update formula functions test
This commit is contained in:
parent
4ac32278ff
commit
db7b4ee362
583
calc.go
583
calc.go
|
@ -455,7 +455,7 @@ func (f *File) evalInfixExp(sheet string, tokens []efp.Token) (efp.Token, error)
|
|||
Type: ArgString,
|
||||
})
|
||||
}
|
||||
|
||||
// call formula function to evaluate
|
||||
arg := callFuncByName(&formulaFuncs{}, strings.NewReplacer(
|
||||
"_xlfn", "", ".", "").Replace(opfStack.Peek().(efp.Token).TValue),
|
||||
[]reflect.Value{reflect.ValueOf(argsStack.Peek().(*list.List))})
|
||||
|
@ -1573,14 +1573,14 @@ func (fn *formulaFuncs) CSCH(argsList *list.List) formulaArg {
|
|||
if argsList.Len() != 1 {
|
||||
return newErrorFormulaArg(formulaErrorVALUE, "CSCH requires 1 numeric argument")
|
||||
}
|
||||
val, err := strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64)
|
||||
if err != nil {
|
||||
return newErrorFormulaArg(formulaErrorVALUE, err.Error())
|
||||
val := argsList.Front().Value.(formulaArg).ToNumber()
|
||||
if val.Type == ArgError {
|
||||
return val
|
||||
}
|
||||
if val == 0 {
|
||||
if val.Number == 0 {
|
||||
return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
|
||||
}
|
||||
return newNumberFormulaArg(1 / math.Sinh(val))
|
||||
return newNumberFormulaArg(1 / math.Sinh(val.Number))
|
||||
}
|
||||
|
||||
// DECIMAL function converts a text representation of a number in a specified
|
||||
|
@ -1618,14 +1618,14 @@ func (fn *formulaFuncs) DEGREES(argsList *list.List) formulaArg {
|
|||
if argsList.Len() != 1 {
|
||||
return newErrorFormulaArg(formulaErrorVALUE, "DEGREES requires 1 numeric argument")
|
||||
}
|
||||
val, err := strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64)
|
||||
if err != nil {
|
||||
return newErrorFormulaArg(formulaErrorVALUE, err.Error())
|
||||
val := argsList.Front().Value.(formulaArg).ToNumber()
|
||||
if val.Type == ArgError {
|
||||
return val
|
||||
}
|
||||
if val == 0 {
|
||||
if val.Number == 0 {
|
||||
return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
|
||||
}
|
||||
return newNumberFormulaArg(180.0 / math.Pi * val)
|
||||
return newNumberFormulaArg(180.0 / math.Pi * val.Number)
|
||||
}
|
||||
|
||||
// EVEN function rounds a supplied number away from zero (i.e. rounds a
|
||||
|
@ -1638,12 +1638,12 @@ func (fn *formulaFuncs) EVEN(argsList *list.List) formulaArg {
|
|||
if argsList.Len() != 1 {
|
||||
return newErrorFormulaArg(formulaErrorVALUE, "EVEN requires 1 numeric argument")
|
||||
}
|
||||
number, err := strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64)
|
||||
if err != nil {
|
||||
return newErrorFormulaArg(formulaErrorVALUE, err.Error())
|
||||
number := argsList.Front().Value.(formulaArg).ToNumber()
|
||||
if number.Type == ArgError {
|
||||
return number
|
||||
}
|
||||
sign := math.Signbit(number)
|
||||
m, frac := math.Modf(number / 2)
|
||||
sign := math.Signbit(number.Number)
|
||||
m, frac := math.Modf(number.Number / 2)
|
||||
val := m * 2
|
||||
if frac != 0 {
|
||||
if !sign {
|
||||
|
@ -1664,11 +1664,11 @@ func (fn *formulaFuncs) EXP(argsList *list.List) formulaArg {
|
|||
if argsList.Len() != 1 {
|
||||
return newErrorFormulaArg(formulaErrorVALUE, "EXP requires 1 numeric argument")
|
||||
}
|
||||
number, err := strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64)
|
||||
if err != nil {
|
||||
return newErrorFormulaArg(formulaErrorVALUE, err.Error())
|
||||
number := argsList.Front().Value.(formulaArg).ToNumber()
|
||||
if number.Type == ArgError {
|
||||
return number
|
||||
}
|
||||
return newStringFormulaArg(strings.ToUpper(fmt.Sprintf("%g", math.Exp(number))))
|
||||
return newStringFormulaArg(strings.ToUpper(fmt.Sprintf("%g", math.Exp(number.Number))))
|
||||
}
|
||||
|
||||
// fact returns the factorial of a supplied number.
|
||||
|
@ -1689,14 +1689,14 @@ func (fn *formulaFuncs) FACT(argsList *list.List) formulaArg {
|
|||
if argsList.Len() != 1 {
|
||||
return newErrorFormulaArg(formulaErrorVALUE, "FACT requires 1 numeric argument")
|
||||
}
|
||||
number, err := strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64)
|
||||
if err != nil {
|
||||
return newErrorFormulaArg(formulaErrorVALUE, err.Error())
|
||||
number := argsList.Front().Value.(formulaArg).ToNumber()
|
||||
if number.Type == ArgError {
|
||||
return number
|
||||
}
|
||||
if number < 0 {
|
||||
if number.Number < 0 {
|
||||
return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
|
||||
}
|
||||
return newStringFormulaArg(strings.ToUpper(fmt.Sprintf("%g", fact(number))))
|
||||
return newStringFormulaArg(strings.ToUpper(fmt.Sprintf("%g", fact(number.Number))))
|
||||
}
|
||||
|
||||
// FACTDOUBLE function returns the double factorial of a supplied number. The
|
||||
|
@ -1709,14 +1709,14 @@ func (fn *formulaFuncs) FACTDOUBLE(argsList *list.List) formulaArg {
|
|||
return newErrorFormulaArg(formulaErrorVALUE, "FACTDOUBLE requires 1 numeric argument")
|
||||
}
|
||||
val := 1.0
|
||||
number, err := strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64)
|
||||
if err != nil {
|
||||
return newErrorFormulaArg(formulaErrorVALUE, err.Error())
|
||||
number := argsList.Front().Value.(formulaArg).ToNumber()
|
||||
if number.Type == ArgError {
|
||||
return number
|
||||
}
|
||||
if number < 0 {
|
||||
if number.Number < 0 {
|
||||
return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
|
||||
}
|
||||
for i := math.Trunc(number); i > 1; i -= 2 {
|
||||
for i := math.Trunc(number.Number); i > 1; i -= 2 {
|
||||
val *= i
|
||||
}
|
||||
return newStringFormulaArg(strings.ToUpper(fmt.Sprintf("%g", val)))
|
||||
|
@ -1731,27 +1731,25 @@ func (fn *formulaFuncs) FLOOR(argsList *list.List) formulaArg {
|
|||
if argsList.Len() != 2 {
|
||||
return newErrorFormulaArg(formulaErrorVALUE, "FLOOR requires 2 numeric arguments")
|
||||
}
|
||||
var number, significance float64
|
||||
var err error
|
||||
number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64)
|
||||
if err != nil {
|
||||
return newErrorFormulaArg(formulaErrorVALUE, err.Error())
|
||||
number := argsList.Front().Value.(formulaArg).ToNumber()
|
||||
if number.Type == ArgError {
|
||||
return number
|
||||
}
|
||||
significance, err = strconv.ParseFloat(argsList.Back().Value.(formulaArg).String, 64)
|
||||
if err != nil {
|
||||
return newErrorFormulaArg(formulaErrorVALUE, err.Error())
|
||||
significance := argsList.Back().Value.(formulaArg).ToNumber()
|
||||
if significance.Type == ArgError {
|
||||
return significance
|
||||
}
|
||||
if significance < 0 && number >= 0 {
|
||||
if significance.Number < 0 && number.Number >= 0 {
|
||||
return newErrorFormulaArg(formulaErrorNUM, "invalid arguments to FLOOR")
|
||||
}
|
||||
val := number
|
||||
val, res := math.Modf(val / significance)
|
||||
val := number.Number
|
||||
val, res := math.Modf(val / significance.Number)
|
||||
if res != 0 {
|
||||
if number < 0 && res < 0 {
|
||||
if number.Number < 0 && res < 0 {
|
||||
val--
|
||||
}
|
||||
}
|
||||
return newStringFormulaArg(strings.ToUpper(fmt.Sprintf("%g", val*significance)))
|
||||
return newStringFormulaArg(strings.ToUpper(fmt.Sprintf("%g", val*significance.Number)))
|
||||
}
|
||||
|
||||
// FLOORMATH function rounds a supplied number down to a supplied multiple of
|
||||
|
@ -1766,30 +1764,33 @@ func (fn *formulaFuncs) FLOORMATH(argsList *list.List) formulaArg {
|
|||
if argsList.Len() > 3 {
|
||||
return newErrorFormulaArg(formulaErrorVALUE, "FLOOR.MATH allows at most 3 arguments")
|
||||
}
|
||||
number, significance, mode := 0.0, 1.0, 1.0
|
||||
var err error
|
||||
number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64)
|
||||
if err != nil {
|
||||
return newErrorFormulaArg(formulaErrorVALUE, err.Error())
|
||||
significance, mode := 1.0, 1.0
|
||||
number := argsList.Front().Value.(formulaArg).ToNumber()
|
||||
if number.Type == ArgError {
|
||||
return number
|
||||
}
|
||||
if number < 0 {
|
||||
if number.Number < 0 {
|
||||
significance = -1
|
||||
}
|
||||
if argsList.Len() > 1 {
|
||||
if significance, err = strconv.ParseFloat(argsList.Front().Next().Value.(formulaArg).String, 64); err != nil {
|
||||
return newErrorFormulaArg(formulaErrorVALUE, err.Error())
|
||||
s := argsList.Front().Next().Value.(formulaArg).ToNumber()
|
||||
if s.Type == ArgError {
|
||||
return s
|
||||
}
|
||||
significance = s.Number
|
||||
}
|
||||
if argsList.Len() == 1 {
|
||||
return newNumberFormulaArg(math.Floor(number))
|
||||
return newNumberFormulaArg(math.Floor(number.Number))
|
||||
}
|
||||
if argsList.Len() > 2 {
