||||
),
|
||||
)
|
||||
)
|
||||
if len(parameter_list) == 0:
|
||||
'''To make sure successful initialization of optimizers.'''
|
||||
parameter_list = [torch.nn.parameter.Parameter(data=torch.Tensor([0.]), requires_grad=True)]
|
||||
"""To make sure successful initialization of optimizers."""
|
||||
parameter_list = [
|
||||
torch.nn.parameter.Parameter(
|
||||
data=torch.Tensor([0.0]), requires_grad=True
|
||||
)
|
||||
]
|
||||
logger.warning("No trainable parameters found!")
|
||||
return parameter_list
|
||||
|
||||
|
@ -158,15 +183,15 @@ class Solver(Notifier, Optimizable):
|
|||
"""return sovler information, it will return components recursively"""
|
||||
str_list = []
|
||||
str_list.append("nets: \n")
|
||||
str_list.append(''.join([str(net) for net in self.netnodes]))
|
||||
str_list.append("".join([str(net) for net in self.netnodes]))
|
||||
str_list.append("domains: \n")
|
||||
str_list.append(''.join([str(domain) for domain in self.sample_domains]))
|
||||
str_list.append('\n')
|
||||
str_list.append('optimizer config:\n')
|
||||
str_list.append("".join([str(domain) for domain in self.sample_domains]))
|
||||
str_list.append("\n")
|
||||
str_list.append("optimizer config:\n")
|
||||
for i, _class in enumerate(type(self).mro()):
|
||||
if _class == Optimizable:
|
||||
str_list.append(super(type(self).mro()[i - 1], self).__str__())
|
||||
return ''.join(str_list)
|
||||
return "".join(str_list)
|
||||
|
||||
def set_param_ranges(self, param_ranges: Dict):
|
||||
for domain in self.sample_domains:
|
||||
|
@ -184,7 +209,7 @@ class Solver(Notifier, Optimizable):
|
|||
for value in self.sample_domains:
|
||||
if value.name == name:
|
||||
return value
|
||||
raise KeyError(f'domain {name} not exist!')
|
||||
raise KeyError(f"domain {name} not exist!")
|
||||
|
||||
def generate_computation_pipeline(self):
|
||||
"""Generate computation pipeline for all domains.
|
||||
|
@ -195,28 +220,40 @@ class Solver(Notifier, Optimizable):
|
|||
self.vertex_pipelines = {}
|
||||
for domain_name, var in in_var.items():
|
||||
logger.info(f"Constructing computation graph for domain <{domain_name}>")
|
||||
self.vertex_pipelines[domain_name] = VertexTaskPipeline(self.netnodes + self.pdes, var,
|
||||
self.outvar_dict_index[domain_name])
|
||||
self.vertex_pipelines[domain_name] = VertexTaskPipeline(
|
||||
self.netnodes + self.pdes, var, self.outvar_dict_index[domain_name]
|
||||
)
|
||||
self.vertex_pipelines[domain_name].display(
|
||||
os.path.join(self.network_dir, f'{domain_name}_{self.global_step}.png'))
|
||||
os.path.join(self.network_dir, f"{domain_name}_{self.global_step}.png")
|
||||
)
|
||||
|
||||
def forward_through_all_graph(self, invar_dict: DomainVariables,
|
||||
req_outvar_dict_index: Dict[str, List[str]]) -> DomainVariables:
|
||||
def forward_through_all_graph(
|
||||
self, invar_dict: DomainVariables, req_outvar_dict_index: Dict[str, List[str]]
|
||||
) -> DomainVariables:
|
||||
outvar_dict = {}
|
||||
for (key, req_outvar_names) in req_outvar_dict_index.items():
|
||||
outvar_dict[key] = self.vertex_pipelines[key].forward_pipeline(invar_dict[key], req_outvar_names)
|
||||
outvar_dict[key] = self.vertex_pipelines[key].forward_pipeline(
|
||||
invar_dict[key], req_outvar_names
|
||||
)
|
||||
return outvar_dict
|
||||
|
||||
def append_sample_domain(self, datanode):
|
||||
self.sample_domains = self.sample_domains + (datanode,)
|
||||
|
||||
def _generate_dict_index(self) -> None:
|
||||
self.invar_dict_index = {domain.name: domain.inputs for domain in self.sample_domains}
|
||||
self.outvar_dict_index = {domain.name: domain.outputs for domain in self.sample_domains}
|
||||
self.lambda_dict_index = {domain.name: domain.lambda_outputs for domain in self.sample_domains}
|
||||
self.invar_dict_index = {
|
||||
domain.name: domain.inputs for domain in self.sample_domains
|
||||
}
|
||||
self.outvar_dict_index = {
|
||||
domain.name: domain.outputs for domain in self.sample_domains
|
||||
}
|
||||
