first commit

This commit is contained in:
Xianqi 2021-04-12 20:52:20 +08:00
parent 863dc72da6
commit ed5b16ab15
99 changed files with 3410 additions and 371 deletions

356
.gitignore vendored
View File

@ -1,355 +1,27 @@
# ---> VisualStudio
## Ignore Visual Studio temporary files, build results, and
## files generated by popular Visual Studio add-ons.
##
## Get latest from https://github.com/github/gitignore/blob/master/VisualStudio.gitignore
.idea/
# User-specific files
*.rsuser
*.suo
*.user
*.userosscache
*.sln.docstates
.markdown/
# User-specific files (MonoDevelop/Xamarin Studio)
*.userprefs
outputs/*.csv
# Mono auto generated files
mono_crash.*
outputs/predict_plot/*.jpg
# Build results
[Dd]ebug/
[Dd]ebugPublic/
[Rr]elease/
[Rr]eleases/
x64/
x86/
[Aa][Rr][Mm]/
[Aa][Rr][Mm]64/
bld/
[Bb]in/
[Oo]bj/
[Ll]og/
[Ll]ogs/
outputs/predict_plot/*.png
# Visual Studio 2015/2017 cache/options directory
.vs/
# Uncomment if you have tasks that create the project's static files in wwwroot
#wwwroot/
outputs/predict_plot/*.tif
# Visual Studio 2017 auto generated files
Generated\ Files/
lightning_logs/
# MSTest test Results
[Tt]est[Rr]esult*/
[Bb]uild[Ll]og.*
src/__pycache__/
# NUnit
*.VisualState.xml
TestResult.xml
nunit-*.xml
.history
# Build Results of an ATL Project
[Dd]ebugPS/
[Rr]eleasePS/
dlldata.c
src/data/__pycache__/
# Benchmark Results
BenchmarkDotNet.Artifacts/
src/metric/__pycache__/
# .NET Core
project.lock.json
project.fragment.lock.json
artifacts/
src/models/__pycache__/
# StyleCop
StyleCopReport.xml
# Files built by Visual Studio
*_i.c
*_p.c
*_h.h
*.ilk
*.meta
*.obj
*.iobj
*.pch
*.pdb
*.ipdb
*.pgc
*.pgd
*.rsp
*.sbr
*.tlb
*.tli
*.tlh
*.tmp
*.tmp_proj
*_wpftmp.csproj
*.log
*.vspscc
*.vssscc
.builds
*.pidb
*.svclog
*.scc
# Chutzpah Test files
_Chutzpah*
# Visual C++ cache files
ipch/
*.aps
*.ncb
*.opendb
*.opensdf
*.sdf
*.cachefile
*.VC.db
*.VC.VC.opendb
# Visual Studio profiler
*.psess
*.vsp
*.vspx
*.sap
# Visual Studio Trace Files
*.e2e
# TFS 2012 Local Workspace
$tf/
# Guidance Automation Toolkit
*.gpState
# ReSharper is a .NET coding add-in
_ReSharper*/
*.[Rr]e[Ss]harper
*.DotSettings.user
# TeamCity is a build add-in
_TeamCity*
# DotCover is a Code Coverage Tool
*.dotCover
# AxoCover is a Code Coverage Tool
.axoCover/*
!.axoCover/settings.json
# Coverlet is a free, cross platform Code Coverage Tool
coverage*[.json, .xml, .info]
# Visual Studio code coverage results
*.coverage
*.coveragexml
# NCrunch
_NCrunch_*
.*crunch*.local.xml
nCrunchTemp_*
# MightyMoose
*.mm.*
AutoTest.Net/
# Web workbench (sass)
.sass-cache/
# Installshield output folder
[Ee]xpress/
# DocProject is a documentation generator add-in
DocProject/buildhelp/
DocProject/Help/*.HxT
DocProject/Help/*.HxC
DocProject/Help/*.hhc
DocProject/Help/*.hhk
DocProject/Help/*.hhp
DocProject/Help/Html2
DocProject/Help/html
# Click-Once directory
publish/
# Publish Web Output
*.[Pp]ublish.xml
*.azurePubxml
# Note: Comment the next line if you want to checkin your web deploy settings,
# but database connection strings (with potential passwords) will be unencrypted
*.pubxml
*.publishproj
# Microsoft Azure Web App publish settings. Comment the next line if you want to
# checkin your Azure Web App publish settings, but sensitive information contained
# in these scripts will be unencrypted
PublishScripts/
# NuGet Packages
*.nupkg
# NuGet Symbol Packages
*.snupkg
# The packages folder can be ignored because of Package Restore
**/[Pp]ackages/*
# except build/, which is used as an MSBuild target.
!**/[Pp]ackages/build/
# Uncomment if necessary however generally it will be regenerated when needed
#!**/[Pp]ackages/repositories.config
# NuGet v3's project.json files produces more ignorable files
*.nuget.props
*.nuget.targets
# Microsoft Azure Build Output
csx/
*.build.csdef
# Microsoft Azure Emulator
ecf/
rcf/
# Windows Store app package directories and files
AppPackages/
BundleArtifacts/
Package.StoreAssociation.xml
_pkginfo.txt
*.appx
*.appxbundle
*.appxupload
# Visual Studio cache files
# files ending in .cache can be ignored
*.[Cc]ache
# but keep track of directories ending in .cache
!?*.[Cc]ache/
# Others
ClientBin/
~$*
*~
*.dbmdl
*.dbproj.schemaview
*.jfm
*.pfx
*.publishsettings
orleans.codegen.cs
# Including strong name files can present a security risk
# (https://github.com/github/gitignore/pull/2483#issue-259490424)
#*.snk
# Since there are multiple workflows, uncomment next line to ignore bower_components
# (https://github.com/github/gitignore/pull/1529#issuecomment-104372622)
#bower_components/
# RIA/Silverlight projects
Generated_Code/
# Backup & report files from converting an old project file
# to a newer Visual Studio version. Backup files are not needed,
# because we have git ;-)
_UpgradeReport_Files/
Backup*/
UpgradeLog*.XML
UpgradeLog*.htm
ServiceFabricBackup/
*.rptproj.bak
# SQL Server files
*.mdf
*.ldf
*.ndf
# Business Intelligence projects
*.rdl.data
*.bim.layout
*.bim_*.settings
*.rptproj.rsuser
*- [Bb]ackup.rdl
*- [Bb]ackup ([0-9]).rdl
*- [Bb]ackup ([0-9][0-9]).rdl
# Microsoft Fakes
FakesAssemblies/
# GhostDoc plugin setting file
*.GhostDoc.xml
# Node.js Tools for Visual Studio
.ntvs_analysis.dat
node_modules/
# Visual Studio 6 build log
*.plg
# Visual Studio 6 workspace options file
*.opt
# Visual Studio 6 auto-generated workspace file (contains which files were open etc.)
*.vbw
# Visual Studio LightSwitch build output
**/*.HTMLClient/GeneratedArtifacts
**/*.DesktopClient/GeneratedArtifacts
**/*.DesktopClient/ModelManifest.xml
**/*.Server/GeneratedArtifacts
**/*.Server/ModelManifest.xml
_Pvt_Extensions
# Paket dependency manager
.paket/paket.exe
paket-files/
# FAKE - F# Make
.fake/
# CodeRush personal settings
.cr/personal
# Python Tools for Visual Studio (PTVS)
__pycache__/
*.pyc
# Cake - Uncomment if you are using it
# tools/**
# !tools/packages.config
# Tabs Studio
*.tss
# Telerik's JustMock configuration file
*.jmconfig
# BizTalk build output
*.btp.cs
*.btm.cs
*.odx.cs
*.xsd.cs
# OpenCover UI analysis results
OpenCover/
# Azure Stream Analytics local run output
ASALocalRun/
# MSBuild Binary and Structured Log
*.binlog
# NVidia Nsight GPU debugger configuration file
*.nvuser
# MFractors (Xamarin productivity tool) working folder
.mfractor/
# Local History for Visual Studio
.localhistory/
# BeatPulse healthcheck temp database
healthchecksdb
# Backup folder for Package Reference Convert tool in Visual Studio 2017
MigrationBackup/
# Ionide (cross platform F# VS Code tools) working folder
.ionide/
src/models/backbone/__pycache__/
src/utils/__pycache__/

21
.gitlab-ci.yml Normal file
View File

@ -0,0 +1,21 @@
default:
tags:
- docker
image:
name: ufoym/deepo:all-jupyter
entrypoint: [""]
before_script:
- pip install -U .
- pip config set global.index-url https://mirrors.aliyun.com/pypi/simple/
- pip install -r requirements.txt
stages:
- test
pytest:
stage: test
script:
- pip install -U .[dev]
- pytest --cov=./
coverage: '/^TOTAL.*\s+(\d+\%)$/'

32
LICENSE
View File

@ -1,17 +1,19 @@
<copyright notice> By obtaining, using, and/or copying this software and/or
its associated documentation, you agree that you have read, understood, and
will comply with the following terms and conditions:
Copyright (c) [2021] [The Supervised Layout Benchmark]
Permission to use, copy, modify, and distribute this software and its associated
documentation for any purpose and without fee is hereby granted, provided
that the above copyright notice appears in all copies, and that both that
copyright notice and this permission notice appear in supporting documentation,
and that the name of the copyright holder not be used in advertising or publicity
pertaining to distribution of the software without specific, written permission.
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
THE COPYRIGHT HOLDER DISCLAIM ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,
INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT
SHALL THE COPYRIGHT HOLDER BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL
DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM THE LOSS OF USE, DATA OR
PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION,
ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

View File

@ -1,20 +1,87 @@
#### 从命令行创建一个新的仓库
# supervised_layout_benchmark
```bash
touch README.md
git init
git add README.md
git commit -m "first commit"
git remote add origin https://git.osredm.com/p57201394/supervised_layout_benchmark.git
git push -u origin master
## Introduction
```
This project aims to establish a deep neural network (DNN) surrogate modeling benchmark for the temperature field prediction of heat source layout (HSL-TFP) task, providing a set of representative DNN surrogates as baselines as well as the original code files for easy start and comparison.
#### 从命令行推送已经创建的仓库
## Running Requirements
```bash
git remote add origin https://git.osredm.com/p57201394/supervised_layout_benchmark.git
git push -u origin master
- ### Software
```
- python
- cuda
- pytorch
- ### Hardware
- A single GPU with at least 4GB.
## Environment construction
- ``` pip install -r requirements.txt ```
## A quick start
The training, test and visualization can be accessed by running `main.py` file.
- The data is available at the server address: `\\192.168.2.1\mnt/share1/layout_data/v1.0/data/`refer to [Readme for samples](https://git.idrl.site/gongzhiqiang/supervised_layout_benchmark/blob/master/samples/README.md)). Remember to modify variable `data_root` in the configuration file `config/config_complex_net.yml` to the right server address.
- Training
```python
python main.py -m train
```
or
```python
python main.py --mode=train
```
- Test
```python
python main.py -m test --test_check_num=21
```
or
```python
python main.py --mode=test --test_check_num=21
```
where variable `test_check_num` is the number of the saved model for test.
- Prediction visualization
```python
python main.py -m plot --test_check_num=21
```
or
```python
python main.py --mode=plot --test_check_num=21
```
where variable `test_check_num` is the number of the saved model for plotting.
## Project architecture
- `config`: the configuration file
- `notebook`: the test file for `notebook`
- `outputs`: the output results by `test` and `plot` module. The test results is saved at `outputs/*.csv` and the plotting figures is saved at `outputs/predict_plot/`.
- `src`: including surrogate model, training and testing files.
- `test.py`: testing files.
- `train.py`: training files.
- `plot.py`: prediction visualization files.
- `data`: data preprocessing and data loading files.
- `metric`: evaluation metric file. (For details, see [Readme for metric](https://git.idrl.site/gongzhiqiang/supervised_layout_benchmark/blob/master/src/metric/README.md))
- `models`: DNN surrogate models for the HSL-TFP task.
- `utils`: useful tool function files.
## One tiny example
One tiny example for training and testing can be accessed based on the following instruction.
* Some training and testing data are available at `samples/data`.
* Based on the original configuration file, run `python main.py` directly for a quick experience of this tiny example.

71
README_CN.md Normal file
View File

@ -0,0 +1,71 @@
# supervised_layout_benchmark
## 介绍
> 该项目主要用于实现卫星组件热布局不同深度代理模型训练、测试以及热布局预测作图.
## 环境要求
- ### 软件要求
- python
- cuda
- pytorch
- ### 硬件要求
- 大约4GB显存的GPU
## 构建环境
- ``` pip install -r requirements.txt ```
## 快速开始
> 运行训练、测试以及热布局作图统一通过main.py入口.
- 数据放在服务器`\\192.168.2.1\mnt/share1/layout_data/v1.0/data/`(详见[Readme](https://git.idrl.site/gongzhiqiang/supervised_layout_benchmark/blob/master/samples/README.md)),运行时请修改程序配置文件`config/config_complex_net.yml`中`data_root`输入变量为挂载服务器上数据地址.
- 训练和测试
```python
python main.py -m train 或者 python main.py --mode=train
```
- 测试
```python
python main.py -m test --test_check_num=21 或者 python main.py --mode=test --test_check_num=21
```
其中`test_check_num`是测试输入模型存储的编号.
- 热布局预测作图
```python
python main.py -m plot --test_check_num=21 或者 python main.py --mode=plot --test_check_num=21
```
其中`test_check_num`是作图输入模型存储的编号.
## 项目结构
- `benchmark`目录存放运行所需所有程序
- `config`存放运行配置文件
- `notebook`存放`notebook`测试文件
- `outputs`用于存放`test`和`plot`作图输出结果,测试的输出结果保存在`outputs/*.csv``plot`结果保存在`outputs/predict_plot/`
- `src`用于存放模型文件和测试训练文件
- `test.py`测试程序
- `train.py`训练程序
- `plot.py`预测可视化程序
- `data`文件夹存放数据预处理和读取程序
- `metrics`文件夹存放热布局度量函数,详见[Readme](https://git.idrl.site/gongzhiqiang/supervised_layout_benchmark/blob/master/src/metric/README.md)
- `models`热布局深度代理模型所用深度模型
- `utils`工具类文件
## 其他
* 训练测试examples
* 训练样本测试样本存放于`samples/data`中
* 原始文件配置环境后,直接运行`python main.py`即运行example

46
config/config.yml Normal file
View File

@ -0,0 +1,46 @@
# config
# model
## support SegNet_AlexNet, SegNet_VGG, SegNet_ResNet18, SegNet_ResNet34, SegNet_ResNet50, SegNet_ResNet101, SegNet_ResNet152
## FPN_ResNet18, FPN_ResNet50, FPN_ResNet101, FPN_ResNet34, FPN_ResNet152
## FCN_AlexNet, FCN_VGG, FCN_ResNet18, FCN_ResNet50, FCN_ResNet101, FCN_ResNet34, FCN_ResNet152
## UNet_VGG
model_name: FCN # choose from FPN, FCN, SegNet, UNet
backbone: AlexNet # choose from AlexNet, VGG, ResNet18, ResNet50, ResNet101
# dataset path
data_root: samples/data/
boundary: one_point # choose from rm_wall, one_point, all_walls
# train/val set
train_list: train/train_val.txt
# test set
## choose the test set: test_0.txt, test_1.txt, test_2.txt, test_3.txt,test_4.txt,test_5.txt,test_6.txt
test_list: test/test_0.txt
# metric for testing
## choose from "mae_global", "mae_boundary", "mae_component",
## "value_and_pos_error_of_maximum_temperature", "max_tem_spearmanr", "global_image_spearmanr"
metric: mae_boundary
# dataset format: mat or h5
data_format: mat
batch_size: 2
max_epochs: 50
lr: 0.001
# number of gpus to use
gpus: 1
val_check_interval: 1.0
# num_workers in dataloader
num_workers: 4
# preprocessing of data
## input
mean_layout: 0
std_layout: 1000
## output
mean_heat: 298
std_heat: 50

