PHengLEI-TestCases/B03_TwoD_Rae2822_SA_Unstruc.../bin/cfd_para.hypara

1221 lines
57 KiB
Plaintext

//+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
// PPPPP H H EEEEE N N GGGGG L EEEEE III +
// P P H H E NN N G L E I +
// PPPPP HHHHH EEEEE N N N G GG L EEEEE I +
// P H H E N N N G G L E I +
// P H H EEEEE N N GGGGG LLLLL EEEEE III +
//------------------------------------------------------------------------+
// Platform for Hybrid Engineering Simulation of Flows +
// China Aerodynamics Research and Development Center +
// (C) Copyright, Since 2010 +
//+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
###########################################################################
# Default parameters for Grid conversion #
###########################################################################
// gridtype: Grid type for generation, conversion, reconstruction, merging.
// 0 -- Unstructured grid.
// 1 -- Structured grid.
// 2 -- Hybrid grid, include both of unstructured and structured grid.
// gridobj: Task type of grid treatment.
// 0 -- Grid generation of typical case, such as cylinder, flat plate, etc.
// 1 -- Grid conversion, from other grid data to PHenglEI, such as Fluent, CGNS.
// 2 -- Grid refinement.
// 3 -- Grid merging, merge two blocks into one block.
// 4 -- Grid deformation, achieve unstructured grid deformation.
// 5 -- Grid repairing, repair the original grid in order to remove the negative volume cells.
// 6 -- Grid mirroring, mirror a symmetry grid to whole grid.
// multiblock: Multi-block grid or not, only for structured grid conversion.
// 0 -- Not.
// 1 -- Yes.
// iadapt: Adaptation number for unstructure grid.
// SymmetryFaceVector: The vector of symmetry face.
// 0 -- X axis.
// 1 -- Y axis.
// 2 -- Z axis.
int gridtype = 0;
int gridobj = 1;
int multiblock = 0;
int iadapt = 0;
int SymmetryFaceVector = 1;
// axisup: Type of Cartisien coordinates system, used in grid conversion.
// 1 -- Y upward. (default)
// 2 -- Z upward.
int axisup = 1;
// omit_no_bound_bc: What's boundary condition for the type of "no_boundary_condition".
// 0 -- Interface. (default)
// 1 -- Physical boundary condition, used in Hybrid solver.
int omit_no_bound_bc = 0;
//-----------------------------------------------------------------------
# Grid data type #
//-----------------------------------------------------------------------
// from_gtype/to_gtype: Type of grid data type in grid conversion process.
// -1 -- MULTI_TYPE.
// 1 -- PHengLEI, *.fts.
// 2 -- CGNS, *.cgns.
// 3 -- Plot3D type of structured grid, *.dat/*.grd.
// 4 -- Fieldview type of unstructured grid, *.dat/*.inp.
// 5 -- Fluent, *.cas/*.msh.
// 6 -- Ustar, mgrid.in.
// 7 -- Hybrid, include both of unstructured and structured grid, *.fts.
// 8 -- GMSH, *.msh.
// dumpOldGrid: If dump out the old grid file.
// 0 -- Not. (default)
// 1 -- Yes.
int from_gtype = 2;
int to_gtype = 1;
int dumpOldGrid = 0;
//-----------------------------------------------------------------------
# File path #
//-----------------------------------------------------------------------
// from_gfile: path of original data file for unstructure grid convert from.
// out_gfile: path of target file for grid convert to, *.fts type of file usually.
int numberOfGridFile = 1;
string from_gfile = "./grid/rae2822_hybrid2d.cas";
string from_gfile1= "";
string out_gfile = "./grid/flat_laminr_133_85_2d.fts";
// ----------------- some advanced choices ------------------------------
// iunsteady: The Grid is for unsteady simulation or not.
int iunsteady = 0;
int codeOfAleModel = 0;
// fileformat: Ustar Grid file format.
// 0 -- BINARY.
// 1 -- ASCII.
int fileformat = 0;
// Parameters for hybrid solver.
// mixgrid_uns: path of unstructure grid file for hybrid solver, *.fts type.
// mixgrid_str: path of structure grid file for hybrid solver, *.fts type.
string mixgrid_uns = "./grid/rae2822_uns2d_4.fts";
string mixgrid_str = "./grid/flat_laminr_133_85_2d.fts";
// Some parameters for structured overlapping grid.
int codeOfDigHoles = 1;
string holeBasicFileName = "./oversetGridView/holeBasicFile.inp";
string holeFullFileName = "./oversetGridView/holeFullFile.dat";
string linkFileName = "./oversetGridView/topology.dat";
string zoneInverseFileName = "./oversetGridView/zoneInverseMapping.inp";
// ----------------- Adaptive Mesh Refine -------------------------------
// In this file, the original_grid_file is used of the partition part.
// If use it dependently, abstract it here.
string adapt_grid_file = "./grid/sphere_mixed_adapt1.fts";
string geometryFileName = "./grid/jsm.igs";
// geometryUnit: Geometry unit.
// 1 -- meter.
// 2 -- millimeter.
// 3 -- inch.
// exclusiveCase: Parallel projection exclusive case.
// 0 -- NON case.
// 1 -- JSM-C2-NPOFF case.
// 2 -- CHNT.
// projectOrgPoint: If the original wall points need to be projected or not.
int geometryUnit = 1;
int anisoRefine = 0;
int isProject = 0;
int readDist = 0;
int isDeform = 0;
int exclusiveCase = 0; // 0: NON case; 1: JSM-C2-NPOFF case; 2: CHNT.
int projectOrgPoint = 0; // if project original wall points.
// ----------------- Grid Deform Parameters -----------------------------
// deformationMethod: Grid Deform.
// 1 -- SPRING.
// 2 -- RBF.
// stationalGridFile: Original grid file.
// visualFileName : The visualization file path of deform grid.
// nDeformStep : The max deform step.
// flapAngle : The max flap angle.
// rotatePostionZ : Rotate postion.
// rotatePostionY : Rotate postion.
// gridSlice : If dump slice grid.
// sliceAxis : Grid slice axis.
// slicePosition : Grid slice position.
int nDeformStep = 40;
double flapAngle = 10.0;
double rotatePostionZ = 4.00003;
double rotatePostionY = 3.05;
int deformationMethod = 2;
string stationalGridFile = "./grid/Segment2Brid.fts";
string visualFileName = "./results/deformedGrid.dat"
int gridSlice = 1;
int sliceAxis = 1;
double slicePosition = 13;
// ----------------- RBF Parameters -------------------------------------
// numberOfReferenceCP : Number of reference Control Points.
// influencePara : The RBF influence radius parameter.
int numberOfReferenceCP = 40;
double influencePara = 25.0;
// ----------------- Periodic Parameters --------------------------------
// Notice: Rotational periodicity only support rotation along the X axis!
// periodicType: Which periodic boundary is used.
// 0 -- without Periodic Boundary.
// 1 -- Translational periodicity.