self.lambda_dict_index = {
|
||||
domain.name: domain.lambda_outputs for domain in self.sample_domains
|
||||
}
|
||||
|
||||
def generate_in_out_dict(self, samples: DomainVariables) -> \
|
||||
Tuple[DomainVariables, DomainVariables, DomainVariables]:
|
||||
def generate_in_out_dict(
|
||||
self, samples: DomainVariables
|
||||
) -> Tuple[DomainVariables, DomainVariables, DomainVariables]:
|
||||
invar_dict = {}
|
||||
for domain, variable in samples.items():
|
||||
inner = {}
|
||||
|
@ -226,20 +263,40 @@ class Solver(Notifier, Optimizable):
|
|||
invar_dict[domain] = inner
|
||||
|
||||
invar_dict = {
|
||||
domain: Variables({key: val for key, val in variable.items() if key in self.invar_dict_index[domain]}) for
|
||||
domain, variable in samples.items()}
|
||||
domain: Variables(
|
||||
{
|
||||
key: val
|
||||
for key, val in variable.items()
|
||||
if key in self.invar_dict_index[domain]
|
||||
}
|
||||
)
|
||||
for domain, variable in samples.items()
|
||||
}
|
||||
outvar_dict = {
|
||||
domain: Variables({key: val for key, val in variable.items() if key in self.outvar_dict_index[domain]}) for
|
||||
domain, variable in samples.items()}
|
||||
domain: Variables(
|
||||
{
|
||||
key: val
|
||||
for key, val in variable.items()
|
||||
if key in self.outvar_dict_index[domain]
|
||||
}
|
||||
)
|
||||
for domain, variable in samples.items()
|
||||
}
|
||||
lambda_dict = {
|
||||
domain: Variables({key: val for key, val in variable.items() if key in self.lambda_dict_index[domain]}) for
|
||||
domain, variable in samples.items()}
|
||||
domain: Variables(
|
||||
{
|
||||
key: val
|
||||
for key, val in variable.items()
|
||||
if key in self.lambda_dict_index[domain]
|
||||
}
|
||||
)
|
||||
for domain, variable in samples.items()
|
||||
}
|
||||
return invar_dict, outvar_dict, lambda_dict
|
||||
|
||||
def solve(self):
|
||||
"""After the solver instance is initialized, the method could be called to solve the entire problem.
|
||||
"""
|
||||
self.notify(self, message={Signal.SOLVE_START: 'default'})
|
||||
"""After the solver instance is initialized, the method could be called to solve the entire problem."""
|
||||
self.notify(self, message={Signal.SOLVE_START: "default"})
|
||||
while self.global_step < self.max_iter:
|
||||
loss = self.train_pipe()
|
||||
if self.global_step % self.print_freq == 0:
|
||||
|
@ -247,13 +304,13 @@ class Solver(Notifier, Optimizable):
|
|||
if self.global_step % self.save_freq == 0:
|
||||
self.save()
|
||||
logger.info("Training Stage Ends")
|
||||
self.notify(self, message={Signal.SOLVE_END: 'default'})
|
||||
self.notify(self, message={Signal.SOLVE_END: "default"})
|
||||
|
||||
def train_pipe(self):
|
||||
"""Sample once; calculate the loss once; backward propagation once
|
||||
:return: None
|
||||
"""
|
||||
self.notify(self, message={Signal.TRAIN_PIPE_START: 'defaults'})
|
||||
self.notify(self, message={Signal.TRAIN_PIPE_START: "defaults"})
|
||||
for opt in self.optimizers:
|
||||
opt.zero_grad()
|
||||
samples = self.sample_variables_from_domains()
|
||||
|
@ -263,7 +320,7 @@ class Solver(Notifier, Optimizable):
|
|||
loss = self.compute_loss(in_var, pred_out_sample, true_out, lambda_out)
|
||||
except RuntimeError:
|
||||
raise
|
||||
self.notify(self, message={Signal.BEFORE_BACKWARD: 'defaults'})
|
||||
self.notify(self, message={Signal.BEFORE_BACKWARD: "defaults"})
|
||||
loss.backward()
|
||||
for opt in self.optimizers:
|
||||
opt.step()
|
||||
|
@ -271,40 +328,64 @@ class Solver(Notifier, Optimizable):
|
|||
|
||||
for scheduler in self.schedulers:
|
||||
scheduler.step(self.global_step)
|
||||
self.notify(self, message={Signal.TRAIN_PIPE_END: 'defaults'})
|
||||
self.notify(self, message={Signal.TRAIN_PIPE_END: "defaults"})
|
||||
return loss
|
||||
|
||||
def compute_loss(self, in_var: DomainVariables, pred_out_sample: DomainVariables,
|
||||
true_out: DomainVariables,
|
||||
lambda_out: DomainVariables) -> torch.Tensor:
|
||||
"""Compute the total loss in one epoch.
