#65 fn: MOD, MROUND, MULTINOMIAL, MUNIT, ODD, PI, RADIANS, RAND, RANDBETWEEN, ROMAN

This commit is contained in:
xuri 2020-05-07 00:15:54 +08:00
parent 5f29af258d
commit de34ecaace
No known key found for this signature in database
GPG Key ID: BA5E5BB1C948EDF7
2 changed files with 382 additions and 32 deletions

338
calc.go
View File

@ -12,13 +12,16 @@
package excelize
import (
"bytes"
"container/list"
"errors"
"fmt"
"math"
"math/rand"
"reflect"
"strconv"
"strings"
"time"
"github.com/xuri/efp"
)
@ -1715,6 +1718,168 @@ func (fn *formulaFuncs) MDETERM(argsList *list.List) (result string, err error)
return
}
// MOD function returns the remainder of a division between two supplied
// numbers. The syntax of the function is:
//
// MOD(number,divisor)
//
func (fn *formulaFuncs) MOD(argsList *list.List) (result string, err error) {
if argsList.Len() != 2 {
err = errors.New("MOD requires 2 numeric arguments")
return
}
var number, divisor float64
if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).Value, 64); err != nil {
return
}
if divisor, err = strconv.ParseFloat(argsList.Back().Value.(formulaArg).Value, 64); err != nil {
return
}
if divisor == 0 {
err = errors.New(formulaErrorDIV)
return
}
trunc, rem := math.Modf(number / divisor)
if rem < 0 {
trunc--
}
result = fmt.Sprintf("%g", number-divisor*trunc)
return
}
// MROUND function rounds a supplied number up or down to the nearest multiple
// of a given number. The syntax of the function is:
//
// MOD(number,multiple)
//
func (fn *formulaFuncs) MROUND(argsList *list.List) (result string, err error) {
if argsList.Len() != 2 {
err = errors.New("MROUND requires 2 numeric arguments")
return
}
var number, multiple float64 = 0, 1
if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).Value, 64); err != nil {
return
}
if multiple, err = strconv.ParseFloat(argsList.Back().Value.(formulaArg).Value, 64); err != nil {
return
}
if multiple == 0 {
err = errors.New(formulaErrorNUM)
return
}
if multiple < 0 && number > 0 ||
multiple > 0 && number < 0 {
err = errors.New(formulaErrorNUM)
return
}
number, res := math.Modf(number / multiple)
if math.Trunc(res+0.5) > 0 {
number++
}
result = fmt.Sprintf("%g", number*multiple)
return
}
// MULTINOMIAL function calculates the ratio of the factorial of a sum of
// supplied values to the product of factorials of those values. The syntax of
// the function is:
//
// MULTINOMIAL(number1,[number2],...)
//
func (fn *formulaFuncs) MULTINOMIAL(argsList *list.List) (result string, err error) {
var val, num, denom float64 = 0, 0, 1
for arg := argsList.Front(); arg != nil; arg = arg.Next() {
token := arg.Value.(formulaArg)
if token.Value == "" {
continue
}
if val, err = strconv.ParseFloat(token.Value, 64); err != nil {
return
}
num += val
denom *= fact(val)
}
result = fmt.Sprintf("%g", fact(num)/denom)
return
}
// MUNIT function returns the unit matrix for a specified dimension. The
// syntax of the function is:
//
// MUNIT(dimension)
//
func (fn *formulaFuncs) MUNIT(argsList *list.List) (result string, err error) {
if argsList.Len() != 1 {
err = errors.New("MUNIT requires 1 numeric argument")
return
}
var dimension int
if dimension, err = strconv.Atoi(argsList.Front().Value.(formulaArg).Value); err != nil {
return
}
matrix := make([][]float64, 0, dimension)
for i := 0; i < dimension; i++ {
row := make([]float64, dimension)
for j := 0; j < dimension; j++ {
if i == j {
row[j] = float64(1.0)
} else {
row[j] = float64(0.0)
}
}
matrix = append(matrix, row)
}
return
}
// ODD function ounds a supplied number away from zero (i.e. rounds a positive
// number up and a negative number down), to the next odd number. The syntax
// of the function is:
//
// ODD(number)
//
func (fn *formulaFuncs) ODD(argsList *list.List) (result string, err error) {
if argsList.Len() != 1 {
err = errors.New("ODD requires 1 numeric argument")
return
}
var number float64
if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).Value, 64); err != nil {
return
}
if number == 0 {
result = "1"
return
}
sign := math.Signbit(number)
m, frac := math.Modf((number - 1) / 2)
val := m*2 + 1
if frac != 0 {
if !sign {
val += 2
} else {
val -= 2
}
}
result = fmt.Sprintf("%g", val)
return
}
// PI function returns the value of the mathematical constant π (pi), accurate
// to 15 digits (14 decimal places). The syntax of the function is:
//
// PI()
//
func (fn *formulaFuncs) PI(argsList *list.List) (result string, err error) {
if argsList.Len() != 0 {
err = errors.New("PI accepts no arguments")
return
}
result = fmt.Sprintf("%g", math.Pi)
return
}
// POWER function calculates a given number, raised to a supplied power.
