74 lines
2.7 KiB
Python
Executable File
74 lines
2.7 KiB
Python
Executable File
from .poisoned_dataset import CIFAR10Poison, MNISTPoison
|
|
from torchvision import datasets, transforms
|
|
import torch
|
|
import os
|
|
|
|
|
|
def build_init_data(dataname, download, dataset_path):
|
|
if dataname == 'MNIST':
|
|
train_data = datasets.MNIST(root=dataset_path, train=True, download=download)
|
|
test_data = datasets.MNIST(root=dataset_path, train=False, download=download)
|
|
elif dataname == 'CIFAR10':
|
|
train_data = datasets.CIFAR10(root=dataset_path, train=True, download=download)
|
|
test_data = datasets.CIFAR10(root=dataset_path, train=False, download=download)
|
|
return train_data, test_data
|
|
|
|
def build_poisoned_training_set(is_train, args):
|
|
transform, detransform = build_transform(args.dataset)
|
|
print("Transform = ", transform)
|
|
|
|
if args.dataset == 'CIFAR10':
|
|
trainset = CIFAR10Poison(args, args.data_path, train=is_train, download=True, transform=transform)
|
|
nb_classes = 10
|
|
elif args.dataset == 'MNIST':
|
|
trainset = MNISTPoison(args, args.data_path, train=is_train, download=True, transform=transform)
|
|
nb_classes = 10
|
|
else:
|
|
raise NotImplementedError()
|
|
|
|
assert nb_classes == args.nb_classes
|
|
print("Number of the class = %d" % args.nb_classes)
|
|
print(trainset)
|
|
|
|
return trainset, nb_classes
|
|
|
|
|
|
def build_testset(is_train, args):
|
|
transform, detransform = build_transform(args.dataset)
|
|
print("Transform = ", transform)
|
|
|
|
if args.dataset == 'CIFAR10':
|
|
testset_clean = datasets.CIFAR10(args.data_path, train=is_train, download=True, transform=transform)
|
|
testset_poisoned = CIFAR10Poison(args, args.data_path, train=is_train, download=True, transform=transform)
|
|
nb_classes = 10
|
|
elif args.dataset == 'MNIST':
|
|
testset_clean = datasets.MNIST(args.data_path, train=is_train, download=True, transform=transform)
|
|
testset_poisoned = MNISTPoison(args, args.data_path, train=is_train, download=True, transform=transform)
|
|
nb_classes = 10
|
|
else:
|
|
raise NotImplementedError()
|
|
|
|
assert nb_classes == args.nb_classes
|
|
print("Number of the class = %d" % args.nb_classes)
|
|
print(testset_clean, testset_poisoned)
|
|
|
|
return testset_clean, testset_poisoned
|
|
|
|
def build_transform(dataset):
|
|
if dataset == "CIFAR10":
|
|
mean, std = (0.5, 0.5, 0.5), (0.5, 0.5, 0.5)
|
|
elif dataset == "MNIST":
|
|
mean, std = (0.5,), (0.5,)
|
|
else:
|
|
raise NotImplementedError()
|
|
|
|
transform = transforms.Compose([
|
|
transforms.ToTensor(),
|
|
transforms.Normalize(mean, std)
|
|
])
|
|
mean = torch.as_tensor(mean)
|
|
std = torch.as_tensor(std)
|
|
detransform = transforms.Normalize((-mean / std).tolist(), (1.0 / std).tolist()) # you can use detransform to recover the image
|
|
|
|
return transform, detransform
|