46
config/data.yml Normal file
View File

@ -0,0 +1,46 @@
# data config for computation of metrics
## SIZE OF COMPONENTS
units:
- - 0.016
- 0.012
- - 0.012
- 0.006
- - 0.018
- 0.009
- - 0.018
- 0.012
- - 0.018
- 0.018
- - 0.012
- 0.012
- - 0.018
- 0.006
- - 0.009
- 0.009
- - 0.006
- 0.024
- - 0.006
- 0.012
- - 0.012
- 0.024
- - 0.024
- 0.024
## POWERS OF THE COMPONENTS
powers:
- 4000
- 16000
- 6000
- 8000
- 10000
- 14000
- 16000
- 20000
- 8000
- 16000
- 10000
- 20000
## LENGTH OF LAYOUT BOARD
length: 0.1

6
docker/Dockerfile.txt Normal file
View File

@ -0,0 +1,6 @@
FROM ufoym/deepo:pytorch
LABEL maintainer="gongzhiqiang@alumni.sjtu.edu.cn"
WORKDIR /tmp
COPY requirements.txt ./
RUN pip install -r requirements.txt

65
main.py Normal file
View File

@ -0,0 +1,65 @@
# encoding: utf-8
"""
This function denotes the main function to train/test/plot
Usage:
python main.py [FLAGS]
@author: gongzhiqiang
@contact: gongzhiqiang@alumni.sjtu.edu.cn
@version: 1.0
@file: main.py
@time: 2020-12-22
"""
from pathlib import Path
import configargparse
from src.LayoutDeepRegression import Model
from src import train, test, plot
def main():
# default configuration file
config_path = Path(__file__).absolute().parent / "config/config.yml"
parser = configargparse.ArgParser(default_config_files=[str(config_path)], description="Hyper-parameters.")
# configuration file
parser.add_argument("--config", is_config_file=True, default=False, help="config file path")
# mode
parser.add_argument("-m", "--mode", type=str, default="train", help="model: train or test or plot")
# args for training
parser.add_argument("--gpus", type=int, default=0, help="how many gpus")
parser.add_argument("--batch_size", default=16, type=int)
parser.add_argument("--max_epochs", default=20, type=int)
parser.add_argument("--lr", default="0.01", type=float)
parser.add_argument("--resume_from_checkpoint", type=str, help="resume from checkpoint")
parser.add_argument("--num_workers", default=2, type=int, help="num_workers in DataLoader")
parser.add_argument("--seed", type=int, default=1, help="seed")
parser.add_argument("--use_16bit", type=bool, default=False, help="use 16bit precision")
parser.add_argument("--profiler", action="store_true", help="use profiler")
# args for validation
parser.add_argument("--val_check_interval", type=float, default=1,
help="how often within one training epoch to check the validation set")
# args for testing
parser.add_argument("--test_check_num", default='0', type=str, help="checkpoint for test")
parser.add_argument("--test_args", action="store_true", help="print args")
# args from Model
parser = Model.add_model_specific_args(parser)
hparams = parser.parse_args()
# running
assert hparams.mode in ["train", "test", "plot"]
if hparams.test_args:
print(hparams)
else:
getattr(eval(hparams.mode), "main")(hparams)
if __name__ == '__main__':
main()

View File

11
requirements.txt Normal file
View File

@ -0,0 +1,11 @@
tqdm==4.42.1
scipy==1.4.1
pytest==5.3.5
numpy==1.18.1
matplotlib==3.1.3
ConfigArgParse==1.2.3
pytorch_lightning==1.1.2
PyYAML==5.3.1
scikit_learn==0.23.2
torch>=1.5.0
torchvision==0.8.1

131
samples/README.md Normal file
View File

@ -0,0 +1,131 @@
# Datasets for benchmark
## 介绍
> 该数据库用于支持热布局温度场预测任务,数据地址:/192.168.2.1/mnt/share1/layout_data/v1.0/data/
>
> samples中提供数据库的样例
## 数据库结构
> 数据库提供三种不同边界:小孔散热、单边散热和四周全散热
- `data`中存放不同边界数据库
- `one_point`小孔散热边界
- `train`存放训练数据
- `train`训练样本存放文件夹
- `train_val.txt`用于网络训练的数据list
- `test`存放测试数据
- `test`测试样本存放文件夹
- `test_*.txt`用于测试的数据list其中`test_0.txt`、`test_1.txt`、`test_2.txt`、`test_3.txt`、`test_4.txt`、`test_5.txt`、`test_6.txt`分别存放了不同方式采样得到的测试样本
- `rm_wall`单边散热边界
- `train`
- `train`
- `train_val.txt`
- `test`
- `test`
- `test_*.txt`
- `all_walls`四周全散热边界
- `train`
- `train`
- `train_val.txt`
- `test`
- `test`
- `test_*.txt`
## 组件介绍
> 布局区域是`0.1m*0.1m`方形区域共有12个大小功率不同组件
* 组件大小、功率
| 组件 | 长(m) | 宽(m) | 功率($W/m^2$) |
| :--: | :---: | :---: | :-----------: |
| 1 | 0.016 | 0.012 | 4000 |
| 2 | 0.012 | 0.006 | 16000 |
| 3 | 0.018 | 0.009 | 6000 |
| 4 | 0.018 | 0.012 | 8000 |
| 5 | 0.018 | 0.018 | 10000 |
| 6 | 0.012 | 0.012 | 14000 |
| 7 | 0.018 | 0.006 | 16000 |
| 8 | 0.009 | 0.009 | 20000 |
| 9 | 0.006 | 0.024 | 8000 |
| 10 | 0.006 | 0.012 | 16000 |
| 11 | 0.012 | 0.024 | 10000 |
| 12 | 0.024 | 0.024 | 20000 |
* 组件布局示例
| ![1](https://i.loli.net/2021/01/12/XBGU8TiWYFZ5kft.png) | ![2](https://i.loli.net/2021/01/12/72KgnHw9kNMp3bA.png) |
| :-----------------------------------------------------: | :-----------------------------------------------------: |
| Example 1 | Example 2 |
## 数据库详情
* train包含2000组sequence采样方式生成的训练样本 ,示例如下
| ![Example_layout_1](https://i.loli.net/2021/01/12/TOJ3sDFzbLk8KXC.jpg) | ![Example_heat_onepoint](https://i.loli.net/2021/01/12/fkSIhy7xn8pMa6q.jpg) | ![Example_heat_leftwall](https://i.loli.net/2021/01/12/wmKXpV6Waio5jRN.jpg) | ![Example_heat_allwalls](https://i.loli.net/2021/01/12/kjcU6HKaQnY3qF4.jpg) |
| :----------------------------------------------------------: | :----------------------------------------------------------: | :----------------------------------------------------------: | :----------------------------------------------------------: |
| heat layout | one point | rm_wall | all_walls |
* test包含不同方式获得的测试样本40000组
* `test_0.txt`通过sequence采样方式生成的10000组测试样本 ,示例如下
| ![Seq_Example_layout_1](https://gitee.com/ChenXianqi/picbed/raw/master/img/Seq_Example_layout_1.jpg) | ![Seq_Example_layout_2](https://gitee.com/ChenXianqi/picbed/raw/master/img/Seq_Example_layout_2.jpg) | ![Seq_Example_layout_3](https://gitee.com/ChenXianqi/picbed/raw/master/img/Seq_Example_layout_3.jpg) |
| :----------------------------------------------------------: | :----------------------------------------------------------: | :----------------------------------------------------------: |
| Example 1 | Example 2 | Example 3 |
* `test_1.txt`通过gibbs方式采样生成的10000组测试样本 ,示例如下
| ![Gib_Example_layout_1](https://gitee.com/ChenXianqi/picbed/raw/master/img/Gib_Example_layout_1.jpg) | ![Gib_Example_layout_2](https://gitee.com/ChenXianqi/picbed/raw/master/img/Gib_Example_layout_2.jpg) | ![Gib_Example_layout_3](https://gitee.com/ChenXianqi/picbed/raw/master/img/Gib_Example_layout_3.jpg) |
| :----------------------------------------------------------: | :----------------------------------------------------------: | :----------------------------------------------------------: |
| Example 1 | Example 2 | Example 3 |
* `test_2.txt`功率相同或相近组件相邻构成的特殊组件布局样本共有4类情况每类情况1000组测试样本 ,示例如下
| ![image-20210111171838305](https://gitee.com/ChenXianqi/picbed/raw/master/img/image-20210111171838305.png) | ![image-20210111171953807](https://gitee.com/ChenXianqi/picbed/raw/master/img/image-20210111171953807.png) | ![image-20210111172012636](https://gitee.com/ChenXianqi/picbed/raw/master/img/image-20210111172012636.png) | ![image-20210111172030261](https://gitee.com/ChenXianqi/picbed/raw/master/img/image-20210111172030261.png) |
| :----------------------------------------------------------: | :----------------------------------------------------------: | :----------------------------------------------------------: | :----------------------------------------------------------: |
| ![image-20210111171926941](https://gitee.com/ChenXianqi/picbed/raw/master/img/image-20210111171926941.png) | ![image-20210111172002098](https://gitee.com/ChenXianqi/picbed/raw/master/img/image-20210111172002098.png) | ![image-20210111172021046](https://gitee.com/ChenXianqi/picbed/raw/master/img/image-20210111172021046.png) | ![image-20210111172040989](https://gitee.com/ChenXianqi/picbed/raw/master/img/image-20210111172040989.png) |
| 8和12号组件 | 2和7和10号组件 | 5和11号组件 | 4和9号组件 |
* `test_3.txt`组件布局密集在上半部1/5区域2/5区域3/5区域4/5区域或下半部的测试样本各1000组 ,示例如下
| ![image-20210111172439250](https://gitee.com/ChenXianqi/picbed/raw/master/img/image-20210111172439250.png) | ![image-20210111172443301](https://gitee.com/ChenXianqi/picbed/raw/master/img/image-20210111172443301.png) | ![image-20210111172447170](https://gitee.com/ChenXianqi/picbed/raw/master/img/image-20210111172447170.png) | ![image-20210111172450326](https://gitee.com/ChenXianqi/picbed/raw/master/img/image-20210111172450326.png) | ![image-20210111172454168](https://gitee.com/ChenXianqi/picbed/raw/master/img/image-20210111172454168.png) | ![image-20210111172458093](https://gitee.com/ChenXianqi/picbed/raw/master/img/image-20210111172458093.png) |
| :----------------------------------------------------------: | :----------------------------------------------------------: | :----------------------------------------------------------: | :----------------------------------------------------------: | :----------------------------------------------------------: | :----------------------------------------------------------: |
| 上半部 | 1/5区域 | 2/5区域 | 3/5区域 | 4/5区域 | 下半部 |
* `test_4.txt`组件布局密集在左半部1/5区域2/5区域3/5区域4/5区域或右半部的测试样本各1000组 ,示例如下
| ![image-20210111172237190](https://gitee.com/ChenXianqi/picbed/raw/master/img/image-20210111172237190.png) | ![image-20210111172256130](https://gitee.com/ChenXianqi/picbed/raw/master/img/image-20210111172256130.png) | ![image-20210111172259807](https://gitee.com/ChenXianqi/picbed/raw/master/img/image-20210111172259807.png) | ![image-20210111172303662](https://gitee.com/ChenXianqi/picbed/raw/master/img/image-20210111172303662.png) | ![image-20210111172307118](https://gitee.com/ChenXianqi/picbed/raw/master/img/image-20210111172307118.png) | ![image-20210111172311214](https://gitee.com/ChenXianqi/picbed/raw/master/img/image-20210111172311214.png) |
| :----------------------------------------------------------: | :----------------------------------------------------------: | :----------------------------------------------------------: | :----------------------------------------------------------: | :----------------------------------------------------------: | :----------------------------------------------------------: |
| 左半部 | 1/5区域 | 2/5区域 | 3/5区域 | 4/5区域 | 右半部 |
* `test_5.txt`组件布局在内部较小方形区域测试样本共考虑100x100区域120x120区域140x140区域3种情况各1000组测试样本 ,示例如下
| ![image-20210111172627957](https://gitee.com/ChenXianqi/picbed/raw/master/img/image-20210111172627957.png) | ![image-20210111172731192](https://gitee.com/ChenXianqi/picbed/raw/master/img/image-20210111172731192.png) | ![image-20210111172741897](https://gitee.com/ChenXianqi/picbed/raw/master/img/image-20210111172741897.png) |
| :----------------------------------------------------------: | :----------------------------------------------------------: | :----------------------------------------------------------: |
| ![image-20210111172644322](https://gitee.com/ChenXianqi/picbed/raw/master/img/image-20210111172644322.png) | ![image-20210111172737654](https://gitee.com/ChenXianqi/picbed/raw/master/img/image-20210111172737654.png) | ![image-20210111172745392](https://gitee.com/ChenXianqi/picbed/raw/master/img/image-20210111172745392.png) |
| 100x100 | 120x120 | 140x140 |
* `test_6.txt`最大功率布局在角落中的特殊样本共1000组测试样本示例如下
| ![image-20210111172945696](https://gitee.com/ChenXianqi/picbed/raw/master/img/image-20210111172945696.png) | ![image-20210111173016784](https://gitee.com/ChenXianqi/picbed/raw/master/img/image-20210111173016784.png) | ![image-20210111173020434](https://gitee.com/ChenXianqi/picbed/raw/master/img/image-20210111173020434.png) | ![image-20210111173026738](https://gitee.com/ChenXianqi/picbed/raw/master/img/image-20210111173026738.png) |
| :----------------------------------------------------------: | :----------------------------------------------------------: | :----------------------------------------------------------: | :----------------------------------------------------------: |
| 右下角 | 左上角 | 左下角 | 左下角 |
## 其他

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

View File

@ -0,0 +1,8 @@
aw_test0_1.mat
aw_test0_2.mat
aw_test0_3.mat
aw_test0_4.mat
aw_test0_5.mat
aw_test0_6.mat
aw_test0_7.mat
aw_test0_8.mat

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

View File

@ -0,0 +1,10 @@
aw_train_1.mat
aw_train_2.mat
aw_train_3.mat
aw_train_4.mat
aw_train_5.mat
aw_train_6.mat
aw_train_7.mat
aw_train_8.mat
aw_train_9.mat
aw_train_10.mat

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

View File

@ -0,0 +1,8 @@
op_test0_1.mat
op_test0_2.mat
op_test0_3.mat
op_test0_4.mat
op_test0_5.mat
op_test0_6.mat
op_test0_7.mat
op_test0_8.mat

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

View File

@ -0,0 +1,10 @@
op_train_1.mat
op_train_2.mat
op_train_3.mat
op_train_4.mat
op_train_5.mat
op_train_6.mat
op_train_7.mat
op_train_8.mat
op_train_9.mat
op_train_10.mat

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

View File

@ -0,0 +1,8 @@
rw_test0_1.mat
rw_test0_2.mat
rw_test0_3.mat
rw_test0_4.mat
rw_test0_5.mat
rw_test0_6.mat
rw_test0_7.mat
rw_test0_8.mat

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

View File

@ -0,0 +1,10 @@
rw_train_1.mat
rw_train_2.mat
rw_train_3.mat
rw_train_4.mat
rw_train_5.mat
rw_train_6.mat
rw_train_7.mat
rw_train_8.mat
rw_train_9.mat
rw_train_10.mat