// The syntax of the function is:
//
@ -1765,6 +1930,154 @@ func (fn *formulaFuncs) PRODUCT(argsList *list.List) (result string, err error)
return
}
// QUOTIENT function returns the integer portion of a division between two
// supplied numbers. The syntax of the function is:
//
// QUOTIENT(numerator,denominator)
//
func (fn *formulaFuncs) QUOTIENT(argsList *list.List) (result string, err error) {
if argsList.Len() != 2 {
err = errors.New("QUOTIENT requires 2 numeric arguments")
return
}
var x, y float64
if x, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).Value, 64); err != nil {
return
}
if y, err = strconv.ParseFloat(argsList.Back().Value.(formulaArg).Value, 64); err != nil {
return
}
if y == 0 {
err = errors.New(formulaErrorDIV)
return
}
result = fmt.Sprintf("%g", math.Trunc(x/y))
return
}
// RADIANS function converts radians into degrees. The syntax of the function is:
//
// RADIANS(angle)
//
func (fn *formulaFuncs) RADIANS(argsList *list.List) (result string, err error) {
if argsList.Len() != 1 {
err = errors.New("RADIANS requires 1 numeric argument")
return
}
var angle float64
if angle, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).Value, 64); err != nil {
return
}
result = fmt.Sprintf("%g", math.Pi/180.0*angle)
return
}
// RAND function generates a random real number between 0 and 1. The syntax of
// the function is:
//
// RAND()
//
func (fn *formulaFuncs) RAND(argsList *list.List) (result string, err error) {
if argsList.Len() != 0 {
err = errors.New("RAND accepts no arguments")
return
}
result = fmt.Sprintf("%g", rand.New(rand.NewSource(time.Now().UnixNano())).Float64())
return
}
// RANDBETWEEN function generates a random integer between two supplied
// integers. The syntax of the function is:
//
// RANDBETWEEN(bottom,top)
//
func (fn *formulaFuncs) RANDBETWEEN(argsList *list.List) (result string, err error) {
if argsList.Len() != 2 {
err = errors.New("RANDBETWEEN requires 2 numeric arguments")
return
}
var bottom, top int64
if bottom, err = strconv.ParseInt(argsList.Front().Value.(formulaArg).Value, 10, 64); err != nil {
return
}
if top, err = strconv.ParseInt(argsList.Back().Value.(formulaArg).Value, 10, 64); err != nil {
return
}
if top < bottom {
err = errors.New(formulaErrorNUM)
return
}
result = fmt.Sprintf("%g", float64(rand.New(rand.NewSource(time.Now().UnixNano())).Int63n(top-bottom+1)+bottom))
return
}
// romanNumerals defined a numeral system that originated in ancient Rome and
// remained the usual way of writing numbers throughout Europe well into the
// Late Middle Ages.
