3120241305/deeplearning.py

75 lines
2.4 KiB
Python
Raw Normal View History

2024-11-05 17:53:04 +08:00
import torch
from sklearn.metrics import accuracy_score, classification_report
from tqdm import tqdm
def optimizer_picker(optimization, param, lr):
if optimization == 'adam':
optimizer = torch.optim.Adam(param, lr=lr)
elif optimization == 'sgd':
optimizer = torch.optim.SGD(param, lr=lr)
else:
print("automatically assign adam optimization function to you...")
optimizer = torch.optim.Adam(param, lr=lr)
return optimizer
def train_one_epoch(data_loader, model, criterion, optimizer, loss_mode, device):
running_loss = 0
model.train()
for step, (batch_x, batch_y) in enumerate(tqdm(data_loader)):
batch_x = batch_x.to(device, non_blocking=True)
batch_y = batch_y.to(device, non_blocking=True)
optimizer.zero_grad()
output = model(batch_x) # get predict label of batch_x
loss = criterion(output, batch_y)
loss.backward()
optimizer.step()
running_loss += loss
return {
"loss": running_loss.item() / len(data_loader),
}
def evaluate_badnets(data_loader_val_clean, data_loader_val_poisoned, model, device):
ta = eval(data_loader_val_clean, model, device, print_perform=True)
asr = eval(data_loader_val_poisoned, model, device, print_perform=False)
return {
'clean_acc': ta['acc'], 'clean_loss': ta['loss'],
'asr': asr['acc'], 'asr_loss': asr['loss'],
}
def eval(data_loader, model, device, batch_size=64, print_perform=False):
criterion = torch.nn.CrossEntropyLoss()
model.eval() # switch to eval status
y_true = []
y_predict = []
loss_sum = []
for (batch_x, batch_y) in tqdm(data_loader):
batch_x = batch_x.to(device, non_blocking=True)
batch_y = batch_y.to(device, non_blocking=True)
batch_y_predict = model(batch_x)
loss = criterion(batch_y_predict, batch_y)
batch_y_predict = torch.argmax(batch_y_predict, dim=1)
y_true.append(batch_y)
y_predict.append(batch_y_predict)
loss_sum.append(loss.item())
y_true = torch.cat(y_true,0)
y_predict = torch.cat(y_predict,0)
loss = sum(loss_sum) / len(loss_sum)
if print_perform:
print(classification_report(y_true.cpu(), y_predict.cpu(), target_names=data_loader.dataset.classes))
return {
"acc": accuracy_score(y_true.cpu(), y_predict.cpu()),
"loss": loss,
}