// 2 -- Rotational periodicity.
// translationLength[]: The relative distance between two periodic face
which only support one direction.
// rotationAngle: The relative angle between two periodic face.
which is recorded in degrees.
int periodicType = 0;
double translationLength[] = [0.0,0.0,0.0];
double rotationAngle = 0.0;
#########################################################################
# Default parameters for Partition #
#########################################################################
// pgridtype: The grid type.
// 0 -- unstruct grid.
// 1 -- struct grid.
// 2 -- refine structured grid.
// maxproc: The number of partition zones that want to be divided into.
int pgridtype = 0;
int maxproc = 4;
// traceMark: Trace mark or not, only for structured grid partition.
// 0 -- Not.
// 1 -- Yes.
// blockIndexOfMark: the block index of mark, only for structured grid partition.
// cellIndexOfMark: the cell index of mark, only for structured grid partition.
int traceMark = 0;
int blockIndexOfMark = 0;
int cellIndexOfMark[] = [185,30,1];
// parallel Strategy:
//! -# 0 : each zone is assigned to the one that defined in grid partition procedure.
//! -# 1 : random assigned for each zone or by some else ways.
int parallelStrategy = 1;
//-----------------------------------------------------------------------
# File path #
//-----------------------------------------------------------------------
// original_grid_file: Original grid file that want to be divided(PHengLEI type, *.fts).
// partition_grid_file: Target partition grid file(PHengLEI type, *.fts).
string original_grid_file = "./grid/sphere_mixed.fts";
string partition_grid_file = "./grid/sphere_mixed__4.fts";
// ------------------ Sompe advanced parameters -------------------------
// omit_no_bound_bc: What's boundary condition for the type of "no_boundary_condition".
// 0 -- Interface. (default)
// 1 -- Physical boundary condition, used in Hybrid solver.
// npartmethod: Method of interface reconstruction, default is 1.
// parallelPartitionMethod: Method of parallel partition, this is set only when execute parallel partition. It would be skipped when serial partition.
// 1 -- Using ParMetis for homogeneous MPI.
// 2 -- Using Metis for homogeneous MPI.
// 3 -- using METIS partition for homogeneous OpenMP.
// parmetisBalance: Used to specify the imbalance tolerance.
// 1 -- perfect balance.
// maxproc -- perfect imbalance.
// 1.05 -- recommended.
int omit_no_bound_bc = 0;
int npartmethod = 1;
int parallelPartitionMethod = 2;
double parmetisBalance = 1.05;
// numberOfMultigrid: Number of multi-grid levels, ONLY used for structured grid.
// 1 -- single level.
// 2 -- 2 level.
// N -- N level, ..., et al.
int numberOfMultigrid = 1;
#########################################################################
# Default parameters for CFD simulation #
#########################################################################
// maxSimuStep: The max simulation step, don't care simulation is restart or not.
// intervalStepFlow: The step intervals for flow variables file 'flow.dat' saved.
// intervalStepPlot: The step intervals for tecplot visual file 'tecflow.dat' saved.
// intervalStepSample: The step intervals for monitored probes variables file 'sample.dat' saved.
// intervalStepForce: The step intervals for aerodynamics coefficients file 'aircoef.dat' saved.
// intervalStepRes: The step intervals for residual file 'res.dat' saved.
// ifLowSpeedPrecon: Precondition process to accelerate convergence for low speed flow.
// 0 -- no precondition process. (default, mach > 0.3)
// 1 -- carry out precondition process. (mach number <= 0.3)
int maxSimuStep = 20000;
int intervalStepFlow = 1000;
int intervalStepPlot = 1000;
int intervalStepSample = 1000;
int intervalStepForce = 100;
int intervalStepRes = 10;
int ifLowSpeedPrecon = 0;
// compressible:
// 0 -- incompressible flow.
// 1 -- compressible flow. (default)
int compressible = 1;
//-----------------------------------------------------------------------
# CFD Control Parameter #
//-----------------------------------------------------------------------
// refMachNumber: Mach number.
// attackd: Angle of attack.
// angleSlide: Angle of sideslip.
// inflowParaType: The type of inflow parameters.
// 0 -- the nondimensional conditions.
// 1 -- the flight conditions.
// 2 -- the experiment conditions.
// 3 -- the subsonic boundary conditions.
// 4 -- the condition that the velocity, temperature and density are given.
// 5 -- the condition that the velocity, temperature and pressure are given.
// refReNumber: Reynolds number, which is based unit length, unit of 1/m.
// refDimensionalTemperature: Dimensional reference temperature, or the total temperature only for the experiment condition.
// freestream_vibration_temperature: Dimensional freestream vibration temperature.
// refDimensionalPressure: Dimensional reference pressure, or the total pressure only for the experiment condition.
// height: Fly height, unit of km.
// wallTemperature: Temprature of the solid wall, minus value is for adiabatic boundary condition.
// gridScaleFactor: The customizable unit of the grid, default value is 1.0 for meter.Common dimensions like:
// 1 dm = 0.1 m.
// 1 cm = 0.01 m.
// 1 mm = 0.001m.
// 1 inch = 0.0254m.
// 1 foot = 12 inches = 0.3048m.
// 1 yard = 3 feet = 0.9144m.
// forceReferenceLength, forceReferenceLengthSpanWise, forceReferenceArea: Reference length, SpanWise length and area, independent of grid unit.
// TorqueRefX, TorqueRefY, TorqueRefZ: Reference point, independent of grid unit.
// radiationCoef: The radiation coefficient on wall, it is used to compute the radiation heat flux on wall when the boundary
// condition is radiation equilibrium temperature, and 0.8 is the default value.
// refMolecularWeight : the reference molecular weight of gas used for perfect gas. The unit is g/mol.
// Generally, the gas is air. Sometimes, it is experiment gas, such as Nitrogen, Argon, and so on.
double refMachNumber = 0.73;
double attackd = 2.79;
double angleSlide = 0.00;
int inflowParaType = 0;
double refReNumber = 6.5e6;
double refDimensionalTemperature = 288.15;
double freestream_vibration_temperature = 300.00;
//int inflowParaType = 1;
//double height = 0.001;
//int inflowParaType = 2;
//double refDimensionalTemperature = 6051.024; // The total temperature, T*(1+(refGama-1)*M*M/2).
//double refDimensionalPressure = 4.299696E09; // The total pressure, p*(T0/T)^(refGama/(refGama-1)).
//int inflowParaType = 3;
//int nsubsonicInlet = 1;
//int nsubsonicOutlet = 1;
//string inLetFileName = "./bin/subsonicInlet.hypara";
//string outLetFileName = "./bin/subsonicOutlet.hypara";
//double refDimensionalTemperature = 288.144;
//double refDimensionalPressure = 1.01313E05;
//The velocity, temperature and density are fixed.
//int inflowParaType = 4;
//double refDimensionalVelocity = 1000.0;
//double refDimensionalDensity = 1.0e3;
//The velocity, temperature and pressure are fixed.