|
||||
|
||||
"""
|
||||
def compute_loss(
|
||||
self,
|
||||
in_var: DomainVariables,
|
||||
pred_out_sample: DomainVariables,
|
||||
true_out: DomainVariables,
|
||||
lambda_out: DomainVariables,
|
||||
) -> torch.Tensor:
|
||||
"""Compute the total loss in one epoch."""
|
||||
diff = dict()
|
||||
for domain_name, domain_val in true_out.items():
|
||||
if len(domain_val) == 0:
|
||||
continue
|
||||
diff[domain_name] = pred_out_sample[domain_name] - domain_val.to_torch_tensor_()
|
||||
diff[domain_name] = (
|
||||
pred_out_sample[domain_name] - domain_val.to_torch_tensor_()
|
||||
)
|
||||
diff[domain_name].update(lambda_out[domain_name])
|
||||
diff[domain_name].update(area=in_var[domain_name]['area'])
|
||||
diff[domain_name].update(area=in_var[domain_name]["area"])
|
||||
|
||||
for domain, var in diff.items():
|
||||
lambda_diff = dict()
|
||||
for constraint, _ in var.items():
|
||||
if 'lambda_' + constraint in in_var[domain].keys():
|
||||
lambda_diff['lambda_' + constraint] = in_var[domain]['lambda_' + constraint]
|
||||
if "lambda_" + constraint in in_var[domain].keys():
|
||||
lambda_diff["lambda_" + constraint] = in_var[domain][
|
||||
"lambda_" + constraint
|
||||
]
|
||||
var.update(lambda_diff)
|
||||
|
||||
self.loss_component = Variables(
|
||||
ChainMap(
|
||||
*[diff[domain_name].weighted_loss(f"{domain_name}_loss",
|
||||
loss_function=self.domain_losses[domain_name]) for
|
||||
domain_name, domain_val in
|
||||
diff.items()]))
|
||||
*[
|
||||
diff[domain_name].weighted_loss(
|
||||
f"{domain_name}_loss",
|
||||
loss_function=self.domain_losses[domain_name],
|
||||
)
|
||||
for domain_name, domain_val in diff.items()
|
||||
]
|
||||
)
|
||||
)
|
||||
self.notify(self, message={Signal.BEFORE_COMPUTE_LOSS: {**self.loss_component}})
|
||||
loss = sum({domain_name: self.get_sample_domain(domain_name).sigma * self.loss_component[f"{domain_name}_loss"] for
|
||||
domain_name in diff}.values())
|
||||
self.notify(self, message={Signal.AFTER_COMPUTE_LOSS: {**self.loss_component, **{'total_loss': loss}}})
|
||||
loss = sum(
|
||||
{
|
||||
domain_name: self.get_sample_domain(domain_name).sigma
|
||||
* self.loss_component[f"{domain_name}_loss"]
|
||||
for domain_name in diff
|
||||
}.values()
|
||||
)
|
||||
self.notify(
|
||||
self,
|
||||
message={
|
||||
Signal.AFTER_COMPUTE_LOSS: {
|
||||
**self.loss_component,
|
||||
**{"total_loss": loss},
|
||||
}
|
||||
},
|
||||
)
|
||||
return loss
|
||||
|
||||
def infer_step(self, domain_attr: Dict[str, List[str]]) -> DomainVariables:
|
||||
|
@ -323,40 +404,46 @@ class Solver(Notifier, Optimizable):
|
|||
return {data_node.name: data_node.sample() for data_node in self.sample_domains}
|
||||
|
||||
def save(self):
|
||||
"""Save parameters of netnodes and the global step to `model.ckpt`.
|
||||
"""
|
||||
save_path = os.path.join(self.network_dir, 'model.ckpt')
|
||||
"""Save parameters of netnodes and the global step to `model.ckpt`."""
|
||||
save_path = os.path.join(self.network_dir, "model.ckpt")
|
||||
logger.info("save to path: {}".format(os.path.abspath(save_path)))
|
||||
save_dict = {f"{net_node.name}_dict": net_node.state_dict() for net_node in
|
||||
filter(lambda _net: not _net.is_reference, self.netnodes)}
|
||||
save_dict = {
|
||||
f"{net_node.name}_dict": net_node.state_dict()
|
||||
for net_node in filter(lambda _net: not _net.is_reference, self.netnodes)
|
||||
}
|
||||
for i, opt in enumerate(self.optimizers):
|
||||
save_dict['optimizer_{}_dict'.format(i)] = opt.state_dict()
|
||||
save_dict['global_step'] = self.global_step
|
||||
save_dict["optimizer_{}_dict".format(i)] = opt.state_dict()
|
||||
save_dict["global_step"] = self.global_step
|
||||
torch.save(save_dict, save_path)
|
||||
|
||||
def init_load(self):
|
||||
for network_dir in self.init_network_dirs:
|
||||
save_path = os.path.join(network_dir, 'model.ckpt')
|
||||
save_path = os.path.join(network_dir, "model.ckpt")
|
||||
save_dict = torch.load(save_path)
|
||||
for net_node in self.netnodes:
|
||||
if f"{net_node.name}_dict" in save_dict.keys() and not net_node.is_reference:
|
||||
if (
|
||||
f"{net_node.name}_dict" in save_dict.keys()
|
||||
and not net_node.is_reference
|
||||
):
|
||||
net_node.load_state_dict(save_dict[f"{net_node.name}_dict"])
|
||||
logger.info(f"Successfully loading initialization {net_node.name}.")