|
||||
if mode, err = strconv.ParseFloat(argsList.Back().Value.(formulaArg).String, 64); err != nil {
|
||||
return newErrorFormulaArg(formulaErrorVALUE, err.Error())
|
||||
m := argsList.Back().Value.(formulaArg).ToNumber()
|
||||
if m.Type == ArgError {
|
||||
return m
|
||||
}
|
||||
mode = m.Number
|
||||
}
|
||||
val, res := math.Modf(number / significance)
|
||||
if res != 0 && number < 0 && mode > 0 {
|
||||
val, res := math.Modf(number.Number / significance)
|
||||
if res != 0 && number.Number < 0 && mode > 0 {
|
||||
val--
|
||||
}
|
||||
return newNumberFormulaArg(val * significance)
|
||||
|
@ -1807,30 +1808,31 @@ func (fn *formulaFuncs) FLOORPRECISE(argsList *list.List) formulaArg {
|
|||
if argsList.Len() > 2 {
|
||||
return newErrorFormulaArg(formulaErrorVALUE, "FLOOR.PRECISE allows at most 2 arguments")
|
||||
}
|
||||
var number, significance float64
|
||||
var err error
|
||||
number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64)
|
||||
if err != nil {
|
||||
return newErrorFormulaArg(formulaErrorVALUE, err.Error())
|
||||
var significance float64
|
||||
number := argsList.Front().Value.(formulaArg).ToNumber()
|
||||
if number.Type == ArgError {
|
||||
return number
|
||||
}
|
||||
if number < 0 {
|
||||
if number.Number < 0 {
|
||||
significance = -1
|
||||
}
|
||||
if argsList.Len() == 1 {
|
||||
return newNumberFormulaArg(math.Floor(number))
|
||||
return newNumberFormulaArg(math.Floor(number.Number))
|
||||
}
|
||||
if argsList.Len() > 1 {
|
||||
if significance, err = strconv.ParseFloat(argsList.Back().Value.(formulaArg).String, 64); err != nil {
|
||||
return newErrorFormulaArg(formulaErrorVALUE, err.Error())
|
||||
s := argsList.Back().Value.(formulaArg).ToNumber()
|
||||
if s.Type == ArgError {
|
||||
return s
|
||||
}
|
||||
significance = s.Number
|
||||
significance = math.Abs(significance)
|
||||
if significance == 0 {
|
||||
return newStringFormulaArg("0")
|
||||
return newNumberFormulaArg(significance)
|
||||
}
|
||||
}
|
||||
val, res := math.Modf(number / significance)
|
||||
val, res := math.Modf(number.Number / significance)
|
||||
if res != 0 {
|
||||
if number < 0 {
|
||||
if number.Number < 0 {
|
||||
val--
|
||||
}
|
||||
}
|
||||
|
@ -1871,12 +1873,19 @@ func (fn *formulaFuncs) GCD(argsList *list.List) formulaArg {
|
|||
err error
|
||||
)
|
||||
for arg := argsList.Front(); arg != nil; arg = arg.Next() {
|
||||
token := arg.Value.(formulaArg).String
|
||||
if token == "" {
|
||||
continue
|
||||
}
|
||||
if val, err = strconv.ParseFloat(token, 64); err != nil {
|
||||
return newErrorFormulaArg(formulaErrorVALUE, err.Error())
|
||||
token := arg.Value.(formulaArg)
|
||||
switch token.Type {
|
||||
case ArgString:
|
||||
if token.String == "" {
|
||||
continue
|
||||
}
|
||||
if val, err = strconv.ParseFloat(token.String, 64); err != nil {
|
||||
return newErrorFormulaArg(formulaErrorVALUE, err.Error())
|
||||
}
|
||||
break
|
||||
case ArgNumber:
|
||||
val = token.Number
|
||||
break
|
||||
}
|
||||
nums = append(nums, val)
|
||||
}
|
||||
|
@ -1905,11 +1914,11 @@ func (fn *formulaFuncs) INT(argsList *list.List) formulaArg {
|
|||
if argsList.Len() != 1 {
|
||||
return newErrorFormulaArg(formulaErrorVALUE, "INT requires 1 numeric argument")
|
||||
}
|
||||
number, err := strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64)
|
||||
if err != nil {
|
||||
return newErrorFormulaArg(formulaErrorVALUE, err.Error())
|
||||
number := argsList.Front().Value.(formulaArg).ToNumber()
|
||||
if number.Type == ArgError {
|
||||
return number
|
||||
}
|
||||
val, frac := math.Modf(number)
|
||||
val, frac := math.Modf(number.Number)
|
||||
if frac < 0 {
|
||||
val--
|
||||
}
|
||||
|
@ -1929,29 +1938,31 @@ func (fn *formulaFuncs) ISOCEILING(argsList *list.List) formulaArg {
|
|||
if argsList.Len() > 2 {
|
||||
return newErrorFormulaArg(formulaErrorVALUE, "ISO.CEILING allows at most 2 arguments")
|
||||
}
|
||||
var number, significance float64
|
||||
var err error
|
||||
if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64); err != nil {
|
||||
return newErrorFormulaArg(formulaErrorVALUE, err.Error())
|
||||
var significance float64
|
||||
number := argsList.Front().Value.(formulaArg).ToNumber()
|
||||
if number.Type == ArgError {
|
||||
return number
|
||||
}
|
||||
if number < 0 {
|
||||
if number.Number < 0 {
|
||||
significance = -1
|
||||
}
|
||||
if argsList.Len() == 1 {
|
||||
return newNumberFormulaArg(math.Ceil(number))
|
||||
return newNumberFormulaArg(math.Ceil(number.Number))
|
||||
}
|
||||
if argsList.Len() > 1 {
|
||||
if significance, err = strconv.ParseFloat(argsList.Back().Value.(formulaArg).String, 64); err != nil {
|
||||
return newErrorFormulaArg(formulaErrorVALUE, err.Error())
|
||||
s := argsList.Back().Value.(formulaArg).ToNumber()
|
||||
if s.Type == ArgError {
|
||||
return s
|
||||
}
|
||||
significance = s.Number
|
||||
significance = math.Abs(significance)
|
||||
if significance == 0 {
|
||||
return newStringFormulaArg("0")
|
||||
return newNumberFormulaArg(significance)
|
||||
}
|
||||
}
|
||||
val, res := math.Modf(number / significance)
|
||||
val, res := math.Modf(number.Number / significance)
|
||||
if res != 0 {
|
||||
if number > 0 {
|
||||
if number.Number > 0 {
|
||||
val++
|
||||
}
|
||||
}
|
||||
|
@ -1983,12 +1994,19 @@ func (fn *formulaFuncs) LCM(argsList *list.List) formulaArg {
|
|||
err error
|
||||
)
|
||||
for arg := argsList.Front(); arg != nil; arg = arg.Next() {
|
||||
token := arg.Value.(formulaArg).String
|
||||
if token == "" {
|
||||
continue
|
||||
}
|
||||
if val, err = strconv.ParseFloat(token, 64); err != nil {
|
||||
return newErrorFormulaArg(formulaErrorVALUE, err.Error())
|
||||
token := arg.Value.(formulaArg)
|
||||
switch token.Type {
|
||||
case ArgString:
|
||||
if token.String == "" {
|
||||
continue
|
||||
}
|
||||
if val, err = strconv.ParseFloat(token.String, 64); err != nil {
|
||||
return newErrorFormulaArg(formulaErrorVALUE, err.Error())
|
||||
}
|
||||
break
|
||||
case ArgNumber:
|
||||
val = token.Number
|
||||
break
|
||||
}
|
||||
nums = append(nums, val)
|
||||
}
|
||||
|
@ -2017,11 +2035,11 @@ func (fn *formulaFuncs) LN(argsList *list.List) formulaArg {
|
|||
if argsList.Len() != 1 {
|
||||
return newErrorFormulaArg(formulaErrorVALUE, "LN requires 1 numeric argument")
|
||||
}
|
||||
number, err := strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64)
|
||||
if err != nil {
|
||||
return newErrorFormulaArg(formulaErrorVALUE, err.Error())
|
||||
number := argsList.Front().Value.(formulaArg).ToNumber()
|
||||
if number.Type == ArgError {
|
||||
return number
|
||||
}
|
||||
return newNumberFormulaArg(math.Log(number))
|
||||
return newNumberFormulaArg(math.Log(number.Number))
|
||||
}
|
||||
|
||||
// LOG function calculates the logarithm of a given number, to a supplied
|
||||
|
@ -2036,18 +2054,19 @@ func (fn *formulaFuncs) LOG(argsList *list.List) formulaArg {
|
|||
if argsList.Len() > 2 {
|
||||
return newErrorFormulaArg(formulaErrorVALUE, "LOG allows at most 2 arguments")
|
||||
}
|
||||
number, base := 0.0, 10.0
|
||||
var err error
|
||||
number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64)
|
||||
if err != nil {
|
||||
return newErrorFormulaArg(formulaErrorVALUE, err.Error())
|
||||
base := 10.0
|
||||
number := argsList.Front().Value.(formulaArg).ToNumber()
|
||||
if number.Type == ArgError {
|
||||
return number
|
||||
}
|
||||
if argsList.Len() > 1 {
|
||||
if base, err = strconv.ParseFloat(argsList.Back().Value.(formulaArg).String, 64); err != nil {
|
||||
return newErrorFormulaArg(formulaErrorVALUE, err.Error())
|
||||
b := argsList.Back().Value.(formulaArg).ToNumber()
|
||||
if b.Type == ArgError {
|
||||
return b
|
||||
}
|
||||
base = b.Number
|
||||
}
|
||||
if number == 0 {
|
||||
if number.Number == 0 {
|
||||
return newErrorFormulaArg(formulaErrorNUM, formulaErrorDIV)
|
||||
}
|
||||
if base == 0 {
|
||||
|
@ -2056,7 +2075,7 @@ func (fn *formulaFuncs) LOG(argsList *list.List) formulaArg {
|
|||
if base == 1 {
|
||||
return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
|
||||
}
|
||||
return newNumberFormulaArg(math.Log(number) / math.Log(base))
|
||||
return newNumberFormulaArg(math.Log(number.Number) / math.Log(base))
|
||||
}
|
||||
|
||||
// LOG10 function calculates the base 10 logarithm of a given number. The
|
||||
|
@ -2068,11 +2087,11 @@ func (fn *formulaFuncs) LOG10(argsList *list.List) formulaArg {
|
|||
if argsList.Len() != 1 {
|
||||
