update formula functions test

This commit is contained in:
xuri 2021-02-01 00:07:51 +08:00
parent 4ac32278ff
commit db7b4ee362
No known key found for this signature in database
GPG Key ID: BA5E5BB1C948EDF7
2 changed files with 483 additions and 423 deletions

583
calc.go
View File

@ -455,7 +455,7 @@ func (f *File) evalInfixExp(sheet string, tokens []efp.Token) (efp.Token, error)
Type: ArgString,
})
}
// call formula function to evaluate
arg := callFuncByName(&formulaFuncs{}, strings.NewReplacer(
"_xlfn", "", ".", "").Replace(opfStack.Peek().(efp.Token).TValue),
[]reflect.Value{reflect.ValueOf(argsStack.Peek().(*list.List))})
@ -1573,14 +1573,14 @@ func (fn *formulaFuncs) CSCH(argsList *list.List) formulaArg {
if argsList.Len() != 1 {
return newErrorFormulaArg(formulaErrorVALUE, "CSCH requires 1 numeric argument")
}
val, err := strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64)
if err != nil {
return newErrorFormulaArg(formulaErrorVALUE, err.Error())
val := argsList.Front().Value.(formulaArg).ToNumber()
if val.Type == ArgError {
return val
}
if val == 0 {
if val.Number == 0 {
return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
}
return newNumberFormulaArg(1 / math.Sinh(val))
return newNumberFormulaArg(1 / math.Sinh(val.Number))
}
// DECIMAL function converts a text representation of a number in a specified
@ -1618,14 +1618,14 @@ func (fn *formulaFuncs) DEGREES(argsList *list.List) formulaArg {
if argsList.Len() != 1 {
return newErrorFormulaArg(formulaErrorVALUE, "DEGREES requires 1 numeric argument")
}
val, err := strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64)
if err != nil {
return newErrorFormulaArg(formulaErrorVALUE, err.Error())
val := argsList.Front().Value.(formulaArg).ToNumber()
if val.Type == ArgError {
return val
}
if val == 0 {
if val.Number == 0 {
return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
}
return newNumberFormulaArg(180.0 / math.Pi * val)
return newNumberFormulaArg(180.0 / math.Pi * val.Number)
}
// EVEN function rounds a supplied number away from zero (i.e. rounds a
@ -1638,12 +1638,12 @@ func (fn *formulaFuncs) EVEN(argsList *list.List) formulaArg {
if argsList.Len() != 1 {
return newErrorFormulaArg(formulaErrorVALUE, "EVEN requires 1 numeric argument")
}
number, err := strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64)
if err != nil {
return newErrorFormulaArg(formulaErrorVALUE, err.Error())
number := argsList.Front().Value.(formulaArg).ToNumber()
if number.Type == ArgError {
return number
}
sign := math.Signbit(number)
m, frac := math.Modf(number / 2)
sign := math.Signbit(number.Number)
m, frac := math.Modf(number.Number / 2)
val := m * 2
if frac != 0 {
if !sign {
@ -1664,11 +1664,11 @@ func (fn *formulaFuncs) EXP(argsList *list.List) formulaArg {
if argsList.Len() != 1 {
return newErrorFormulaArg(formulaErrorVALUE, "EXP requires 1 numeric argument")
}
number, err := strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64)
if err != nil {
return newErrorFormulaArg(formulaErrorVALUE, err.Error())
number := argsList.Front().Value.(formulaArg).ToNumber()
if number.Type == ArgError {
return number
}
return newStringFormulaArg(strings.ToUpper(fmt.Sprintf("%g", math.Exp(number))))
return newStringFormulaArg(strings.ToUpper(fmt.Sprintf("%g", math.Exp(number.Number))))
}
// fact returns the factorial of a supplied number.
@ -1689,14 +1689,14 @@ func (fn *formulaFuncs) FACT(argsList *list.List) formulaArg {
if argsList.Len() != 1 {
return newErrorFormulaArg(formulaErrorVALUE, "FACT requires 1 numeric argument")
}
number, err := strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64)
if err != nil {
return newErrorFormulaArg(formulaErrorVALUE, err.Error())
number := argsList.Front().Value.(formulaArg).ToNumber()
if number.Type == ArgError {
return number
}
if number < 0 {
if number.Number < 0 {
return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
}
return newStringFormulaArg(strings.ToUpper(fmt.Sprintf("%g", fact(number))))
return newStringFormulaArg(strings.ToUpper(fmt.Sprintf("%g", fact(number.Number))))
}
// FACTDOUBLE function returns the double factorial of a supplied number. The
@ -1709,14 +1709,14 @@ func (fn *formulaFuncs) FACTDOUBLE(argsList *list.List) formulaArg {
return newErrorFormulaArg(formulaErrorVALUE, "FACTDOUBLE requires 1 numeric argument")
}
val := 1.0
number, err := strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64)
if err != nil {
return newErrorFormulaArg(formulaErrorVALUE, err.Error())
number := argsList.Front().Value.(formulaArg).ToNumber()
if number.Type == ArgError {
return number
}
if number < 0 {
if number.Number < 0 {
return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
}
for i := math.Trunc(number); i > 1; i -= 2 {
for i := math.Trunc(number.Number); i > 1; i -= 2 {
val *= i
}
return newStringFormulaArg(strings.ToUpper(fmt.Sprintf("%g", val)))
@ -1731,27 +1731,25 @@ func (fn *formulaFuncs) FLOOR(argsList *list.List) formulaArg {
if argsList.Len() != 2 {
return newErrorFormulaArg(formulaErrorVALUE, "FLOOR requires 2 numeric arguments")
}
var number, significance float64
var err error
number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64)
if err != nil {
return newErrorFormulaArg(formulaErrorVALUE, err.Error())
number := argsList.Front().Value.(formulaArg).ToNumber()
if number.Type == ArgError {
return number
}
significance, err = strconv.ParseFloat(argsList.Back().Value.(formulaArg).String, 64)
if err != nil {
return newErrorFormulaArg(formulaErrorVALUE, err.Error())
significance := argsList.Back().Value.(formulaArg).ToNumber()
if significance.Type == ArgError {
return significance
}
if significance < 0 && number >= 0 {
if significance.Number < 0 && number.Number >= 0 {
return newErrorFormulaArg(formulaErrorNUM, "invalid arguments to FLOOR")
}
val := number
val, res := math.Modf(val / significance)
val := number.Number
val, res := math.Modf(val / significance.Number)
if res != 0 {
if number < 0 && res < 0 {
if number.Number < 0 && res < 0 {
val--
}
}
return newStringFormulaArg(strings.ToUpper(fmt.Sprintf("%g", val*significance)))
return newStringFormulaArg(strings.ToUpper(fmt.Sprintf("%g", val*significance.Number)))
}
// FLOORMATH function rounds a supplied number down to a supplied multiple of
@ -1766,30 +1764,33 @@ func (fn *formulaFuncs) FLOORMATH(argsList *list.List) formulaArg {
if argsList.Len() > 3 {
return newErrorFormulaArg(formulaErrorVALUE, "FLOOR.MATH allows at most 3 arguments")
}
number, significance, mode := 0.0, 1.0, 1.0
var err error
number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64)
if err != nil {
return newErrorFormulaArg(formulaErrorVALUE, err.Error())
significance, mode := 1.0, 1.0
number := argsList.Front().Value.(formulaArg).ToNumber()
if number.Type == ArgError {
return number
}
if number < 0 {
if number.Number < 0 {
significance = -1
}
if argsList.Len() > 1 {
if significance, err = strconv.ParseFloat(argsList.Front().Next().Value.(formulaArg).String, 64); err != nil {
return newErrorFormulaArg(formulaErrorVALUE, err.Error())
s := argsList.Front().Next().Value.(formulaArg).ToNumber()