200
src/LayoutDeepRegression.py Normal file
View File

@ -0,0 +1,200 @@
# encoding: utf-8
import math
from pathlib import Path
import torch
import torch.nn as nn
from torch.utils.data import DataLoader, random_split
import torchvision
from torch.optim.lr_scheduler import ExponentialLR
from pytorch_lightning import LightningModule
from src.data.layout import LayoutDataset
import src.utils.np_transforms as transforms
import src.models as models
from src.metric.metrics import Metric
class Model(LightningModule):
def __init__(self, hparams):
super().__init__()
self.hparams = hparams
self._build_model()
self.criterion = nn.L1Loss()
self.train_dataset = None
self.val_dataset = None
self.test_dataset = None
def _build_model(self):
model_list = ["SegNet_AlexNet", "SegNet_VGG", "SegNet_ResNet18", "SegNet_ResNet50",
"SegNet_ResNet101", "SegNet_ResNet34", "SegNet_ResNet152",
"FPN_ResNet18", "FPN_ResNet50", "FPN_ResNet101", "FPN_ResNet34", "FPN_ResNet152",
"FCN_AlexNet", "FCN_VGG", "FCN_ResNet18", "FCN_ResNet50", "FCN_ResNet101",
"FCN_ResNet34", "FCN_ResNet152",
"UNet_VGG"]
layout_model = self.hparams.model_name + '_' + self.hparams.backbone
assert layout_model in model_list
self.model = getattr(models, layout_model)(in_channels=1)
def forward(self, x):
x = self.model(x)
x = torch.sigmoid(x)
return x
def __dataloader(self, dataset, shuffle=False):
loader = DataLoader(
dataset=dataset,
shuffle=shuffle,
batch_size=self.hparams.batch_size,
num_workers=self.hparams.num_workers,
)
return loader
def configure_optimizers(self):
optimizer = torch.optim.Adam(self.parameters(),
lr=self.hparams.lr)
scheduler = ExponentialLR(optimizer, gamma=0.99)
return [optimizer], [scheduler]
def prepare_data(self):
"""Prepare dataset
"""
size: int = self.hparams.input_size
transform_layout = transforms.Compose(
[
transforms.Resize(size=(size, size)),
transforms.ToTensor(),
transforms.Normalize(
torch.tensor([self.hparams.mean_layout]),
torch.tensor([self.hparams.std_layout]),
),
]
)
transform_heat = transforms.Compose(
[
transforms.Resize(size=(size, size)),
transforms.ToTensor(),
transforms.Normalize(
torch.tensor([self.hparams.mean_heat]),
torch.tensor([self.hparams.std_heat]),
),
]
)
# here only support format "mat"
assert self.hparams.data_format == "mat"
trainval_dataset = LayoutDataset(
self.hparams.data_root,
self.hparams.boundary,
list_path=self.hparams.train_list,
train=True,
transform=transform_layout,
target_transform=transform_heat,
)
test_dataset = LayoutDataset(
self.hparams.data_root,
self.hparams.boundary,
list_path=self.hparams.test_list,
train=False,
transform=transform_layout,
target_transform=transform_heat,
)
# split train/val set
train_length, val_length = int(len(trainval_dataset) * 0.8), int(len(trainval_dataset) * 0.2)
train_dataset, val_dataset = torch.utils.data.random_split(trainval_dataset,
[train_length, val_length])
print(
f"Prepared dataset, train:{int(len(train_dataset))},\
val:{int(len(val_dataset))}, test:{len(test_dataset)}"
)
# assign to use in dataloaders
self.train_dataset = self.__dataloader(train_dataset, shuffle=True)
self.val_dataset = self.__dataloader(val_dataset, shuffle=False)
self.test_dataset = self.__dataloader(test_dataset, shuffle=False)
def train_dataloader(self):
return self.train_dataset
def val_dataloader(self):
return self.val_dataset
def test_dataloader(self):
return self.test_dataset
def training_step(self, batch, batch_idx):
layout, heat = batch
heat_pred = self(layout)
loss = self.criterion(heat, heat_pred)
self.log("train/training_mae", loss * self.hparams.std_heat)
if batch_idx == 0:
grid = torchvision.utils.make_grid(
heat_pred[:4, ...], normalize=True
)
self.logger.experiment.add_image(
"train_pred_heat_field", grid, self.global_step
)
if self.global_step == 0:
grid = torchvision.utils.make_grid(
heat[:4, ...], normalize=True
)
self.logger.experiment.add_image(
"train_heat_field", grid, self.global_step
)
return {"loss": loss}
def validation_step(self, batch, batch_idx):
layout, heat = batch
heat_pred = self(layout)
loss = self.criterion(heat, heat_pred)
return {"val_loss": loss}
def validation_epoch_end(self, outputs):
val_loss_mean = torch.stack([x["val_loss"] for x in outputs]).mean()
self.log("val/val_mae", val_loss_mean.item() * self.hparams.std_heat)
def test_step(self, batch, batch_idx):
layout, heat = batch
heat_pred = self(layout)
data_config = Path(__file__).absolute().parent.parent / "config/data.yml"
layout_metric = Metric(heat_pred, heat, boundary=self.hparams.boundary,
layout=layout, data_config=data_config, hparams=self.hparams)
assert self.hparams.metric in layout_metric.metrics
loss = getattr(layout_metric, self.hparams.metric)()
return {"test_loss": loss}
def test_epoch_end(self, outputs):
test_loss_mean = torch.stack([x["test_loss"] for x in outputs]).mean()
self.log("test_loss (" + self.hparams.metric +")", test_loss_mean.item())
@staticmethod
def add_model_specific_args(parser): # pragma: no-cover
"""Parameters you define here will be available to your model through `self.hparams`.
"""
# dataset args
parser.add_argument("--data_root", type=str, required=True, help="path of dataset")
parser.add_argument("--train_list", type=str, required=True, help="path of train dataset list")
parser.add_argument("--train_size", default=0.8, type=float, help="train_size in train_test_split")
parser.add_argument("--test_list", type=str, required=True, help="path of test dataset list")
parser.add_argument("--boundary", type=str, default="rm_wall", help="boundary condition")
parser.add_argument("--data_format", type=str, default="mat", choices=["mat", "h5"], help="dataset format")
# Normalization params
parser.add_argument("--mean_layout", default=0, type=float)
parser.add_argument("--std_layout", default=1, type=float)
parser.add_argument("--mean_heat", default=0, type=float)
parser.add_argument("--std_heat", default=1, type=float)
# Model params (opt)
parser.add_argument("--input_size", default=200, type=int)
parser.add_argument("--model_name", type=str, default='SegNet', help="the name of chosen model")
parser.add_argument("--backbone", type=str, default='ResNet18', help="the used backbone in the regression model")
parser.add_argument("--metric", type=str, default='mae_global',
help="the used metric for evaluation of testing")
return parser

0
src/__init__.py Normal file
View File

0
src/data/__init__.py Normal file
View File

41
src/data/layout.py Normal file
View File

@ -0,0 +1,41 @@
# -*- encoding: utf-8 -*-
"""Layout dataset
"""
import os
from .loadresponse import LoadResponse, mat_loader
class LayoutDataset(LoadResponse):
"""Layout dataset (mutiple files) generated by 'layout-generator'.
"""
def __init__(
self,
root,
sub_dir,
list_path=None,
train=True,
transform=None,
target_transform=None,
load_name="F",
resp_name="u",
):
subdir = os.path.join("train", "train") \
if train else os.path.join("test", "test")
# find the path of the list of train/test samples
list_path = os.path.join(root, sub_dir, list_path)
# find the root path of the samples
root = os.path.join(root, sub_dir, subdir)
super().__init__(
root,
mat_loader,
list_path,
load_name=load_name,
resp_name=resp_name,
extensions="mat",
transform=transform,
target_transform=target_transform,
)

113
src/data/loadresponse.py Normal file
View File

@ -0,0 +1,113 @@
# -*- encoding: utf-8 -*-
"""Load Response Dataset.
"""
import os
import scipy.io as sio
import numpy as np
from torchvision.datasets import VisionDataset
class LoadResponse(VisionDataset):
"""Some Information about LoadResponse dataset"""
def __init__(
self,
root,
loader,
list_path,
load_name="F",
resp_name="u",
extensions=None,
transform=None,
target_transform=None,
is_valid_file=None,
):
super().__init__(
root, transform=transform, target_transform=target_transform
)
self.list_path = list_path
self.loader = loader
self.load_name = load_name
self.resp_name = resp_name
self.extensions = extensions
self.sample_files = make_dataset_list(root, list_path, extensions, is_valid_file)
def __getitem__(self, index):
path = self.sample_files[index]
load, resp = self.loader(path, self.load_name, self.resp_name)
if self.transform is not None:
load = self.transform(load)
if self.target_transform is not None:
resp = self.target_transform(resp)
return load, resp
def __len__(self):
return len(self.sample_files)
def make_dataset(root_dir, extensions=None, is_valid_file=None):
"""make_dataset() from torchvision.
"""
files = []
root_dir = os.path.expanduser(root_dir)
if not ((extensions is None) ^ (is_valid_file is None)):
raise ValueError(
"Both extensions and is_valid_file \
cannot be None or not None at the same time"
)
if extensions is not None:
is_valid_file = lambda x: has_allowed_extension(x, extensions)
assert os.path.isdir(root_dir), root_dir
for root, _, fns in sorted(os.walk(root_dir, followlinks=True)):
for fn in sorted(fns):
path = os.path.join(root, fn)
if is_valid_file(path):
files.append(path)
return files
def make_dataset_list(root_dir, list_path, extensions=None, is_valid_file=None):
"""make_dataset() from torchvision.
"""
files = []
root_dir = os.path.expanduser(root_dir)
if not ((extensions is None) ^ (is_valid_file is None)):
raise ValueError(
"Both extensions and is_valid_file \
cannot be None or not None at the same time"
)
if extensions is not None:
is_valid_file = lambda x: has_allowed_extension(x, extensions)
assert os.path.isdir(root_dir), root_dir
with open(list_path, 'r') as rf:
for line in rf.readlines():
data_path = line.strip()
path = os.path.join(root_dir, data_path)
if is_valid_file(path):
files.append(path)
return files
def has_allowed_extension(filename, extensions):
return filename.lower().endswith(extensions)
def mat_loader(path, load_name, resp_name=None):
mats = sio.loadmat(path)
load = mats.get(load_name)
resp = mats.get(resp_name) if resp_name is not None else None
return load, resp
if __name__ == "__main__":
total_num = 50000
with open('train'+str(total_num)+'.txt', 'w') as wf:
for idx in range(int(total_num*0.8)):
wf.write('Example'+str(idx)+'.mat'+'\n')
with open('val'+str(total_num)+'.txt', 'w') as wf:
for idx in range(int(total_num*0.8), total_num):
wf.write('Example'+str(idx)+'.mat'+'\n')

25
src/metric/README.md Normal file
View File

@ -0,0 +1,25 @@
# Metrics for benchmark
## 介绍
> 本项目根据不同的需求构造了不同的metric准则评价模型训练的好坏。
## Metrics准则
> 根据不同的需求构造了pixel-level metricsimage-level metrics和batch-level metrics
* Pixel-level metrics
* `value_and_pos_error_of_maximum_temperature`: 最高温的预测误差和最高温发生位置的预测误差
* 可选参数`output_type``value`和`position`,默认`value`,其中`value`输出最高温预测误差,`position`输出最高温位置预测误差。
* Image-level metrics
* `mae_global`: 全局温度平均预测误差
* `mae_boundary`: 边界处温度平均预测误差
* 可选参数`output_type``Dirichlet`和`Neumann`,默认`Dirichlet`,其中`Dirichlet`输出`Dirichlet`边界处温度平均预测误差,`Neumann`输出`Neumann`边界处温度平均预测误差。
* `mae_component`: 最大的组件处温度平均预测误差
* `global_image_spearmanr`: 预测温度场和真实温度场的Spearman相关系数
- Batch-level metrics
- `max_tem_spearmanr`: 不同样本的预测最高温排序和真实最高温排序的Spearman相关系数衡量代理模型对不同布局对应的最高温进行正确排序的能力
## 其他