|
||||
|
||||
def load(self):
|
||||
"""Load parameters of netnodes and the global step from `model.ckpt`.
|
||||
"""
|
||||
save_path = os.path.join(self.network_dir, 'model.ckpt')
|
||||
"""Load parameters of netnodes and the global step from `model.ckpt`."""
|
||||
save_path = os.path.join(self.network_dir, "model.ckpt")
|
||||
if not idrlnet.GPU_ENABLED:
|
||||
save_dict = torch.load(save_path, map_location=torch.device('cpu'))
|
||||
save_dict = torch.load(save_path, map_location=torch.device("cpu"))
|
||||
else:
|
||||
save_dict = torch.load(save_path)
|
||||
# todo: save on CPU, load on GPU
|
||||
for i, opt in enumerate(self.optimizers):
|
||||
opt.load_state_dict(save_dict['optimizer_{}_dict'.format(i)])
|
||||
self.global_step = save_dict['global_step']
|
||||
opt.load_state_dict(save_dict["optimizer_{}_dict".format(i)])
|
||||
self.global_step = save_dict["global_step"]
|
||||
for net_node in self.netnodes:
|
||||
if f"{net_node.name}_dict" in save_dict.keys() and not net_node.is_reference:
|
||||
if (
|
||||
f"{net_node.name}_dict" in save_dict.keys()
|
||||
and not net_node.is_reference
|
||||
):
|
||||
net_node.load_state_dict(save_dict[f"{net_node.name}_dict"])
|
||||
logger.info(f"Successfully loading {net_node.name}.")
|
||||
|
||||
|
@ -364,27 +451,34 @@ class Solver(Notifier, Optimizable):
|
|||
"""
|
||||
Call interfaces of ``Optimizable``
|
||||
"""
|
||||
opt = self.optimizer_config['optimizer']
|
||||
opt = self.optimizer_config["optimizer"]
|
||||
if isinstance(opt, str) and opt in Optimizable.OPTIMIZER_MAP:
|
||||
opt = Optimizable.OPTIMIZER_MAP[opt](self.trainable_parameters,
|
||||
**{k: v for k, v in self.optimizer_config.items() if k != 'optimizer'})
|
||||
opt = Optimizable.OPTIMIZER_MAP[opt](
|
||||
self.trainable_parameters,
|
||||
**{k: v for k, v in self.optimizer_config.items() if k != "optimizer"},
|
||||
)
|
||||
elif isinstance(opt, Callable):
|
||||
opt = opt
|
||||
else:
|
||||
raise NotImplementedError(
|
||||
'The optimizer is not implemented. You may use one of the following optimizer:\n' + '\n'.join(
|
||||
Optimizable.OPTIMIZER_MAP.keys()) + '\n Example: opt_config=dict(optimizer="Adam", lr=1e-3)')
|
||||
"The optimizer is not implemented. You may use one of the following optimizer:\n"
|
||||
+ "\n".join(Optimizable.OPTIMIZER_MAP.keys())
|
||||
+ '\n Example: opt_config=dict(optimizer="Adam", lr=1e-3)'
|
||||
)
|
||||
|
||||
lr_scheduler = self.schedule_config['scheduler']
|
||||
lr_scheduler = self.schedule_config["scheduler"]
|
||||
if isinstance(lr_scheduler, str) and lr_scheduler in Optimizable.SCHEDULE_MAP:
|
||||
lr_scheduler = Optimizable.SCHEDULE_MAP[lr_scheduler](opt,
|
||||
**{k: v for k, v in self.schedule_config.items() if
|
||||
k != 'scheduler'})
|
||||
lr_scheduler = Optimizable.SCHEDULE_MAP[lr_scheduler](
|
||||
opt,
|
||||
**{k: v for k, v in self.schedule_config.items() if k != "scheduler"},
|
||||
)
|
||||
elif isinstance(lr_scheduler, Callable):
|
||||
lr_scheduler = lr_scheduler
|
||||
else:
|
||||
raise NotImplementedError(
|
||||
'The scheduler is not implemented. You may use one of the following scheduler:\n' + '\n'.join(
|
||||
Optimizable.SCHEDULE_MAP.keys()) + '\n Example: schedule_config=dict(scheduler="ExponentialLR", gamma=0.999')
|
||||
"The scheduler is not implemented. You may use one of the following scheduler:\n"
|
||||
+ "\n".join(Optimizable.SCHEDULE_MAP.keys())
|
||||
+ '\n Example: schedule_config=dict(scheduler="ExponentialLR", gamma=0.999'
|
||||
)
|
||||
self.optimizers = [opt]
|
||||
self.schedulers = [lr_scheduler]
|
||||
|
|
|
@ -10,7 +10,7 @@ import torch
|
|||
from idrlnet.header import DIFF_SYMBOL
|
||||
from functools import reduce
|
||||
|
||||
__all__ = ['integral', 'torch_lambdify']
|
||||
__all__ = ["integral", "torch_lambdify"]
|
||||
|
||||
|
||||
