37 lines
1.1 KiB
Python
Executable File
37 lines
1.1 KiB
Python
Executable File
from torch import nn
|
|
|
|
class BadNet(nn.Module):
|
|
|
|
def __init__(self, input_channels, output_num):
|
|
super().__init__()
|
|
self.conv1 = nn.Sequential(
|
|
nn.Conv2d(in_channels=input_channels, out_channels=16, kernel_size=5, stride=1),
|
|
nn.ReLU(),
|
|
nn.AvgPool2d(kernel_size=2, stride=2)
|
|
)
|
|
|
|
self.conv2 = nn.Sequential(
|
|
nn.Conv2d(in_channels=16, out_channels=32, kernel_size=5, stride=1),
|
|
nn.ReLU(),
|
|
nn.AvgPool2d(kernel_size=2, stride=2)
|
|
)
|
|
fc1_input_features = 800 if input_channels == 3 else 512
|
|
self.fc1 = nn.Sequential(
|
|
nn.Linear(in_features=fc1_input_features, out_features=512),
|
|
nn.ReLU()
|
|
)
|
|
self.fc2 = nn.Sequential(
|
|
nn.Linear(in_features=512, out_features=output_num),
|
|
nn.Softmax(dim=-1)
|
|
)
|
|
self.dropout = nn.Dropout(p=.5)
|
|
|
|
def forward(self, x):
|
|
x = self.conv1(x)
|
|
x = self.conv2(x)
|
|
|
|
x = x.view(x.size(0), -1)
|
|
x = self.fc1(x)
|
|
x = self.fc2(x)
|
|
return x
|