return newErrorFormulaArg(formulaErrorVALUE, "LOG10 requires 1 numeric argument")
|
||||
}
|
||||
number, err := strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64)
|
||||
if err != nil {
|
||||
return newErrorFormulaArg(formulaErrorVALUE, err.Error())
|
||||
number := argsList.Front().Value.(formulaArg).ToNumber()
|
||||
if number.Type == ArgError {
|
||||
return number
|
||||
}
|
||||
return newNumberFormulaArg(math.Log10(number))
|
||||
return newNumberFormulaArg(math.Log10(number.Number))
|
||||
}
|
||||
|
||||
// minor function implement a minor of a matrix A is the determinant of some
|
||||
|
@ -2153,24 +2172,22 @@ func (fn *formulaFuncs) MOD(argsList *list.List) formulaArg {
|
|||
if argsList.Len() != 2 {
|
||||
return newErrorFormulaArg(formulaErrorVALUE, "MOD requires 2 numeric arguments")
|
||||
}
|
||||
var number, divisor float64
|
||||
var err error
|
||||
number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64)
|
||||
if err != nil {
|
||||
return newErrorFormulaArg(formulaErrorVALUE, err.Error())
|
||||
number := argsList.Front().Value.(formulaArg).ToNumber()
|
||||
if number.Type == ArgError {
|
||||
return number
|
||||
}
|
||||
divisor, err = strconv.ParseFloat(argsList.Back().Value.(formulaArg).String, 64)
|
||||
if err != nil {
|
||||
return newErrorFormulaArg(formulaErrorVALUE, err.Error())
|
||||
divisor := argsList.Back().Value.(formulaArg).ToNumber()
|
||||
if divisor.Type == ArgError {
|
||||
return divisor
|
||||
}
|
||||
if divisor == 0 {
|
||||
if divisor.Number == 0 {
|
||||
return newErrorFormulaArg(formulaErrorDIV, "MOD divide by zero")
|
||||
}
|
||||
trunc, rem := math.Modf(number / divisor)
|
||||
trunc, rem := math.Modf(number.Number / divisor.Number)
|
||||
if rem < 0 {
|
||||
trunc--
|
||||
}
|
||||
return newNumberFormulaArg(number - divisor*trunc)
|
||||
return newNumberFormulaArg(number.Number - divisor.Number*trunc)
|
||||
}
|
||||
|
||||
// MROUND function rounds a supplied number up or down to the nearest multiple
|
||||
|
@ -2182,28 +2199,26 @@ func (fn *formulaFuncs) MROUND(argsList *list.List) formulaArg {
|
|||
if argsList.Len() != 2 {
|
||||
return newErrorFormulaArg(formulaErrorVALUE, "MROUND requires 2 numeric arguments")
|
||||
}
|
||||
var number, multiple float64
|
||||
var err error
|
||||
number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64)
|
||||
if err != nil {
|
||||
return newErrorFormulaArg(formulaErrorVALUE, err.Error())
|
||||
n := argsList.Front().Value.(formulaArg).ToNumber()
|
||||
if n.Type == ArgError {
|
||||
return n
|
||||
}
|
||||
multiple, err = strconv.ParseFloat(argsList.Back().Value.(formulaArg).String, 64)
|
||||
if err != nil {
|
||||
return newErrorFormulaArg(formulaErrorVALUE, err.Error())
|
||||
multiple := argsList.Back().Value.(formulaArg).ToNumber()
|
||||
if multiple.Type == ArgError {
|
||||
return multiple
|
||||
}
|
||||
if multiple == 0 {
|
||||
if multiple.Number == 0 {
|
||||
return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
|
||||
}
|
||||
if multiple < 0 && number > 0 ||
|
||||
multiple > 0 && number < 0 {
|
||||
if multiple.Number < 0 && n.Number > 0 ||
|
||||
multiple.Number > 0 && n.Number < 0 {
|
||||
return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
|
||||
}
|
||||
number, res := math.Modf(number / multiple)
|
||||
number, res := math.Modf(n.Number / multiple.Number)
|
||||
if math.Trunc(res+0.5) > 0 {
|
||||
number++
|
||||
}
|
||||
return newNumberFormulaArg(number * multiple)
|
||||
return newNumberFormulaArg(number * multiple.Number)
|
||||
}
|
||||
|
||||
// MULTINOMIAL function calculates the ratio of the factorial of a sum of
|
||||
|
@ -2217,11 +2232,18 @@ func (fn *formulaFuncs) MULTINOMIAL(argsList *list.List) formulaArg {
|
|||
var err error
|
||||
for arg := argsList.Front(); arg != nil; arg = arg.Next() {
|
||||
token := arg.Value.(formulaArg)
|
||||
if token.String == "" {
|
||||
continue
|
||||
}
|
||||
if val, err = strconv.ParseFloat(token.String, 64); err != nil {
|
||||
return newErrorFormulaArg(formulaErrorVALUE, err.Error())
|
||||
switch token.Type {
|
||||
case ArgString:
|
||||
if token.String == "" {
|
||||
continue
|
||||
}
|
||||
if val, err = strconv.ParseFloat(token.String, 64); err != nil {
|
||||
return newErrorFormulaArg(formulaErrorVALUE, err.Error())
|
||||
}
|
||||
break
|
||||
case ArgNumber:
|
||||
val = token.Number
|
||||
break
|
||||
}
|
||||
num += val
|
||||
denom *= fact(val)
|
||||
|
@ -2238,18 +2260,18 @@ func (fn *formulaFuncs) MUNIT(argsList *list.List) (result formulaArg) {
|
|||
if argsList.Len() != 1 {
|
||||
return newErrorFormulaArg(formulaErrorVALUE, "MUNIT requires 1 numeric argument")
|
||||
}
|
||||
dimension, err := strconv.Atoi(argsList.Front().Value.(formulaArg).String)
|
||||
if err != nil {
|
||||
return newErrorFormulaArg(formulaErrorVALUE, err.Error())
|
||||
dimension := argsList.Back().Value.(formulaArg).ToNumber()
|
||||
if dimension.Type == ArgError {
|
||||
return dimension
|
||||
}
|
||||
matrix := make([][]formulaArg, 0, dimension)
|
||||
for i := 0; i < dimension; i++ {
|
||||
row := make([]formulaArg, dimension)
|
||||
for j := 0; j < dimension; j++ {
|
||||
matrix := make([][]formulaArg, 0, int(dimension.Number))
|
||||
for i := 0; i < int(dimension.Number); i++ {
|
||||
row := make([]formulaArg, int(dimension.Number))
|
||||
for j := 0; j < int(dimension.Number); j++ {
|
||||
if i == j {
|
||||
row[j] = newNumberFormulaArg(float64(1.0))
|
||||
row[j] = newNumberFormulaArg(1.0)
|
||||
} else {
|
||||
row[j] = newNumberFormulaArg(float64(0.0))
|
||||
row[j] = newNumberFormulaArg(0.0)
|
||||
}
|
||||
}
|
||||
matrix = append(matrix, row)
|
||||
|
@ -2267,15 +2289,15 @@ func (fn *formulaFuncs) ODD(argsList *list.List) formulaArg {
|
|||
if argsList.Len() != 1 {
|
||||
return newErrorFormulaArg(formulaErrorVALUE, "ODD requires 1 numeric argument")
|
||||
}
|
||||
number, err := strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64)
|
||||
if err != nil {
|
||||
return newErrorFormulaArg(formulaErrorVALUE, err.Error())
|
||||
number := argsList.Back().Value.(formulaArg).ToNumber()
|
||||
if number.Type == ArgError {
|
||||
return number
|
||||
}
|
||||
if number == 0 {
|
||||
return newStringFormulaArg("1")
|
||||
if number.Number == 0 {
|
||||
return newNumberFormulaArg(1)
|
||||
}
|
||||
sign := math.Signbit(number)
|
||||
m, frac := math.Modf((number - 1) / 2)
|
||||
sign := math.Signbit(number.Number)
|
||||
m, frac := math.Modf((number.Number - 1) / 2)
|
||||
val := m*2 + 1
|
||||
if frac != 0 {
|
||||
if !sign {
|
||||
|
@ -2308,23 +2330,21 @@ func (fn *formulaFuncs) POWER(argsList *list.List) formulaArg {
|
|||
if argsList.Len() != 2 {
|
||||
return newErrorFormulaArg(formulaErrorVALUE, "POWER requires 2 numeric arguments")
|
||||
}
|
||||
var x, y float64
|
||||
var err error
|
||||
x, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64)
|
||||
if err != nil {
|
||||
return newErrorFormulaArg(formulaErrorVALUE, err.Error())
|
||||
x := argsList.Front().Value.(formulaArg).ToNumber()
|
||||
if x.Type == ArgError {
|
||||
return x
|
||||
}
|
||||
y, err = strconv.ParseFloat(argsList.Back().Value.(formulaArg).String, 64)
|
||||
if err != nil {
|
||||
return newErrorFormulaArg(formulaErrorVALUE, err.Error())
|
||||
y := argsList.Back().Value.(formulaArg).ToNumber()
|
||||
if y.Type == ArgError {
|
||||
return y
|
||||
}
|
||||
if x == 0 && y == 0 {
|
||||
if x.Number == 0 && y.Number == 0 {
|
||||
return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
|
||||
}
|
||||
if x == 0 && y < 0 {
|
||||
if x.Number == 0 && y.Number < 0 {
|
||||
return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
|
||||
}
|
||||
return newNumberFormulaArg(math.Pow(x, y))
|
||||
return newNumberFormulaArg(math.Pow(x.Number, y.Number))
|
||||
}
|
||||
|
||||
// PRODUCT function returns the product (multiplication) of a supplied set of
|
||||
|
@ -2348,6 +2368,10 @@ func (fn *formulaFuncs) PRODUCT(argsList *list.List) formulaArg {
|
|||
return newErrorFormulaArg(formulaErrorVALUE, err.Error())
|
||||
}
|
||||
product = product * val
|
||||
break
|
||||
case ArgNumber:
|
||||
product = product * token.Number
|
||||
break
|
||||
case ArgMatrix:
|
||||
for _, row := range token.Matrix {
|
||||
for _, value := range row {
|
||||
|
@ -2374,20 +2398,18 @@ func (fn *formulaFuncs) QUOTIENT(argsList *list.List) formulaArg {
|
|||
if argsList.Len() != 2 {
|
||||
return newErrorFormulaArg(formulaErrorVALUE, "QUOTIENT requires 2 numeric arguments")
|
||||