def integral_fun(x):
|
||||
|
@ -19,7 +19,7 @@ def integral_fun(x):
|
|||
return x
|
||||
|
||||
|
||||
integral = implemented_function('integral', lambda x: integral_fun(x))
|
||||
integral = implemented_function("integral", lambda x: integral_fun(x))
|
||||
|
||||
|
||||
def torch_lambdify(r, f, *args, **kwargs):
|
||||
|
@ -41,27 +41,27 @@ def torch_lambdify(r, f, *args, **kwargs):
|
|||
|
||||
# todo: more functions
|
||||
TORCH_SYMPY_PRINTER = {
|
||||
'sin': torch.sin,
|
||||
'cos': torch.cos,
|
||||
'tan': torch.tan,
|
||||
'exp': torch.exp,
|
||||
'sqrt': torch.sqrt,
|
||||
'Abs': torch.abs,
|
||||
'tanh': torch.tanh,
|
||||
'DiracDelta': torch.zeros_like,
|
||||
'Heaviside': lambda x: torch.heaviside(x, torch.tensor([0.])),
|
||||
'amin': lambda x: reduce(lambda y, z: torch.minimum(y, z), x),
|
||||
'amax': lambda x: reduce(lambda y, z: torch.maximum(y, z), x),
|
||||
'Min': lambda *x: reduce(lambda y, z: torch.minimum(y, z), x),
|
||||
'Max': lambda *x: reduce(lambda y, z: torch.maximum(y, z), x),
|
||||
'equal': lambda x, y: torch.isclose(x, y),
|
||||
'Xor': torch.logical_xor,
|
||||
'log': torch.log,
|
||||
'sinh': torch.sinh,
|
||||
'cosh': torch.cosh,
|
||||
'asin': torch.arcsin,
|
||||
'acos': torch.arccos,
|
||||
'atan': torch.arctan,
|
||||
"sin": torch.sin,
|
||||
"cos": torch.cos,
|
||||
"tan": torch.tan,
|
||||
"exp": torch.exp,
|
||||
"sqrt": torch.sqrt,
|
||||
"Abs": torch.abs,
|
||||
"tanh": torch.tanh,
|
||||
"DiracDelta": torch.zeros_like,
|
||||
"Heaviside": lambda x: torch.heaviside(x, torch.tensor([0.0])),
|
||||
"amin": lambda x: reduce(lambda y, z: torch.minimum(y, z), x),
|
||||
"amax": lambda x: reduce(lambda y, z: torch.maximum(y, z), x),
|
||||
"Min": lambda *x: reduce(lambda y, z: torch.minimum(y, z), x),
|
||||
"Max": lambda *x: reduce(lambda y, z: torch.maximum(y, z), x),
|
||||
"equal": lambda x, y: torch.isclose(x, y),
|
||||
"Xor": torch.logical_xor,
|
||||
"log": torch.log,
|
||||
"sinh": torch.sinh,
|
||||
"cosh": torch.cosh,
|
||||
"asin": torch.arcsin,
|
||||
"acos": torch.arccos,
|
||||
"atan": torch.arctan,
|
||||
}
|
||||
|
||||
|
||||
|
@ -75,9 +75,12 @@ def _replace_derivatives(expr):
|
|||
expr = expr.subs(deriv, Function(str(deriv))(*deriv.free_symbols))
|
||||
while True:
|
||||
try:
|
||||
custom_fun = {_fun for _fun in expr.atoms(Function) if
|
||||
(_fun.class_key()[1] == 0) and (not _fun.class_key()[2] == 'integral')
|
||||
}.pop()
|
||||
custom_fun = {
|
||||
_fun
|
||||
for _fun in expr.atoms(Function)
|
||||
if (_fun.class_key()[1] == 0)
|
||||
and (not _fun.class_key()[2] == "integral")
|
||||
}.pop()
|
||||
new_symbol_name = str(custom_fun)
|
||||
expr = expr.subs(custom_fun, Symbol(new_symbol_name))
|
||||
except KeyError:
|
||||
|
@ -90,7 +93,10 @@ class UnderlineDerivativePrinter(StrPrinter):
|
|||
return expr.func.__name__
|
||||
|
||||
def _print_Derivative(self, expr):
|
||||
return "".join([str(expr.args[0].func)] + [order * (DIFF_SYMBOL + str(key)) for key, order in expr.args[1:]])
|
||||
return "".join(
|
||||
[str(expr.args[0].func)]
|
||||
+ [order * (DIFF_SYMBOL + str(key)) for key, order in expr.args[1:]]
|
||||
)
|
||||
|
||||
|
||||
def sstr(expr, **settings):
|
||||
|
|
|
@ -13,14 +13,14 @@ from collections import defaultdict
|
|||
import pandas as pd
|
||||
from idrlnet.header import DIFF_SYMBOL
|
||||
|
||||
__all__ = ['Loss', 'Variables', 'DomainVariables', 'export_var']
|
||||
__all__ = ["Loss", "Variables", "DomainVariables", "export_var"]
|
||||
|
||||
|
||||
class Loss(enum.Enum):
|
||||
"""Enumerate loss functions"""
|
||||
|
||||
L1 = 'L1'
|
||||
square = 'square'
|
||||
L1 = "L1"
|
||||
square = "square"
|
||||
|
||||
|
||||
class LossFunction:
|
||||
|
@ -35,56 +35,67 @@ class LossFunction:
|
|||
raise NotImplementedError(f"loss function {loss_function} is not defined!")