if s.Type == ArgError {
return s
}
significance = s.Number
}
if argsList.Len() == 1 {
return newNumberFormulaArg(math.Floor(number))
return newNumberFormulaArg(math.Floor(number.Number))
}
if argsList.Len() > 2 {
if mode, err = strconv.ParseFloat(argsList.Back().Value.(formulaArg).String, 64); err != nil {
return newErrorFormulaArg(formulaErrorVALUE, err.Error())
m := argsList.Back().Value.(formulaArg).ToNumber()
if m.Type == ArgError {
return m
}
mode = m.Number
}
val, res := math.Modf(number / significance)
if res != 0 && number < 0 && mode > 0 {
val, res := math.Modf(number.Number / significance)
if res != 0 && number.Number < 0 && mode > 0 {
val--
}
return newNumberFormulaArg(val * significance)
@ -1807,30 +1808,31 @@ func (fn *formulaFuncs) FLOORPRECISE(argsList *list.List) formulaArg {
if argsList.Len() > 2 {
return newErrorFormulaArg(formulaErrorVALUE, "FLOOR.PRECISE allows at most 2 arguments")
}
var number, significance float64
var err error
number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64)
if err != nil {
return newErrorFormulaArg(formulaErrorVALUE, err.Error())
var significance float64
number := argsList.Front().Value.(formulaArg).ToNumber()
if number.Type == ArgError {
return number
}
if number < 0 {
if number.Number < 0 {
significance = -1
}
if argsList.Len() == 1 {
return newNumberFormulaArg(math.Floor(number))
return newNumberFormulaArg(math.Floor(number.Number))
}
if argsList.Len() > 1 {
if significance, err = strconv.ParseFloat(argsList.Back().Value.(formulaArg).String, 64); err != nil {
return newErrorFormulaArg(formulaErrorVALUE, err.Error())
s := argsList.Back().Value.(formulaArg).ToNumber()
if s.Type == ArgError {
return s
}
significance = s.Number
significance = math.Abs(significance)
if significance == 0 {
return newStringFormulaArg("0")
return newNumberFormulaArg(significance)
}
}
val, res := math.Modf(number / significance)
val, res := math.Modf(number.Number / significance)
if res != 0 {
if number < 0 {
if number.Number < 0 {
val--
}
}
@ -1871,12 +1873,19 @@ func (fn *formulaFuncs) GCD(argsList *list.List) formulaArg {
err error
)
for arg := argsList.Front(); arg != nil; arg = arg.Next() {
token := arg.Value.(formulaArg).String
if token == "" {
continue
}
if val, err = strconv.ParseFloat(token, 64); err != nil {
return newErrorFormulaArg(formulaErrorVALUE, err.Error())
token := arg.Value.(formulaArg)
switch token.Type {
case ArgString:
if token.String == "" {
continue
}
if val, err = strconv.ParseFloat(token.String, 64); err != nil {
return newErrorFormulaArg(formulaErrorVALUE, err.Error())
}
break
case ArgNumber:
val = token.Number
break
}
nums = append(nums, val)
}
@ -1905,11 +1914,11 @@ func (fn *formulaFuncs) INT(argsList *list.List) formulaArg {
if argsList.Len() != 1 {
return newErrorFormulaArg(formulaErrorVALUE, "INT requires 1 numeric argument")
}
number, err := strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64)
if err != nil {
return newErrorFormulaArg(formulaErrorVALUE, err.Error())
number := argsList.Front().Value.(formulaArg).ToNumber()
if number.Type == ArgError {
return number
}
val, frac := math.Modf(number)
val, frac := math.Modf(number.Number)
if frac < 0 {
val--
}
@ -1929,29 +1938,31 @@ func (fn *formulaFuncs) ISOCEILING(argsList *list.List) formulaArg {
if argsList.Len() > 2 {
return newErrorFormulaArg(formulaErrorVALUE, "ISO.CEILING allows at most 2 arguments")
}
var number, significance float64
var err error
if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64); err != nil {
return newErrorFormulaArg(formulaErrorVALUE, err.Error())
var significance float64
number := argsList.Front().Value.(formulaArg).ToNumber()
if number.Type == ArgError {
return number
}
if number < 0 {
if number.Number < 0 {
significance = -1
}
if argsList.Len() == 1 {
return newNumberFormulaArg(math.Ceil(number))
return newNumberFormulaArg(math.Ceil(number.Number))
}
if argsList.Len() > 1 {
if significance, err = strconv.ParseFloat(argsList.Back().Value.(formulaArg).String, 64); err != nil {
return newErrorFormulaArg(formulaErrorVALUE, err.Error())
s := argsList.Back().Value.(formulaArg).ToNumber()
if s.Type == ArgError {
return s
}
significance = s.Number
significance = math.Abs(significance)
if significance == 0 {
return newStringFormulaArg("0")
return newNumberFormulaArg(significance)
}
}
val, res := math.Modf(number / significance)
val, res := math.Modf(number.Number / significance)
if res != 0 {
if number > 0 {
if number.Number > 0 {
val++
}
}
@ -1983,12 +1994,19 @@ func (fn *formulaFuncs) LCM(argsList *list.List) formulaArg {
err error
)
for arg := argsList.Front(); arg != nil; arg = arg.Next() {
token := arg.Value.(formulaArg).String
if token == "" {
continue
}
if val, err = strconv.ParseFloat(token, 64); err != nil {
return newErrorFormulaArg(formulaErrorVALUE, err.Error())
token := arg.Value.(formulaArg)
switch token.Type {
case ArgString:
if token.String == "" {
continue
}
if val, err = strconv.ParseFloat(token.String, 64); err != nil {
return newErrorFormulaArg(formulaErrorVALUE, err.Error())
}
break
case ArgNumber:
val = token.Number
break
}
nums = append(nums, val)
}
@ -2017,11 +2035,11 @@ func (fn *formulaFuncs) LN(argsList *list.List) formulaArg {
if argsList.Len() != 1 {
return newErrorFormulaArg(formulaErrorVALUE, "LN requires 1 numeric argument")
}
number, err := strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64)
if err != nil {
return newErrorFormulaArg(formulaErrorVALUE, err.Error())
number := argsList.Front().Value.(formulaArg).ToNumber()
if number.Type == ArgError {
return number
}
return newNumberFormulaArg(math.Log(number))
return newNumberFormulaArg(math.Log(number.Number))
}
// LOG function calculates the logarithm of a given number, to a supplied
@ -2036,18 +2054,19 @@ func (fn *formulaFuncs) LOG(argsList *list.List) formulaArg {
if argsList.Len() > 2 {
return newErrorFormulaArg(formulaErrorVALUE, "LOG allows at most 2 arguments")
}
number, base := 0.0, 10.0
var err error
number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64)
if err != nil {
return newErrorFormulaArg(formulaErrorVALUE, err.Error())
base := 10.0
number := argsList.Front().Value.(formulaArg).ToNumber()
if number.Type == ArgError {
return number
}
if argsList.Len() > 1 {
if base, err = strconv.ParseFloat(argsList.Back().Value.(formulaArg).String, 64); err != nil {
return newErrorFormulaArg(formulaErrorVALUE, err.Error())
b := argsList.Back().Value.(formulaArg).ToNumber()
if b.Type == ArgError {
return b
}
base = b.Number
}
if number == 0 {
if number.Number == 0 {
return newErrorFormulaArg(formulaErrorNUM, formulaErrorDIV)
}
if base == 0 {
@ -2056,7 +2075,7 @@ func (fn *formulaFuncs) LOG(argsList *list.List) formulaArg {
if base == 1 {
return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
}
return newNumberFormulaArg(math.Log(number) / math.Log(base))
return newNumberFormulaArg(math.Log(number.Number) / math.Log(base))
}
// LOG10 function calculates the base 10 logarithm of a given number. The
@ -2068,11 +2087,11 @@ func (fn *formulaFuncs) LOG10(argsList *list.List) formulaArg {