464
src/metric/metrics.py Normal file
View File

@ -0,0 +1,464 @@
# encoding: utf-8
import copy
import torch
import yaml
import numpy as np
import torch.nn.functional as F
from scipy.stats import spearmanr
class Metric:
def __init__(self, input, target, boundary=None,
layout=None, data_config=None, hparams=None):
"""
Args:
input: (batch size x 1 x N x N or N x N) the predicted temperature field
target: (batch size x 1 x N x N or N x N) the real temperature field
boundary: 'all_walls' - all the dirichlet BCs
: 'rm_wall' - the neumann BCs for three sides and the dirichlet BCs for one side
: 'one_point' - all the neumann BCs except one tiny heatsink with dirichlet BC
layout: Input layout
data_config: Dataset parameter
hparams: Model parameter
"""
self.data_config = data_config
self.layout = layout
self.boundary = boundary
self.input = input
self.target = target
self.hparams = hparams
self.data = None
self.data_info()
self.metrics = self.all_metrics()
def all_metrics(self):
self.metrics = ["mae_global", "mae_boundary", "mae_component",
"value_and_pos_error_of_maximum_temperature", "max_tem_spearmanr",
"global_image_spearmanr"]
return self.metrics
def data_info(self):
data_yaml = open(self.data_config, 'r', encoding='gbk')
self.data = yaml.load(data_yaml, yaml.FullLoader)
self.L = self.data['length']
self.power = np.array(self.data['powers']) / self.hparams.std_layout
self.comp_size = np.array(self.data['units'])
self.comp_pixel_size = np.round(self.comp_size / self.L * 200).astype(int)
# -------------------tool functions--------------------------#
def identify_same_power(self, power):
org_power = np.array(power)
power1 = np.array(list(set(power))) # 对元素去重
indx1 = []
indx2 = []
indx3 = []
for i in range(len(power1)):
ind = np.where(org_power == power1[i])[0]
if len(ind) == 1: # 一个组件一个功率
indx1 = indx1 + list(ind)
elif len(ind) == 2: # 两个组件一个功率
indx2 = indx2 + list(ind)
elif len(ind) == 3: # 三个组件一个功率
indx3 = indx3 + list(ind)
else:
print('There are four components with the same intensity!')
return (indx1, indx2, indx3)
def identify_component_boundary(self, layout, power, boundary):
"""
find the pixel locations of components
Args:
layout: pixel-level representation
power: the component dissapation power
boundary: 'all_walls' - all the dirichlet BCs
: 'rm_wall' - the neumann BCs for three sides and the dirichlet BCs for one side
: 'one_point' - all the neumann BCs except one tiny heatsink with dirichlet BC
When boundary is 'one_point', the input layout should be transposed and then read in an inverse-row order.
Returns:
location: -> Tensor: N * 4, pixel coordinates
"""
if boundary == 'one_point':
temp = layout.cpu().numpy().T[::-1].copy()
layout = torch.from_numpy(temp)
comp_num = len(power)
location = torch.zeros(comp_num, 4)
(indx1, indx2, indx3) = self.identify_same_power(power)
for i in range(comp_num):
[index_x, index_y] = torch.where(layout == power[i])
if i in indx1:
xmin, xmax = torch.min(index_x).item(), torch.max(index_x).item()
ymin, ymax = torch.min(index_y).item(), torch.max(index_y).item()
location[i, :] = torch.tensor([xmin, xmax, ymin, ymax])
if i in indx2: # [3, 8, 4, 10, 7, 11] # 4 和 9 号组件P=8, 5和11P=10, 8和12P=12
flag1 = 0
layout_flag = torch.zeros_like(layout)
layout_flag[index_x, index_y] = 1
for j in range(int(len(indx2)/2)):
temp = indx2[(2*j): (2*j + 2)]
if i in temp:
comp_index = temp
comp_coord = self.find_comp_coordinate(layout_flag, self.comp_pixel_size, comp_index)
if comp_coord is None:
pass
else:
location[comp_index[0], :] = torch.tensor(comp_coord[0])
location[comp_index[1], :] = torch.tensor(comp_coord[1])
flag1 = 1
if flag1 == 0:
print("Something wrong! Cannot locate the component #", i)
if i in indx3: # [1, 6, 9]
if i == 1:
flag2 = 0 # to indicate whether locate the components
layout_flag = torch.zeros_like(layout)
layout_flag[index_x, index_y] = 1
xmin1, ymin1 = self.find_left_top_point(index_x, index_y)
xmax1 = xmin1 + self.comp_pixel_size[i, 0] - 1
ymax1 = ymin1 + self.comp_pixel_size[i, 1] - 1
layout_flag[xmin1: (xmax1 + 1), ymin1: (ymax1 + 1)] = 0
for j in range(int(len(indx3)/3)):
temp = indx3[(3*j): (3*j + 3)]
if i in temp:
comp_index = temp
comp_index.remove(i)
comp_coord = self.find_comp_coordinate(layout_flag, self.comp_pixel_size, comp_index)
if comp_coord is None:
pass
else:
location[i, :] = torch.tensor([xmin1, xmax1, ymin1, ymax1])
location[comp_index[0], :] = torch.tensor(comp_coord[0])
location[comp_index[1], :] = torch.tensor(comp_coord[1])
flag2 += 1
if i == 9 and flag2 == 0:
print("Something wrong! Cannot locate components # 2, 7, 10")
return location
def find_left_top_point(self, index_x, index_y):
x_min = torch.min(index_x).item()
indx_min = torch.where(index_x == torch.min(index_x))[0]
temp = index_y[indx_min]
y_min = torch.min(temp).item()
return (x_min, y_min)
def find_comp_coordinate(self, layout, comp_pixel_size, comp_index):
layout_flag = copy.deepcopy(layout)
indx, indy = torch.where(layout_flag == 1)
x_min1, y_min1 = self.find_left_top_point(indx, indy)
x_max1 = x_min1 + comp_pixel_size[comp_index[0], 0] - 1
y_max1 = y_min1 + comp_pixel_size[comp_index[0], 1] - 1
layout_flag[x_min1: x_max1 + 1, y_min1: y_max1 + 1] = 0
indx, indy = torch.where(layout_flag == 1)
x_min2, y_min2 = self.find_left_top_point(indx, indy)
x_max2 = x_min2 + comp_pixel_size[comp_index[1], 0] - 1
y_max2 = y_min2 + comp_pixel_size[comp_index[1], 1] - 1
layout_flag[x_min2: x_max2 + 1, y_min2: y_max2 + 1] = 0
if torch.sum(layout_flag) == 0:
return ([x_min1, x_max1, y_min1, y_max1], [x_min2, x_max2, y_min2, y_max2])
else:
layout_flag = copy.deepcopy(layout)
x_max1 = x_min1 + comp_pixel_size[comp_index[1], 0] - 1
y_max1 = y_min1 + comp_pixel_size[comp_index[1], 1] - 1
layout_flag[x_min1: x_max1 + 1, y_min1: y_max1 + 1] = 0
indx, indy = torch.where(layout_flag == 1)
x_min2, y_min2 = self.find_left_top_point(indx, indy)
x_max2 = x_min2 + comp_pixel_size[comp_index[0], 0] - 1
y_max2 = y_min2 + comp_pixel_size[comp_index[0], 1] - 1
layout_flag[x_min2: x_max2 + 1, y_min2: y_max2 + 1] = 0
if torch.sum(layout_flag) == 0:
return ([x_min2, x_max2, y_min2, y_max2], [x_min1, x_max1, y_min1, y_max1])
else:
return None
# -------------------tool functions--------------------------#
# --------------metric functions from here-------------------#
def mae_global(self):
"""
calculate the global temperature prediction mean absolute error between input and target.
Returns:
mae: the mean absolute error of the whole field for a batch of samples
"""
return F.l1_loss(self.input, self.target, reduction='mean') * self.hparams.std_heat
def mae_boundary(self, output_type='Dirichlet', reduction='mean'):
"""
calculate the temperature perdiction mean abosolute error of the boundary of the domain.
The input and target are tensors.
Args:
output_type: 'Dirichlet' for outputing the error of Dirichlet boundary
'Neumann' for outputing the error of Neumann boundary
Returns:
mae: (dirichlet, neumann) -> tuple: the specific (mean for batch > 1) mae in the boundary
"""
if self.input.dim() == 2:
[nx, ny] = self.input.shape
batch = 1
std_input = self.input.unsqueeze(0).unsqueeze(0).cpu()
std_target = self.target.unsqueeze(0).unsqueeze(0).cpu()
elif self.input.dim() == 4:
[batch, channel, nx, ny] = self.input.shape
std_input = self.input.cpu()
std_target = self.target.cpu()
if channel != 1:
raise ValueError('Please input tensors with channel = 1.')
else:
raise ValueError("Please input four-dim or two-dim tensors with (batch * 1 *) N * N.")
num_boundaryelement = 2*nx + 2*ny - 4 # 边界元素总数
# 初始化边界总 mask
mask = torch.zeros([nx, ny])
mask[..., 0, :] = 1
mask[..., -1, :] = 1
mask[..., :, 0] = 1
mask[..., :, -1] = 1
if self.boundary == 'all_walls':
num_dBC = num_boundaryelement
num_nBC = 0
dBC_mask = mask
nBC_mask = mask - dBC_mask
else:
[index_x, index_y] = torch.where(self.target[0, 0, :, :] == torch.min(self.target[0, 0, :, :]))
dBC_mask = torch.zeros_like(mask)
num_dBC = torch.max(torch.tensor([index_x[-1] - index_x[0] + 1, (index_y[-1] - index_y[0] + 1)])).item()
num_nBC = num_boundaryelement - num_dBC
dBC_mask[index_x, index_y] = 1
nBC_mask = mask - dBC_mask
dBC_mask.unsqueeze_(0).unsqueeze_(0)
nBC_mask.unsqueeze_(0).unsqueeze_(0)
dBC_input = std_input * dBC_mask
dBC_target = std_target * dBC_mask
nBC_input = std_input * nBC_mask
nBC_target = std_target * nBC_mask
dirichletBC_mae = torch.sum(torch.abs(dBC_input - dBC_target), (1, 2, 3)) / num_dBC
neumannBC_mae = (torch.sum(torch.abs(nBC_input - nBC_target), (1, 2, 3)) / num_nBC if num_nBC else torch.zeros([batch]))
if reduction == 'mean':
dir_mae = torch.mean(dirichletBC_mae)
neu_mae = torch.mean(neumannBC_mae)
elif reduction == 'max':
dir_mae = torch.max(dirichletBC_mae)
neu_mae = torch.max(neumannBC_mae)
else:
raise ValueError("Please input reduction with 'mean' or 'max'.")
if output_type == 'Dirichlet':
return dir_mae * self.hparams.std_heat
elif output_type == 'Neumann':
return neu_mae * self.hparams.std_heat
else:
raise ValueError("Please input the right boundary type ('Dirichlet' or 'Neumann').")
def mae_component(self, xs=None, ys=None):
"""
calculate the prediction mean absolute error of component-covering area
Args:
xs: meshgrid, N * N, when mesh = 'nonuniform', it is needed.
ys: meshgrid, N * N, when mesh = 'nonuniform', it is needed.
Returns:
comp_mae: -> list: with N elements
Note:
xs and ys have been generated and added automatically and specifically.
"""
if self.input.dim() != self.layout.dim():
raise ValueError("Please input 'layout' with the same size as 'input' tensors.")
if self.input.dim() == 2:
[nx, ny] = self.input.shape
batch = 1
std_input = self.input.unsqueeze(0).unsqueeze(0).cpu()
std_target = self.target.unsqueeze(0).unsqueeze(0).cpu()
std_layout = self.layout.unsqueeze(0).unsqueeze(0).cpu()
elif self.input.dim() == 4:
[batch, channel, nx, ny] = self.input.shape
std_input = self.input.cpu()
std_target = self.target.cpu()
std_layout = self.layout
if channel != 1:
raise ValueError('Please input tensors with channel = 1.')
else:
raise ValueError("Please input four-dim or two-dim tensors with (batch * 1 *) N * N.")
domain_length = self.L
mesh = 'uniform'
if self.boundary == 'one_point':
mesh = 'nonuniform'
comp_mae_max_batch = torch.zeros(batch)
for k in range(batch):
single_input = std_input[k, 0, :, :]
single_target = std_target[k, 0, :, :]
single_layout = std_layout[k, 0, :, :]
location = self.identify_component_boundary(single_layout, self.power, self.boundary)
comp_num = len(self.power)
comp_mae = []
comp_mask = torch.zeros([comp_num, nx, ny])
comp_mae = torch.zeros([comp_num])
for i in range(comp_num):
[xmin, xmax, ymin, ymax] = location[i, :].numpy().astype(int)
mask = torch.zeros(nx, ny)
if mesh == 'uniform':
mask[xmin:(xmax + 1), ymin:(ymax + 1)] = 1
num_element = (xmax - xmin + 1) * (ymax - ymin + 1)
else:
if xs is None or ys is None:
xs = torch.linspace(0, domain_length, steps=200) # 生成200个均匀排列的数
ys = torch.linspace(0, domain_length, steps=200)
# 对应有限差分计算过程中的网格自适应加密函数
xs = 4 / ((xs[-1] - xs[0])**2) * ((xs - (xs[-1] + xs[0]) / 2)**3) + (xs[0] + xs[-1]) / 2
ys = ys**2 / (ys[0] + ys[-1]) + ys[0] * ys[-1] / (ys[0] + ys[-1])
xs, ys = torch.meshgrid(xs, ys)
x_min = xmin * domain_length / nx
x_max = (xmax + 1) * domain_length / nx
y_min = ymin * domain_length / ny
y_max = (ymax + 1) * domain_length / ny
ind = (xs >= x_min) & (xs <= x_max) & (ys >= y_min) & (ys <= y_max)
mask[ind] = 1
num_element = torch.sum(mask).item()
comp_mask[i, :, :] = mask
comp_input = single_input * mask
comp_target = single_target * mask
mae = torch.sum(torch.abs(comp_input - comp_target)) / num_element
comp_mae[i] = mae
comp_mae_max = torch.max(comp_mae)
comp_mae_max_batch[k] = comp_mae_max
return torch.mean(comp_mae_max_batch) * self.hparams.std_heat
def value_and_pos_error_of_maximum_temperature(self, output_type='value'):
"""
calculate the absolute error of the maximum temperature between input and target
Args:
output_type: 'value' for outputing the value error of maximum temperature
'position' for outputing the position error of maximum temperature
Returns:
error_max_tem: batch : the error of the maximum temperature between input and target
error_max_tem_pos: batch : the element error of the position of the maximum temperature
"""
if self.input.dim() == 2:
[nx, ny] = self.input.shape
batch = 1
std_input = self.input.unsqueeze(0)
std_target = self.target.unsqueeze(0)
elif self.input.dim() == 4:
[batch, channel, nx, ny] = self.input.shape
std_input = self.input.squeeze(1)
std_target = self.target.squeeze(1)
if channel != 1:
raise ValueError('Please input tensors with channel = 1.')
else:
raise ValueError("Please input four-dim or two-dim tensors with (batch * 1 *) N * N.")
[input_max_tem, input_ind] = torch.max(std_input.reshape(batch, -1), 1)
[target_max_tem, target_ind] = torch.max(std_target.reshape(batch, -1), 1)
# 计算最高温的误差
error_max_temp = torch.abs(input_max_tem - target_max_tem)
# 找出最高温对应位置
input_max_tem_pos = torch.zeros(batch, 2)
target_max_tem_pos = torch.zeros(batch, 2)
for i in range(batch):
ind1 = input_ind[i].item()
ind2 = target_ind[i].item()
flag = ind1 % ny
ind1_x = ((ind1 // ny) if flag > 0 else (ind1 // ny - 1))
ind1_y = ((flag - 1) if flag > 0 else (ny - 1))
flag = ind2 % ny
ind2_x = ((ind2 // ny) if flag > 0 else (ind2 // ny - 1))
ind2_y = ((flag - 1) if flag > 0 else (ny - 1))
input_max_tem_pos[i, :] = torch.Tensor([ind1_x, ind1_y])
target_max_tem_pos[i, :] = torch.Tensor([ind2_x, ind2_y])
diff_pos = input_max_tem_pos - target_max_tem_pos
error_max_temp_pos = torch.sum(diff_pos * diff_pos, dim=1).sqrt_()
if output_type == 'value':
return torch.mean(error_max_temp) * self.hparams.std_heat
elif output_type == 'position':
return torch.mean(error_max_temp_pos)
else:
return ValueError("Please input the right output type ('value' or 'position').")
def max_tem_spearmanr(self):
"""
calculate the indicator (spearmanr) of the maximum temperature between input and target
Returns:
rho: [-1, 1]
p_value: the smaller the better. (ideal: p_value < 0.05)
"""
if self.input.dim() == 2:
[nx, ny] = self.input.shape
batch = 1
std_input = self.input.unsqueeze(0)
std_target = self.target.unsqueeze(0)
elif self.input.dim() == 4:
[batch, channel, nx, ny] = self.input.shape
std_input = self.input.squeeze(1)
std_target = self.target.squeeze(1)
if channel != 1:
raise ValueError('Please input tensors with channel = 1.')
else:
raise ValueError("Please input four-dim or two-dim tensors with (batch * 1 *) N * N.")
if batch == 1:
raise ValueError('please provide a batch of samples (batch > 1).')
input_max_tem = torch.max(std_input.reshape(batch, -1), 1)[0].data.cpu().numpy()
target_max_tem = torch.max(std_target.reshape(batch, -1), 1)[0].data.cpu().numpy()
rho, p_value = spearmanr(target_max_tem, input_max_tem)
return torch.tensor(rho)
def global_image_spearmanr(self):
"""
calculate the indicator (spearmanr) correlation coefficient between input and target
Returns:
rho: [-1, 1]
p_value: the smaller the better. (ideal: p_value < 0.05)
"""
if self.input.dim() == 2:
[nx, ny] = self.input.shape
batch = 1
std_input = self.input.unsqueeze(0)
std_target = self.target.unsqueeze(0)
elif self.input.dim() == 4:
[batch, channel, nx, ny] = self.input.shape
std_input = self.input.squeeze(1)
std_target = self.target.squeeze(1)
if channel != 1:
raise ValueError('Please input tensors with channel = 1.')
else:
raise ValueError("Please input four-dim or two-dim tensors with (batch * 1 *) N * N.")
spear_batch = torch.zeros(batch)
for i in range(batch):
single_input = std_input[i, :, :].reshape(-1).data.cpu().numpy()
single_target = std_target[i, :, :].reshape(-1).data.cpu().numpy()
rho, p_value = spearmanr(single_input, single_target)
spear_batch[i] = rho
return torch.mean(spear_batch)
if __name__ == "__main__":
data_config = Path(__file__).absolute().parent.parent.parent / "config/data.yml"
data_yaml = open(data_config, 'r', encoding='gbk')
data = yaml.load(data_yaml, Loader=yaml.FullLoader)
L = data['length']
power = data['powers']
comp_size = data['units']
print(np.array(L))
print(np.array(power))
print(np.array(comp_size))

4
src/models/__init__.py Normal file
View File

@ -0,0 +1,4 @@
from .unet import *
from .fcn import *
from .segnet import *
from .fpn import *

View File

@ -0,0 +1,3 @@
from .alexnet import *
from .resnet import *
from .vgg import *

View File

@ -0,0 +1,55 @@
# encoding: utf-8
"""
Alexnet backbone
"""
import torch
import torch.nn as nn
import torch.utils.model_zoo as model_zoo
__all__ = ["AlexNet"]
class AlexNet(nn.Module):
def __init__(self, in_channels=1, bn=False):
super(AlexNet, self).__init__()
self.features3 = nn.Sequential(
# kernel(11, 11) -> kernel(7, 7)
nn.Conv2d(in_channels=in_channels, out_channels=64,
kernel_size=7, stride=4, padding=3),
nn.BatchNorm2d(64) if bn else nn.GroupNorm(32, 64),
nn.ReLU(inplace=True),
)
# padding=0 -> padding=1
self.features4 = nn.Sequential(
nn.Conv2d(in_channels=64, out_channels=192, kernel_size=5, padding=2),
nn.BatchNorm2d(192) if bn else nn.GroupNorm(32, 192),
nn.ReLU(inplace=True),
)
self.features5 = nn.Sequential(
nn.Conv2d(in_channels=192, out_channels=384, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(in_channels=384, out_channels=256, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(in_channels=256, out_channels=256, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
)
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1, ceil_mode=False)
def forward(self, x: torch.Tensor) -> torch.Tensor:
x = self.features3(x)
x, indices3 = self.maxpool(x)
x = self.features4(x)
x, indices4 = self.maxpool(x)
x = self.features5(x)
x, indices5 = self.maxpool(x)
return x
if __name__ == "__main__":
x = torch.zeros(8, 1, 200, 200)
net = Alexnet()
print(net)
y = net(x)
print()