//int inflowParaType = 5;
//double refDimensionalVelocity = 1000.0;
//double refDimensionalPressure = 1.0e5;
//The MachNumber, temperature and pressure are fixed.
//int inflowParaType = 6;
//double refDimensionalTemperature = 293;
//double refDimensionalPressure = 8886.06;
double wallTemperature = -1.0;
double radiationCoef = 0.8;
double gridScaleFactor = 1.0;
int numberOfAerodynamicForceComponents = 1;
double forceReferenceLengthSpanWise = 1.0; // unit of meter.
double forceReferenceLength = 1.0; // unit of meter.
double forceReferenceArea = 1.0; // unit of meter^2.
double TorqueRefX = 0.0; // unit of meter.
double TorqueRefY = 0.0; // unit of meter.
double TorqueRefZ = 0.0; // unit of meter.
double refMolecularWeight = 28.9644; // unit of g/mol.
//-----------------------------------------------------------------------
# Spatial Discretisation #
//-----------------------------------------------------------------------
#*******************************************************************
# Struct Solver *
#*******************************************************************
// inviscidSchemeName: Spatial discretisation scheme of struct grid.
// Using this when solve structered grid or hybrid.
// -- "vanleer", "steger", "hlle", "lax_f".
// -- "roe", "modified_roe".
// -- "ausm+", "ausm+w", "ausm+up", "ausmdv", "ausmpw", "ausmpw+".
// str_limiter_name: Limiter of struct grid.
// -- "vanalbada", "vanleer", "minmod", "smooth", "minvan", "3rdsmooth", "3rd_minmod_smooth".
// -- "nolim", no limiter.
// -- "vanalbada_clz", clz supersonic version.
string inviscidSchemeName = "roe";
string str_limiter_name = "vanalbada";
#*******************************************************************
# UnStruct Solver or Common *
#*******************************************************************
// viscousType: Viscous model.
// 0 -- Euler.
// 1 -- Lamilar.
// 2 -- Algebraic.
// 3 -- 1eq turbulent.
// 4 -- 2eq turbulent.
// viscousName: Laminar or tubulent model.
// -- "0eq-bl".
// -- "1eq-sa".
// -- "2eq-kw-menter-sst".
// -- "2eq-kw-menter-bsl".
// -- "2eq-kw-wilcox-1988".
// -- "2eq-kw-wilcox-1998".
// -- "2eq-kw-kok-tnt".
// -- "2eq-kw-wilcox-2006".
// -- "easm-kw-2003".
// -- "easm-kw-2005".
// DESType: Type of DES.
// 0 -- RANS. (default)
// 1 -- DES.
// 2 -- DDES.
// 3 -- IDDES.
// uns_scheme_name: Spatial discretisation scheme of Unstruct grid.
// Using this when solve Unstructered grid or hybrid.
// -- "vanleer", "roe", "steger", "kfvs", "lax_f", "hlle".
// -- "ausm+", "ausmdv", "ausm+w", "ausmpw", "ausmpw+".
// uns_limiter_name: Limiter of Unstruct grid.
// -- "barth", "vencat", "vanleer", "minmod".
// -- "vanalbada", "smooth", "nnd", "lpz", "1st".
// -- "nolim", no limiter.
// uns_vis_name: Discretisation method of viscous term.
// -- "std", "test", "aver", "new1", "new2".
// gradientName: Gradient reconstruction method.
// -- "default", "ggcell", "ggnode", "lsq".
// ivencat: Variation of vencat limiter.
// 0 -- org method, it is independent of grid scale.
// 1 -- new method, it is dependent of grid scale.
// 4 -- Ustar limiter model, without grid size unitary.
// 7 -- default used.
// venkatCoeff: Cofficient of vencat, when using vencat limter.
// limitVariables: Limit model (It is useful only if limitVector is 0).
// 0 -- limit only for pressure and denstiny, then get the min value.
// 1 -- limit for every variables, then get the min value.
// limitVector:
// 0 -- Each variable use the same limiter coefficient.
// 1 -- Each variable use the respective limiter coefficients.
// reconmeth:
// 0 -- When reconstruct face value, Q+, Q- use respective limiter coefficients.
// 1 -- Q+, Q- use the min limiter coefficients of left and right cell.
// skewnessAngle: The skewness angle of grid cells.
// roeEntropyFixMethod: Entropy fix (correction) method.
// 1 -- direct fix, which limits the minimum eigenvalue directly.
// 2 -- multi-dimensional fix, which is derived from structured solver and now is only valid for struct solver.
// 3 -- Harten type, which is default used.
// roeEntropyScale: Entropy fix (correction) coefficient scale, default is 1.0.
// It is used to scale the default Roe entropy fix coefficients.
//int viscousType = 0;
//string viscousName = "Euler";
//int viscousType = 1;
//string viscousName = "laminar";
int viscousType = 3;
string viscousName = "1eq-sa";
//int viscousType = 4;
//string viscousName = "2eq-kw-menter-sst";
int DESType = 0;
string uns_scheme_name = "roe";
string uns_limiter_name = "vencat";
string uns_vis_name = "test";
string gradientName = "ggnode";
int ivencat = 7;
double venkatCoeff = 5.0;
int reconmeth = 1;
int limitVariables = 0;
int limitVector = 0;
double skewnessAngle = 60.0;
int roeEntropyFixMethod = 3;
double roeEntropyScale = 1.0;
//-----------------------------------------------------------------------
# Temporal Discretisation #
//-----------------------------------------------------------------------
// iunsteady: Steady or unsteady.
// 0 -- steady.
// 1 -- unsteay.
// physicalTimeStep: The nondimensional physical time step.
// ifStartFromSteadyResults: The unsteady simulation is start from steady flowfield or not, 0 is for no and else is for yes.
// ifStaticsFlowField: Statistical variables for unsteady simulation.
// ifStaticsReynoldsStress: Statistical Reynolds stress for unsteady simulation.
// startStatisticStep: Outer step when start statistics.
// when the value is larger than "maxSimuStep", it is useless.
// statisticalTimePeriod: Used as time period of statistic analysis.
// when the value is negative, time period is treated as infinite.
// statisticMethod: Statistic reynolds stress method.
0 --tau = <q^2> - <q>^2
1 --tau = <u'u'>
// min_sub_iter: The min sub iteration of unsteady simulation.
// max_sub_iter: The max sub iteration of unsteady simulation.
// tol_sub_iter: The tolerance of sub iteration of unsteady simulation.
// tscheme: Temporal Discretisation method.
// 1 -- Runge-Kutta Multi-State.
// 2 -- Point implicit.
// 3 -- Full implicit.
// 4 -- LU-SGS.
// 5 -- Block LU-SGS.
// 6 -- Jacobian iteration.
// 7 -- Lower G-S iteration.
// 8 -- Upper G-S iteration.
// 9 -- Lower/Upper G-S iteration.