if argsList.Len() != 1 {
return newErrorFormulaArg(formulaErrorVALUE, "LOG10 requires 1 numeric argument")
}
number, err := strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64)
if err != nil {
return newErrorFormulaArg(formulaErrorVALUE, err.Error())
number := argsList.Front().Value.(formulaArg).ToNumber()
if number.Type == ArgError {
return number
}
return newNumberFormulaArg(math.Log10(number))
return newNumberFormulaArg(math.Log10(number.Number))
}
// minor function implement a minor of a matrix A is the determinant of some
@ -2153,24 +2172,22 @@ func (fn *formulaFuncs) MOD(argsList *list.List) formulaArg {
if argsList.Len() != 2 {
return newErrorFormulaArg(formulaErrorVALUE, "MOD requires 2 numeric arguments")
}
var number, divisor float64
var err error
number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64)
if err != nil {
return newErrorFormulaArg(formulaErrorVALUE, err.Error())
number := argsList.Front().Value.(formulaArg).ToNumber()
if number.Type == ArgError {
return number
}
divisor, err = strconv.ParseFloat(argsList.Back().Value.(formulaArg).String, 64)
if err != nil {
return newErrorFormulaArg(formulaErrorVALUE, err.Error())
divisor := argsList.Back().Value.(formulaArg).ToNumber()
if divisor.Type == ArgError {
return divisor
}
if divisor == 0 {
if divisor.Number == 0 {
return newErrorFormulaArg(formulaErrorDIV, "MOD divide by zero")
}
trunc, rem := math.Modf(number / divisor)
trunc, rem := math.Modf(number.Number / divisor.Number)
if rem < 0 {
trunc--
}
return newNumberFormulaArg(number - divisor*trunc)
return newNumberFormulaArg(number.Number - divisor.Number*trunc)
}
// MROUND function rounds a supplied number up or down to the nearest multiple
@ -2182,28 +2199,26 @@ func (fn *formulaFuncs) MROUND(argsList *list.List) formulaArg {
if argsList.Len() != 2 {
return newErrorFormulaArg(formulaErrorVALUE, "MROUND requires 2 numeric arguments")
}
var number, multiple float64
var err error
number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64)
if err != nil {
return newErrorFormulaArg(formulaErrorVALUE, err.Error())
n := argsList.Front().Value.(formulaArg).ToNumber()
if n.Type == ArgError {
return n
}
multiple, err = strconv.ParseFloat(argsList.Back().Value.(formulaArg).String, 64)
if err != nil {
return newErrorFormulaArg(formulaErrorVALUE, err.Error())
multiple := argsList.Back().Value.(formulaArg).ToNumber()
if multiple.Type == ArgError {
return multiple
}
if multiple == 0 {
if multiple.Number == 0 {
return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
}
if multiple < 0 && number > 0 ||
multiple > 0 && number < 0 {
if multiple.Number < 0 && n.Number > 0 ||
multiple.Number > 0 && n.Number < 0 {
return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
}
number, res := math.Modf(number / multiple)
number, res := math.Modf(n.Number / multiple.Number)
if math.Trunc(res+0.5) > 0 {
number++
}
return newNumberFormulaArg(number * multiple)
return newNumberFormulaArg(number * multiple.Number)
}
// MULTINOMIAL function calculates the ratio of the factorial of a sum of
@ -2217,11 +2232,18 @@ func (fn *formulaFuncs) MULTINOMIAL(argsList *list.List) formulaArg {
var err error
for arg := argsList.Front(); arg != nil; arg = arg.Next() {
token := arg.Value.(formulaArg)
if token.String == "" {
continue
}
if val, err = strconv.ParseFloat(token.String, 64); err != nil {
return newErrorFormulaArg(formulaErrorVALUE, err.Error())
switch token.Type {
case ArgString:
if token.String == "" {
continue
}
if val, err = strconv.ParseFloat(token.String, 64); err != nil {
return newErrorFormulaArg(formulaErrorVALUE, err.Error())
}
break
case ArgNumber:
val = token.Number
break
}
num += val
denom *= fact(val)
@ -2238,18 +2260,18 @@ func (fn *formulaFuncs) MUNIT(argsList *list.List) (result formulaArg) {
if argsList.Len() != 1 {
return newErrorFormulaArg(formulaErrorVALUE, "MUNIT requires 1 numeric argument")
}
dimension, err := strconv.Atoi(argsList.Front().Value.(formulaArg).String)
if err != nil {
return newErrorFormulaArg(formulaErrorVALUE, err.Error())
dimension := argsList.Back().Value.(formulaArg).ToNumber()
if dimension.Type == ArgError {
return dimension
}
matrix := make([][]formulaArg, 0, dimension)
for i := 0; i < dimension; i++ {
row := make([]formulaArg, dimension)
for j := 0; j < dimension; j++ {
matrix := make([][]formulaArg, 0, int(dimension.Number))
for i := 0; i < int(dimension.Number); i++ {
row := make([]formulaArg, int(dimension.Number))
for j := 0; j < int(dimension.Number); j++ {
if i == j {
row[j] = newNumberFormulaArg(float64(1.0))
row[j] = newNumberFormulaArg(1.0)
} else {
row[j] = newNumberFormulaArg(float64(0.0))
row[j] = newNumberFormulaArg(0.0)
}
}
matrix = append(matrix, row)
@ -2267,15 +2289,15 @@ func (fn *formulaFuncs) ODD(argsList *list.List) formulaArg {
if argsList.Len() != 1 {
return newErrorFormulaArg(formulaErrorVALUE, "ODD requires 1 numeric argument")
}
number, err := strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64)
if err != nil {
return newErrorFormulaArg(formulaErrorVALUE, err.Error())
number := argsList.Back().Value.(formulaArg).ToNumber()
if number.Type == ArgError {
return number
}
if number == 0 {
return newStringFormulaArg("1")
if number.Number == 0 {
return newNumberFormulaArg(1)
}
sign := math.Signbit(number)
m, frac := math.Modf((number - 1) / 2)
sign := math.Signbit(number.Number)
m, frac := math.Modf((number.Number - 1) / 2)
val := m*2 + 1
if frac != 0 {
if !sign {
@ -2308,23 +2330,21 @@ func (fn *formulaFuncs) POWER(argsList *list.List) formulaArg {
if argsList.Len() != 2 {
return newErrorFormulaArg(formulaErrorVALUE, "POWER requires 2 numeric arguments")
}
var x, y float64
var err error
x, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64)
if err != nil {
return newErrorFormulaArg(formulaErrorVALUE, err.Error())
x := argsList.Front().Value.(formulaArg).ToNumber()
if x.Type == ArgError {
return x
}
y, err = strconv.ParseFloat(argsList.Back().Value.(formulaArg).String, 64)
if err != nil {
return newErrorFormulaArg(formulaErrorVALUE, err.Error())
y := argsList.Back().Value.(formulaArg).ToNumber()
if y.Type == ArgError {
return y
}
if x == 0 && y == 0 {
if x.Number == 0 && y.Number == 0 {
return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
}
if x == 0 && y < 0 {
if x.Number == 0 && y.Number < 0 {
return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
}
return newNumberFormulaArg(math.Pow(x, y))
return newNumberFormulaArg(math.Pow(x.Number, y.Number))
}
// PRODUCT function returns the product (multiplication) of a supplied set of
@ -2348,6 +2368,10 @@ func (fn *formulaFuncs) PRODUCT(argsList *list.List) formulaArg {
return newErrorFormulaArg(formulaErrorVALUE, err.Error())
}
product = product * val
break
case ArgNumber:
product = product * token.Number
break
case ArgMatrix:
for _, row := range token.Matrix {
for _, value := range row {
@ -2374,20 +2398,18 @@ func (fn *formulaFuncs) QUOTIENT(argsList *list.List) formulaArg {
if argsList.Len() != 2 {
return newErrorFormulaArg(formulaErrorVALUE, "QUOTIENT requires 2 numeric arguments")
}
var x, y float64
var err error
x, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64)
if err != nil {
return newErrorFormulaArg(formulaErrorVALUE, err.Error())
x := argsList.Front().Value.(formulaArg).ToNumber()
if x.Type == ArgError {
return x
}
y, err = strconv.ParseFloat(argsList.Back().Value.(formulaArg).String, 64)
if err != nil {
return newErrorFormulaArg(formulaErrorVALUE, err.Error())
y := argsList.Back().Value.(formulaArg).ToNumber()
if y.Type == ArgError {
return y
}
if y == 0 {
if y.Number == 0 {
return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
}
return newNumberFormulaArg(math.Trunc(x / y))
return newNumberFormulaArg(math.Trunc(x.Number / y.Number))
}
// RADIANS function converts radians into degrees. The syntax of the function is:
@ -2398,11 +2420,11 @@ func (fn *formulaFuncs) RADIANS(argsList *list.List) formulaArg {
if argsList.Len() != 1 {
return newErrorFormulaArg(formulaErrorVALUE, "RADIANS requires 1 numeric argument")
}
angle, err := strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64)
if err != nil {
return newErrorFormulaArg(formulaErrorVALUE, err.Error())
angle := argsList.Front().Value.(formulaArg).ToNumber()
if angle.Type == ArgError {
return angle
}
return newNumberFormulaArg(math.Pi / 180.0 * angle)
return newNumberFormulaArg(math.Pi / 180.0 * angle.Number)
}
// RAND function generates a random real number between 0 and 1. The syntax of
@ -2426,20 +2448,18 @@ func (fn *formulaFuncs) RANDBETWEEN(argsList *list.List) formulaArg {
if argsList.Len() != 2 {
return newErrorFormulaArg(formulaErrorVALUE, "RANDBETWEEN requires 2 numeric arguments")
}
var bottom, top int64
var err error
bottom, err = strconv.ParseInt(argsList.Front().Value.(formulaArg).String, 10, 64)
if err != nil {
return newErrorFormulaArg(formulaErrorVALUE, err.Error())
bottom := argsList.Front().Value.(formulaArg).ToNumber()
if bottom.Type == ArgError {
return bottom
}
top, err = strconv.ParseInt(argsList.Back().Value.(formulaArg).String, 10, 64)
if err != nil {
return newErrorFormulaArg(formulaErrorVALUE, err.Error())
top := argsList.Back().Value.(formulaArg).ToNumber()
if top.Type == ArgError {
return top
}
if top < bottom {
if top.Number < bottom.Number {
return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
}
return newNumberFormulaArg(float64(rand.New(rand.NewSource(time.Now().UnixNano())).Int63n(top-bottom+1) + bottom))
return newNumberFormulaArg(float64(rand.New(rand.NewSource(time.Now().UnixNano())).Int63n(int64(top.Number-bottom.Number+1)) + int64(bottom.Number)))
}
// romanNumerals defined a numeral system that originated in ancient Rome and
@ -2469,17 +2489,17 @@ func (fn *formulaFuncs) ROMAN(argsList *list.List) formulaArg {
if argsList.Len() > 2 {
return newErrorFormulaArg(formulaErrorVALUE, "ROMAN allows at most 2 arguments")
}
var number float64
var form int
var err error
number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64)
if err != nil {
return newErrorFormulaArg(formulaErrorVALUE, err.Error())
number := argsList.Front().Value.(formulaArg).ToNumber()
if number.Type == ArgError {
return number
}
if argsList.Len() > 1 {
if form, err = strconv.Atoi(argsList.Back().Value.(formulaArg).String); err != nil {
return newErrorFormulaArg(formulaErrorVALUE, err.Error())
f := argsList.Back().Value.(formulaArg).ToNumber()
if f.Type == ArgError {
return f
}
form = int(f.Number)
if form < 0 {
form = 0
} else if form > 4 {
@ -2497,7 +2517,7 @@ func (fn *formulaFuncs) ROMAN(argsList *list.List) formulaArg {
case 4:
decimalTable = romanTable[4]
}
val := math.Trunc(number)
val := math.Trunc(number.Number)
buf := bytes.Buffer{}
for _, r := range decimalTable {
for val >= r.n {
@ -2553,17 +2573,15 @@ func (fn *formulaFuncs) ROUND(argsList *list.List) formulaArg {
if argsList.Len() != 2 {
return newErrorFormulaArg(formulaErrorVALUE, "ROUND requires 2 numeric arguments")
}
var number, digits float64
var err error
number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64)
if err != nil {
return newErrorFormulaArg(formulaErrorVALUE, err.Error())
number := argsList.Front().Value.(formulaArg).ToNumber()
if number.Type == ArgError {
return number
}
digits, err = strconv.ParseFloat(argsList.Back().Value.(formulaArg).String, 64)
if err != nil {
return newErrorFormulaArg(formulaErrorVALUE, err.Error())
digits := argsList.Back().Value.(formulaArg).ToNumber()
if digits.Type == ArgError {
return digits
}
return newNumberFormulaArg(fn.round(number, digits, closest))
return newNumberFormulaArg(fn.round(number.Number, digits.Number, closest))
}
// ROUNDDOWN function rounds a supplied number down towards zero, to a
@ -2575,17 +2593,15 @@ func (fn *formulaFuncs) ROUNDDOWN(argsList *list.List) formulaArg {
if argsList.Len() != 2 {
return newErrorFormulaArg(formulaErrorVALUE, "ROUNDDOWN requires 2 numeric arguments")
}
var number, digits float64
var err error
number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64)
if err != nil {
return newErrorFormulaArg(formulaErrorVALUE, err.Error())
number := argsList.Front().Value.(formulaArg).ToNumber()
if number.Type == ArgError {
return number
}
digits, err = strconv.ParseFloat(argsList.Back().Value.(formulaArg).String, 64)
if err != nil {
return newErrorFormulaArg(formulaErrorVALUE, err.Error())
digits := argsList.Back().Value.(formulaArg).ToNumber()
if digits.Type == ArgError {
return digits
}
return newNumberFormulaArg(fn.round(number, digits, down))
return newNumberFormulaArg(fn.round(number.Number, digits.Number, down))
}
// ROUNDUP function rounds a supplied number up, away from zero, to a
@ -2597,17 +2613,15 @@ func (fn *formulaFuncs) ROUNDUP(argsList *list.List) formulaArg {
if argsList.Len() != 2 {
return newErrorFormulaArg(formulaErrorVALUE, "ROUNDUP requires 2 numeric arguments")
}
var number, digits float64
var err error
number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64)
if err != nil {
return newErrorFormulaArg(formulaErrorVALUE, err.Error())
number := argsList.Front().Value.(formulaArg).ToNumber()
if number.Type == ArgError {
return number
}
digits, err = strconv.ParseFloat(argsList.Back().Value.(formulaArg).String, 64)
if err != nil {
return newErrorFormulaArg(formulaErrorVALUE, err.Error())
digits := argsList.Back().Value.(formulaArg).ToNumber()
if digits.Type == ArgError {
return digits
}
return newNumberFormulaArg(fn.round(number, digits, up))
return newNumberFormulaArg(fn.round(number.Number, digits.Number, up))
}
// SEC function calculates the secant of a given angle. The syntax of the
@ -2619,11 +2633,11 @@ func (fn *formulaFuncs) SEC(argsList *list.List) formulaArg {
if argsList.Len() != 1 {
return newErrorFormulaArg(formulaErrorVALUE, "SEC requires 1 numeric argument")
}
number, err := strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64)
if err != nil {
return newErrorFormulaArg(formulaErrorVALUE, err.Error())
number := argsList.Front().Value.(formulaArg).ToNumber()
if number.Type == ArgError {
return number
}
return newNumberFormulaArg(math.Cos(number))
return newNumberFormulaArg(math.Cos(number.Number))
}
// SECH function calculates the hyperbolic secant (sech) of a supplied angle.