View File

@ -0,0 +1,233 @@
# encoding: utf-8
"""
ResNet backbone
"""
import math
import torch
import torch.nn as nn
import torch.utils.model_zoo as model_zoo
__all__ = ["ResNet", "resnet18", "resnet34", "resnet50", "resnet101", "resnet152"]
model_urls = {
'resnet18': 'https://download.pytorch.org/models/resnet18-5c106cde.pth',
'resnet34': 'https://download.pytorch.org/models/resnet34-333f7ec4.pth',
"resnet50": "https://download.pytorch.org/models/resnet50-19c8e357.pth",
"resnet101": "https://download.pytorch.org/models/resnet101-5d3b4d8f.pth",
"resnet152": "https://download.pytorch.org/models/resnet152-b121ed2d.pth",
}
def conv3x3(in_planes, out_planes, stride=1):
"""3x3 convolution with padding"""
return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, padding=1, bias=False)
class BasicBlock(nn.Module):
expansion = 1
def __init__(self, inplanes, planes, stride=1, downsample=None):
super(BasicBlock, self).__init__()
self.conv1 = conv3x3(inplanes, planes, stride)
self.bn1 = nn.BatchNorm2d(planes)
self.relu = nn.ReLU(inplace=True)
self.conv2 = conv3x3(planes, planes)
self.bn2 = nn.BatchNorm2d(planes)
self.downsample = downsample
self.stride = stride
def forward(self, x):
residual = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
if self.downsample is not None:
residual = self.downsample(x)
out += residual
out = self.relu(out)
return out
class Bottleneck(nn.Module):
expansion = 4
def __init__(self, inplanes, planes, stride=1, downsample=None):
super(Bottleneck, self).__init__()
self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False)
self.bn1 = nn.BatchNorm2d(planes)
self.conv2 = nn.Conv2d(planes,
planes,
kernel_size=3,
stride=stride,
padding=1,
bias=False)
self.bn2 = nn.BatchNorm2d(planes)
self.conv3 = nn.Conv2d(planes, planes * 4, kernel_size=1, bias=False)
self.bn3 = nn.BatchNorm2d(planes * 4)
self.relu = nn.ReLU(inplace=True)
self.downsample = downsample
self.stride = stride
def forward(self, x):
residual = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
out = self.relu(out)
out = self.conv3(out)
out = self.bn3(out)
if self.downsample is not None:
residual = self.downsample(x)
out += residual
out = self.relu(out)
return out
class ResNet(nn.Module):
def __init__(self, block, layers, in_channels=1):
self.inplanes = 64
super(ResNet, self).__init__()
self.conv1 = nn.Conv2d(in_channels, 64, kernel_size=7, stride=2, padding=3, bias=False)
self.bn1 = nn.BatchNorm2d(64)
self.relu = nn.ReLU(inplace=True)
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
self.layer1 = self._make_layer(block, 64, layers[0])
self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
self.layer3 = self._make_layer(block, 256, layers[2], stride=2)
self.layer4 = self._make_layer(block, 512, layers[3], stride=2)
for m in self.modules():
if isinstance(m, nn.Conv2d):
n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
m.weight.data.normal_(0, math.sqrt(2.0 / n))
elif isinstance(m, nn.BatchNorm2d):
m.weight.data.fill_(1)
m.bias.data.zero_()
def _make_layer(self, block, planes, blocks, stride=1):
downsample = None
if stride != 1 or self.inplanes != planes * block.expansion:
downsample = nn.Sequential(
nn.Conv2d(self.inplanes,
planes * block.expansion,
kernel_size=1,
stride=stride,
bias=False),
nn.BatchNorm2d(planes * block.expansion),
)
layers = []
layers.append(block(self.inplanes, planes, stride, downsample))
self.inplanes = planes * block.expansion
for i in range(1, blocks):
layers.append(block(self.inplanes, planes))
return nn.Sequential(*layers)
def _load_pretrained_model(self, model_url):
pretrain_dict = model_zoo.load_url(model_url)
model_dict = {}
state_dict = self.state_dict()
for k, v in pretrain_dict.items():
if k in state_dict:
model_dict[k] = v
state_dict.update(model_dict)
self.load_state_dict(state_dict)
def forward(self, input):
x = self.conv1(input)
x = self.bn1(x)
x = self.relu(x)
c1 = self.maxpool(x)
c2 = self.layer1(c1)
c3 = self.layer2(c2)
c4 = self.layer3(c3)
c5 = self.layer4(c4)
return c1, c2, c3, c4, c5
def resnet18(pretrained=False, in_channels=1, **kwargs):
"""Constructs a ResNet-18 model.
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
"""
model = ResNet(BasicBlock, [2, 2, 2, 2], in_channels=in_channels, **kwargs)
if pretrained:
model._load_pretrained_model(model_urls['resnet18'])
return model
def resnet34(pretrained=False, in_channels=1, **kwargs):
"""Constructs a ResNet-34 model.
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
"""
model = ResNet(BasicBlock, [3, 4, 6, 3], in_channels=in_channels, **kwargs)
if pretrained:
model._load_pretrained_model(model_urls['resnet34'])
return model
def resnet50(pretrained=False, in_channels=1, **kwargs):
"""Constructs a ResNet-50 model.
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
"""
model = ResNet(Bottleneck, [3, 4, 6, 3], in_channels=in_channels, **kwargs)
if pretrained:
model._load_pretrained_model(model_urls["resnet50"])
return model
def resnet101(pretrained=False, in_channels=1, **kwargs):
"""Constructs a ResNet-101 model.
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
"""
model = ResNet(Bottleneck, [3, 4, 23, 3], in_channels=in_channels, **kwargs)
if pretrained:
model._load_pretrained_model(model_urls["resnet101"])
return model
def resnet152(pretrained=False, in_channels=1, **kwargs):
"""Constructs a ResNet-152 model.
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
"""
model = ResNet(Bottleneck, [3, 8, 36, 3], in_channels=in_channels, **kwargs)
if pretrained:
model._load_pretrained_model(model_urls["resnet152"])
return model
if __name__ == "__main__":
x = torch.zeros(8, 1, 640, 640)
net = resnet50()
print(net)
y = net(x)
print()

196
src/models/backbone/vgg.py Normal file
View File

@ -0,0 +1,196 @@
# encoding: utf-8
"""
VGG backbone
"""
import torch
import torch.nn as nn
from typing import Union, List, Dict, Any, cast
from src.utils.vgg_utils import load_state_dict_from_url
__all__ = [
"VGG", "vgg11", "vgg11_bn", "vgg13", "vgg13_bn", "vgg16", "vgg16_bn",
"vgg19_bn", "vgg19",
]
model_urls = {
'vgg11': 'https://download.pytorch.org/models/vgg11-bbd30ac9.pth',
'vgg13': 'https://download.pytorch.org/models/vgg13-c768596a.pth',
'vgg16': 'https://download.pytorch.org/models/vgg16-397923af.pth',
'vgg19': 'https://download.pytorch.org/models/vgg19-dcbb9e9d.pth',
'vgg11_bn': 'https://download.pytorch.org/models/vgg11_bn-6002323d.pth',
'vgg13_bn': 'https://download.pytorch.org/models/vgg13_bn-abd245e5.pth',
'vgg16_bn': 'https://download.pytorch.org/models/vgg16_bn-6c64b313.pth',
'vgg19_bn': 'https://download.pytorch.org/models/vgg19_bn-c79401a0.pth',
}
class VGG(nn.Module):
def __init__(
self,
features: nn.Module,
num_classes: int = 1000,
init_weights: bool = True
) -> None:
super(VGG, self).__init__()
self.features = features
self.avgpool = nn.AdaptiveAvgPool2d((7, 7))
self.classifier = nn.Sequential(
nn.Linear(512 * 7 * 7, 4096),
nn.ReLU(True),
nn.Dropout(),
nn.Linear(4096, 4096),
nn.ReLU(True),
nn.Dropout(),
nn.Linear(4096, num_classes),
)
if init_weights:
self._initialize_weights()
def forward(self, x: torch.Tensor) -> torch.Tensor:
x = self.features(x)
x = self.avgpool(x)
x = torch.flatten(x, 1)
x = self.classifier(x)
return x
def _initialize_weights(self) -> None:
for m in self.modules():
if isinstance(m, nn.Conv2d):
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
if m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.BatchNorm2d):
nn.init.constant_(m.weight, 1)
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.Linear):
nn.init.normal_(m.weight, 0, 0.01)
nn.init.constant_(m.bias, 0)
def make_layers(cfg: List[Union[str, int]], batch_norm: bool = False) -> nn.Sequential:
layers: List[nn.Module] = []
in_channels = 3
for v in cfg:
if v == 'M':
layers += [nn.MaxPool2d(kernel_size=2, stride=2)]
else:
v = cast(int, v)
conv2d = nn.Conv2d(in_channels, v, kernel_size=3, padding=1)
if batch_norm:
layers += [conv2d, nn.BatchNorm2d(v), nn.ReLU(inplace=True)]
else:
layers += [conv2d, nn.ReLU(inplace=True)]
in_channels = v
return nn.Sequential(*layers)
cfgs: Dict[str, List[Union[str, int]]] = {
'A': [64, 'M', 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M'],
'B': [64, 64, 'M', 128, 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M'],
'D': [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 'M', 512, 512, 512, 'M', 512, 512, 512, 'M'],
'E': [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 256, 'M', 512, 512, 512, 512, 'M', 512, 512, 512, 512, 'M'],
}
def _vgg(arch: str, cfg: str, batch_norm: bool, pretrained: bool, progress: bool, **kwargs: Any) -> VGG:
if pretrained:
kwargs['init_weights'] = False
model = VGG(make_layers(cfgs[cfg], batch_norm=batch_norm), **kwargs)
if pretrained:
state_dict = load_state_dict_from_url(model_urls[arch],
progress=progress)
model.load_state_dict(state_dict)
return model
def vgg11(pretrained: bool = False, progress: bool = True, **kwargs: Any) -> VGG:
r"""VGG 11-layer model (configuration "A") from
`"Very Deep Convolutional Networks For Large-Scale Image Recognition" <https://arxiv.org/pdf/1409.1556.pdf>`._
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
progress (bool): If True, displays a progress bar of the download to stderr
"""
return _vgg('vgg11', 'A', False, pretrained, progress, **kwargs)
def vgg11_bn(pretrained: bool = False, progress: bool = True, **kwargs: Any) -> VGG:
r"""VGG 11-layer model (configuration "A") with batch normalization
`"Very Deep Convolutional Networks For Large-Scale Image Recognition" <https://arxiv.org/pdf/1409.1556.pdf>`._
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
progress (bool): If True, displays a progress bar of the download to stderr
"""
return _vgg('vgg11_bn', 'A', True, pretrained, progress, **kwargs)
def vgg13(pretrained: bool = False, progress: bool = True, **kwargs: Any) -> VGG:
r"""VGG 13-layer model (configuration "B")
`"Very Deep Convolutional Networks For Large-Scale Image Recognition" <https://arxiv.org/pdf/1409.1556.pdf>`._
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
progress (bool): If True, displays a progress bar of the download to stderr
"""
return _vgg('vgg13', 'B', False, pretrained, progress, **kwargs)
def vgg13_bn(pretrained: bool = False, progress: bool = True, **kwargs: Any) -> VGG:
r"""VGG 13-layer model (configuration "B") with batch normalization
`"Very Deep Convolutional Networks For Large-Scale Image Recognition" <https://arxiv.org/pdf/1409.1556.pdf>`._
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
progress (bool): If True, displays a progress bar of the download to stderr
"""
return _vgg('vgg13_bn', 'B', True, pretrained, progress, **kwargs)
def vgg16(pretrained: bool = False, progress: bool = True, **kwargs: Any) -> VGG:
r"""VGG 16-layer model (configuration "D")
`"Very Deep Convolutional Networks For Large-Scale Image Recognition" <https://arxiv.org/pdf/1409.1556.pdf>`._
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
progress (bool): If True, displays a progress bar of the download to stderr
"""
return _vgg('vgg16', 'D', False, pretrained, progress, **kwargs)
def vgg16_bn(pretrained: bool = False, progress: bool = True, **kwargs: Any) -> VGG:
r"""VGG 16-layer model (configuration "D") with batch normalization
`"Very Deep Convolutional Networks For Large-Scale Image Recognition" <https://arxiv.org/pdf/1409.1556.pdf>`._
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
progress (bool): If True, displays a progress bar of the download to stderr
"""
return _vgg('vgg16_bn', 'D', True, pretrained, progress, **kwargs)
def vgg19(pretrained: bool = False, progress: bool = True, **kwargs: Any) -> VGG:
r"""VGG 19-layer model (configuration "E")
`"Very Deep Convolutional Networks For Large-Scale Image Recognition" <https://arxiv.org/pdf/1409.1556.pdf>`._
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
progress (bool): If True, displays a progress bar of the download to stderr
"""
return _vgg('vgg19', 'E', False, pretrained, progress, **kwargs)
def vgg19_bn(pretrained: bool = False, progress: bool = True, **kwargs: Any) -> VGG:
r"""VGG 19-layer model (configuration 'E') with batch normalization
`"Very Deep Convolutional Networks For Large-Scale Image Recognition" <https://arxiv.org/pdf/1409.1556.pdf>`._
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
progress (bool): If True, displays a progress bar of the download to stderr
"""
return _vgg('vgg19_bn', 'E', True, pretrained, progress, **kwargs)