}
|
||||
var x, y float64
|
||||
var err error
|
||||
x, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64)
|
||||
if err != nil {
|
||||
return newErrorFormulaArg(formulaErrorVALUE, err.Error())
|
||||
x := argsList.Front().Value.(formulaArg).ToNumber()
|
||||
if x.Type == ArgError {
|
||||
return x
|
||||
}
|
||||
y, err = strconv.ParseFloat(argsList.Back().Value.(formulaArg).String, 64)
|
||||
if err != nil {
|
||||
return newErrorFormulaArg(formulaErrorVALUE, err.Error())
|
||||
y := argsList.Back().Value.(formulaArg).ToNumber()
|
||||
if y.Type == ArgError {
|
||||
return y
|
||||
}
|
||||
if y == 0 {
|
||||
if y.Number == 0 {
|
||||
return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
|
||||
}
|
||||
return newNumberFormulaArg(math.Trunc(x / y))
|
||||
return newNumberFormulaArg(math.Trunc(x.Number / y.Number))
|
||||
}
|
||||
|
||||
// RADIANS function converts radians into degrees. The syntax of the function is:
|
||||
|
@ -2398,11 +2420,11 @@ func (fn *formulaFuncs) RADIANS(argsList *list.List) formulaArg {
|
|||
if argsList.Len() != 1 {
|
||||
return newErrorFormulaArg(formulaErrorVALUE, "RADIANS requires 1 numeric argument")
|
||||
}
|
||||
angle, err := strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64)
|
||||
if err != nil {
|
||||
return newErrorFormulaArg(formulaErrorVALUE, err.Error())
|
||||
angle := argsList.Front().Value.(formulaArg).ToNumber()
|
||||
if angle.Type == ArgError {
|
||||
return angle
|
||||
}
|
||||
return newNumberFormulaArg(math.Pi / 180.0 * angle)
|
||||
return newNumberFormulaArg(math.Pi / 180.0 * angle.Number)
|
||||
}
|
||||
|
||||
// RAND function generates a random real number between 0 and 1. The syntax of
|
||||
|
@ -2426,20 +2448,18 @@ func (fn *formulaFuncs) RANDBETWEEN(argsList *list.List) formulaArg {
|
|||
if argsList.Len() != 2 {
|
||||
return newErrorFormulaArg(formulaErrorVALUE, "RANDBETWEEN requires 2 numeric arguments")
|
||||
}
|
||||
var bottom, top int64
|
||||
var err error
|
||||
bottom, err = strconv.ParseInt(argsList.Front().Value.(formulaArg).String, 10, 64)
|
||||
if err != nil {
|
||||
return newErrorFormulaArg(formulaErrorVALUE, err.Error())
|
||||
bottom := argsList.Front().Value.(formulaArg).ToNumber()
|
||||
if bottom.Type == ArgError {
|
||||
return bottom
|
||||
}
|
||||
top, err = strconv.ParseInt(argsList.Back().Value.(formulaArg).String, 10, 64)
|
||||
if err != nil {
|
||||
return newErrorFormulaArg(formulaErrorVALUE, err.Error())
|
||||
top := argsList.Back().Value.(formulaArg).ToNumber()
|
||||
if top.Type == ArgError {
|
||||
return top
|
||||
}
|
||||
if top < bottom {
|
||||
if top.Number < bottom.Number {
|
||||
return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
|
||||
}
|
||||
return newNumberFormulaArg(float64(rand.New(rand.NewSource(time.Now().UnixNano())).Int63n(top-bottom+1) + bottom))
|
||||
return newNumberFormulaArg(float64(rand.New(rand.NewSource(time.Now().UnixNano())).Int63n(int64(top.Number-bottom.Number+1)) + int64(bottom.Number)))
|
||||
}
|
||||
|
||||
// romanNumerals defined a numeral system that originated in ancient Rome and
|
||||
|
@ -2469,17 +2489,17 @@ func (fn *formulaFuncs) ROMAN(argsList *list.List) formulaArg {
|
|||
if argsList.Len() > 2 {
|
||||
return newErrorFormulaArg(formulaErrorVALUE, "ROMAN allows at most 2 arguments")
|
||||
}
|
||||
var number float64
|
||||
var form int
|
||||
var err error
|
||||
number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64)
|
||||
if err != nil {
|
||||
return newErrorFormulaArg(formulaErrorVALUE, err.Error())
|
||||
number := argsList.Front().Value.(formulaArg).ToNumber()
|
||||
if number.Type == ArgError {
|
||||
return number
|
||||
}
|
||||
if argsList.Len() > 1 {
|
||||
if form, err = strconv.Atoi(argsList.Back().Value.(formulaArg).String); err != nil {
|
||||
return newErrorFormulaArg(formulaErrorVALUE, err.Error())
|
||||
f := argsList.Back().Value.(formulaArg).ToNumber()
|
||||
if f.Type == ArgError {
|
||||
return f
|
||||
}
|
||||
form = int(f.Number)
|
||||
if form < 0 {
|
||||
form = 0
|
||||
} else if form > 4 {
|
||||
|
@ -2497,7 +2517,7 @@ func (fn *formulaFuncs) ROMAN(argsList *list.List) formulaArg {
|
|||
case 4:
|
||||
decimalTable = romanTable[4]
|
||||
}
|
||||
val := math.Trunc(number)
|
||||
val := math.Trunc(number.Number)
|
||||
buf := bytes.Buffer{}
|
||||
for _, r := range decimalTable {
|
||||
for val >= r.n {
|
||||
|
@ -2553,17 +2573,15 @@ func (fn *formulaFuncs) ROUND(argsList *list.List) formulaArg {
|
|||
if argsList.Len() != 2 {
|
||||
return newErrorFormulaArg(formulaErrorVALUE, "ROUND requires 2 numeric arguments")
|
||||
}
|
||||
var number, digits float64
|
||||
var err error
|
||||
number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64)
|
||||
if err != nil {
|
||||
return newErrorFormulaArg(formulaErrorVALUE, err.Error())
|
||||
number := argsList.Front().Value.(formulaArg).ToNumber()
|
||||
if number.Type == ArgError {
|
||||
return number
|
||||
}
|
||||
digits, err = strconv.ParseFloat(argsList.Back().Value.(formulaArg).String, 64)
|
||||
if err != nil {
|
||||
return newErrorFormulaArg(formulaErrorVALUE, err.Error())
|
||||
digits := argsList.Back().Value.(formulaArg).ToNumber()
|
||||
if digits.Type == ArgError {
|
||||
return digits
|
||||
}
|
||||
return newNumberFormulaArg(fn.round(number, digits, closest))
|
||||
return newNumberFormulaArg(fn.round(number.Number, digits.Number, closest))
|
||||
}
|
||||
|
||||
// ROUNDDOWN function rounds a supplied number down towards zero, to a
|
||||
|
@ -2575,17 +2593,15 @@ func (fn *formulaFuncs) ROUNDDOWN(argsList *list.List) formulaArg {
|
|||
if argsList.Len() != 2 {
|
||||
return newErrorFormulaArg(formulaErrorVALUE, "ROUNDDOWN requires 2 numeric arguments")
|
||||
}
|
||||
var number, digits float64
|
||||
var err error
|
||||
number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64)
|
||||
if err != nil {
|
||||
return newErrorFormulaArg(formulaErrorVALUE, err.Error())
|
||||
number := argsList.Front().Value.(formulaArg).ToNumber()
|
||||
if number.Type == ArgError {
|
||||
return number
|
||||
}
|
||||
digits, err = strconv.ParseFloat(argsList.Back().Value.(formulaArg).String, 64)
|
||||
if err != nil {
|
||||
return newErrorFormulaArg(formulaErrorVALUE, err.Error())
|
||||
digits := argsList.Back().Value.(formulaArg).ToNumber()
|
||||
if digits.Type == ArgError {
|
||||
return digits
|
||||
}
|
||||
return newNumberFormulaArg(fn.round(number, digits, down))
|
||||
return newNumberFormulaArg(fn.round(number.Number, digits.Number, down))
|
||||
}
|
||||
|
||||
// ROUNDUP function rounds a supplied number up, away from zero, to a
|
||||
|
@ -2597,17 +2613,15 @@ func (fn *formulaFuncs) ROUNDUP(argsList *list.List) formulaArg {
|
|||
if argsList.Len() != 2 {
|
||||
return newErrorFormulaArg(formulaErrorVALUE, "ROUNDUP requires 2 numeric arguments")
|
||||
}
|
||||
var number, digits float64
|
||||
var err error
|
||||
number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64)
|
||||
if err != nil {
|
||||
return newErrorFormulaArg(formulaErrorVALUE, err.Error())
|
||||
number := argsList.Front().Value.(formulaArg).ToNumber()
|
||||
if number.Type == ArgError {
|
||||
return number
|
||||
}
|
||||
digits, err = strconv.ParseFloat(argsList.Back().Value.(formulaArg).String, 64)
|
||||
if err != nil {
|
||||
return newErrorFormulaArg(formulaErrorVALUE, err.Error())
|
||||
digits := argsList.Back().Value.(formulaArg).ToNumber()
|
||||
if digits.Type == ArgError {
|
||||
return digits
|
||||
}
|
||||
return newNumberFormulaArg(fn.round(number, digits, up))
|
||||
return newNumberFormulaArg(fn.round(number.Number, digits.Number, up))
|
||||
}
|
||||
|
||||
// SEC function calculates the secant of a given angle. The syntax of the
|
||||
|
@ -2619,11 +2633,11 @@ func (fn *formulaFuncs) SEC(argsList *list.List) formulaArg {
|
|||
if argsList.Len() != 1 {
|
||||
return newErrorFormulaArg(formulaErrorVALUE, "SEC requires 1 numeric argument")
|
||||
}
|
||||
number, err := strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64)
|
||||
if err != nil {
|
||||
return newErrorFormulaArg(formulaErrorVALUE, err.Error())
|
||||
number := argsList.Front().Value.(formulaArg).ToNumber()
|
||||
if number.Type == ArgError {
|
||||
return number
|
||||
}
|
||||
return newNumberFormulaArg(math.Cos(number))
|
||||
return newNumberFormulaArg(math.Cos(number.Number))
|
||||
}
|
||||
|
||||
// SECH function calculates the hyperbolic secant (sech) of a supplied angle.