@ -2635,11 +2649,11 @@ func (fn *formulaFuncs) SECH(argsList *list.List) formulaArg {
if argsList.Len() != 1 {
return newErrorFormulaArg(formulaErrorVALUE, "SECH requires 1 numeric argument")
}
number, err := strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64)
if err != nil {
return newErrorFormulaArg(formulaErrorVALUE, err.Error())
number := argsList.Front().Value.(formulaArg).ToNumber()
if number.Type == ArgError {
return number
}
return newNumberFormulaArg(1 / math.Cosh(number))
return newNumberFormulaArg(1 / math.Cosh(number.Number))
}
// SIGN function returns the arithmetic sign (+1, -1 or 0) of a supplied
@ -2653,17 +2667,17 @@ func (fn *formulaFuncs) SIGN(argsList *list.List) formulaArg {
if argsList.Len() != 1 {
return newErrorFormulaArg(formulaErrorVALUE, "SIGN requires 1 numeric argument")
}
val, err := strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64)
if err != nil {
return newErrorFormulaArg(formulaErrorVALUE, err.Error())
val := argsList.Front().Value.(formulaArg).ToNumber()
if val.Type == ArgError {
return val
}
if val < 0 {
return newStringFormulaArg("-1")
if val.Number < 0 {
return newNumberFormulaArg(-1)
}
if val > 0 {
return newStringFormulaArg("1")
if val.Number > 0 {
return newNumberFormulaArg(1)
}
return newStringFormulaArg("0")
return newNumberFormulaArg(0)
}
// SIN function calculates the sine of a given angle. The syntax of the
@ -2675,11 +2689,11 @@ func (fn *formulaFuncs) SIN(argsList *list.List) formulaArg {
if argsList.Len() != 1 {
return newErrorFormulaArg(formulaErrorVALUE, "SIN requires 1 numeric argument")
}
number, err := strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64)
if err != nil {
return newErrorFormulaArg(formulaErrorVALUE, err.Error())
number := argsList.Front().Value.(formulaArg).ToNumber()
if number.Type == ArgError {
return number
}
return newNumberFormulaArg(math.Sin(number))
return newNumberFormulaArg(math.Sin(number.Number))
}
// SINH function calculates the hyperbolic sine (sinh) of a supplied number.
@ -2691,11 +2705,11 @@ func (fn *formulaFuncs) SINH(argsList *list.List) formulaArg {
if argsList.Len() != 1 {
return newErrorFormulaArg(formulaErrorVALUE, "SINH requires 1 numeric argument")
}
number, err := strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64)
if err != nil {
return newErrorFormulaArg(formulaErrorVALUE, err.Error())
number := argsList.Front().Value.(formulaArg).ToNumber()
if number.Type == ArgError {
return number
}
return newNumberFormulaArg(math.Sinh(number))
return newNumberFormulaArg(math.Sinh(number.Number))
}
// SQRT function calculates the positive square root of a supplied number. The
@ -2707,19 +2721,14 @@ func (fn *formulaFuncs) SQRT(argsList *list.List) formulaArg {
if argsList.Len() != 1 {
return newErrorFormulaArg(formulaErrorVALUE, "SQRT requires 1 numeric argument")
}
var res float64
var value = argsList.Front().Value.(formulaArg).String
if value == "" {
return newStringFormulaArg("0")
value := argsList.Front().Value.(formulaArg).ToNumber()
if value.Type == ArgError {
return value
}
res, err := strconv.ParseFloat(value, 64)
if err != nil {
return newErrorFormulaArg(formulaErrorVALUE, err.Error())
}
if res < 0 {
if value.Number < 0 {
return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
}
return newNumberFormulaArg(math.Sqrt(res))
return newNumberFormulaArg(math.Sqrt(value.Number))
}
// SQRTPI function returns the square root of a supplied number multiplied by
@ -2731,11 +2740,11 @@ func (fn *formulaFuncs) SQRTPI(argsList *list.List) formulaArg {
if argsList.Len() != 1 {
return newErrorFormulaArg(formulaErrorVALUE, "SQRTPI requires 1 numeric argument")
}
number, err := strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64)
if err != nil {
return newErrorFormulaArg(formulaErrorVALUE, err.Error())
number := argsList.Front().Value.(formulaArg).ToNumber()
if number.Type == ArgError {
return number
}
return newNumberFormulaArg(math.Sqrt(number * math.Pi))
return newNumberFormulaArg(math.Sqrt(number.Number * math.Pi))
}
// SUM function adds together a supplied set of numbers and returns the sum of
@ -2844,6 +2853,10 @@ func (fn *formulaFuncs) SUMSQ(argsList *list.List) formulaArg {
return newErrorFormulaArg(formulaErrorVALUE, err.Error())
}
sq += val * val
break
case ArgNumber:
sq += token.Number
break
case ArgMatrix:
for _, row := range token.Matrix {
for _, value := range row {
@ -2870,11 +2883,11 @@ func (fn *formulaFuncs) TAN(argsList *list.List) formulaArg {
if argsList.Len() != 1 {
return newErrorFormulaArg(formulaErrorVALUE, "TAN requires 1 numeric argument")
}
number, err := strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64)
if err != nil {
return newErrorFormulaArg(formulaErrorVALUE, err.Error())
number := argsList.Front().Value.(formulaArg).ToNumber()
if number.Type == ArgError {
return number
}
return newNumberFormulaArg(math.Tan(number))
return newNumberFormulaArg(math.Tan(number.Number))
}
// TANH function calculates the hyperbolic tangent (tanh) of a supplied
@ -2886,11 +2899,11 @@ func (fn *formulaFuncs) TANH(argsList *list.List) formulaArg {
if argsList.Len() != 1 {
return newErrorFormulaArg(formulaErrorVALUE, "TANH requires 1 numeric argument")
}