// iSimplifyViscousTerm: Simplify the computation of viscous term in the Block LU-SGS method. The default value assigns 1 that could speed up the computation.
// Otherwise, the viscous Jacobian matrix Mv should be computed that will increase the memory and time in iteration of the BLUSGS method.
// CFLStart: Started cfl number.
// CFLEnd: End cfl number.
// CFLVaryStep: The number of step when cfl increase from CFLStart to CFLEnd.
// ktmax: Dtratio. dt[i] = MIN(dt[i], ktmax * dtmin / vol[i])
// swapDq: Communication dq between forward/backward sweep of LUSGS or not, default is 0.
// nLUSGSSweeps: Sub iteration of LU-SGS or Block LU-SGS.
// LUSGSTolerance: Sub iter tolerance of LU-SGS or Block LU-SGS.
// ifLocalTimeStep: Time step method.
// 0 --Local.
// 1 --Global.
// visl_min: Minimum value of laminar viscosity coefficient.
// turbCFLScale: Turbulence model cfl number factor.
// codeOfAleModel: Arbitrary Lagrangian-Eulerian method.
// 0 -- no ALE method.
// 1 -- ALE method for non-moving grids.
// 2 -- ALE method for moving grids.
// 3 -- ALE method for deforming grids.
// wallFunctionType: The type of wall function to implement.
// 0 -- no wall function. (default)
// 1 -- standard wall function.
// 2 -- Pab3D wall function.
// RKStage: The number of Runge-Kutta step.
// lamda: Cofficient of Runge-Kutta step.
int iunsteady = 0;
double physicalTimeStep = 0.01;
int ifStartFromSteadyResults = 0;
int ifStaticsFlowField = 0;
int ifStaticsReynoldsStress = 0;
int startStatisticStep = 800000;
double statisticalTimePeriod = -1.0;
int statisticMethod = 0;
int linearTwoStepMethods = 1; // 1--BDF1; 2--C-N; 3--BDF2;
int methodOfDualTime = 3;
int min_sub_iter = 50;
int max_sub_iter = 50;
double tol_sub_iter = 0.01;
int tscheme = 4;
int iSimplifyViscousTerm = 1;
int ifLocalTimeStep = 0;
double CFLStart = 0.01;
double CFLEnd = 10.0;
int CFLVaryStep = 500;
double ktmax = 1.0e10;
int swapDq = 1;
int nLUSGSSweeps = 1;
double LUSGSTolerance = 0.01;
int order = 2;
double visl_min = 0.01;
double turbCFLScale = 1.0;
double csrv = 2.0;
double timemax = 1.0e10;
double dtsave = -1.0;
int maxale = 10;
double dtau = 0.001;
int wallFunctionType = 0;
int RKStage = 2;
double lamda[] = 0.5, 1.0;
//int RKStage = 1;
//double lamda[] = 1.0;
//int RKStage = 4;
//double lamda[] = [0.25, 0.33333333333, 0.5, 1.0];
//-----------------------------------------------------------------------
# File In or Out #
//-----------------------------------------------------------------------
// numberOfGridGroups: The number of grid groups.
// gridfile: The partitioned Grid file path, using relative path,
// which is relative to the working directory.
// IMPORTANT WARNING: The file index should be ignored,
// e.g. if the partitioned grid is rae2822_hybrid2d__4_0.fts,
// please use 'rae2822_hybrid2d__4.fts' here!
// plotFieldType: If dump out the field results to visulization.
// walldistMethod: The method to compute wall distance.
// 0 -- accurate but not fast enough.
// 1 -- fast but not accurate enough.
// 2 -- super fast but more non-accurate!
// resSaveFile: The file path to save the residual convergence process, write data for every default (intervalStepRes) steps.
// turbresfile: The file path to save the residual convergence process of turbulence, write data for every default (intervalStepRes) steps.
// aircoeffile: The file path to save the aerodynamic force coefficients convergence process, write data for every default (intervalStepForce) steps.
// restartNSFile: The file path to write restart flowfield variables, write data for every default (intervalStepFlow) steps.
// turbfile: The file path to write restart flowfield variables of turbulence , write data for every default(intervalStepFlow) steps.
// visualfile: The visualization file path of flowfield , write data for every default (intervalStepPlot) steps.
// wall_aircoefile: The file path to save flowfield variables of wall, write data for every default steps.
// nDumpSurfaceInfo = 0 the "wall_varfile" write the informations including heat flux.
// nDumpSurfaceInfo = 1 the "wall_varfile" write the informations without heat flux.
int numberOfGridGroups = 1;
string gridfile = "./grid/rae2822_hybrid2d__4.fts";
string wallTemperaturefile= "";
int walldistMethod = 1;
string resSaveFile = "results/res.dat";
string turbresfile = "results/turbres.dat";
string aircoeffile = "results/aircoef.dat";
string restartNSFile = "results/flow.dat";
string turbfile = "results/turb.dat";
string visualfile = "results/tecflow.plt";
string wall_aircoefile = "results/wall_aircoef.dat";
string samplefile = "results/sample.dat";
int nDumpSurfaceInfo = 0;
string wall_varfile = "";
string jetDefineFile = "bin/jet.hypara";
string sixDofFileName = "results/sixDofInfo.dat";
string derivativeFileName = "results/identify.dat";
string hysteresisFileName = "results/force_beta.plt";
int plotFieldType = 0;
// visualfileType: The file type of visualfile.
// 0 -- Tecplot binary.
// 1 -- Tecplot ASCII.
int visualfileType = 1;
// samplefileMode: The dump mode of sample file.
// 0 -- dump out every probe/line/surface data for all step intervals.
// 1 -- dump out all probe/line/surface data for every step intervals.
int samplefileMode = 0;
// visualSlice: The slice of tecflow.
// 0 -- Do not save slice data.
// 1 -- comput and save it to sliceFile.
// sliceAxis: Normal vector of slice.
// 1 -- X_DIR.
// 2 -- Y_DIR.
// 3 -- Z_DIR.
// slicePostion: Coordinate of slice.
int visualSlice = 0;
int sliceAxis = 1;
double slicePostion = -0.5;
string sliceFile = "results/Slice.plt";
int dumpWallFaceCenter = 0;
// min-max box of the visual block.
double lowerPlotFieldBox[] = [0.0 0.0 0.0];
double upperPlotFieldBox[] = [1.0 1.0 1.0];
//-----------the optional parameters list for the flow field output----------------
// nVisualVariables: Number of variables want to be dumped for tecplot visualization.
// visualVariables : Variable types dumped, listed as following:
// -- density(0), u(1), v(2), w(3), pressure(4), temperature(5), mach(6),
// -- viscosityLaminar(7), viscosityTurbulent(8),
// -- vorticity_x(9), vorticity_y(10), vorticity_z(11), vorticityMagnitude(12),
// -- strain_rate(13), Q_criteria(14), Cp(15), timeStep(16), volume(17),
// -- modeledTKE(18), modeleddissipationrate(19), SSTF1(20), SSTF2(21),
// -- vibration temperature(Tv, 33), electron temperature(Te, 34), vibrational energy(Ev, 35), electric energy(Ee, 36),
// -- number density of electron(Ne, 37), dimensioanl density(rho, 38), dimensioanl pressure(p, 39), dimensioanl temperature(T, 40),
// -- gradientUx(41), gradientUy(42), gradientVx(43), gradientVy(44), iblank(81).