217
src/models/fcn.py Normal file
View File

@ -0,0 +1,217 @@
# encoding: utf-8
import torch
from torch import nn
from torch.nn import functional as F
from .backbone import *
__all__ = [
"FCN_VGG", "FCN_AlexNet", "FCN_ResNet18", "FCN_ResNet34",
"FCN_ResNet50", "FCN_ResNet101", "FCN_ResNet152",
]
class Conv3x3GNReLU(nn.Module):
def __init__(self, in_channels, out_channels, upsample=False):
super().__init__()
self.upsample = upsample
self.block = nn.Sequential(
nn.Conv2d(in_channels, out_channels, (3, 3), stride=1, padding=1, bias=False),
nn.GroupNorm(32, out_channels),
nn.ReLU(inplace=True),
)
def forward(self, x, size):
if self.upsample:
x = F.interpolate(x, size=size, mode="bilinear", align_corners=True)
x = self.block(x)
return x
class FCN_VGG(nn.Module):
def __init__(self, inter_channels=256, in_channels=1, bn=False):
super(FCN_VGG, self).__init__()
vgg = vgg16()
features, classifier = list(vgg.features.children()), list(vgg.classifier.children())
if in_channels != 3:
features[0] = nn.Conv2d(in_channels, 64, kernel_size=3, stride=1, padding=1)
for f in features:
if 'MaxPool' in f.__class__.__name__:
f.ceil_mode = True
elif 'ReLU' in f.__class__.__name__:
f.inplace = True
features_temp = []
if not bn:
for i in range(len(features)):
features_temp.append(features[i])
if isinstance(features[i], nn.Conv2d):
features_temp.append(nn.GroupNorm(32, features[i].out_channels))
self.features3 = nn.Sequential(*features[:17])
self.features4 = nn.Sequential(*features[17: 24])
self.features5 = nn.Sequential(*features[24:])
self.score_pool3 = nn.Conv2d(256, inter_channels, kernel_size=1)
self.score_pool4 = nn.Conv2d(512, inter_channels, kernel_size=1)
fc6 = nn.Conv2d(512, 512, kernel_size=3, padding=1)
fc7 = nn.Conv2d(512, 512, kernel_size=1)
score_fr = nn.Conv2d(512, inter_channels, kernel_size=1)
self.score_fr = nn.Sequential(
fc6, nn.ReLU(inplace=True), fc7, nn.ReLU(inplace=True), score_fr
)
self.upscore2 = Conv3x3GNReLU(inter_channels, inter_channels, upsample=True)
self.upscore_pool4 = Conv3x3GNReLU(inter_channels, inter_channels, upsample=True)
self.final_conv = nn.Conv2d(inter_channels, 1, kernel_size=1)
def forward(self, x):
pool3 = self.features3(x)
pool4 = self.features4(pool3)
pool5 = self.features5(pool4)
score_fr = self.score_fr(pool5)
upscore2 = self.upscore2(score_fr, pool4.size()[-2:])
score_pool4 = self.score_pool4(pool4)
upscore_pool4 = self.upscore_pool4(score_pool4 + upscore2, pool3.size()[-2:])
score_pool3 = self.score_pool3(pool3)
upscore8 = F.interpolate(self.final_conv(score_pool3 + upscore_pool4), x.size()[-2:], mode='bilinear', align_corners=True)
return upscore8
class FCN_AlexNet(nn.Module):
def __init__(self, inter_channels=256, in_channels=1):
super(FCN_AlexNet, self).__init__()
self.alexnet = AlexNet(in_channels=in_channels)
self.score_pool3 = nn.Conv2d(64, inter_channels, kernel_size=1)
self.score_pool4 = nn.Conv2d(192, inter_channels, kernel_size=1)
fc6 = nn.Conv2d(256, 512, kernel_size=3, padding=1)
fc7 = nn.Conv2d(512, 512, kernel_size=1)
score_fr = nn.Conv2d(512, inter_channels, kernel_size=1)
self.score_fr = nn.Sequential(
fc6, nn.ReLU(inplace=True), fc7, nn.ReLU(inplace=True), score_fr
)
self.upscore2 = Conv3x3GNReLU(inter_channels, inter_channels, upsample=True)
self.upscore_pool4 = Conv3x3GNReLU(inter_channels, inter_channels, upsample=True)
self.final_conv = nn.Conv2d(inter_channels, 1, kernel_size=1)
def forward(self, x):
pool3 = self.alexnet.features3(x)
pool4 = self.alexnet.features4(pool3)
pool5 = self.alexnet.features5(pool4)
score_fr = self.score_fr(pool5)
upscore2 = self.upscore2(score_fr, pool4.size()[-2:])
score_pool4 = self.score_pool4(pool4)
upscore_pool4 = self.upscore_pool4(score_pool4 + upscore2, pool3.size()[-2:])
score_pool3 = self.score_pool3(pool3)
upscore8 = F.interpolate(self.final_conv(score_pool3 + upscore_pool4), x.size()[-2:],
mode='bilinear', align_corners=True)
return upscore8
class FCN_ResNet(nn.Module):
def __init__(self, backbone, inter_channels=256):
super(FCN_ResNet, self).__init__()
self.backbone = backbone
self.score_pool3 = nn.Conv2d(backbone.layer2[0].downsample[1].num_features,
inter_channels, kernel_size=1)
self.score_pool4 = nn.Conv2d(backbone.layer3[0].downsample[1].num_features,
inter_channels, kernel_size=1)
fc6 = nn.Conv2d(backbone.layer4[0].downsample[1].num_features,
512, kernel_size=3, padding=1)
fc7 = nn.Conv2d(512, 512, kernel_size=1)
score_fr = nn.Conv2d(512, inter_channels, kernel_size=1)
self.score_fr = nn.Sequential(
fc6, nn.ReLU(inplace=True), fc7, nn.ReLU(inplace=True), score_fr
)
self.upscore2 = Conv3x3GNReLU(inter_channels, inter_channels, upsample=True)
self.upscore_pool4 = Conv3x3GNReLU(inter_channels, inter_channels, upsample=True)
self.final_conv = nn.Conv2d(inter_channels, 1, kernel_size=1)
def forward(self, x):
_, _, pool3, pool4, pool5 = self.backbone(x)
score_fr = self.score_fr(pool5)
upscore2 = self.upscore2(score_fr, pool4.size()[-2:])
score_pool4 = self.score_pool4(pool4)
upscore_pool4 = self.upscore_pool4(score_pool4 + upscore2, pool3.size()[-2:])
score_pool3 = self.score_pool3(pool3)
upscore8 = F.interpolate(self.final_conv(score_pool3 + upscore_pool4), x.size()[-2:], mode='bilinear', align_corners=True)
return upscore8
def FCN_ResNet18(in_channels=1, **kwargs):
"""
Constructs FCN based on ResNet18 model.
"""
backbone_net = resnet18(in_channels=in_channels)
model = FCN_ResNet(backbone_net, **kwargs)
return model
def FCN_ResNet34(in_channels=1, **kwargs):
"""
Constructs FCN based on ResNet18 model.
"""
backbone_net = resnet34(in_channels=in_channels)
model = FCN_ResNet(backbone_net, **kwargs)
return model
def FCN_ResNet50(in_channels=1, **kwargs):
"""
Constructs FCN based on ResNet50 model.
"""
backbone_net = resnet50(in_channels=in_channels)
model = FCN_ResNet(backbone_net, **kwargs)
return model
def FCN_ResNet101(in_channels=1, **kwargs):
"""
Constructs FCN based on ResNet101 model.
"""
backbone_net = resnet101(in_channels=in_channels)
model = FCN_ResNet(backbone_net, **kwargs)
return model
def FCN_ResNet152(in_channels=1, **kwargs):
"""
Constructs FCN based on ResNet18 model.
"""
backbone_net = resnet152(in_channels=in_channels)
model = FCN_ResNet(backbone_net, **kwargs)
return model
if __name__ == '__main__':
model = FCN_AlexNet(in_channels=1, inter_channels=128)
x = torch.randn(1, 1, 200, 200)
with torch.no_grad():
y = model(x)
print(y.shape)

170
src/models/fpn.py Normal file
View File

@ -0,0 +1,170 @@
# encoding: utf-8
import torch.nn as nn
import torch.nn.functional as F
from src.utils.model_init import weights_init
from .backbone import *
__all__ = ["FPN_ResNet18", "FPN_ResNet34", "FPN_ResNet50", "FPN_ResNet101", "FPN_ResNet152"]
class Conv3x3GNReLU(nn.Module):
def __init__(self, in_channels, out_channels, upsample=False):
super().__init__()
self.upsample = upsample
self.block = nn.Sequential(
nn.Conv2d(in_channels, out_channels, (3, 3), stride=1, padding=1, bias=False),
nn.GroupNorm(32, out_channels),
# nn.BatchNorm2d(out_channels),
nn.ReLU(inplace=True),
)
def forward(self, x, size):
x = self.block(x)
if self.upsample:
x = F.interpolate(x, size=size, mode="bilinear", align_corners=True)
return x
class FPNBlock(nn.Module):
def __init__(self, pyramid_channels, skip_channels):
super().__init__()
self.skip_conv = nn.Conv2d(skip_channels, pyramid_channels, kernel_size=1)
def forward(self, x):
x, skip = x
x = F.interpolate(x, size=skip.size()[-2:], mode="bilinear", align_corners=True)
skip = self.skip_conv(skip)
x = x + skip
return x
class SegmentationBlock(nn.Module):
def __init__(self, in_channels, out_channels, n_upsamples=0):
super().__init__()
self.blocks = [Conv3x3GNReLU(in_channels, out_channels, upsample=bool(n_upsamples))]
if n_upsamples > 1:
for _ in range(1, n_upsamples):
self.blocks.append(Conv3x3GNReLU(out_channels, out_channels, upsample=True))
self.blocks_name = []
for i, block in enumerate(self.blocks):
self.add_module("Block_{}".format(i), block)
self.blocks_name.append("Block_{}".format(i))
def forward(self, x, sizes=[]):
for i, block_name in enumerate(self.blocks_name):
x = getattr(self, block_name)(x, sizes[i])
return x
class FPN_ResNet(nn.Module):
def __init__(
self,
backbone,
encoder_channels,
pyramid_channels=256,
segmentation_channels=128,
final_upsampling=4,
final_channels=1,
dropout=0.2,
):
super().__init__()
self.backbone = backbone
self.backbone.apply(weights_init)
self.final_upsampling = final_upsampling
self.conv1 = nn.Conv2d(encoder_channels[0],
pyramid_channels,
kernel_size=(1, 1))
self.p4 = FPNBlock(pyramid_channels, encoder_channels[1])
self.p3 = FPNBlock(pyramid_channels, encoder_channels[2])
self.p2 = FPNBlock(pyramid_channels, encoder_channels[3])
self.s5 = SegmentationBlock(pyramid_channels,
segmentation_channels,
n_upsamples=3)
self.s4 = SegmentationBlock(pyramid_channels,
segmentation_channels,
n_upsamples=2)
self.s3 = SegmentationBlock(pyramid_channels,
segmentation_channels,
n_upsamples=1)
self.s2 = SegmentationBlock(pyramid_channels,
segmentation_channels,
n_upsamples=0)
self.dropout = nn.Dropout2d(p=dropout, inplace=True)
self.final_conv = nn.Conv2d(segmentation_channels,
final_channels,
kernel_size=1,
padding=0)
def forward(self, x):
x = self.backbone(x)
_, c2, c3, c4, c5 = x
p5 = self.conv1(c5)
p4 = self.p4([p5, c4])
p3 = self.p3([p4, c3])
p2 = self.p2([p3, c2])
s5 = self.s5(p5, sizes=[c4.size()[-2:], c3.size()[-2:], c2.size()[-2:]])
s4 = self.s4(p4, sizes=[c3.size()[-2:], c2.size()[-2:]])
s3 = self.s3(p3, sizes=[c2.size()[-2:]])
s2 = self.s2(p2, sizes=[c2.size()[-2:]])
# x = torch.cat([s5, s4, s3, s2], dim=1)
x = s5 + s4 + s3 + s2
x = self.dropout(x)
x = self.final_conv(x)
if self.final_upsampling is not None and self.final_upsampling > 1:
x = F.interpolate(x, scale_factor=self.final_upsampling, mode="bilinear", align_corners=True)
return x
def FPN_ResNet18(in_channels=1, **kwargs):
"""FPN with ResNet18 as backbone
"""
backbone = resnet18(in_channels=in_channels)
model = FPN_ResNet(backbone, encoder_channels=[512, 256, 128, 64], **kwargs)
return model
def FPN_ResNet34(in_channels=1, **kwargs):
"""FPN with ResNet18 as backbone
"""
backbone = resnet34(in_channels=in_channels)
model = FPN_ResNet(backbone, encoder_channels=[512, 256, 128, 64], **kwargs)
return model
def FPN_ResNet50(in_channels=1, **kwargs):
"""FPN with ResNet50 as backbone
"""
backbone = resnet50(in_channels=in_channels)
model = FPN_ResNet(backbone, encoder_channels=[2048, 1024, 512, 256], **kwargs)
return model
def FPN_ResNet101(in_channels=1, **kwargs):
"""FPN with ResNet101 as backbone
"""
backbone = resnet101(in_channels=in_channels)
model = FPN_ResNet(backbone, encoder_channels=[2048, 1024, 512, 256], **kwargs)
return model
def FPN_ResNet152(in_channels=1, **kwargs):
"""FPN with ResNet101 as backbone
"""
backbone = resnet152(in_channels=in_channels)
model = FPN_ResNet(backbone, encoder_channels=[2048, 1024, 512, 256], **kwargs)
return model