|
||||
|
@ -2635,11 +2649,11 @@ func (fn *formulaFuncs) SECH(argsList *list.List) formulaArg {
|
|||
if argsList.Len() != 1 {
|
||||
return newErrorFormulaArg(formulaErrorVALUE, "SECH requires 1 numeric argument")
|
||||
}
|
||||
number, err := strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64)
|
||||
if err != nil {
|
||||
return newErrorFormulaArg(formulaErrorVALUE, err.Error())
|
||||
number := argsList.Front().Value.(formulaArg).ToNumber()
|
||||
if number.Type == ArgError {
|
||||
return number
|
||||
}
|
||||
return newNumberFormulaArg(1 / math.Cosh(number))
|
||||
return newNumberFormulaArg(1 / math.Cosh(number.Number))
|
||||
}
|
||||
|
||||
// SIGN function returns the arithmetic sign (+1, -1 or 0) of a supplied
|
||||
|
@ -2653,17 +2667,17 @@ func (fn *formulaFuncs) SIGN(argsList *list.List) formulaArg {
|
|||
if argsList.Len() != 1 {
|
||||
return newErrorFormulaArg(formulaErrorVALUE, "SIGN requires 1 numeric argument")
|
||||
}
|
||||
val, err := strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64)
|
||||
if err != nil {
|
||||
return newErrorFormulaArg(formulaErrorVALUE, err.Error())
|
||||
val := argsList.Front().Value.(formulaArg).ToNumber()
|
||||
if val.Type == ArgError {
|
||||
return val
|
||||
}
|
||||
if val < 0 {
|
||||
return newStringFormulaArg("-1")
|
||||
if val.Number < 0 {
|
||||
return newNumberFormulaArg(-1)
|
||||
}
|
||||
if val > 0 {
|
||||
return newStringFormulaArg("1")
|
||||
if val.Number > 0 {
|
||||
return newNumberFormulaArg(1)
|
||||
}
|
||||
return newStringFormulaArg("0")
|
||||
return newNumberFormulaArg(0)
|
||||
}
|
||||
|
||||
// SIN function calculates the sine of a given angle. The syntax of the
|
||||
|
@ -2675,11 +2689,11 @@ func (fn *formulaFuncs) SIN(argsList *list.List) formulaArg {
|
|||
if argsList.Len() != 1 {
|
||||
return newErrorFormulaArg(formulaErrorVALUE, "SIN requires 1 numeric argument")
|
||||
}
|
||||
number, err := strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64)
|
||||
if err != nil {
|
||||
return newErrorFormulaArg(formulaErrorVALUE, err.Error())
|
||||
number := argsList.Front().Value.(formulaArg).ToNumber()
|
||||
if number.Type == ArgError {
|
||||
return number
|
||||
}
|
||||
return newNumberFormulaArg(math.Sin(number))
|
||||
return newNumberFormulaArg(math.Sin(number.Number))
|
||||
}
|
||||
|
||||
// SINH function calculates the hyperbolic sine (sinh) of a supplied number.
|
||||
|
@ -2691,11 +2705,11 @@ func (fn *formulaFuncs) SINH(argsList *list.List) formulaArg {
|
|||
if argsList.Len() != 1 {
|
||||
return newErrorFormulaArg(formulaErrorVALUE, "SINH requires 1 numeric argument")
|
||||
}
|
||||
number, err := strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64)
|
||||
if err != nil {
|
||||
return newErrorFormulaArg(formulaErrorVALUE, err.Error())
|
||||
number := argsList.Front().Value.(formulaArg).ToNumber()
|
||||
if number.Type == ArgError {
|
||||
return number
|
||||
}
|
||||
return newNumberFormulaArg(math.Sinh(number))
|
||||
return newNumberFormulaArg(math.Sinh(number.Number))
|
||||
}
|
||||
|
||||
// SQRT function calculates the positive square root of a supplied number. The
|
||||
|
@ -2707,19 +2721,14 @@ func (fn *formulaFuncs) SQRT(argsList *list.List) formulaArg {
|
|||
if argsList.Len() != 1 {
|
||||
return newErrorFormulaArg(formulaErrorVALUE, "SQRT requires 1 numeric argument")
|
||||
}
|
||||
var res float64
|
||||
var value = argsList.Front().Value.(formulaArg).String
|
||||
if value == "" {
|
||||
return newStringFormulaArg("0")
|
||||
value := argsList.Front().Value.(formulaArg).ToNumber()
|
||||
if value.Type == ArgError {
|
||||
return value
|
||||
}
|
||||
res, err := strconv.ParseFloat(value, 64)
|
||||
if err != nil {
|
||||
return newErrorFormulaArg(formulaErrorVALUE, err.Error())
|
||||
}
|
||||
if res < 0 {
|
||||
if value.Number < 0 {
|
||||
return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
|
||||
}
|
||||
return newNumberFormulaArg(math.Sqrt(res))
|
||||
return newNumberFormulaArg(math.Sqrt(value.Number))
|
||||
}
|
||||
|
||||
// SQRTPI function returns the square root of a supplied number multiplied by
|
||||
|
@ -2731,11 +2740,11 @@ func (fn *formulaFuncs) SQRTPI(argsList *list.List) formulaArg {
|
|||
if argsList.Len() != 1 {
|
||||
return newErrorFormulaArg(formulaErrorVALUE, "SQRTPI requires 1 numeric argument")
|
||||
}
|
||||
number, err := strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64)
|
||||
if err != nil {
|
||||
return newErrorFormulaArg(formulaErrorVALUE, err.Error())
|
||||
number := argsList.Front().Value.(formulaArg).ToNumber()
|
||||
if number.Type == ArgError {
|
||||
return number
|
||||
}
|
||||
return newNumberFormulaArg(math.Sqrt(number * math.Pi))
|
||||
return newNumberFormulaArg(math.Sqrt(number.Number * math.Pi))
|
||||
}
|
||||
|
||||
// SUM function adds together a supplied set of numbers and returns the sum of
|
||||
|
@ -2844,6 +2853,10 @@ func (fn *formulaFuncs) SUMSQ(argsList *list.List) formulaArg {
|
|||
return newErrorFormulaArg(formulaErrorVALUE, err.Error())
|
||||
}
|
||||
sq += val * val
|
||||
break
|
||||
case ArgNumber:
|
||||
sq += token.Number
|
||||
break
|
||||
case ArgMatrix:
|
||||
for _, row := range token.Matrix {
|
||||
for _, value := range row {
|
||||
|
@ -2870,11 +2883,11 @@ func (fn *formulaFuncs) TAN(argsList *list.List) formulaArg {
|
|||
if argsList.Len() != 1 {
|
||||
return newErrorFormulaArg(formulaErrorVALUE, "TAN requires 1 numeric argument")
|
||||
}
|
||||
number, err := strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64)
|
||||
if err != nil {
|
||||
return newErrorFormulaArg(formulaErrorVALUE, err.Error())
|
||||
number := argsList.Front().Value.(formulaArg).ToNumber()
|
||||
if number.Type == ArgError {
|
||||
return number
|
||||
}
|
||||
return newNumberFormulaArg(math.Tan(number))
|
||||
return newNumberFormulaArg(math.Tan(number.Number))
|
||||
}
|
||||
|
||||
// TANH function calculates the hyperbolic tangent (tanh) of a supplied
|
||||
|
@ -2886,11 +2899,11 @@ func (fn *formulaFuncs) TANH(argsList *list.List) formulaArg {
|
|||
if argsList.Len() != 1 {
|
||||
return newErrorFormulaArg(formulaErrorVALUE, "TANH requires 1 numeric argument")
|
||||
}
|
||||
number, err := strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64)
|
||||
if err != nil {
|
||||