// -- specific heat ratio(gama, 56)
// Important Warning: Array size of visualVariables MUST be equal to nVisualVariables!!!
// Variables order must from small to big.
//-----------the optional parameters list for the wall boundary condition----------------
// nVisualWallVariables: The number of visual variables on wall.
// visualWallVariables : dumped variable types, listed as following:
// -coefficient of pressure(cp, 0), -coefficient of friction(cf, 1), yplus(2), -non-dimensional heat flux(Q_NonDim, 3), -dimensional heat flux(Q_Dim, 4),
// -pressure on wall(pw, 5), -temperature on wall(Tw, 6), -density on wall(rhow, 7), -heat flux of translational-rotational temperature term(Qtr, 8),
// -heat flux of species diffusion term(Qs, 9), -heat flux of vibrational temperature term(Qv, 10), -heat flux of electron temperature term(Qe, 11),
// -species mass fractions(Ns, 12), -x component of wall velocity(Vx, 13), -y component of wall velocity(Vy, 14), -z component of wall velocity(Vz, 15)
// -slip translational-rotational temperature(Tts, 16), -slip vibrational temperature(Tvs, 17), -slip electron temperature(Tes, 18), -absolute wall velocity(Vs, 19)
// -Stanton number(St, 20), -coefficient of heat rate(Ch, 21), -temperature jump(deltaT, 22), -transition gamaeff(gamaeff, 48),
// -transition intermittency(intermittency, 51), -transition momentum thickness reynolds(MomentumThicknessReynolds, 52),
// -overlap iblank(iblank, 81)
int nVisualVariables = 8;
int visualVariables[] = [0, 1, 2, 3, 4, 5, 6, 15];
int nVisualWallVariables = 9;
int visualWallVariables[] = [0, 1, 2, 3, 4, 5, 9, 10, 11];
// dumpStandardModel: Dump many standard model data.
// 1 -- Turbulent flat plate.
int dumpStandardModel = 0;
// ifSetDataMonitor: Whether to set the data monitor.
// 0 -- No.
// 1 -- Yes.
// dataMonitorType: The type of data Monitor.
// 0 -- Probes data monitor.
// 1 -- Lines data monitor.
// 2 -- Surfaces data monitor.
// probesDefineFile: Probes location information file.
// nLines: The number of lines need to be monitored.
// linesDefineFile: Lines location information file.
// nSurfaces: The number of surfaces need to be monitored.
// surfacesDefineFile: Surfaces location information file.
// searchCellsMethod: method to search the cell of each probe.
// 0 -- Nearest cell to the probe.
// 1 -- Real cell where the probe is located.
// nProbeVariables: Number of variables want to be dumped for probes monitered.
// probeVariables : Variable types dumped, listed as following:
// -- density(0), u(1), v(2), w(3), pressure(4), temperature(5).
// Important Warning: Array size of probeVariables MUST be equal to nProbeVariables!!!
// probeVariables order must from small to big.
// probeVariablesInterpolationMethod: Interpolation method used to compute the probe variables.
// 0 -- Take the value of probe's cell as probe real value.
// 1 -- Interpolation from probe's and neighbouring cell to probe.
// 2 -- Interpolation from probe's cell nodes to probe.
int ifSetDataMonitor = 0;
int dataMonitorType = 0;
string probesDefineFile = "bin/probes_XYZ.dat";
//int dataMonitorType = 1;
//int nLines = 1;
//string linesDefineFile = "bin/lines_XYZ.dat";
//int dataMonitorType = 2;
//int nSurfaces = 4;
//string surfacesDefineFile = "bin/surfaces_XYZ.dat";
int searchCellsMethod = 0;
int nProbeVariables = 6;
int probeVariables[] = [0, 1, 2, 3, 4, 5];
int probeVariablesInterpolationMethod = 0;
//-----------------------------------------------------------------------
# Turbulence Parameter #
//-----------------------------------------------------------------------
// turbInterval: Iteration number of turbulence.
// kindOfTurbSource: Kinds of turbulent source.
// 0 -- Original.
// 1 -- Edwards.
// 2 -- new.
// mod_turb_res: If modify the residuals for the cells next to the wall or not, default is 0.
int turbInterval = 1;
int turbOrderStruct = 2;
int kindOfTurbSource = 0;
int mod_turb_res = 0;
double turb_relax = 1.0;
double freeStreamViscosity = 1.0e-3;
double muoo = 3.0;
double kwoo = 5.0;
int transitionType = 0;
double turbIntensity = -1.0;
int freeturbIntensitySRModify = 0;
double freeDecayXLocation = 0.0;
int compressibleCorrection = 0;
int transitionMaFix = 1;
# maximum eddy viscosity (myt/my) max.
double eddyViscosityLimit = 1.0e10;
int monitor_vistmax = 0;
//-----------------------------------------------------------------------
# LES Parameter #
//-----------------------------------------------------------------------
// iLES: Create LESSolver or not.
// == 1 - Create LESSolver;
// != 1 - not.
// amplitudeofDisturb: Amplitude of adding disturb.
// disturbstep: Unsteady time step or steady iteration of adding random disturb.
// iterdisturb: Add random disturb in every sub-iter or only first sub-iter.
// = 0 - in only first sub-iter;
// != 0 - in every sub-iter.
// ipraddisturb: Add density and pressure disturb or not.
// ibodyforce: Add body force in source flux of NS equations or not.
// = 0 - not;
// != 0 - Add body force.
// bodyforce: Body force in source flux of NS equations or not.
// utau: friction velocity, using in DNSDisturb.
// sgsmodel: subgrid scale model.
// = "smagorinsky";
// = "dsmCom";
// = "wale";
// = "sigma".
// deltaFunctionType: = 1 - MAX(deltai, deltaj, deltak);
// = 2 - pow(deltai * deltaj *deltak, 1/3);
// = 3 - Devloped by Scotti.
// wallDampingFunctionType: = 0 - no wall function;
// = 1 - van Driest;
// = 2 - developed by Dr. Deng Xiaobing;
// = 3 - developed by Piomelli.
// turbViscousCutType: turbulent viscosity cut type.
// = 0 - mu_total = mut + mul;
// = 1 - mu_total = max(mut-mul,0)+ mul;
// = 2 - mu_total = max(mut ,0)+ mul.
// smagConstant: constant of smagorinsky model.
// waleConstant: constant of wale model.
// filterDirection[3]: filter variables in i, j, k direction or not.
// averageDirection[3]: average variables in i, j, k direction or not.