number, err := strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64)
if err != nil {
return newErrorFormulaArg(formulaErrorVALUE, err.Error())
number := argsList.Front().Value.(formulaArg).ToNumber()
if number.Type == ArgError {
return number
}
return newNumberFormulaArg(math.Tanh(number))
return newNumberFormulaArg(math.Tanh(number.Number))
}
// TRUNC function truncates a supplied number to a specified number of decimal
@ -2902,29 +2915,31 @@ func (fn *formulaFuncs) TRUNC(argsList *list.List) formulaArg {
if argsList.Len() == 0 {
return newErrorFormulaArg(formulaErrorVALUE, "TRUNC requires at least 1 argument")
}
var number, digits, adjust, rtrim float64
var digits, adjust, rtrim float64
var err error
number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64)
if err != nil {
return newErrorFormulaArg(formulaErrorVALUE, err.Error())
number := argsList.Front().Value.(formulaArg).ToNumber()
if number.Type == ArgError {
return number
}
if argsList.Len() > 1 {
if digits, err = strconv.ParseFloat(argsList.Back().Value.(formulaArg).String, 64); err != nil {
return newErrorFormulaArg(formulaErrorVALUE, err.Error())
d := argsList.Back().Value.(formulaArg).ToNumber()
if d.Type == ArgError {
return d
}
digits = d.Number
digits = math.Floor(digits)
}
adjust = math.Pow(10, digits)
x := int((math.Abs(number) - math.Abs(float64(int(number)))) * adjust)
x := int((math.Abs(number.Number) - math.Abs(float64(int(number.Number)))) * adjust)
if x != 0 {
if rtrim, err = strconv.ParseFloat(strings.TrimRight(strconv.Itoa(x), "0"), 64); err != nil {
return newErrorFormulaArg(formulaErrorVALUE, err.Error())
}
}
if (digits > 0) && (rtrim < adjust/10) {
return newNumberFormulaArg(number)
return newNumberFormulaArg(number.Number)
}
return newNumberFormulaArg(float64(int(number*adjust)) / adjust)
return newNumberFormulaArg(float64(int(number.Number*adjust)) / adjust)
}
// Statistical functions
@ -2976,6 +2991,10 @@ func (fn *formulaFuncs) MEDIAN(argsList *list.List) formulaArg {
return newErrorFormulaArg(formulaErrorVALUE, err.Error())
}
values = append(values, digits)
break
case ArgNumber:
values = append(values, arg.Number)
break
case ArgMatrix:
for _, row := range arg.Matrix {
for _, value := range row {

View File

@ -177,6 +177,7 @@ func TestCalcCellValue(t *testing.T) {
"=_xlfn.CSC(_xlfn.CSC(1))": "1.077851840310882",
// _xlfn.CSCH
"=_xlfn.CSCH(-3.14159265358979)": "-0.086589537530047",
"=_xlfn.CSCH(_xlfn.CSCH(1))": "1.044510103955183",
// _xlfn.DECIMAL
`=_xlfn.DECIMAL("1100",2)`: "12",
`=_xlfn.DECIMAL("186A0",16)`: "100000",
@ -184,8 +185,9 @@ func TestCalcCellValue(t *testing.T) {
`=_xlfn.DECIMAL("70122",8)`: "28754",
`=_xlfn.DECIMAL("0x70122",8)`: "28754",
// DEGREES
"=DEGREES(1)": "57.29577951308232",
"=DEGREES(2.5)": "143.2394487827058",
"=DEGREES(1)": "57.29577951308232",
"=DEGREES(2.5)": "143.2394487827058",
"=DEGREES(DEGREES(1))": "3282.806350011744",
// EVEN
"=EVEN(23)": "24",
"=EVEN(2.22)": "4",
@ -193,47 +195,54 @@ func TestCalcCellValue(t *testing.T) {
"=EVEN(-0.3)": "-2",
"=EVEN(-11)": "-12",
"=EVEN(-4)": "-4",
"=EVEN((0))": "0",
// EXP
"=EXP(100)": "2.6881171418161356E+43",
"=EXP(0.1)": "1.105170918075648",
"=EXP(0)": "1",
"=EXP(-5)": "0.006737946999085",
"=EXP(100)": "2.6881171418161356E+43",
"=EXP(0.1)": "1.105170918075648",
"=EXP(0)": "1",
"=EXP(-5)": "0.006737946999085",
"=EXP(EXP(0))": "2.718281828459045",
// FACT
"=FACT(3)": "6",
"=FACT(6)": "720",
"=FACT(10)": "3.6288E+06",
"=FACT(3)": "6",
"=FACT(6)": "720",
"=FACT(10)": "3.6288E+06",
"=FACT(FACT(3))": "720",
// FACTDOUBLE
"=FACTDOUBLE(5)": "15",
"=FACTDOUBLE(8)": "384",
"=FACTDOUBLE(13)": "135135",
"=FACTDOUBLE(5)": "15",
"=FACTDOUBLE(8)": "384",
"=FACTDOUBLE(13)": "135135",
"=FACTDOUBLE(FACTDOUBLE(1))": "1",
// FLOOR
"=FLOOR(26.75,0.1)": "26.700000000000003",
"=FLOOR(26.75,0.5)": "26.5",
"=FLOOR(26.75,1)": "26",
"=FLOOR(26.75,10)": "20",
"=FLOOR(26.75,20)": "20",
"=FLOOR(-26.75,-0.1)": "-26.700000000000003",
"=FLOOR(-26.75,-1)": "-26",
"=FLOOR(-26.75,-5)": "-25",
"=FLOOR(26.75,0.1)": "26.700000000000003",
"=FLOOR(26.75,0.5)": "26.5",
"=FLOOR(26.75,1)": "26",
"=FLOOR(26.75,10)": "20",
"=FLOOR(26.75,20)": "20",
"=FLOOR(-26.75,-0.1)": "-26.700000000000003",
"=FLOOR(-26.75,-1)": "-26",
"=FLOOR(-26.75,-5)": "-25",
"=FLOOR(FLOOR(26.75,1),1)": "26",
// _xlfn.FLOOR.MATH
"=_xlfn.FLOOR.MATH(58.55)": "58",
"=_xlfn.FLOOR.MATH(58.55,0.1)": "58.5",
"=_xlfn.FLOOR.MATH(58.55,5)": "55",
"=_xlfn.FLOOR.MATH(58.55,1,1)": "58",
"=_xlfn.FLOOR.MATH(-58.55,1)": "-59",
"=_xlfn.FLOOR.MATH(-58.55,1,-1)": "-58",
"=_xlfn.FLOOR.MATH(-58.55,1,1)": "-59", // should be -58
"=_xlfn.FLOOR.MATH(-58.55,10)": "-60",
"=_xlfn.FLOOR.MATH(58.55)": "58",
"=_xlfn.FLOOR.MATH(58.55,0.1)": "58.5",
"=_xlfn.FLOOR.MATH(58.55,5)": "55",
"=_xlfn.FLOOR.MATH(58.55,1,1)": "58",
"=_xlfn.FLOOR.MATH(-58.55,1)": "-59",
"=_xlfn.FLOOR.MATH(-58.55,1,-1)": "-58",
"=_xlfn.FLOOR.MATH(-58.55,1,1)": "-59", // should be -58
"=_xlfn.FLOOR.MATH(-58.55,10)": "-60",
"=_xlfn.FLOOR.MATH(_xlfn.FLOOR.MATH(1),10)": "0",
// _xlfn.FLOOR.PRECISE
"=_xlfn.FLOOR.PRECISE(26.75,0.1)": "26.700000000000003",
"=_xlfn.FLOOR.PRECISE(26.75,0.5)": "26.5",
"=_xlfn.FLOOR.PRECISE(26.75,1)": "26",
"=_xlfn.FLOOR.PRECISE(26.75)": "26",