|
||||
|
||||
@staticmethod
|
||||
def weighted_L1_loss(variables: 'Variables', name: str) -> 'Variables':
|
||||
loss = 0.
|
||||
def weighted_L1_loss(variables: "Variables", name: str) -> "Variables":
|
||||
loss = 0.0
|
||||
for key, val in variables.items():
|
||||
if key.startswith("lambda_") or key == 'area':
|
||||
if key.startswith("lambda_") or key == "area":
|
||||
continue
|
||||
elif "lambda_" + key in variables.keys():
|
||||
loss += torch.sum((torch.abs(val)) * variables["lambda_" + key] * variables["area"])
|
||||
loss += torch.sum(
|
||||
(torch.abs(val)) * variables["lambda_" + key] * variables["area"]
|
||||
)
|
||||
else:
|
||||
loss += torch.sum((torch.abs(val)) * variables["area"])
|
||||
return Variables({name: loss})
|
||||
|
||||
@staticmethod
|
||||
def weighted_square_loss(variables: 'Variables', name: str) -> 'Variables':
|
||||
loss = 0.
|
||||
def weighted_square_loss(variables: "Variables", name: str) -> "Variables":
|
||||
loss = 0.0
|
||||
for key, val in variables.items():
|
||||
if key.startswith("lambda_") or key == 'area':
|
||||
if key.startswith("lambda_") or key == "area":
|
||||
continue
|
||||
elif "lambda_" + key in variables.keys():
|
||||
loss += torch.sum((val ** 2) * variables["lambda_" + key] * variables["area"])
|
||||
loss += torch.sum(
|
||||
(val ** 2) * variables["lambda_" + key] * variables["area"]
|
||||
)
|
||||
else:
|
||||
loss += torch.sum((val ** 2) * variables["area"])
|
||||
return Variables({name: loss})
|
||||
|
||||
|
||||
class Variables(dict):
|
||||
def __sub__(self, other: 'Variables') -> 'Variables':
|
||||
def __sub__(self, other: "Variables") -> "Variables":
|
||||
return Variables(
|
||||
{key: (self[key] if key in self else 0) - (other[key] if key in other else 0) for key in {**self, **other}})
|
||||
{
|
||||
key: (self[key] if key in self else 0)
|
||||
- (other[key] if key in other else 0)
|
||||
for key in {**self, **other}
|
||||
}
|
||||
)
|
||||
|
||||
def weighted_loss(self, name: str, loss_function: Union[Loss, str]) -> 'Variables':
|
||||
def weighted_loss(self, name: str, loss_function: Union[Loss, str]) -> "Variables":
|
||||
"""Regard the variable as residuals and reduce to a weighted_loss."""