// isotropicConstant: constant of isotropic part of SGS stress.
int iLES = 0;
string sgsmodel = "smagorinsky";
int deltaFunctionType = 2;
int wallDampingFunctionType = 1;
int turbViscousCutType = 2;
double smagConstant = 0.1;
double isotropicConstant = 0.0;
double waleConstant = 0.6;
double sigmaConstant = 1.35;
int filterDirection[] = [1, 1, 0];
int averageDirection[] = [0, 0, 0];
double testFilterScale = 2.0;
int averageWidth = 1;
int monitorNegativeConstant = 0;
//-----------------------------------------------------------------------
# Other Parameters for Hypersonic Non-equilibrium Gas #
//-----------------------------------------------------------------------
// dg_high_order:
// 0 -- generic order accuracy.
// 1 -- high order accuracy.
// iapplication:
// 0 -- gas model is fixed in the codes.
// 1 -- gas model is imported from library files.
// iCodeBranch:
// 0 -- The old code version is used for Navier-Stokes.
// 1 -- A new code version is active for Navier-Stokes solver.
// nm: Equation number of the physics, but is out of commision now.
// 4 -- for 2D.
// 5 -- for 3D.
// nGasModel: The type of gas. less than and equal to 1 represents the mixture gas.
// Otherwise, the pure gas with one component is used for perfect gas.
// 0 -- Earth gas.
// 1 -- Mars gas.
// 2 -- Argon.
// 3 -- Nitrogen.
// nEnergyRecycle: The type of EnergyModel Recycle.
// 0 -- not used .
// 1 -- used.
// nDensityModify: The type of densitymodify.
// 0 -- not used.
// 1 -- used.
// nchem:
// 0 -- without chemical reaction flow.
// 1 -- the chemical reaction flow is considered.
// nEquilibriumGas: the variable is valid when the condition of nchem=0 is satisfied.
// 0 -- perfect gas.
// 5, 7, 11 -- equilibrium gas, meanwhile, its value denotes the number of gas component.
// nPCWCycleStep: the maximum step number of iteration in the module of computing species mass fractions with the partial catalytic wall(PCW) condition.
// the value equals to or is greater than 1, and 3 is for default value.
// nRETCycleStep: the maximum step number of iteration in the module of computing radiation equilibrium temperature on wall.
// the value equals to or is greater than 1, and 3 is for default value.
// nSLIPCycleStep:the maximum step number of iteration in the module of computing slip temperature, slip velocity and slip species mass fraction.
// the value equals to or is greater than 1, and 3 is for default value.
// nSlipBCModel : The computational model of slip boundary conditions.
// 0 -- no slip.
// 1 -- the conventional Maxwell slip conditions.
// 2 -- the Gokcen slip conditions.
// 3 -- the Knudsen-layer correction of the standard slip conditions proposed by Lockerby, et al.
// 4 -- the Kogan simplified slip conditions.
// nMeanFreePathType : the method to the mean free-path for the slip conditions. For the mixture, 0 is suggested.
// 0 -- the equivalent mean free-path is calculated by the simple hard sphere model(HS).
// 1 -- calculated by the definition that includes the variables of the number density and the molecule diameter.
// 2 -- the equivalent mean free-path is calculated by the variable hard sphere model(VHS).
// nchemsrc:
// 0 -- the source terms are not computed.
// 1 -- the source terms are computed.
// nchemrad:
// 0 -- compute the spectrum radius without considering chemical reaction flow.
// 1 -- compute the spectrum radius that need to count the contribution from chemical reaction flow.
// ntmodel: The thermodynamic temperature model.
// 1 -- One-temperature model.
// 2 -- Two-temperature model.
// 3 -- Three-temperature model.
// nTEnergyModel: the method to computing temperature energy model.
// 0 -- the energy term is computed using the conventional method.
// 1 -- the energy term is computed using the curve fitting method.
// parkVDPower: the power of translational-rotational temperature in the Park V-D(vibration-dissociation) coupling model.
// The value is in range of [0.0, 1.0], DPLR suggests 0.5, LAURA suggests 0.7, while 0.6 is given as default value.
// catalyticCoef:
// 0.0 -- full non-catalytic wall boundary condition.
// 1.0 -- full catalytic wall boundary condition.
// in range of (0.0, 1.0) -- partial catalytic condition, the value indicates the catalytic coefficient.
// nIsSuperCatalytic : the super catalytic condition for the fully catalytic wall, and assigned with the value of 1.
// 0 -- equilibrium condition for the fully catalytic wall where the mass fractions are assigned with the values of the free stream.
// 1 -- super catalytic condition for the fully catalytic wall where all the atomic components combine into molecular components.
// nTemperatureJump : the method to calculate the temperature jump.
// 0 -- calculated by the variables of heat conductivity and constant volume specific heat for each energy mode.
// 1 -- the general method where the iteration is calculated with the translation-rotation temperature.
// sigmaVelocity: the coordination coefficient of tangential momentum for computation of slip velocity. The value is in range of (0.0, 2.0].
// sigmaTemperature: the heat coordination coefficient for computation of slip temperature. The value is in range of (0.0, 2.0].
// sigmaMassFraction: the species coordination coefficient for computation of slip mass fractions. The value is in range of (0.0, 2.0].
// velocitySlipCorrectConstant: the correction constant to the velocity slip condition. For the diffuse reflection, 1.0 is used.
// 1.0 -- proposed by Maxwell.
// sqrt(2/PI)~0.8 -- used for "micro-slip", namely the actual velocity slip at the wall.
// 1.146 -- proposed for an additional "fictitious" velocity slip.
// chemicalRelaxCorf: The value is in range of [0.001, 1.0].
// chemicalSpectrumRadiusCoef: The value is in range of [1.0, 3.0].
// viscousSpectrumRadiusCoef : The value is in range of [1.0, 3.0].
// inviscidSpectrumRadiusCoef: The value is in range of [1.0, 3.0].
// staticPressureRelaxCorf: The value is in range of [0.1, 1.0].
// nIsChemicalFreeze : the flag to freeze the chemical reactions.
// 0 -- not freeze, the chemical reaction sources will be calculated.
// 1 -- freezes the chemical reactions, the chemical reaction sources will not be calculated.// veTemperatureMin: The minimum of Tv and Te
// nDebug: cout the Wrong place and abort
// 0 -- not used.
// 1 -- used.
// nSpeciesLimit: limitter of gas species
// 0 -- not used.
// 1 -- used.
// nTurblenceForChemical: the coupled mode of Turblence and Chemical reaction
// 0 -- method 0.
// 1 -- method 1.
// nViscosityFluxSublevelModified: Modified for ViscosityFlux on Sublevel grid
// 0 -- not used.
// 1 -- used.
// nChemcalSourceModified: Modified on ChemcalSource
// 0 -- not used.
// 1 -- used.
// nAblation:
// 0 -- The wall ablation is not computed.
// 1 -- The wall ablation is computed.