return newErrorFormulaArg(formulaErrorVALUE, err.Error())
|
||||
number := argsList.Front().Value.(formulaArg).ToNumber()
|
||||
if number.Type == ArgError {
|
||||
return number
|
||||
}
|
||||
return newNumberFormulaArg(math.Tanh(number))
|
||||
return newNumberFormulaArg(math.Tanh(number.Number))
|
||||
}
|
||||
|
||||
// TRUNC function truncates a supplied number to a specified number of decimal
|
||||
|
@ -2902,29 +2915,31 @@ func (fn *formulaFuncs) TRUNC(argsList *list.List) formulaArg {
|
|||
if argsList.Len() == 0 {
|
||||
return newErrorFormulaArg(formulaErrorVALUE, "TRUNC requires at least 1 argument")
|
||||
}
|
||||
var number, digits, adjust, rtrim float64
|
||||
var digits, adjust, rtrim float64
|
||||
var err error
|
||||
number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64)
|
||||
if err != nil {
|
||||
return newErrorFormulaArg(formulaErrorVALUE, err.Error())
|
||||
number := argsList.Front().Value.(formulaArg).ToNumber()
|
||||
if number.Type == ArgError {
|
||||
return number
|
||||
}
|
||||
if argsList.Len() > 1 {
|
||||
if digits, err = strconv.ParseFloat(argsList.Back().Value.(formulaArg).String, 64); err != nil {
|
||||
return newErrorFormulaArg(formulaErrorVALUE, err.Error())
|
||||
d := argsList.Back().Value.(formulaArg).ToNumber()
|
||||
if d.Type == ArgError {
|
||||
return d
|
||||
}
|
||||
digits = d.Number
|
||||
digits = math.Floor(digits)
|
||||
}
|
||||
adjust = math.Pow(10, digits)
|
||||
x := int((math.Abs(number) - math.Abs(float64(int(number)))) * adjust)
|
||||
x := int((math.Abs(number.Number) - math.Abs(float64(int(number.Number)))) * adjust)
|
||||
if x != 0 {
|
||||
if rtrim, err = strconv.ParseFloat(strings.TrimRight(strconv.Itoa(x), "0"), 64); err != nil {
|
||||
return newErrorFormulaArg(formulaErrorVALUE, err.Error())
|
||||
}
|
||||
}
|
||||
if (digits > 0) && (rtrim < adjust/10) {
|
||||
return newNumberFormulaArg(number)
|
||||
return newNumberFormulaArg(number.Number)
|
||||
}
|
||||
return newNumberFormulaArg(float64(int(number*adjust)) / adjust)
|
||||
return newNumberFormulaArg(float64(int(number.Number*adjust)) / adjust)
|
||||
}
|
||||
|
||||
// Statistical functions
|
||||
|
@ -2976,6 +2991,10 @@ func (fn *formulaFuncs) MEDIAN(argsList *list.List) formulaArg {
|
|||
return newErrorFormulaArg(formulaErrorVALUE, err.Error())
|
||||
}
|
||||
values = append(values, digits)
|
||||
break
|
||||
case ArgNumber:
|
||||
values = append(values, arg.Number)
|
||||
break
|
||||
case ArgMatrix:
|
||||
for _, row := range arg.Matrix {
|
||||
for _, value := range row {
|
||||
|
|
323
calc_test.go
323
calc_test.go
|
@ -177,6 +177,7 @@ func TestCalcCellValue(t *testing.T) {
|
|||
"=_xlfn.CSC(_xlfn.CSC(1))": "1.077851840310882",
|
||||
// _xlfn.CSCH
|
||||
"=_xlfn.CSCH(-3.14159265358979)": "-0.086589537530047",
|
||||
"=_xlfn.CSCH(_xlfn.CSCH(1))": "1.044510103955183",
|
||||
// _xlfn.DECIMAL
|
||||
`=_xlfn.DECIMAL("1100",2)`: "12",
|
||||
`=_xlfn.DECIMAL("186A0",16)`: "100000",
|
||||
|
@ -184,8 +185,9 @@ func TestCalcCellValue(t *testing.T) {
|
|||
`=_xlfn.DECIMAL("70122",8)`: "28754",
|
||||
`=_xlfn.DECIMAL("0x70122",8)`: "28754",
|
||||
// DEGREES
|
||||
"=DEGREES(1)": "57.29577951308232",
|
||||
"=DEGREES(2.5)": "143.2394487827058",
|
||||
"=DEGREES(1)": "57.29577951308232",
|
||||
"=DEGREES(2.5)": "143.2394487827058",
|
||||
"=DEGREES(DEGREES(1))": "3282.806350011744",
|
||||
// EVEN
|
||||
"=EVEN(23)": "24",
|
||||
"=EVEN(2.22)": "4",
|
||||
|
@ -193,47 +195,54 @@ func TestCalcCellValue(t *testing.T) {
|
|||
"=EVEN(-0.3)": "-2",
|
||||
"=EVEN(-11)": "-12",
|
||||
"=EVEN(-4)": "-4",
|
||||
"=EVEN((0))": "0",
|
||||
// EXP
|
||||
"=EXP(100)": "2.6881171418161356E+43",
|
||||
"=EXP(0.1)": "1.105170918075648",
|
||||
"=EXP(0)": "1",
|
||||
"=EXP(-5)": "0.006737946999085",
|
||||
"=EXP(100)": "2.6881171418161356E+43",
|
||||
"=EXP(0.1)": "1.105170918075648",
|
||||
"=EXP(0)": "1",
|
||||
"=EXP(-5)": "0.006737946999085",
|
||||
"=EXP(EXP(0))": "2.718281828459045",
|
||||
// FACT
|
||||
"=FACT(3)": "6",
|
||||
"=FACT(6)": "720",
|
||||
"=FACT(10)": "3.6288E+06",
|
||||
"=FACT(3)": "6",
|
||||
"=FACT(6)": "720",
|
||||
"=FACT(10)": "3.6288E+06",
|
||||
"=FACT(FACT(3))": "720",
|
||||
// FACTDOUBLE
|
||||
"=FACTDOUBLE(5)": "15",
|
||||
"=FACTDOUBLE(8)": "384",
|
||||
"=FACTDOUBLE(13)": "135135",
|
||||
"=FACTDOUBLE(5)": "15",
|
||||
"=FACTDOUBLE(8)": "384",
|
||||
"=FACTDOUBLE(13)": "135135",
|
||||
"=FACTDOUBLE(FACTDOUBLE(1))": "1",
|
||||
// FLOOR
|
||||
"=FLOOR(26.75,0.1)": "26.700000000000003",
|
||||
"=FLOOR(26.75,0.5)": "26.5",
|
||||
"=FLOOR(26.75,1)": "26",
|
||||
"=FLOOR(26.75,10)": "20",
|
||||
"=FLOOR(26.75,20)": "20",
|
||||
"=FLOOR(-26.75,-0.1)": "-26.700000000000003",
|
||||
"=FLOOR(-26.75,-1)": "-26",
|
||||
"=FLOOR(-26.75,-5)": "-25",
|
||||
"=FLOOR(26.75,0.1)": "26.700000000000003",
|
||||
"=FLOOR(26.75,0.5)": "26.5",
|
||||
"=FLOOR(26.75,1)": "26",
|
||||
"=FLOOR(26.75,10)": "20",
|
||||
"=FLOOR(26.75,20)": "20",
|
||||
"=FLOOR(-26.75,-0.1)": "-26.700000000000003",
|
||||
"=FLOOR(-26.75,-1)": "-26",
|
||||
"=FLOOR(-26.75,-5)": "-25",
|
||||
"=FLOOR(FLOOR(26.75,1),1)": "26",
|
||||
// _xlfn.FLOOR.MATH
|
||||
"=_xlfn.FLOOR.MATH(58.55)": "58",
|
||||
"=_xlfn.FLOOR.MATH(58.55,0.1)": "58.5",
|
||||
"=_xlfn.FLOOR.MATH(58.55,5)": "55",
|
||||
"=_xlfn.FLOOR.MATH(58.55,1,1)": "58",
|
||||
"=_xlfn.FLOOR.MATH(-58.55,1)": "-59",
|
||||
"=_xlfn.FLOOR.MATH(-58.55,1,-1)": "-58",
|
||||
"=_xlfn.FLOOR.MATH(-58.55,1,1)": "-59", // should be -58
|
||||
"=_xlfn.FLOOR.MATH(-58.55,10)": "-60",
|
||||
"=_xlfn.FLOOR.MATH(58.55)": "58",
|
||||
"=_xlfn.FLOOR.MATH(58.55,0.1)": "58.5",
|
||||
"=_xlfn.FLOOR.MATH(58.55,5)": "55",
|
||||
"=_xlfn.FLOOR.MATH(58.55,1,1)": "58",
|
||||
"=_xlfn.FLOOR.MATH(-58.55,1)": "-59",
|
||||
"=_xlfn.FLOOR.MATH(-58.55,1,-1)": "-58",
|
||||
"=_xlfn.FLOOR.MATH(-58.55,1,1)": "-59", // should be -58
|
||||
"=_xlfn.FLOOR.MATH(-58.55,10)": "-60",
|
||||
"=_xlfn.FLOOR.MATH(_xlfn.FLOOR.MATH(1),10)": "0",
|
||||
// _xlfn.FLOOR.PRECISE
|
||||
"=_xlfn.FLOOR.PRECISE(26.75,0.1)": "26.700000000000003",
|
||||
"=_xlfn.FLOOR.PRECISE(26.75,0.5)": "26.5",
|
||||
"=_xlfn.FLOOR.PRECISE(26.75,1)": "26",
|
||||
"=_xlfn.FLOOR.PRECISE(26.75)": "26",
|
||||
"=_xlfn.FLOOR.PRECISE(26.75,10)": "20",
|
||||
"=_xlfn.FLOOR.PRECISE(26.75,0)": "0",
|
||||
"=_xlfn.FLOOR.PRECISE(-26.75,1)": "-27",
|
||||