550
src/models/segnet.py Normal file
View File

@ -0,0 +1,550 @@
# encoding: utf-8
from math import ceil
import torch
import torch.nn as nn
import torch.nn.functional as F
from .backbone import *
__all__ = ["SegNet_VGG", "SegNet_VGG_GN", "SegNet_AlexNet", "SegNet_ResNet18",
"SegNet_ResNet50", "SegNet_ResNet101", "SegNet_ResNet34", "SegNet_ResNet152"]
# required class for decoder of SegNet_ResNet
class DecoderBottleneck(nn.Module):
def __init__(self, in_channels):
super(DecoderBottleneck, self).__init__()
self.conv1 = nn.Conv2d(in_channels, in_channels // 4,
kernel_size=1, bias=False)
self.bn1 = nn.BatchNorm2d(in_channels // 4)
self.conv2 = nn.ConvTranspose2d(in_channels // 4, in_channels // 4,
kernel_size=2, stride=2, bias=False)
self.bn2 = nn.BatchNorm2d(in_channels // 4)
self.conv3 = nn.Conv2d(in_channels // 4, in_channels // 2, 1, bias=False)
self.bn3 = nn.BatchNorm2d(in_channels // 2)
self.relu = nn.ReLU(inplace=True)
self.downsample = nn.Sequential(
nn.ConvTranspose2d(in_channels, in_channels // 2,
kernel_size=2, stride=2, bias=False),
nn.BatchNorm2d(in_channels // 2))
def forward(self, x):
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
out = self.relu(out)
out = self.conv3(out)
out = self.bn3(out)
identity = self.downsample(x)
out += identity
out = self.relu(out)
return out
# required class for decoder of SegNet_ResNet
class LastBottleneck(nn.Module):
def __init__(self, in_channels):
super(LastBottleneck, self).__init__()
self.conv1 = nn.Conv2d(in_channels, in_channels // 4,
kernel_size=1, bias=False)
self.bn1 = nn.BatchNorm2d(in_channels // 4)
self.conv2 = nn.Conv2d(in_channels // 4, in_channels // 4,
kernel_size=3, padding=1, bias=False)
self.bn2 = nn.BatchNorm2d(in_channels // 4)
self.conv3 = nn.Conv2d(in_channels // 4, in_channels // 4, 1, bias=False)
self.bn3 = nn.BatchNorm2d(in_channels // 4)
self.relu = nn.ReLU(inplace=True)
self.downsample = nn.Sequential(
nn.Conv2d(in_channels, in_channels // 4, kernel_size=1, bias=False),
nn.BatchNorm2d(in_channels // 4))
def forward(self, x):
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
out = self.relu(out)
out = self.conv3(out)
out = self.bn3(out)
identity = self.downsample(x)
out += identity
out = self.relu(out)
return out
# required class for decoder of SegNet_ResNet
class DecoderBasicBlock(nn.Module):
def __init__(self, in_channels):
super(DecoderBasicBlock, self).__init__()
self.conv1 = nn.Conv2d(in_channels, in_channels // 2,
kernel_size=3, padding=1, bias=False)
self.bn1 = nn.BatchNorm2d(in_channels // 2)
self.conv2 = nn.ConvTranspose2d(in_channels // 2, in_channels // 2,
kernel_size=2, stride=2, bias=False)
self.bn2 = nn.BatchNorm2d(in_channels // 2)
self.relu = nn.ReLU(inplace=True)
self.downsample = nn.Sequential(
nn.ConvTranspose2d(in_channels, in_channels // 2,
kernel_size=2, stride=2, bias=False),
nn.BatchNorm2d(in_channels // 2))
def forward(self, x):
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
identity = self.downsample(x)
out += identity
out = self.relu(out)
return out
class LastBasicBlock(nn.Module):
def __init__(self, in_channels):
super(LastBasicBlock, self).__init__()
self.conv1 = nn.Conv2d(in_channels, in_channels,
kernel_size=3, padding=1, bias=False)
self.bn1 = nn.BatchNorm2d(in_channels)
self.conv2 = nn.Conv2d(in_channels, in_channels,
kernel_size=3, padding=1, bias=False)
self.bn2 = nn.BatchNorm2d(in_channels)
self.relu = nn.ReLU(inplace=True)
self.downsample = nn.Sequential(
nn.Conv2d(in_channels, in_channels, kernel_size=1, bias=False),
nn.BatchNorm2d(in_channels))
def forward(self, x):
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
identity = self.downsample(x)
out += identity
out = self.relu(out)
return out
class SegNet_VGG(nn.Module):
def __init__(self, out_channels=1, in_channels=1, pretrained=False):
super(SegNet_VGG, self).__init__()
vgg_bn = vgg16_bn(pretrained=pretrained)
encoder = list(vgg_bn.features.children())
# Adjust the input size
if in_channels != 3:
encoder[0] = nn.Conv2d(in_channels, 64, kernel_size=3, stride=1, padding=1)
# Encoder, VGG without any maxpooling
self.stage1_encoder = nn.Sequential(*encoder[:6])
self.stage2_encoder = nn.Sequential(*encoder[7:13])
self.stage3_encoder = nn.Sequential(*encoder[14:23])
self.stage4_encoder = nn.Sequential(*encoder[24:33])
self.stage5_encoder = nn.Sequential(*encoder[34:-1])
self.pool = nn.MaxPool2d(kernel_size=2, stride=2, return_indices=True)
# Decoder, same as the encoder but reversed, maxpool will not be used
decoder = encoder
decoder = [i for i in list(reversed(decoder)) if not isinstance(i, nn.MaxPool2d)]
# Replace the last conv layer
decoder[-1] = nn.Conv2d(64, 64, kernel_size=3, stride=1, padding=1)
# When reversing, we also reversed conv->batchN->relu, correct it
decoder = [item for i in range(0, len(decoder), 3)
for item in decoder[i:i + 3][::-1]]
# Replace some conv layers & batchN after them
for i, module in enumerate(decoder):
if isinstance(module, nn.Conv2d):
if module.in_channels != module.out_channels:
decoder[i + 1] = nn.BatchNorm2d(module.in_channels)
decoder[i] = nn.Conv2d(module.out_channels, module.in_channels,
kernel_size=3, stride=1, padding=1)
self.stage1_decoder = nn.Sequential(*decoder[0:9])
self.stage2_decoder = nn.Sequential(*decoder[9:18])
self.stage3_decoder = nn.Sequential(*decoder[18:27])
self.stage4_decoder = nn.Sequential(*decoder[27:33])
self.stage5_decoder = nn.Sequential(*decoder[33:],
nn.Conv2d(64, out_channels,
kernel_size=3,
stride=1,
padding=1)
)
self.unpool = nn.MaxUnpool2d(kernel_size=2, stride=2)
self._initialize_weights(self.stage1_decoder, self.stage2_decoder, self.stage3_decoder,
self.stage4_decoder, self.stage5_decoder)
def _initialize_weights(self, *stages):
for modules in stages:
for module in modules.modules():
if isinstance(module, nn.Conv2d):
nn.init.kaiming_normal_(module.weight)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.BatchNorm2d):
module.weight.data.fill_(1)
module.bias.data.zero_()
def forward(self, x):
# Encoder
x = self.stage1_encoder(x)
x1_size = x.size()
x, indices1 = self.pool(x)
x = self.stage2_encoder(x)
x2_size = x.size()
x, indices2 = self.pool(x)
x = self.stage3_encoder(x)
x3_size = x.size()
x, indices3 = self.pool(x)
x = self.stage4_encoder(x)
x4_size = x.size()
x, indices4 = self.pool(x)
x = self.stage5_encoder(x)
x5_size = x.size()
x, indices5 = self.pool(x)
# Decoder
x = self.unpool(x, indices=indices5, output_size=x5_size)
x = self.stage1_decoder(x)
x = self.unpool(x, indices=indices4, output_size=x4_size)
x = self.stage2_decoder(x)
x = self.unpool(x, indices=indices3, output_size=x3_size)
x = self.stage3_decoder(x)
x = self.unpool(x, indices=indices2, output_size=x2_size)
x = self.stage4_decoder(x)
x = self.unpool(x, indices=indices1, output_size=x1_size)
x = self.stage5_decoder(x)
return x
class SegNet_VGG_GN(nn.Module):
def __init__(self, out_channels=1, in_channels=3, pretrained=False):
super(SegNet_VGG_GN, self).__init__()
vgg_bn = vgg16_bn(pretrained=pretrained)
encoder = list(vgg_bn.features.children())
# Adjust the input size
if in_channels != 3:
encoder[0] = nn.Conv2d(in_channels, 64, kernel_size=3, stride=1, padding=1)
#
for i in range(len(encoder)):
if isinstance(encoder[i], nn.BatchNorm2d):
encoder[i] = nn.GroupNorm(32, encoder[i].num_features)
# Encoder, VGG without any maxpooling
self.stage1_encoder = nn.Sequential(*encoder[:6])
self.stage2_encoder = nn.Sequential(*encoder[7:13])
self.stage3_encoder = nn.Sequential(*encoder[14:23])
self.stage4_encoder = nn.Sequential(*encoder[24:33])
self.stage5_encoder = nn.Sequential(*encoder[34:-1])
self.pool = nn.MaxPool2d(kernel_size=2, stride=2, return_indices=True)
# Decoder, same as the encoder but reversed, maxpool will not be used
decoder = encoder
decoder = [i for i in list(reversed(decoder)) if not isinstance(i, nn.MaxPool2d)]
# Replace the last conv layer
decoder[-1] = nn.Conv2d(64, 64, kernel_size=3, stride=1, padding=1)
# When reversing, we also reversed conv->batchN->relu, correct it
decoder = [item for i in range(0, len(decoder), 3)
for item in decoder[i:i + 3][::-1]]
# Replace some conv layers & batchN after them
for i, module in enumerate(decoder):
if isinstance(module, nn.Conv2d):
if module.in_channels != module.out_channels:
decoder[i + 1] = nn.GroupNorm(32, module.in_channels)
decoder[i] = nn.Conv2d(module.out_channels, module.in_channels,
kernel_size=3, stride=1, padding=1)
self.stage1_decoder = nn.Sequential(*decoder[0:9])
self.stage2_decoder = nn.Sequential(*decoder[9:18])
self.stage3_decoder = nn.Sequential(*decoder[18:27])
self.stage4_decoder = nn.Sequential(*decoder[27:33])
self.stage5_decoder = nn.Sequential(*decoder[33:], nn.Conv2d(64,
out_channels,
kernel_size=3,
stride=1,
padding=1))
self.unpool = nn.MaxUnpool2d(kernel_size=2, stride=2)
self._initialize_weights(self.stage1_decoder, self.stage2_decoder, self.stage3_decoder,
self.stage4_decoder, self.stage5_decoder)
def _initialize_weights(self, *stages):
for modules in stages:
for module in modules.modules():
if isinstance(module, nn.Conv2d):
nn.init.kaiming_normal_(module.weight)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.BatchNorm2d):
module.weight.data.fill_(1)
module.bias.data.zero_()
def forward(self, x):
# Encoder
x = self.stage1_encoder(x)
x1_size = x.size()
x, indices1 = self.pool(x)
x = self.stage2_encoder(x)
x2_size = x.size()
x, indices2 = self.pool(x)
x = self.stage3_encoder(x)
x3_size = x.size()
x, indices3 = self.pool(x)
x = self.stage4_encoder(x)
x4_size = x.size()
x, indices4 = self.pool(x)
x = self.stage5_encoder(x)
x5_size = x.size()
x, indices5 = self.pool(x)
# Decoder
x = self.unpool(x, indices=indices5, output_size=x5_size)
x = self.stage1_decoder(x)
x = self.unpool(x, indices=indices4, output_size=x4_size)
x = self.stage2_decoder(x)
x = self.unpool(x, indices=indices3, output_size=x3_size)
x = self.stage3_decoder(x)
x = self.unpool(x, indices=indices2, output_size=x2_size)
x = self.stage4_decoder(x)
x = self.unpool(x, indices=indices1, output_size=x1_size)
x = self.stage5_decoder(x)
return x
class SegNet_AlexNet(nn.Module):
def __init__(self, out_channels=1, in_channels=1, bn=False):
super(SegNet_AlexNet, self).__init__()
self.stage3_encoder = nn.Sequential(
# kernel(11, 11) -> kernel(7, 7)
nn.Conv2d(in_channels, 64, kernel_size=7, stride=4, padding=3),
nn.BatchNorm2d(64) if bn else nn.GroupNorm(32, 64),
nn.ReLU(inplace=True),
# padding=0 -> padding=1
)
self.stage4_encoder = nn.Sequential(
nn.Conv2d(64, 192, kernel_size=5, padding=2),
nn.BatchNorm2d(192) if bn else nn.GroupNorm(32, 192),
nn.ReLU(inplace=True),
)
self.stage5_encoder = nn.Sequential(
nn.Conv2d(192, 384, kernel_size=3, padding=1),
nn.BatchNorm2d(384) if bn else nn.GroupNorm(32, 384),
nn.ReLU(inplace=True),
nn.Conv2d(384, 256, kernel_size=3, padding=1),
nn.BatchNorm2d(256) if bn else nn.GroupNorm(32, 256),
nn.ReLU(inplace=True),
nn.Conv2d(256, 256, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
)
self.maxpool = nn.MaxPool2d(kernel_size=2, stride=2, ceil_mode=False, return_indices=True)
self.unpool = nn.MaxUnpool2d(kernel_size=2, stride=2)
self.stage5_decoder = nn.Sequential(
nn.Conv2d(256, 256, kernel_size=3, padding=1),
nn.BatchNorm2d(256) if bn else nn.GroupNorm(32, 256),
nn.ReLU(inplace=True),
nn.Conv2d(256, 384, kernel_size=3, padding=1),
nn.BatchNorm2d(384) if bn else nn.GroupNorm(32, 384),
nn.ReLU(inplace=True),
nn.Conv2d(384, 192, kernel_size=3, padding=1),
nn.BatchNorm2d(192) if bn else nn.GroupNorm(32, 192),
nn.ReLU(inplace=True),
)
self.stage4_decoder = nn.Sequential(
nn.Conv2d(192, 64, kernel_size=5, padding=2),
nn.BatchNorm2d(64) if bn else nn.GroupNorm(32, 64),
nn.ReLU(inplace=True),
)
self.stage3_decoder = nn.Sequential(
nn.ConvTranspose2d(64, 64, kernel_size=2, stride=2, bias=False),
nn.ConvTranspose2d(64, 64, kernel_size=2, stride=2, bias=False),
nn.Conv2d(64, out_channels, kernel_size=7, stride=1, padding=3),
nn.ReLU(inplace=True),
)
def forward(self, x):
x3 = self.stage3_encoder(x)
x3_size = x3.size()
x3, indices3 = self.maxpool(x3)
x4 = self.stage4_encoder(x3)
x4_size = x4.size()
x4, indices4 = self.maxpool(x4)
x5 = self.stage5_encoder(x4)
x5_size = x5.size()
x5, indices5 = self.maxpool(x5)
out = self.unpool(x5, indices=indices5, output_size=x5_size)
out = self.stage5_decoder(out)
out = self.unpool(out, indices=indices4, output_size=x4_size)
out = self.stage4_decoder(out)
out = self.unpool(out, indices=indices3, output_size=x3_size)
out = self.stage3_decoder(out)
return out
class SegNet_ResNet(nn.Module):
def __init__(self, backbone, out_channels=1, is_bottleneck=False, in_channels=1):
super(SegNet_ResNet, self).__init__()
resnet_backbone = backbone
encoder = list(resnet_backbone.children())
if in_channels != 3:
encoder[0] = nn.Conv2d(in_channels, 64, kernel_size=3, stride=1, padding=1)
encoder[3].return_indices = True
# Encoder
self.first_conv = nn.Sequential(*encoder[:4])
resnet_blocks = list(resnet_backbone.children())[4:]
self.encoder = nn.Sequential(*resnet_blocks)
# Decoder
resnet_r_blocks = list(resnet_backbone.children())[4:][::-1]
decoder = []
if is_bottleneck:
channels = (2048, 1024, 512)
else:
channels = (512, 256, 128)
for i, block in enumerate(resnet_r_blocks[:-1]):
new_block = list(block.children())[::-1][:-1]
decoder.append(nn.Sequential(*new_block,
DecoderBottleneck(channels[i])
if is_bottleneck else DecoderBasicBlock(channels[i])))
new_block = list(resnet_r_blocks[-1].children())[::-1][:-1]
decoder.append(nn.Sequential(*new_block,
LastBottleneck(256)
if is_bottleneck else LastBasicBlock(64)))
self.decoder = nn.Sequential(*decoder)
self.last_conv = nn.Sequential(
nn.ConvTranspose2d(64, 64, kernel_size=2, stride=2, bias=False),
nn.Conv2d(64, out_channels, kernel_size=3, stride=1, padding=1)
)
def forward(self, x):
inputsize = x.size()
# Encoder
x, indices = self.first_conv(x)
x = self.encoder(x)
# Decoder
x = self.decoder(x)
h_diff = ceil((x.size()[2] - indices.size()[2]) / 2)
w_diff = ceil((x.size()[3] - indices.size()[3]) / 2)
if indices.size()[2] % 2 == 1:
x = x[:, :, h_diff:x.size()[2] - (h_diff - 1),
w_diff: x.size()[3] - (w_diff - 1)]
else:
x = x[:, :, h_diff:x.size()[2] - h_diff, w_diff: x.size()[3] - w_diff]
x = F.max_unpool2d(x, indices, kernel_size=2, stride=2)
x = self.last_conv(x)
if inputsize != x.size():
h_diff = (x.size()[2] - inputsize[2]) // 2
w_diff = (x.size()[3] - inputsize[3]) // 2
x = x[:, :, h_diff:x.size()[2] - h_diff, w_diff: x.size()[3] - w_diff]
if h_diff % 2 != 0: x = x[:, :, :-1, :]
if w_diff % 2 != 0: x = x[:, :, :, :-1]
return x
def SegNet_ResNet18(in_channels=1, out_channels=1, **kwargs):
"""
Construct SegNet based on ResNet18 model.
"""
backbone_net = resnet18()
model = SegNet_ResNet(backbone_net, out_channels=out_channels, is_bottleneck=False,
in_channels=in_channels, **kwargs)
return model
def SegNet_ResNet34(in_channels=1, out_channels=1, **kwargs):
"""
Construct SegNet based on ResNet18 model.
"""
backbone_net = resnet34()
model = SegNet_ResNet(backbone_net, out_channels=out_channels, is_bottleneck=False,
in_channels=in_channels, **kwargs)
return model
def SegNet_ResNet50(in_channels=1, out_channels=1, **kwargs):
"""
Construct SegNet based on ResNet50 model.
"""
backbone_net = resnet50()
model = SegNet_ResNet(backbone_net, out_channels=out_channels, is_bottleneck=True,
in_channels=in_channels, **kwargs)
return model
def SegNet_ResNet101(in_channels=1, out_channels=1, **kwargs):
"""
Construct SegNet based on ResNet101 model.
"""
backbone_net = resnet101()
model = SegNet_ResNet(backbone_net, out_channels=out_channels, is_bottleneck=True,
in_channels=in_channels, **kwargs)
return model
def SegNet_ResNet152(in_channels=1, out_channels=1, **kwargs):
"""
Construct SegNet based on ResNet101 model.
"""
backbone_net = resnet101()
model = SegNet_ResNet(backbone_net, out_channels=out_channels, is_bottleneck=True,
in_channels=in_channels, **kwargs)
return model
if __name__ == '__main__':
model = SegNet_AlexNet(in_channels=1, out_channels=1)
print(model)
x = torch.randn(1, 1, 200, 200)
with torch.no_grad():
y = model(x)
print(y.shape)

100
src/models/unet.py Normal file
View File

@ -0,0 +1,100 @@
# encoding: utf-8
import torch
import torch.nn.functional as F
from torch import nn
from src.utils.unet_initialize import initialize_weights
__all__ = ["UNet_VGG"]
class _EncoderBlock(nn.Module):
def __init__(self, in_channels, out_channels, dropout=False, polling=True, bn=False):
super(_EncoderBlock, self).__init__()
layers = [
nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1),
nn.BatchNorm2d(out_channels) if bn else nn.GroupNorm(32, out_channels),
nn.ReLU(inplace=True),
nn.Conv2d(out_channels, out_channels, kernel_size=3, padding=1),
nn.BatchNorm2d(out_channels) if bn else nn.GroupNorm(32, out_channels),
nn.ReLU(inplace=True),
]
if dropout:
layers.append(nn.Dropout())
self.encode = nn.Sequential(*layers)
self.pool = None
if polling:
self.pool = nn.MaxPool2d(kernel_size=2, stride=2)
def forward(self, x):
if self.pool is not None:
x = self.pool(x)
return self.encode(x)
class _DecoderBlock(nn.Module):
def __init__(self, in_channels, middle_channels, out_channels, bn=False):
super(_DecoderBlock, self).__init__()
self.decode = nn.Sequential(
nn.Conv2d(in_channels, middle_channels, kernel_size=3, padding=1),
nn.BatchNorm2d(middle_channels) if bn else nn.GroupNorm(32, middle_channels),
nn.ReLU(inplace=True),
nn.Conv2d(middle_channels, middle_channels, kernel_size=3, padding=1),
nn.BatchNorm2d(middle_channels) if bn else nn.GroupNorm(32, middle_channels),
nn.ReLU(inplace=True),
nn.ConvTranspose2d(middle_channels, out_channels, kernel_size=2, stride=2),
)
def forward(self, x):
return self.decode(x)
class UNet_VGG(nn.Module):
def __init__(self, out_channels=1, in_channels=1, bn=False):
super(UNet_VGG, self).__init__()
self.enc1 = _EncoderBlock(in_channels, 64, polling=False, bn=bn)
self.enc2 = _EncoderBlock(64, 128, bn=bn)
self.enc3 = _EncoderBlock(128, 256, bn=bn)
self.enc4 = _EncoderBlock(256, 512, bn=bn)
self.polling = nn.MaxPool2d(kernel_size=2, stride=2)
self.center = _DecoderBlock(512, 1024, 512, bn=bn)
self.dec4 = _DecoderBlock(1024, 512, 256, bn=bn)
self.dec3 = _DecoderBlock(512, 256, 128, bn=bn)
self.dec2 = _DecoderBlock(256, 128, 64, bn=bn)
self.dec1 = nn.Sequential(
nn.Conv2d(128, 64, kernel_size=3, padding=1),
nn.BatchNorm2d(64) if bn else nn.GroupNorm(32, 64),
nn.ReLU(inplace=True),
nn.Conv2d(64, 64, kernel_size=3, padding=1),
nn.BatchNorm2d(64) if bn else nn.GroupNorm(32, 64),
nn.ReLU(inplace=True),
)
self.final = nn.Conv2d(64, out_channels, kernel_size=1)
initialize_weights(self)
def forward(self, x):
enc1 = self.enc1(x)
enc2 = self.enc2(enc1)
enc3 = self.enc3(enc2)
enc4 = self.enc4(enc3)
center = self.center(self.polling(enc4))
dec4 = self.dec4(torch.cat([F.interpolate(center, enc4.size()[-2:], mode='bilinear',
align_corners=True), enc4], 1))
dec3 = self.dec3(torch.cat([dec4, enc3], 1))
dec2 = self.dec2(torch.cat([dec3, enc2], 1))
dec1 = self.dec1(torch.cat([dec2, enc1], 1))
final = self.final(dec1)
return final
if __name__ == '__main__':
model = UNet(in_channels=1, out_channels=1)
print(model)
x = torch.randn(1, 1, 200, 200)
with torch.no_grad():
y = model(x)
print(y.shape)