// isInjection:
// 0 -- The injection velocity of ablation wall is not computed.
// 1 -- The injection velocity of ablation wall is computed.
// nViscosityModel:
// 0 -- Blottner fitting method.
// 1 -- Gupta fitting method.
// nSutherland:
// 0 -- stands for selecting the Blotter curve fits mode.
// 1 -- stands for Sutherland relation.
// gasfile: Indicates the gas model, 9 models are provided, namely "Gu5", "Gu7", "Gu11", "Pa5", "Pa7", "Pa11", "DK5", "DK7", "DK11".
// "Gu" -- indicates the Gupta Model, three-Type Models are embeded in the library, namely, the 5-species-6-reactions, the 7-species-9-reactions, the 11-species-20-reactions.
// "Pa" -- indicates the Park Model, three-Type Models are embeded in the library, namely, the 5-species-17-reactions, the 7-species-22-reactions, the 11-species-48-reactions.
// "DK" -- indicates the Dunn-Kang Model, three-Type Models are embeded in the library, namely, the 5-species-11-reactions, the 7-species-15-reactions, the 11-species-26-reactions.
// "Mars-Pa8" is for Park model of Mars gas, "Mars-Mc8" for McKenzie model of Mars gas.
// "Combustion-12" -- indicates the Combustion Chamber Gas Model which includes 12-species-20-reactions.
// "Gas-Mixture" -- indicates the process of mixing two species without reacting.
// For self-definition model, the gasfile is used to indicate the file path of the new gas model.
// speciesName: Used to list the names of each species, while each species name is separated by the symbol of comma.
// initMassFraction: Used to list the initial mass fractions of species in accordance with the sequence of names in the parameter speciesName.
// ifStartFromPerfectGasResults: The chemical reaction simulation is start from perfect gas flowfield or not, 0 is for no and else is for yes.
int dg_high_order = 0;
int iapplication = 0;
int iCodeBranch = 0;
int nm = 5;
int nEquilibriumGas = 0;
int nPCWCycleStep = 3;
int nRETCycleStep = 3;
int nSLIPCycleStep= 3;
double refGama = 1.4;
double prl = 0.72;
double prt = 0.90;
double sc_l = 0.5;
double sc_t = 0.5;
int nGasModel = 0;
int nchem = 0;
int nchemsrc = 1;
int nchemrad = 1;
int ntmodel = 1;
int nEnergyRecycle = 0;
int nSlipBCModel = 0;
int nDensityModify = 1;
int nTEnergyModel = 0;
int nMeanFreePathType = 0;
int nIsChemicalFreeze = 0;
int nIsSuperCatalytic = 1;
int nTemperatureJump = 0;
double parkVDPower = 0.6;
double catalyticCoef = 0.0;
double sigmaVelocity = 1.0;
double sigmaTemperature = 1.0;
double sigmaMassFraction = 1.0;
double velocitySlipCorrectConstant = 1.0;
double chemicalRelaxCorf = 1.0;
double chemicalSpectrumRadiusCoef = 1.0;
double viscousSpectrumRadiusCoef = 1.0;
double inviscidSpectrumRadiusCoef = 1.0;
double staticPressureRelaxCorf = 1.0;
double veTemperatureMin = 30.0;
int nDebug = 0;
int nSpeciesLimit = 0;
int nTurblenceForChemical = 0;
int nViscosityFluxSublevelModified = 0 ;
int nChemcalSourceModified = 0;
int nAblation = 0;
int isInjection = 0;
int nViscosityModel = 0;
int nMarsModel = 0;
string gasfile = "DK5";
//string gasfile = "./chemical/Dunn-Kang_air5s11r.dat";
string speciesName = "O, O2, NO, N, N2";
string initMassFraction = "0.0, 0.233, 0.0, 0.0, 0.767";
//string speciesName = "O, O2, NO, N, NO+, N2, e-";
//string initMassFraction = "0.0, 0.233, 0.0, 0.0, 0.0, 0.767, 0.0";
//string speciesName = "O, O2, NO, N, O+, O2+, NO+, N+, N2+, N2, e-";
//string initMassFraction = "0.0, 0.233, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.767, 0.0";
//string gasfile = "Mars-Pa8";
//string speciesName = "O, O2, NO, N, N2, C, CO, CO2";
//string initMassFraction = "0.0015, 0.0429, 0.0, 0.0, 0.0, 0.0, 0.0777, 0.8779";
//string gasfile = "DK7";
//string speciesName = "O, O2, NO, N, NO+, C, C2, CO, CO2, CN, N2, e-";
//string initMassFraction = "0.0, 0.233, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.767, 0.0";
//string gasfile = "Combustion-12";
//string speciesName = "O, O2, NO, N, C, CO, CO2, H, H2, OH, H2O, N2";
//string initMassFraction = "0.0, 0.233, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.767";
//string gasfile = "Gas-Mixture";
//string speciesName ="SpeciesA, SpeciesB";
//string initMassFraction = "1.0, 0.0";
int nSutherland = 0;
double gamaSpeciesA = 1.4;
double gamaSpeciesB = 1.3;
double molecularWeightSpeciesA = 29.0;
double molecularWeightSpeciesB = 30.0;
int nChemicalFlowStep = 0;
int ifStartFromPerfectGasResults = 0;
#########################################################################
// Multi-Grid parameters.
// nMGLevel: The number of level of Multi-Grid.
// <= 1 -- Single-level.
// > 1 -- multi-level.
// MGPreIteration: For each grid, the number of pre-smoothing steps.
// n_post: For each grid, the number of post-smoothing steps.
// MGCoarsestIteration: For the coarest grid the number of smoothing steps.
// MGFasType: V-multi cycle or W-multi cycle.
// 1 -- V-multi cycle.
// 2 -- W-multi cycle.
// flowInitStep: Flow initialization step, 0 - 500 is suggested.
// Multi-Grid : Number of steps computing on coarse grid, during flow initialization.
// Single-Grid: Number of steps computing using first-order with vanleer, during flow initialization.
// mgCFLScale: CFL number enlarge times for coarse grid.
// mprol: Multi-grid interpolation method, interpolation from coarse cell to fine grid.
// 1 -- zero order.
// 2 -- first-order. (default)
// mgCorrectionLimit: Multi-grid correction limit.
int nMGLevel = 1;
int MGCoarsestIteration = 1;
int MGPreIteration = 1;
int MGFasType = 1;
int n_post = 0;
int flowInitStep = 100;
int mprol = 2;
double mgCFLScale = 1.0;
double mgCorrectionLimit = 0.01;
//--------------- Some parameter for turbulent model --------------------
// neasm: The variation of kw turbulent model.
// ismooth_turb: Residual smooth for turb or not.
// SSTProductType: The type of product term based on vorticity for SST.