"=_xlfn.FLOOR.PRECISE(26.75,10)": "20",
"=_xlfn.FLOOR.PRECISE(26.75,0)": "0",
"=_xlfn.FLOOR.PRECISE(-26.75,1)": "-27",
"=_xlfn.FLOOR.PRECISE(-26.75,-1)": "-27",
"=_xlfn.FLOOR.PRECISE(-26.75,-5)": "-30",
"=_xlfn.FLOOR.PRECISE(26.75,0.1)": "26.700000000000003",
"=_xlfn.FLOOR.PRECISE(26.75,0.5)": "26.5",
"=_xlfn.FLOOR.PRECISE(26.75,1)": "26",
"=_xlfn.FLOOR.PRECISE(26.75)": "26",
"=_xlfn.FLOOR.PRECISE(26.75,10)": "20",
"=_xlfn.FLOOR.PRECISE(26.75,0)": "0",
"=_xlfn.FLOOR.PRECISE(-26.75,1)": "-27",
"=_xlfn.FLOOR.PRECISE(-26.75,-1)": "-27",
"=_xlfn.FLOOR.PRECISE(-26.75,-5)": "-30",
"=_xlfn.FLOOR.PRECISE(_xlfn.FLOOR.PRECISE(26.75),-5)": "25",
// GCD
"=GCD(0)": "0",
`=GCD("",1)`: "1",
@ -242,61 +251,71 @@ func TestCalcCellValue(t *testing.T) {
"=GCD(15,10,25)": "5",
"=GCD(0,8,12)": "4",
"=GCD(7,2)": "1",
"=GCD(1,GCD(1))": "1",
// INT
"=INT(100.9)": "100",
"=INT(5.22)": "5",
"=INT(5.99)": "5",
"=INT(-6.1)": "-7",
"=INT(-100.9)": "-101",
"=INT(INT(0))": "0",
// ISO.CEILING
"=ISO.CEILING(22.25)": "23",
"=ISO.CEILING(22.25,1)": "23",
"=ISO.CEILING(22.25,0.1)": "22.3",
"=ISO.CEILING(22.25,10)": "30",
"=ISO.CEILING(-22.25,1)": "-22",
"=ISO.CEILING(-22.25,0.1)": "-22.200000000000003",
"=ISO.CEILING(-22.25,5)": "-20",
"=ISO.CEILING(-22.25,0)": "0",
"=ISO.CEILING(22.25)": "23",
"=ISO.CEILING(22.25,1)": "23",
"=ISO.CEILING(22.25,0.1)": "22.3",
"=ISO.CEILING(22.25,10)": "30",
"=ISO.CEILING(-22.25,1)": "-22",
"=ISO.CEILING(-22.25,0.1)": "-22.200000000000003",
"=ISO.CEILING(-22.25,5)": "-20",
"=ISO.CEILING(-22.25,0)": "0",
"=ISO.CEILING(1,ISO.CEILING(1,0))": "0",
// LCM
"=LCM(1,5)": "5",
"=LCM(15,10,25)": "150",
"=LCM(1,8,12)": "24",
"=LCM(7,2)": "14",
"=LCM(7)": "7",
`=LCM("",1)`: "1",
`=LCM(0,0)`: "0",
"=LCM(1,5)": "5",
"=LCM(15,10,25)": "150",
"=LCM(1,8,12)": "24",
"=LCM(7,2)": "14",
"=LCM(7)": "7",
`=LCM("",1)`: "1",
`=LCM(0,0)`: "0",
`=LCM(0,LCM(0,0))`: "0",
// LN
"=LN(1)": "0",
"=LN(100)": "4.605170185988092",
"=LN(0.5)": "-0.693147180559945",
"=LN(1)": "0",
"=LN(100)": "4.605170185988092",
"=LN(0.5)": "-0.693147180559945",
"=LN(LN(100))": "1.527179625807901",
// LOG
"=LOG(64,2)": "6",
"=LOG(100)": "2",
"=LOG(4,0.5)": "-2",
"=LOG(500)": "2.698970004336019",
"=LOG(64,2)": "6",
"=LOG(100)": "2",
"=LOG(4,0.5)": "-2",
"=LOG(500)": "2.698970004336019",
"=LOG(LOG(100))": "0.301029995663981",
// LOG10
"=LOG10(100)": "2",
"=LOG10(1000)": "3",
"=LOG10(0.001)": "-3",
"=LOG10(25)": "1.397940008672038",
"=LOG10(100)": "2",
"=LOG10(1000)": "3",
"=LOG10(0.001)": "-3",
"=LOG10(25)": "1.397940008672038",
"=LOG10(LOG10(100))": "0.301029995663981",
// MOD
"=MOD(6,4)": "2",
"=MOD(6,3)": "0",
"=MOD(6,2.5)": "1",
"=MOD(6,1.333)": "0.668",
"=MOD(-10.23,1)": "0.77",
"=MOD(6,4)": "2",
"=MOD(6,3)": "0",
"=MOD(6,2.5)": "1",
"=MOD(6,1.333)": "0.668",
"=MOD(-10.23,1)": "0.77",
"=MOD(MOD(1,1),1)": "0",
// MROUND
"=MROUND(333.7,0.5)": "333.5",
"=MROUND(333.8,1)": "334",
"=MROUND(333.3,2)": "334",
"=MROUND(555.3,400)": "400",
"=MROUND(555,1000)": "1000",
"=MROUND(-555.7,-1)": "-556",
"=MROUND(-555.4,-1)": "-555",
"=MROUND(-1555,-1000)": "-2000",
"=MROUND(333.7,0.5)": "333.5",
"=MROUND(333.8,1)": "334",
"=MROUND(333.3,2)": "334",
"=MROUND(555.3,400)": "400",
"=MROUND(555,1000)": "1000",
"=MROUND(-555.7,-1)": "-556",
"=MROUND(-555.4,-1)": "-555",
"=MROUND(-1555,-1000)": "-2000",
"=MROUND(MROUND(1,1),1)": "1",
// MULTINOMIAL
"=MULTINOMIAL(3,1,2,5)": "27720",
`=MULTINOMIAL("",3,1,2,5)`: "27720",
"=MULTINOMIAL(3,1,2,5)": "27720",
`=MULTINOMIAL("",3,1,2,5)`: "27720",
"=MULTINOMIAL(MULTINOMIAL(1))": "1",
// _xlfn.MUNIT
"=_xlfn.MUNIT(4)": "",
// ODD
@ -307,81 +326,96 @@ func TestCalcCellValue(t *testing.T) {
"=ODD(-1.3)": "-3",
"=ODD(-10)": "-11",
"=ODD(-3)": "-3",
"=ODD(ODD(1))": "1",
// PI
"=PI()": "3.141592653589793",
// POWER
"=POWER(4,2)": "16",
"=POWER(4,2)": "16",
"=POWER(4,POWER(1,1))": "4",
// PRODUCT
"=PRODUCT(3,6)": "18",
`=PRODUCT("",3,6)`: "18",
"=PRODUCT(3,6)": "18",
`=PRODUCT("",3,6)`: "18",
`=PRODUCT(PRODUCT(1),3,6)`: "18",
// QUOTIENT
"=QUOTIENT(5,2)": "2",
"=QUOTIENT(4.5,3.1)": "1",
"=QUOTIENT(-10,3)": "-3",
"=QUOTIENT(5,2)": "2",
"=QUOTIENT(4.5,3.1)": "1",
"=QUOTIENT(-10,3)": "-3",
"=QUOTIENT(QUOTIENT(1,2),3)": "0",
// RADIANS
"=RADIANS(50)": "0.872664625997165",
"=RADIANS(-180)": "-3.141592653589793",
"=RADIANS(180)": "3.141592653589793",
"=RADIANS(360)": "6.283185307179586",
"=RADIANS(50)": "0.872664625997165",
"=RADIANS(-180)": "-3.141592653589793",
"=RADIANS(180)": "3.141592653589793",
"=RADIANS(360)": "6.283185307179586",
"=RADIANS(RADIANS(360))": "0.109662271123215",
// ROMAN
"=ROMAN(499,0)": "CDXCIX",
"=ROMAN(1999,0)": "MCMXCIX",
"=ROMAN(1999,1)": "MLMVLIV",
"=ROMAN(1999,2)": "MXMIX",
"=ROMAN(1999,3)": "MVMIV",
"=ROMAN(1999,4)": "MIM",
"=ROMAN(1999,-1)": "MCMXCIX",
"=ROMAN(1999,5)": "MIM",
"=ROMAN(499,0)": "CDXCIX",
"=ROMAN(1999,0)": "MCMXCIX",
"=ROMAN(1999,1)": "MLMVLIV",
"=ROMAN(1999,2)": "MXMIX",
"=ROMAN(1999,3)": "MVMIV",
"=ROMAN(1999,4)": "MIM",
"=ROMAN(1999,-1)": "MCMXCIX",
"=ROMAN(1999,5)": "MIM",
"=ROMAN(1999,ODD(1))": "MLMVLIV",
// ROUND
"=ROUND(100.319,1)": "100.30000000000001",
"=ROUND(5.28,1)": "5.300000000000001",
"=ROUND(5.9999,3)": "6.000000000000002",
"=ROUND(99.5,0)": "100",
"=ROUND(-6.3,0)": "-6",