"=_xlfn.FLOOR.PRECISE(-26.75,-1)": "-27",
|
||||
"=_xlfn.FLOOR.PRECISE(-26.75,-5)": "-30",
|
||||
"=_xlfn.FLOOR.PRECISE(26.75,0.1)": "26.700000000000003",
|
||||
"=_xlfn.FLOOR.PRECISE(26.75,0.5)": "26.5",
|
||||
"=_xlfn.FLOOR.PRECISE(26.75,1)": "26",
|
||||
"=_xlfn.FLOOR.PRECISE(26.75)": "26",
|
||||
"=_xlfn.FLOOR.PRECISE(26.75,10)": "20",
|
||||
"=_xlfn.FLOOR.PRECISE(26.75,0)": "0",
|
||||
"=_xlfn.FLOOR.PRECISE(-26.75,1)": "-27",
|
||||
"=_xlfn.FLOOR.PRECISE(-26.75,-1)": "-27",
|
||||
"=_xlfn.FLOOR.PRECISE(-26.75,-5)": "-30",
|
||||
"=_xlfn.FLOOR.PRECISE(_xlfn.FLOOR.PRECISE(26.75),-5)": "25",
|
||||
// GCD
|
||||
"=GCD(0)": "0",
|
||||
`=GCD("",1)`: "1",
|
||||
|
@ -242,61 +251,71 @@ func TestCalcCellValue(t *testing.T) {
|
|||
"=GCD(15,10,25)": "5",
|
||||
"=GCD(0,8,12)": "4",
|
||||
"=GCD(7,2)": "1",
|
||||
"=GCD(1,GCD(1))": "1",
|
||||
// INT
|
||||
"=INT(100.9)": "100",
|
||||
"=INT(5.22)": "5",
|
||||
"=INT(5.99)": "5",
|
||||
"=INT(-6.1)": "-7",
|
||||
"=INT(-100.9)": "-101",
|
||||
"=INT(INT(0))": "0",
|
||||
// ISO.CEILING
|
||||
"=ISO.CEILING(22.25)": "23",
|
||||
"=ISO.CEILING(22.25,1)": "23",
|
||||
"=ISO.CEILING(22.25,0.1)": "22.3",
|
||||
"=ISO.CEILING(22.25,10)": "30",
|
||||
"=ISO.CEILING(-22.25,1)": "-22",
|
||||
"=ISO.CEILING(-22.25,0.1)": "-22.200000000000003",
|
||||
"=ISO.CEILING(-22.25,5)": "-20",
|
||||
"=ISO.CEILING(-22.25,0)": "0",
|
||||
"=ISO.CEILING(22.25)": "23",
|
||||
"=ISO.CEILING(22.25,1)": "23",
|
||||
"=ISO.CEILING(22.25,0.1)": "22.3",
|
||||
"=ISO.CEILING(22.25,10)": "30",
|
||||
"=ISO.CEILING(-22.25,1)": "-22",
|
||||
"=ISO.CEILING(-22.25,0.1)": "-22.200000000000003",
|
||||
"=ISO.CEILING(-22.25,5)": "-20",
|
||||
"=ISO.CEILING(-22.25,0)": "0",
|
||||
"=ISO.CEILING(1,ISO.CEILING(1,0))": "0",
|
||||
// LCM
|
||||
"=LCM(1,5)": "5",
|
||||
"=LCM(15,10,25)": "150",
|
||||
"=LCM(1,8,12)": "24",
|
||||
"=LCM(7,2)": "14",
|
||||
"=LCM(7)": "7",
|
||||
`=LCM("",1)`: "1",
|
||||
`=LCM(0,0)`: "0",
|
||||
"=LCM(1,5)": "5",
|
||||
"=LCM(15,10,25)": "150",
|
||||
"=LCM(1,8,12)": "24",
|
||||
"=LCM(7,2)": "14",
|
||||
"=LCM(7)": "7",
|
||||
`=LCM("",1)`: "1",
|
||||
`=LCM(0,0)`: "0",
|
||||
`=LCM(0,LCM(0,0))`: "0",
|
||||
// LN
|
||||
"=LN(1)": "0",
|
||||
"=LN(100)": "4.605170185988092",
|
||||
"=LN(0.5)": "-0.693147180559945",
|
||||
"=LN(1)": "0",
|
||||
"=LN(100)": "4.605170185988092",
|
||||
"=LN(0.5)": "-0.693147180559945",
|
||||
"=LN(LN(100))": "1.527179625807901",
|
||||
// LOG
|
||||
"=LOG(64,2)": "6",
|
||||
"=LOG(100)": "2",
|
||||
"=LOG(4,0.5)": "-2",
|
||||
"=LOG(500)": "2.698970004336019",
|
||||
"=LOG(64,2)": "6",
|
||||
"=LOG(100)": "2",
|
||||
"=LOG(4,0.5)": "-2",
|
||||
"=LOG(500)": "2.698970004336019",
|
||||
"=LOG(LOG(100))": "0.301029995663981",
|
||||
// LOG10
|
||||
"=LOG10(100)": "2",
|
||||
"=LOG10(1000)": "3",
|
||||
"=LOG10(0.001)": "-3",
|
||||
"=LOG10(25)": "1.397940008672038",
|
||||
"=LOG10(100)": "2",
|
||||
"=LOG10(1000)": "3",
|
||||
"=LOG10(0.001)": "-3",
|
||||
"=LOG10(25)": "1.397940008672038",
|
||||
"=LOG10(LOG10(100))": "0.301029995663981",
|
||||
// MOD
|
||||
"=MOD(6,4)": "2",
|
||||
"=MOD(6,3)": "0",
|
||||
"=MOD(6,2.5)": "1",
|
||||
"=MOD(6,1.333)": "0.668",
|
||||
"=MOD(-10.23,1)": "0.77",
|
||||
"=MOD(6,4)": "2",
|
||||
"=MOD(6,3)": "0",
|
||||
"=MOD(6,2.5)": "1",
|
||||
"=MOD(6,1.333)": "0.668",
|
||||
"=MOD(-10.23,1)": "0.77",
|
||||
"=MOD(MOD(1,1),1)": "0",
|
||||
// MROUND
|
||||
"=MROUND(333.7,0.5)": "333.5",
|
||||
"=MROUND(333.8,1)": "334",
|
||||
"=MROUND(333.3,2)": "334",
|
||||
"=MROUND(555.3,400)": "400",
|
||||
"=MROUND(555,1000)": "1000",
|
||||
"=MROUND(-555.7,-1)": "-556",
|
||||
"=MROUND(-555.4,-1)": "-555",
|
||||
"=MROUND(-1555,-1000)": "-2000",
|
||||
"=MROUND(333.7,0.5)": "333.5",
|
||||
"=MROUND(333.8,1)": "334",
|
||||
"=MROUND(333.3,2)": "334",
|
||||
"=MROUND(555.3,400)": "400",
|
||||
"=MROUND(555,1000)": "1000",
|
||||
"=MROUND(-555.7,-1)": "-556",
|
||||
"=MROUND(-555.4,-1)": "-555",
|
||||
"=MROUND(-1555,-1000)": "-2000",
|
||||
"=MROUND(MROUND(1,1),1)": "1",
|
||||
// MULTINOMIAL
|
||||
"=MULTINOMIAL(3,1,2,5)": "27720",
|
||||
`=MULTINOMIAL("",3,1,2,5)`: "27720",
|
||||
"=MULTINOMIAL(3,1,2,5)": "27720",
|
||||
`=MULTINOMIAL("",3,1,2,5)`: "27720",
|
||||
"=MULTINOMIAL(MULTINOMIAL(1))": "1",
|
||||
// _xlfn.MUNIT
|
||||
"=_xlfn.MUNIT(4)": "",
|
||||
// ODD
|
||||
|
@ -307,81 +326,96 @@ func TestCalcCellValue(t *testing.T) {
|
|||
"=ODD(-1.3)": "-3",
|
||||
"=ODD(-10)": "-11",
|
||||
"=ODD(-3)": "-3",
|
||||
"=ODD(ODD(1))": "1",
|
||||
// PI
|
||||
"=PI()": "3.141592653589793",
|
||||
// POWER
|
||||
"=POWER(4,2)": "16",
|
||||
"=POWER(4,2)": "16",
|
||||
"=POWER(4,POWER(1,1))": "4",
|
||||
// PRODUCT
|
||||
"=PRODUCT(3,6)": "18",
|
||||
`=PRODUCT("",3,6)`: "18",
|
||||
"=PRODUCT(3,6)": "18",
|
||||
`=PRODUCT("",3,6)`: "18",
|
||||
`=PRODUCT(PRODUCT(1),3,6)`: "18",
|
||||
// QUOTIENT
|
||||
"=QUOTIENT(5,2)": "2",
|
||||
"=QUOTIENT(4.5,3.1)": "1",
|
||||
"=QUOTIENT(-10,3)": "-3",
|
||||
"=QUOTIENT(5,2)": "2",
|
||||
"=QUOTIENT(4.5,3.1)": "1",
|
||||
"=QUOTIENT(-10,3)": "-3",
|
||||
"=QUOTIENT(QUOTIENT(1,2),3)": "0",
|
||||
// RADIANS
|
||||
"=RADIANS(50)": "0.872664625997165",
|
||||
"=RADIANS(-180)": "-3.141592653589793",
|
||||
"=RADIANS(180)": "3.141592653589793",
|
||||
"=RADIANS(360)": "6.283185307179586",
|
||||
"=RADIANS(50)": "0.872664625997165",
|
||||
"=RADIANS(-180)": "-3.141592653589793",
|
||||
"=RADIANS(180)": "3.141592653589793",
|
||||
"=RADIANS(360)": "6.283185307179586",
|
||||
"=RADIANS(RADIANS(360))": "0.109662271123215",
|
||||
// ROMAN
|
||||
"=ROMAN(499,0)": "CDXCIX",
|
||||
"=ROMAN(1999,0)": "MCMXCIX",
|
||||
"=ROMAN(1999,1)": "MLMVLIV",
|
||||
"=ROMAN(1999,2)": "MXMIX",
|
||||
"=ROMAN(1999,3)": "MVMIV",
|
||||
"=ROMAN(1999,4)": "MIM",
|
||||
"=ROMAN(1999,-1)": "MCMXCIX",
|
||||
"=ROMAN(1999,5)": "MIM",
|
||||
"=ROMAN(499,0)": "CDXCIX",
|
||||
"=ROMAN(1999,0)": "MCMXCIX",
|
||||
"=ROMAN(1999,1)": "MLMVLIV",
|
||||
"=ROMAN(1999,2)": "MXMIX",
|
||||
"=ROMAN(1999,3)": "MVMIV",
|
||||
"=ROMAN(1999,4)": "MIM",
|
||||
"=ROMAN(1999,-1)": "MCMXCIX",
|
||||
"=ROMAN(1999,5)": "MIM",
|
||||
"=ROMAN(1999,ODD(1))": "MLMVLIV",
|
||||
// ROUND
|
||||
"=ROUND(100.319,1)": "100.30000000000001",
|
||||
"=ROUND(5.28,1)": "5.300000000000001",
|
||||
"=ROUND(5.9999,3)": "6.000000000000002",
|
||||
"=ROUND(99.5,0)": "100",
|
||||
"=ROUND(-6.3,0)": "-6",