|
||||
|
||||
return LossFunction.weighted_loss(variables=self, loss_function=loss_function, name=name)
|
||||
return LossFunction.weighted_loss(
|
||||
variables=self, loss_function=loss_function, name=name
|
||||
)
|
||||
|
||||
def subset(self, subset_keys: List[str]) -> 'Variables':
|
||||
def subset(self, subset_keys: List[str]) -> "Variables":
|
||||
"""Construct a new variable with subset references"""
|
||||
|
||||
return Variables({name: self[name] for name in subset_keys if name in self})
|
||||
|
||||
def to_torch_tensor_(self) -> 'Variables[str, torch.Tensor]':
|
||||
def to_torch_tensor_(self) -> "Variables[str, torch.Tensor]":
|
||||
"""Convert the variables to torch.Tensor"""
|
||||
|
||||
for key, val in self.items():
|
||||
if not isinstance(val, torch.Tensor):
|
||||
self[key] = torch.Tensor(val)
|
||||
if (not key.startswith('lambda_')) and (not key == 'area'):
|
||||
if (not key.startswith("lambda_")) and (not key == "area"):
|
||||
self[key].requires_grad_()
|
||||
return self
|
||||
|
||||
def to_ndarray_(self) -> 'Variables[str, np.ndarray]':
|
||||
def to_ndarray_(self) -> "Variables[str, np.ndarray]":
|
||||
"""convert to a numpy based variables"""
|
||||
|
||||
for key, val in self.items():
|
||||
|
@ -92,7 +103,7 @@ class Variables(dict):
|
|||
self[key] = val.detach().cpu().numpy()
|
||||
return self
|
||||
|
||||
def to_ndarray(self) -> 'Variables[str, np.ndarray]':
|
||||
def to_ndarray(self) -> "Variables[str, np.ndarray]":
|
||||
"""Return a new numpy based variables"""
|
||||
|
||||
new_var = Variables()
|
||||
|
@ -130,26 +141,36 @@ class Variables(dict):
|
|||
variables[name] = var_t
|
||||
return variables
|
||||
|
||||
def differentiate_one_step_(self: 'Variables', independent_var: 'Variables', required_derivatives: List[str]):
|
||||
def differentiate_one_step_(
|
||||
self: "Variables", independent_var: "Variables", required_derivatives: List[str]
|
||||
):
|
||||
"""One order of derivatives will be computed towards the required_derivatives."""
|
||||
|
||||
required_derivatives = [d for d in required_derivatives if d not in self]
|
||||
required_derivatives_set = set(
|
||||
tuple(required_derivative.split(DIFF_SYMBOL)) for required_derivative in required_derivatives)
|
||||
tuple(required_derivative.split(DIFF_SYMBOL))
|
||||
for required_derivative in required_derivatives
|
||||
)
|
||||
dependent_var_set = set(tuple(dv.split(DIFF_SYMBOL)) for dv in self.keys())
|
||||
computable_derivative_dict = defaultdict(set)
|
||||
for dv, rd in itertools.product(dependent_var_set, required_derivatives_set):
|
||||
if len(rd) > len(dv) and rd[:len(dv)] == dv and rd[:len(dv) + 1] not in dependent_var_set:
|
||||
if (
|
||||
len(rd) > len(dv)
|
||||
and rd[: len(dv)] == dv
|
||||
and rd[: len(dv) + 1] not in dependent_var_set
|
||||
):
|
||||
computable_derivative_dict[rd[len(dv)]].add(DIFF_SYMBOL.join(dv))
|
||||
derivative_variables = Variables()
|
||||
for key, value in computable_derivative_dict.items():
|
||||
for v in value:
|
||||
f__x = torch.autograd.grad(self[v],
|
||||
independent_var[key],
|
||||
grad_outputs=torch.ones_like(self[v]),
|
||||
retain_graph=True,
|
||||
create_graph=True,
|
||||
allow_unused=True)[0]
|
||||
f__x = torch.autograd.grad(
|
||||
self[v],
|
||||
independent_var[key],
|
||||
grad_outputs=torch.ones_like(self[v]),
|
||||
retain_graph=True,
|
||||
create_graph=True,
|
||||
allow_unused=True,
|
||||
)[0]
|
||||
if f__x is not None:
|
||||
f__x.requires_grad_()
|
||||
else:
|
||||
|
@ -157,7 +178,9 @@ class Variables(dict):
|
|||
derivative_variables[DIFF_SYMBOL.join([v, key])] = f__x
|
||||
self.update(derivative_variables)
|
||||
|
||||
def differentiate_(self: 'Variables', independent_var: 'Variables', required_derivatives: List[str]):
|
||||
def differentiate_(
|
||||
self: "Variables", independent_var: "Variables", required_derivatives: List[str]
|
||||
):
|
||||
"""Derivatives will be computed towards the required_derivatives"""
|
||||
|
||||
n_keys = 0
|
||||
|
@ -168,8 +191,11 @@ class Variables(dict):
|
|||
new_keys = len(self.keys())
|
||||
|
||||
@staticmethod
|
||||
def var_differentiate_one_step(dependent_var: 'Variables', independent_var: 'Variables',
|
||||
required_derivatives: List[str]):
|
||||
def var_differentiate_one_step(
|
||||
dependent_var: "Variables",
|
||||
independent_var: "Variables",
|
||||
required_derivatives: List[str],