146
src/plot.py Normal file
View File

@ -0,0 +1,146 @@
"""
Runs a model on a single node across multiple gpus.
"""
import os
from pathlib import Path
import torch
import numpy as np
import torch.nn.functional as F
import scipy.io as sio
import matplotlib.pyplot as plt
import configargparse
from src.LayoutDeepRegression import Model
def main(hparams):
model = Model(hparams).cuda()
print(hparams)
print()
# Model loading
model_path = os.path.join(f'lightning_logs/version_' +
hparams.test_check_num, 'checkpoints/')
ckpt = list(Path(model_path).glob("*.ckpt"))[0]
print(ckpt)
model = model.load_from_checkpoint(str(ckpt))
model.eval()
model.cuda()
mae_test = []
# Testing Set
root = hparams.data_root
boundary = hparams.boundary
test_list = hparams.test_list
file_path = os.path.join(root, boundary, test_list)
root_dir = os.path.join(root, boundary, 'test', 'test')
with open(file_path, 'r') as fp:
for line in fp.readlines():
# Data Reading
data_path = line.strip()
path = os.path.join(root_dir, data_path)
data = sio.loadmat(path)
u_true, layout = data["u"], data["F"]
# Plot Layout and Real Temperature Field
fig = plt.figure(figsize=(10.5, 3))
grid_x = np.linspace(0, 0.1, num=200)
grid_y = np.linspace(0, 0.1, num=200)
X, Y = np.meshgrid(grid_x, grid_y)
plt.subplot(131)
plt.title('Heat Source Layout')
im = plt.pcolormesh(X, Y, layout)
plt.colorbar(im)
fig.tight_layout(w_pad=3.0)
layout = torch.Tensor(layout / 1000.0).unsqueeze(0).unsqueeze(0).cuda()
print(layout.size())
heat = torch.Tensor((u_true - 298) / 50.0).unsqueeze(0).unsqueeze(0).cuda()
with torch.no_grad():
heat_pre = model(layout)
mae = F.l1_loss(heat, heat_pre) * 50
print('MAE:', mae)
mae_test.append(mae.item())
heat_pre = heat_pre.squeeze(0).squeeze(0).cpu().numpy() * 50.0 + 298
hmax = max(np.max(heat_pre), np.max(u_true))
hmin = min(np.min(heat_pre), np.min(u_true))
plt.subplot(132)
plt.title('Real Temperature Field')
if "xs" and "ys" in data.keys():
xs, ys = data["xs"], data["ys"]
im = plt.pcolormesh(xs, ys, u_true, vmin=hmin, vmax=hmax)
plt.axis('equal')
else:
im = plt.pcolormesh(X, Y, u_true, vmin=hmin, vmax=hmax)
plt.colorbar(im)
plt.subplot(133)
plt.title('Predicted Temperature Field')
if "xs" and "ys" in data.keys():
xs, ys = data["xs"], data["ys"]
im = plt.pcolormesh(xs, ys, heat_pre, vmin=hmin, vmax=hmax)
plt.axis('equal')
else:
im = plt.pcolormesh(X, Y, heat_pre, vmin=hmin, vmax=hmax)
plt.colorbar(im)
save_name = os.path.join('outputs/predict_plot', os.path.splitext(os.path.basename(path))[0]+'.jpg')
fig.savefig(save_name, dpi=300)
plt.close()
mae_test = np.array(mae_test)
print(mae_test.mean())
np.savetxt('outputs/mae_test.csv', mae_test, fmt='%f', delimiter=',')
if __name__ == "__main__":
# ------------------------
# TRAINING ARGUMENTS
# ------------------------
# these are project-wide arguments
# default configuration file
config_path = Path(__file__).absolute().parent / "config/config.yml"
parser = configargparse.ArgParser(default_config_files=[str(config_path)], description="Hyper-parameters.")
# configuration file
parser.add_argument("--config", is_config_file=True, default=False, help="config file path")
# mode
parser.add_argument("-m", "--mode", type=str, default="train", help="model: train or test or plot")
# args for training
parser.add_argument("--gpus", type=int, default=0, help="how many gpus")
parser.add_argument("--batch_size", default=16, type=int)
parser.add_argument("--max_epochs", default=20, type=int)
parser.add_argument("--lr", default="0.01", type=float)
parser.add_argument("--resume_from_checkpoint", type=str, help="resume from checkpoint")
parser.add_argument("--num_workers", default=2, type=int, help="num_workers in DataLoader")
parser.add_argument("--seed", type=int, default=1, help="seed")
parser.add_argument("--use_16bit", type=bool, default=False, help="use 16bit precision")
parser.add_argument("--profiler", action="store_true", help="use profiler")
# args for validation
parser.add_argument("--val_check_interval", type=float, default=1,
help="how often within one training epoch to check the validation set")
# args for testing
parser.add_argument("--test_check_num", default='0', type=str, help="checkpoint for test")
parser.add_argument("--test_args", action="store_true", help="print args")
parser = Model.add_model_specific_args(parser)
hparams = parser.parse_args()
# test args in cli
if hparams.test_args:
print(hparams)
else:
main(hparams)

83
src/test.py Normal file
View File

@ -0,0 +1,83 @@
"""
Runs a model on a single node across multiple gpus.
"""
import os
from pathlib import Path
import torch
from torch.backends import cudnn
import configargparse
import numpy as np
import pytorch_lightning as pl
from src.LayoutDeepRegression import Model
def main(hparams):
"""
Main training routine specific for this project
"""
seed = hparams.seed
np.random.seed(seed)
torch.manual_seed(seed)
cudnn.deterministic = True
# ------------------------
# 1 INIT LIGHTNING MODEL
# ------------------------
model = Model(hparams)
# ------------------------
# 2 INIT TRAINER
# ------------------------
trainer = pl.Trainer(
gpus=hparams.gpus,
precision=16 if hparams.use_16bit else 32,
# limit_test_batches=0.05
)
model_path = os.path.join(f'lightning_logs/version_' +
hparams.test_check_num, 'checkpoints/')
model_path = list(Path(model_path).glob("*.ckpt"))[0]
test_model = model.load_from_checkpoint(checkpoint_path=model_path, hparams=hparams)
# ------------------------
# 3 START PREDICTING
# ------------------------
print(hparams)
print()
trainer.test(model=test_model)
if __name__ == "__main__":
# ------------------------
# TESTING ARGUMENTS
# ------------------------
# these are project-wide arguments
config_path = Path(__file__).absolute().parent / "config/config.yml"
parser = configargparse.ArgParser(default_config_files=[str(config_path)], description="Hyper-parameters.")
parser.add_argument("--config", is_config_file=True, default=False, help="config file path")
# args
parser.add_argument("--save_check_num", default=0, type=int, help="checkpoint for test")
parser.add_argument("--max_epochs", default=20, type=int)
parser.add_argument("--max_iters", default=40000, type=int)
parser.add_argument("--resume_from_checkpoint", type=str, help="resume from checkpoint")
parser.add_argument("--seed", type=int, default=1, help="seed")
parser.add_argument("--gpus", type=int, default=0, help="how many gpus")
parser.add_argument("--use_16bit", type=bool, default=False, help="use 16bit precision")
parser.add_argument("--val_check_interval", type=float, default=1,
help="how often within one training epoch to check the validation set")
parser.add_argument("--profiler", action="store_true", help="use profiler")
parser.add_argument("--test_args", action="store_true", help="print args")
parser = Model.add_model_specific_args(parser)
hparams = parser.parse_args()
# test args in cli
if hparams.test_args:
print(hparams)
else:
main(hparams)

80
src/train.py Normal file
View File

@ -0,0 +1,80 @@
"""
Runs a model on a single node across multiple gpus.
"""
from pathlib import Path
import torch
from torch.backends import cudnn
import configargparse
import numpy as np
import pytorch_lightning as pl
from src.LayoutDeepRegression import Model
def main(hparams):
"""
Main training routine specific for this project
"""
seed = hparams.seed
np.random.seed(seed)
torch.manual_seed(seed)
cudnn.deterministic = True
# ------------------------
# 1 INIT LIGHTNING MODEL
# ------------------------
model = Model(hparams)
# ------------------------
# 2 INIT TRAINER
# ------------------------
trainer = pl.Trainer(
max_epochs=hparams.max_epochs,
gpus=hparams.gpus,
precision=16 if hparams.use_16bit else 32,
val_check_interval=hparams.val_check_interval,
resume_from_checkpoint=hparams.resume_from_checkpoint,
profiler=hparams.profiler,
)
# ------------------------
# 3 START TRAINING
# ------------------------
print(hparams)
print()
trainer.fit(model)
trainer.test()
if __name__ == "__main__":
# ------------------------
# TRAINING ARGUMENTS
# ------------------------
# these are project-wide arguments
config_path = Path(__file__).absolute().parent.parent / "config/config.yml"
parser = configargparse.ArgParser(default_config_files=[str(config_path)], description="Hyper-parameters.")
parser.add_argument("--config", is_config_file=True, default=False, help="config file path")
# args
parser.add_argument("--max_epochs", default=20, type=int)
parser.add_argument("--max_iters", default=None, type=int)
parser.add_argument("--resume_from_checkpoint", type=str, help="resume from checkpoint")
parser.add_argument("--seed", type=int, default=1, help="seed")
parser.add_argument("--gpus", type=int, default=0, help="how many gpus")
parser.add_argument("--use_16bit", type=bool, default=False, help="use 16bit precision")
parser.add_argument("--val_check_interval", type=float, default=1,
help="how often within one training epoch to check the validation set")
parser.add_argument("--profiler", action="store_true", help="use profiler")
parser.add_argument("--test_args", action="store_true", help="print args")
parser = Model.add_model_specific_args(parser)
hparams = parser.parse_args()
# test args in cli
if hparams.test_args:
print(hparams)
else:
main(hparams)

0
src/utils/__init__.py Normal file
View File

66
src/utils/model_init.py Normal file
View File

@ -0,0 +1,66 @@
# -*- encoding: utf-8 -*-
import torch
def weights_init(m):
"""
模型的权重初始化函数由模型调用如CRNN model
:param m: 待初始化的模型 nn.Module
:return:
"""
class_name = m.__class__.__name__
if class_name.find("Conv") != -1:
torch.nn.init.kaiming_normal_(m.weight,
mode="fan_out",
nonlinearity="relu") # 初始化卷积层权重
# torch.nn.init.xavier_normal_(m.weight)
elif (class_name.find("BatchNorm") != -1
and class_name.find("WithFixedBatchNorm") == -1
): # batch norm层不能用kaiming_normal初始化
torch.nn.init.constant_(m.weight, 1)
torch.nn.init.constant_(m.bias, 0)
# m.weight.data.normal_(1.0, 0.02)
# m.bias.data.fill_(0)
elif class_name.find("Linear") != -1:
torch.nn.init.xavier_normal_(m.weight.data)
if m.bias is not None:
m.bias.data.fill_(0)
elif class_name.find("LSTM") != -1 or class_name.find("LSTMCell") != -1:
for name, param in m.named_parameters():
if "weight_ih" in name:
torch.nn.init.xavier_uniform_(param.data)
elif "weight_hh" in name:
torch.nn.init.orthogonal_(param.data)
elif "bias" in name:
param.data.fill_(0)
def weights_init_without_kaiming(m):
"""
模型的权重初始化函数由模型调用如CRNN model
:param m: 待初始化的模型 nn.Module
:return:
"""
class_name = m.__class__.__name__
if class_name.find("Conv") != -1:
torch.nn.init.xavier_normal_(m.weight)
# torch.nn.init.normal_(m.weight) # 初始化卷积层权重
elif (class_name.find("BatchNorm") != -1
and class_name.find("WithFixedBatchNorm") == -1
): # batch norm层不能用kaiming_normal初始化
torch.nn.init.constant_(m.weight, 1)
torch.nn.init.constant_(m.bias, 0)
# m.weight.data.normal_(1.0, 0.02)
# m.bias.data.fill_(0)
elif class_name.find("Linear") != -1:
torch.nn.init.xavier_normal_(m.weight.data)
if m.bias is not None:
m.bias.data.fill_(0)
elif class_name.find("LSTM") != -1 or class_name.find("LSTMCell") != -1:
for name, param in m.named_parameters():
if "weight_ih" in name:
torch.nn.init.xavier_uniform_(param.data)
elif "weight_hh" in name:
torch.nn.init.orthogonal_(param.data)
elif "bias" in name:
param.data.fill_(0)

View File

@ -0,0 +1,60 @@
# -*- encoding: utf-8 -*-
"""
Desc : Transforms.
"""
# File : np_transforms.py
# Time : 2020/04/06 17:24:54
# Author : Zweien
# Contact : 278954153@qq.com
import torch
from torchvision import transforms
from torch.nn.functional import interpolate
class ToTensor:
"""Transform np.array to torch.tensor
Args:
add_dim (bool, optional): add first dim. Defaults to True.
type_ (torch.dtype, optional): dtype of the tensor. Defaults to tensor.torch.float32.
Returns:
torch.tensor: tensor
"""
def __init__(self, add_dim=True, type_=torch.float32):
self.add_dim = add_dim
self.type = type_
def __call__(self, x):
if self.add_dim:
return torch.tensor(x, dtype=self.type).unsqueeze(0)
return torch.tensor(x, dtype=self.type)
class Resize:
def __init__(self, size):
self.size = size
def __call__(self, x):
x_tensor = torch.tensor(x)
x_dim = x_tensor.dim()
for _ in range(4 - x_dim):
x_tensor = x_tensor.unsqueeze(0)
x_resize = interpolate(x_tensor, size=self.size)
for _ in range(4-x_dim):
x_resize = x_resize.squeeze(0)
return x_resize.numpy()
class Lambda(transforms.Lambda):
pass
class Compose(transforms.Compose):
pass
class Normalize(transforms.Normalize):
pass

View File

@ -0,0 +1,29 @@
# -*- encoding: utf-8 -*-
import numpy as np
import torch
from torch import nn
def get_upsampling_weight(in_channels, out_channels, kernel_size):
factor = (kernel_size + 1) // 2
if kernel_size % 2 == 1:
center = factor - 1
else:
center = factor - 0.5
og = np.ogrid[:kernel_size, :kernel_size]
filt = (1 - abs(og[0] - center) / factor) * (1 - abs(og[1] - center) / factor)
weight = np.zeros((in_channels, out_channels, kernel_size, kernel_size), dtype=np.float64)
weight[list(range(in_channels)), list(range(out_channels)), :, :] = filt
return torch.from_numpy(weight).float()
def initialize_weights(*models):
for model in models:
for module in model.modules():
if isinstance(module, nn.Conv2d) or isinstance(module, nn.Linear):
nn.init.kaiming_normal_(module.weight)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.BatchNorm2d):
module.weight.data.fill_(1)
module.bias.data.zero_()

5
src/utils/vgg_utils.py Normal file
View File

@ -0,0 +1,5 @@
# -*- encoding: utf-8 -*-
try:
from torch.hub import load_state_dict_from_url
except ImportError:
from torch.utils.model_zoo import load_url as load_state_dict_from_url

0
tests/__init__.py Normal file
View File

7
tests/test_run.py Normal file
View File

@ -0,0 +1,7 @@
# content of test_sample.py
def inc(x):
return x + 1
def test_answer():
assert inc(3) == 4