// SAProductType: The type of product term based on vorticity for SA.
int neasm = -3;
int SSTProductType = 0;
int ismooth_turb = 0;
int SAProductType = 2;
// ----------------- Overset Grid parameter -----------------------------
int codeOfDigHoles = 1;
int codeOfTurbulentModel = 0;
string masterFileName = "./grid/searchFile.inp";
string holeBasicFileName = "./grid/holeBasicFile.inp";
string holeFullFileName = "./grid/holeFullFile.dat";
string linkFileName = "./grid/topology.dat";
string zoneInverseFileName = "./grid/zoneInverseMapping.inp";
#########################################################################
# High Order Struct Solver #
#########################################################################
// isFVMOrFDM:
// 0 -- NSSolverStruct using Finite Volume Method.
// 1 -- NSSolverStruct using Finite Differ Method.
// SolverStructOrder: Spatial discretisation order of NS equations with struct grid.
// <= 2 -- finite volume method.
// >= 3 -- finite difference order. (to be completed)
// 0 -- default.
// str_highorder_interpolation_epsilon: Epsilon in weighted interpolation, bigger epsilon, better convergence,
// smaller epsilon, robuster for shock-detecting.
// str_highorder_interpolation_type:
// -- "classical", "test".
// str_highorder_flux_name:
// -- "roe", "steger".
// structhighordergradient:
// -- "conservation", "chain_rule".
int isFVMOrFDM = 0;
string str_highorder_solver = "WCNS";
int SolverStructOrder = 0;
double str_highorder_interpolation_epsilon = 1.0e-6;
string str_highorder_interpolation_type = "test";
string str_highorder_flux_name = "steger";
string structhighordergradient = "conservation";
double coefofstrflux = 0.5;
double limitcoefofinterface = 0.0;
// ----------------- Advanced choices -----------------------------------
// outtimesc: Time stepping scheme for the outer loop.
// MUSCLCoefXk: The parameter of MUSCL interpolations, belongs to [-1, 1].
// -1 -- seconde-order fully-upwind differencing.
// 0 -- seconde-order upwind-biased differencing.
// 0.333333 -- third-order upwind-biased differencing.
// 1 -- seconde-order central differencing.
// MUSCLCoefXb: The limiter parameter.
// 0 -- the effect of the limiter is cancelled, means the first-order interpolations.
// allReduceStep: Iteration intervals for MPI AllReduce operation, default is 1.
string outtimesc = "impbd2";
double MUSCLCoefXk = -1;
double MUSCLCoefXb = 1.0;
int allReduceStep = 1;
// ----------------- overlap configuration ------------------------------
// codeOfOversetGrid: Overlapping(overset) grid or not.
// 0 -- NON-overlapping grid.
// 1 -- Overlapping grid.
// oversetInterpolationMethod: the method of overset interpolation while field simulation
// 0 -- set the acceptor cell value by donor cell value.
// 1 -- set the acceptor cell value by distance weight of donor cell value.
int codeOfOversetGrid = 0;
int oversetInterpolationMethod = 0;
int readOversetFileOrNot = 0;
int symetryOrNot = 0;
int readInAuxiliaryInnerGrid = 1;
int readInAuxiliaryOuterGrid = 0;
int readInSklFileOrNot = 0;
string auxiliaryInnerGrid0 = "./grid/aux-upper.fts";
string auxiliaryInnerGrid1 = "./grid/aux-lower.fts";
string auxiliaryInnerGrid2 = "";
string oversetGridFileName = "./grid/iblank.ovs";
double walldistMainZone = 1.0
double toleranceForOversetSearch = 1.0e-3;
double toleranceForOversetBox = 1.0e-3;
int twoOrderInterpolationOrNot = 0;
int keyEnlargeOfActiveNodes = 0;
int outTecplotOverset = 0;
int numberOfMovingBodies = 2;
// ----------------- ALE configuration ------------------------------
int codeOfAleModel = 1;
int aleStartStrategy = -1;
int strategyForFaceNormalVelocity = 0; //0-By Sweeping volume; 1-By face center 1st; 2-By face center 2nd;
int strategyForGCLSource = 0; //0-present; 1-Ahn;
//0:1st-Admas-Bashforth; 1:2nd-Admas-Bashforth; 2:1st-Implicit-Euler; 3:2nd-Implicit Euler; 4:2nd-Adams-Moulton; 5:3rd-Adams-Moulton
int methodForKineticEquation = 0;
double relaxParameterOfKinetic = 1.0;
#########################################################################
# motive information #
#########################################################################
int numberOfMovingBodies = 1;
############################## body0 ##############################
//mass of parts
double mass_0 = 1.0;
//mass matrix of parts Ixx Iyy Izz Ixy Ixz Iyz
double massMatrix_0[] = 1e-7, 1e-6, 1e-6, 0.0, 0.0, 0.0;
//initial six DOF position information of parts. xc yc zc
double massCenter_0[] = 0.0 , 0.0, 0.0;
//initial six DOF position information of parts. angleX angleY angleZ
double attitudeAngle_0[] = 0.0 , 0.0, 0.0;
//initial six DOF move information of parts. vc vy vz
double massCenterVelocity_0[] = 0.0, 0.0, 0.0;
//initial six DOF move information of parts. omigX omigY omigZ
double angularVelocity_0[] = 0.0, 0.0, 0.0;
//the object that the parts belong to.
int fartherIndex_0 = -1;
//the assembly position of the parts. xc yc zc angleX angleY angleZ
double configPamameter_0[] = 0.0 ,0.0 ,0.0 ,0.0 ,0.0 ,0.0;
//the move pattern of the parts.
// -1 given motion partten.
// 0 still.
// 1 six DOF motion.
// 2 three DOF motion.
// 11 X-axis forced motion.
// 12 Y-axis forced motion.
// 13 Z-axis forced motion.
// 14 forced pitch motion.
// 15 forced yaw motion.
// 16 forced roll motion.
int RBDMethod_0 = 0;
double amplitude_0 = 0.0;
double reduceFrequency_0 = 0.0;
//string uDFSixDofFileName_0 = "./Bin/UDFSixDof.Parameter";
//additional force (system axis) fX fY fZ
double addedForce_0[] = 0.0 ,0.0 ,0.0 ;
//additional moment of Force (system axis) mX mY mZ
double addedMoment_0[] = 0.0 ,0.0 ,0.0 ;
//the deformation method of the parts.
int morphing_0 = 0;
// post indentify
int integralOrder = 4;
// ---------------- ATP read --------------------------------------------
//@int inflowParaType = 0;
//@double refReNumber = 6.5e6;
//@double refDimensionalTemperature = 288.15;
//@double freestream_vibration_temperature = 300.00;
//@double refDimensionalPressure = 0;
//@double height = 0;
//@int nsubsonicInlet = 0;
//@int nsubsonicOutlet = 0;
//@string inLetFileName = "./bin/subsonicInlet.hypara";
//@string outLetFileName = "./bin/subsonicOutlet.hypara";
//@double refDimensionalVelocity = 0;
//@double refDimensionalDensity = 0;
#########################################################################
# Old Parameter #
#########################################################################
int isPlotVolumeField = 0;