|
||||
):
|
||||
"""Perform one step of differentiate towards the required_derivatives"""
|
||||
|
||||
dependent_var.differentiate_one_step_(independent_var, required_derivatives)
|
||||
|
@ -177,15 +203,15 @@ class Variables(dict):
|
|||
def to_csv(self, filename: str) -> None:
|
||||
"""Export variable to csv"""
|
||||
|
||||
if not filename.endswith('.csv'):
|
||||
filename += '.csv'
|
||||
if not filename.endswith(".csv"):
|
||||
filename += ".csv"
|
||||
df = self.to_dataframe()
|
||||
df.to_csv(filename, index=False)
|
||||
|
||||
def to_vtu(self, filename: str, coordinates=None) -> None:
|
||||
"""Export variable to vtu"""
|
||||
|
||||
coordinates = ['x', 'y', 'z'] if coordinates is None else coordinates
|
||||
coordinates = ["x", "y", "z"] if coordinates is None else coordinates
|
||||
shape = 0
|
||||
for axis in coordinates:
|
||||
if axis not in self.keys():
|
||||
|
@ -196,27 +222,29 @@ class Variables(dict):
|
|||
if value.shape == (1, 1):
|
||||
self[key] = np.ones(shape) * value
|
||||
self[key] = np.asarray(self[key], dtype=np.float64)
|
||||
pointsToVTK(filename,
|
||||
self[coordinates[0]][:, 0].copy(),
|
||||
self[coordinates[1]][:, 0].copy(),
|
||||
self[coordinates[2]][:, 0].copy(),
|
||||
data={key: value[:, 0].copy() for key, value in self.items()})
|
||||
pointsToVTK(
|
||||
filename,
|
||||
self[coordinates[0]][:, 0].copy(),
|
||||
self[coordinates[1]][:, 0].copy(),
|
||||
self[coordinates[2]][:, 0].copy(),
|
||||
data={key: value[:, 0].copy() for key, value in self.items()},
|
||||
)
|
||||
|
||||
def save(self, path, formats=None):
|
||||
"""Export variable to various formats"""
|
||||
|
||||
if formats is None:
|
||||
formats = ['np', 'csv', 'vtu']
|
||||
formats = ["np", "csv", "vtu"]
|
||||
np_var = self.to_ndarray()
|
||||
if 'np' in formats:
|
||||
if "np" in formats:
|
||||
np.savez(path, **np_var)
|
||||
if 'csv' in formats:
|
||||
if "csv" in formats:
|
||||
np_var.to_csv(path)
|
||||
if 'vtu' in formats:
|
||||
if "vtu" in formats:
|
||||
np_var.to_vtu(filename=path)
|
||||
|
||||
@staticmethod
|
||||
def cat(*var_list) -> 'Variables':
|
||||
def cat(*var_list) -> "Variables":
|
||||
"""todo: catenate in var list"""
|
||||
return Variables()
|
||||
|
||||
|
@ -224,12 +252,14 @@ class Variables(dict):
|
|||
DomainVariables = Dict[str, Variables]
|
||||
|
||||
|
||||
def export_var(domain_var: DomainVariables, path='./inference_domain/results', formats=None):
|
||||
def export_var(
|
||||
domain_var: DomainVariables, path="./inference_domain/results", formats=None
|
||||
):
|
||||
"""Export a dict of variables to ``csv``, ``vtu`` or ``npz``."""
|
||||
|
||||
if formats is None:
|
||||
formats = ['csv', 'vtu', 'np']
|
||||
formats = ["csv", "vtu", "np"]
|
||||
path = pathlib.Path(path)
|
||||
path.mkdir(exist_ok=True, parents=True)
|
||||
for key in domain_var.keys():
|
||||
domain_var[key].save(os.path.join(path, f'{key}'), formats)
|
||||
domain_var[key].save(os.path.join(path, f"{key}"), formats)
|
||||
|
|
27
setup.py
27
setup.py
|
@ -1,11 +1,27 @@
|
|||
import setuptools
|
||||
import os
|
||||
import pathlib
|
||||
|
||||
here = pathlib.Path(__file__).parent.resolve()
|
||||
long_description = (here / "README.md").read_text(encoding="utf-8")
|
||||
|
||||
|
||||
def load_requirements(path_dir=here, comment_char="#"):
|
||||
with open(os.path.join(path_dir, "requirements.txt"), "r") as file:
|
||||
lines = [line.strip() for line in file.readlines()]
|
||||
requirements = []
|
||||
for line in lines:
|
||||
# filer all comments
|
||||
if comment_char in line:
|
||||
line = line[: line.index(comment_char)]
|
||||
if line: # if requirement is not empty
|
||||
requirements.append(line)
|
||||
return requirements
|
||||
|
||||
with open("README.md", "r") as fh:
|
||||
long_description = fh.read()
|
||||
|
||||
setuptools.setup(
|
||||
name="idrlnet", # Replace with your own username
|
||||
version="0.0.1",
|
||||
version="0.0.1-rc1",
|
||||
author="Intelligent Design & Robust Learning lab",
|
||||
author_email="weipeng@deepinfar.cn",
|
||||
description="IDRLnet",
|
||||
|
@ -18,5 +34,6 @@ setuptools.setup(
|
|||
"License :: OSI Approved :: MIT License",
|
||||
"Operating System :: OS Independent",
|
||||
],
|
||||
python_requires='>=3.6',
|
||||
)
|
||||
python_requires=">=3.6",
|
||||
install_requires=load_requirements(),
|
||||
)
|
||||
|
|
Loading…
Reference in New Issue