|
||||
"=ROUND(-100.5,0)": "-101",
|
||||
"=ROUND(-22.45,1)": "-22.5",
|
||||
"=ROUND(999,-1)": "1000",
|
||||
"=ROUND(991,-1)": "990",
|
||||
"=ROUND(100.319,1)": "100.30000000000001",
|
||||
"=ROUND(5.28,1)": "5.300000000000001",
|
||||
"=ROUND(5.9999,3)": "6.000000000000002",
|
||||
"=ROUND(99.5,0)": "100",
|
||||
"=ROUND(-6.3,0)": "-6",
|
||||
"=ROUND(-100.5,0)": "-101",
|
||||
"=ROUND(-22.45,1)": "-22.5",
|
||||
"=ROUND(999,-1)": "1000",
|
||||
"=ROUND(991,-1)": "990",
|
||||
"=ROUND(ROUND(100,1),-1)": "100",
|
||||
// ROUNDDOWN
|
||||
"=ROUNDDOWN(99.999,1)": "99.9",
|
||||
"=ROUNDDOWN(99.999,2)": "99.99000000000002",
|
||||
"=ROUNDDOWN(99.999,0)": "99",
|
||||
"=ROUNDDOWN(99.999,-1)": "90",
|
||||
"=ROUNDDOWN(-99.999,2)": "-99.99000000000002",
|
||||
"=ROUNDDOWN(-99.999,-1)": "-90",
|
||||
"=ROUNDDOWN(99.999,1)": "99.9",
|
||||
"=ROUNDDOWN(99.999,2)": "99.99000000000002",
|
||||
"=ROUNDDOWN(99.999,0)": "99",
|
||||
"=ROUNDDOWN(99.999,-1)": "90",
|
||||
"=ROUNDDOWN(-99.999,2)": "-99.99000000000002",
|
||||
"=ROUNDDOWN(-99.999,-1)": "-90",
|
||||
"=ROUNDDOWN(ROUNDDOWN(100,1),-1)": "100",
|
||||
// ROUNDUP`
|
||||
"=ROUNDUP(11.111,1)": "11.200000000000001",
|
||||
"=ROUNDUP(11.111,2)": "11.120000000000003",
|
||||
"=ROUNDUP(11.111,0)": "12",
|
||||
"=ROUNDUP(11.111,-1)": "20",
|
||||
"=ROUNDUP(-11.111,2)": "-11.120000000000003",
|
||||
"=ROUNDUP(-11.111,-1)": "-20",
|
||||
"=ROUNDUP(11.111,1)": "11.200000000000001",
|
||||
"=ROUNDUP(11.111,2)": "11.120000000000003",
|
||||
"=ROUNDUP(11.111,0)": "12",
|
||||
"=ROUNDUP(11.111,-1)": "20",
|
||||
"=ROUNDUP(-11.111,2)": "-11.120000000000003",
|
||||
"=ROUNDUP(-11.111,-1)": "-20",
|
||||
"=ROUNDUP(ROUNDUP(100,1),-1)": "100",
|
||||
// SEC
|
||||
"=_xlfn.SEC(-3.14159265358979)": "-1",
|
||||
"=_xlfn.SEC(0)": "1",
|
||||
"=_xlfn.SEC(_xlfn.SEC(0))": "0.54030230586814",
|
||||
// SECH
|
||||
"=_xlfn.SECH(-3.14159265358979)": "0.086266738334055",
|
||||
"=_xlfn.SECH(0)": "1",
|
||||
"=_xlfn.SECH(_xlfn.SECH(0))": "0.648054273663886",
|
||||
// SIGN
|
||||
"=SIGN(9.5)": "1",
|
||||
"=SIGN(-9.5)": "-1",
|
||||
"=SIGN(0)": "0",
|
||||
"=SIGN(0.00000001)": "1",
|
||||
"=SIGN(6-7)": "-1",
|
||||
"=SIGN(SIGN(-1))": "-1",
|
||||
// SIN
|
||||
"=SIN(0.785398163)": "0.707106780905509",
|
||||
"=SIN(SIN(1))": "0.745624141665558",
|
||||
// SINH
|
||||
"=SINH(0)": "0",
|
||||
"=SINH(0.5)": "0.521095305493747",
|
||||
"=SINH(-2)": "-3.626860407847019",
|
||||
"=SINH(0)": "0",
|
||||
"=SINH(0.5)": "0.521095305493747",
|
||||
"=SINH(-2)": "-3.626860407847019",
|
||||
"=SINH(SINH(0))": "0",
|
||||
// SQRT
|
||||
"=SQRT(4)": "2",
|
||||
`=SQRT("")`: "0",
|
||||
"=SQRT(4)": "2",
|
||||
"=SQRT(SQRT(16))": "2",
|
||||
// SQRTPI
|
||||
"=SQRTPI(5)": "3.963327297606011",
|
||||
"=SQRTPI(0.2)": "0.792665459521202",
|
||||
"=SQRTPI(100)": "17.72453850905516",
|
||||
"=SQRTPI(0)": "0",
|
||||
"=SQRTPI(5)": "3.963327297606011",
|
||||
"=SQRTPI(0.2)": "0.792665459521202",
|
||||
"=SQRTPI(100)": "17.72453850905516",
|
||||
"=SQRTPI(0)": "0",
|
||||
"=SQRTPI(SQRTPI(0))": "0",
|
||||
// SUM
|
||||
"=SUM(1,2)": "3",
|
||||
`=SUM("",1,2)`: "3",
|
||||
|
@ -415,27 +449,33 @@ func TestCalcCellValue(t *testing.T) {
|
|||
"=SUMSQ(A1:A4)": "14",
|
||||
"=SUMSQ(A1,B1,A2,B2,6)": "82",
|
||||
`=SUMSQ("",A1,B1,A2,B2,6)`: "82",
|
||||
`=SUMSQ(1,SUMSQ(1))`: "2",
|
||||
// TAN
|
||||
"=TAN(1.047197551)": "1.732050806782486",
|
||||
"=TAN(0)": "0",
|
||||
"=TAN(TAN(0))": "0",
|
||||
// TANH
|
||||
"=TANH(0)": "0",
|
||||
"=TANH(0.5)": "0.46211715726001",
|
||||
"=TANH(-2)": "-0.964027580075817",
|
||||
"=TANH(0)": "0",
|
||||
"=TANH(0.5)": "0.46211715726001",
|
||||
"=TANH(-2)": "-0.964027580075817",
|
||||
"=TANH(TANH(0))": "0",
|
||||
// TRUNC
|
||||
"=TRUNC(99.999,1)": "99.9",
|
||||
"=TRUNC(99.999,2)": "99.99",
|
||||
"=TRUNC(99.999)": "99",
|
||||
"=TRUNC(99.999,-1)": "90",
|
||||
"=TRUNC(-99.999,2)": "-99.99",
|
||||
"=TRUNC(-99.999,-1)": "-90",
|
||||
"=TRUNC(99.999,1)": "99.9",
|
||||
"=TRUNC(99.999,2)": "99.99",
|
||||
"=TRUNC(99.999)": "99",
|
||||
"=TRUNC(99.999,-1)": "90",
|
||||
"=TRUNC(-99.999,2)": "-99.99",
|
||||
"=TRUNC(-99.999,-1)": "-90",
|
||||
"=TRUNC(TRUNC(1),-1)": "0",
|
||||
// Statistical Functions
|
||||
// COUNTA
|
||||
`=COUNTA()`: "0",
|
||||
`=COUNTA(A1:A5,B2:B5,"text",1,2)`: "8",
|
||||
`=COUNTA(COUNTA(1))`: "1",
|
||||
// MEDIAN
|
||||
"=MEDIAN(A1:A5,12)": "2",
|
||||
"=MEDIAN(A1:A5)": "1.5",
|
||||
"=MEDIAN(A1:A5,12)": "2",
|
||||
"=MEDIAN(A1:A5)": "1.5",
|
||||
"=MEDIAN(A1:A5,MEDIAN(A1:A5,12))": "2",
|
||||
// Information Functions
|
||||
// ISBLANK
|
||||
"=ISBLANK(A1)": "FALSE",
|
||||
|
@ -706,8 +746,8 @@ func TestCalcCellValue(t *testing.T) {
|
|||
// MULTINOMIAL
|
||||
`=MULTINOMIAL("X")`: "strconv.ParseFloat: parsing \"X\": invalid syntax",
|
||||
// _xlfn.MUNIT
|
||||
"=_xlfn.MUNIT()": "MUNIT requires 1 numeric argument", // not support currently
|
||||
`=_xlfn.MUNIT("X")`: "strconv.Atoi: parsing \"X\": invalid syntax", // not support currently
|
||||
"=_xlfn.MUNIT()": "MUNIT requires 1 numeric argument", // not support currently
|
||||
`=_xlfn.MUNIT("X")`: "strconv.ParseFloat: parsing \"X\": invalid syntax", // not support currently
|
||||
// ODD
|
||||
"=ODD()": "ODD requires 1 numeric argument",
|
||||
`=ODD("X")`: "strconv.ParseFloat: parsing \"X\": invalid syntax",
|
||||
|
@ -732,8 +772,8 @@ func TestCalcCellValue(t *testing.T) {
|
|||
// RAND
|
||||
"=RAND(1)": "RAND accepts no arguments",
|
||||
// RANDBETWEEN
|
||||
`=RANDBETWEEN("X",1)`: "strconv.ParseInt: parsing \"X\": invalid syntax",
|
||||
`=RANDBETWEEN(1,"X")`: "strconv.ParseInt: parsing \"X\": invalid syntax",
|
||||
`=RANDBETWEEN("X",1)`: "strconv.ParseFloat: parsing \"X\": invalid syntax",
|
||||
`=RANDBETWEEN(1,"X")`: "strconv.ParseFloat: parsing \"X\": invalid syntax",
|
||||
"=RANDBETWEEN()": "RANDBETWEEN requires 2 numeric arguments",
|
||||
"=RANDBETWEEN(2,1)": "#NUM!",
|
||||
// ROMAN
|
||||
|
@ -770,6 +810,7 @@ func TestCalcCellValue(t *testing.T) {
|
|||
`=SINH("X")`: "strconv.ParseFloat: parsing \"X\": invalid syntax",
|
||||
// SQRT
|
||||
"=SQRT()": "SQRT requires 1 numeric argument",
|
||||
`=SQRT("")`: "strconv.ParseFloat: parsing \"\": invalid syntax",
|
||||
`=SQRT("X")`: "strconv.ParseFloat: parsing \"X\": invalid syntax",
|
||||
"=SQRT(-1)": "#NUM!",
|
||||
// SQRTPI
|
||||
|
|
Loading…
Reference in New Issue