"=ROUND(-100.5,0)": "-101",
"=ROUND(-22.45,1)": "-22.5",
"=ROUND(999,-1)": "1000",
"=ROUND(991,-1)": "990",
"=ROUND(100.319,1)": "100.30000000000001",
"=ROUND(5.28,1)": "5.300000000000001",
"=ROUND(5.9999,3)": "6.000000000000002",
"=ROUND(99.5,0)": "100",
"=ROUND(-6.3,0)": "-6",
"=ROUND(-100.5,0)": "-101",
"=ROUND(-22.45,1)": "-22.5",
"=ROUND(999,-1)": "1000",
"=ROUND(991,-1)": "990",
"=ROUND(ROUND(100,1),-1)": "100",
// ROUNDDOWN
"=ROUNDDOWN(99.999,1)": "99.9",
"=ROUNDDOWN(99.999,2)": "99.99000000000002",
"=ROUNDDOWN(99.999,0)": "99",
"=ROUNDDOWN(99.999,-1)": "90",
"=ROUNDDOWN(-99.999,2)": "-99.99000000000002",
"=ROUNDDOWN(-99.999,-1)": "-90",
"=ROUNDDOWN(99.999,1)": "99.9",
"=ROUNDDOWN(99.999,2)": "99.99000000000002",
"=ROUNDDOWN(99.999,0)": "99",
"=ROUNDDOWN(99.999,-1)": "90",
"=ROUNDDOWN(-99.999,2)": "-99.99000000000002",
"=ROUNDDOWN(-99.999,-1)": "-90",
"=ROUNDDOWN(ROUNDDOWN(100,1),-1)": "100",
// ROUNDUP`
"=ROUNDUP(11.111,1)": "11.200000000000001",
"=ROUNDUP(11.111,2)": "11.120000000000003",
"=ROUNDUP(11.111,0)": "12",
"=ROUNDUP(11.111,-1)": "20",
"=ROUNDUP(-11.111,2)": "-11.120000000000003",
"=ROUNDUP(-11.111,-1)": "-20",
"=ROUNDUP(11.111,1)": "11.200000000000001",
"=ROUNDUP(11.111,2)": "11.120000000000003",
"=ROUNDUP(11.111,0)": "12",
"=ROUNDUP(11.111,-1)": "20",
"=ROUNDUP(-11.111,2)": "-11.120000000000003",
"=ROUNDUP(-11.111,-1)": "-20",
"=ROUNDUP(ROUNDUP(100,1),-1)": "100",
// SEC
"=_xlfn.SEC(-3.14159265358979)": "-1",
"=_xlfn.SEC(0)": "1",
"=_xlfn.SEC(_xlfn.SEC(0))": "0.54030230586814",
// SECH
"=_xlfn.SECH(-3.14159265358979)": "0.086266738334055",
"=_xlfn.SECH(0)": "1",
"=_xlfn.SECH(_xlfn.SECH(0))": "0.648054273663886",
// SIGN
"=SIGN(9.5)": "1",
"=SIGN(-9.5)": "-1",
"=SIGN(0)": "0",
"=SIGN(0.00000001)": "1",
"=SIGN(6-7)": "-1",
"=SIGN(SIGN(-1))": "-1",
// SIN
"=SIN(0.785398163)": "0.707106780905509",
"=SIN(SIN(1))": "0.745624141665558",
// SINH
"=SINH(0)": "0",
"=SINH(0.5)": "0.521095305493747",
"=SINH(-2)": "-3.626860407847019",
"=SINH(0)": "0",
"=SINH(0.5)": "0.521095305493747",
"=SINH(-2)": "-3.626860407847019",
"=SINH(SINH(0))": "0",
// SQRT
"=SQRT(4)": "2",
`=SQRT("")`: "0",
"=SQRT(4)": "2",
"=SQRT(SQRT(16))": "2",
// SQRTPI
"=SQRTPI(5)": "3.963327297606011",
"=SQRTPI(0.2)": "0.792665459521202",
"=SQRTPI(100)": "17.72453850905516",
"=SQRTPI(0)": "0",
"=SQRTPI(5)": "3.963327297606011",
"=SQRTPI(0.2)": "0.792665459521202",
"=SQRTPI(100)": "17.72453850905516",
"=SQRTPI(0)": "0",
"=SQRTPI(SQRTPI(0))": "0",
// SUM
"=SUM(1,2)": "3",
`=SUM("",1,2)`: "3",
@ -415,27 +449,33 @@ func TestCalcCellValue(t *testing.T) {
"=SUMSQ(A1:A4)": "14",
"=SUMSQ(A1,B1,A2,B2,6)": "82",
`=SUMSQ("",A1,B1,A2,B2,6)`: "82",
`=SUMSQ(1,SUMSQ(1))`: "2",
// TAN
"=TAN(1.047197551)": "1.732050806782486",
"=TAN(0)": "0",
"=TAN(TAN(0))": "0",
// TANH
"=TANH(0)": "0",
"=TANH(0.5)": "0.46211715726001",
"=TANH(-2)": "-0.964027580075817",
"=TANH(0)": "0",
"=TANH(0.5)": "0.46211715726001",
"=TANH(-2)": "-0.964027580075817",
"=TANH(TANH(0))": "0",
// TRUNC
"=TRUNC(99.999,1)": "99.9",
"=TRUNC(99.999,2)": "99.99",
"=TRUNC(99.999)": "99",
"=TRUNC(99.999,-1)": "90",
"=TRUNC(-99.999,2)": "-99.99",
"=TRUNC(-99.999,-1)": "-90",
"=TRUNC(99.999,1)": "99.9",
"=TRUNC(99.999,2)": "99.99",
"=TRUNC(99.999)": "99",
"=TRUNC(99.999,-1)": "90",
"=TRUNC(-99.999,2)": "-99.99",
"=TRUNC(-99.999,-1)": "-90",
"=TRUNC(TRUNC(1),-1)": "0",
// Statistical Functions
// COUNTA
`=COUNTA()`: "0",
`=COUNTA(A1:A5,B2:B5,"text",1,2)`: "8",
`=COUNTA(COUNTA(1))`: "1",
// MEDIAN
"=MEDIAN(A1:A5,12)": "2",
"=MEDIAN(A1:A5)": "1.5",
"=MEDIAN(A1:A5,12)": "2",
"=MEDIAN(A1:A5)": "1.5",
"=MEDIAN(A1:A5,MEDIAN(A1:A5,12))": "2",
// Information Functions
// ISBLANK
"=ISBLANK(A1)": "FALSE",
@ -706,8 +746,8 @@ func TestCalcCellValue(t *testing.T) {
// MULTINOMIAL
`=MULTINOMIAL("X")`: "strconv.ParseFloat: parsing \"X\": invalid syntax",
// _xlfn.MUNIT
"=_xlfn.MUNIT()": "MUNIT requires 1 numeric argument", // not support currently
`=_xlfn.MUNIT("X")`: "strconv.Atoi: parsing \"X\": invalid syntax", // not support currently
"=_xlfn.MUNIT()": "MUNIT requires 1 numeric argument", // not support currently
`=_xlfn.MUNIT("X")`: "strconv.ParseFloat: parsing \"X\": invalid syntax", // not support currently
// ODD
"=ODD()": "ODD requires 1 numeric argument",
`=ODD("X")`: "strconv.ParseFloat: parsing \"X\": invalid syntax",
@ -732,8 +772,8 @@ func TestCalcCellValue(t *testing.T) {
// RAND
"=RAND(1)": "RAND accepts no arguments",
// RANDBETWEEN
`=RANDBETWEEN("X",1)`: "strconv.ParseInt: parsing \"X\": invalid syntax",
`=RANDBETWEEN(1,"X")`: "strconv.ParseInt: parsing \"X\": invalid syntax",
`=RANDBETWEEN("X",1)`: "strconv.ParseFloat: parsing \"X\": invalid syntax",
`=RANDBETWEEN(1,"X")`: "strconv.ParseFloat: parsing \"X\": invalid syntax",
"=RANDBETWEEN()": "RANDBETWEEN requires 2 numeric arguments",
"=RANDBETWEEN(2,1)": "#NUM!",
// ROMAN
@ -770,6 +810,7 @@ func TestCalcCellValue(t *testing.T) {
`=SINH("X")`: "strconv.ParseFloat: parsing \"X\": invalid syntax",
// SQRT
"=SQRT()": "SQRT requires 1 numeric argument",
`=SQRT("")`: "strconv.ParseFloat: parsing \"\": invalid syntax",
`=SQRT("X")`: "strconv.ParseFloat: parsing \"X\": invalid syntax",
"=SQRT(-1)": "#NUM!",
// SQRTPI