type romanNumerals struct {
n float64
s string
}
var romanTable = [][]romanNumerals{{{1000, "M"}, {900, "CM"}, {500, "D"}, {400, "CD"}, {100, "C"}, {90, "XC"}, {50, "L"}, {40, "XL"}, {10, "X"}, {9, "IX"}, {5, "V"}, {4, "IV"}, {1, "I"}},
{{1000, "M"}, {950, "LM"}, {900, "CM"}, {500, "D"}, {450, "LD"}, {400, "CD"}, {100, "C"}, {95, "VC"}, {90, "XC"}, {50, "L"}, {45, "VL"}, {40, "XL"}, {10, "X"}, {9, "IX"}, {5, "V"}, {4, "IV"}, {1, "I"}},
{{1000, "M"}, {990, "XM"}, {950, "LM"}, {900, "CM"}, {500, "D"}, {490, "XD"}, {450, "LD"}, {400, "CD"}, {100, "C"}, {99, "IC"}, {90, "XC"}, {50, "L"}, {45, "VL"}, {40, "XL"}, {10, "X"}, {9, "IX"}, {5, "V"}, {4, "IV"}, {1, "I"}},
{{1000, "M"}, {995, "VM"}, {990, "XM"}, {950, "LM"}, {900, "CM"}, {500, "D"}, {495, "VD"}, {490, "XD"}, {450, "LD"}, {400, "CD"}, {100, "C"}, {99, "IC"}, {90, "XC"}, {50, "L"}, {45, "VL"}, {40, "XL"}, {10, "X"}, {9, "IX"}, {5, "V"}, {4, "IV"}, {1, "I"}},
{{1000, "M"}, {999, "IM"}, {995, "VM"}, {990, "XM"}, {950, "LM"}, {900, "CM"}, {500, "D"}, {499, "ID"}, {495, "VD"}, {490, "XD"}, {450, "LD"}, {400, "CD"}, {100, "C"}, {99, "IC"}, {90, "XC"}, {50, "L"}, {45, "VL"}, {40, "XL"}, {10, "X"}, {9, "IX"}, {5, "V"}, {4, "IV"}, {1, "I"}}}
// ROMAN function converts an arabic number to Roman. I.e. for a supplied
// integer, the function returns a text string depicting the roman numeral
// form of the number. The syntax of the function is:
//
// ROMAN(number,[form])
//
func (fn *formulaFuncs) ROMAN(argsList *list.List) (result string, err error) {
if argsList.Len() == 0 {
err = errors.New("ROMAN requires at least 1 argument")
return
}
if argsList.Len() > 2 {
err = errors.New("ROMAN allows at most 2 arguments")
return
}
var number float64
var form int
if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).Value, 64); err != nil {
return
}
if argsList.Len() > 1 {
if form, err = strconv.Atoi(argsList.Back().Value.(formulaArg).Value); err != nil {
return
}
if form < 0 {
form = 0
} else if form > 4 {
form = 4
}
}
decimalTable := romanTable[0]
switch form {
case 1:
decimalTable = romanTable[1]
case 2:
decimalTable = romanTable[2]
case 3:
decimalTable = romanTable[3]
case 4:
decimalTable = romanTable[4]
}
val := math.Trunc(number)
buf := bytes.Buffer{}
for _, r := range decimalTable {
for val >= r.n {
buf.WriteString(r.s)
val -= r.n
}
}
result = buf.String()
return
}
// SIGN function returns the arithmetic sign (+1, -1 or 0) of a supplied
// number. I.e. if the number is positive, the Sign function returns +1, if
// the number is negative, the function returns -1 and if the number is 0
@ -1840,28 +2153,3 @@ func (fn *formulaFuncs) SUM(argsList *list.List) (result string, err error) {
result = fmt.Sprintf("%g", sum)
return
}
// QUOTIENT function returns the integer portion of a division between two
// supplied numbers. The syntax of the function is:
//
// QUOTIENT(numerator,denominator)
//
func (fn *formulaFuncs) QUOTIENT(argsList *list.List) (result string, err error) {
if argsList.Len() != 2 {
err = errors.New("QUOTIENT requires 2 numeric arguments")
return
}
var x, y float64
if x, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).Value, 64); err != nil {
return
}
if y, err = strconv.ParseFloat(argsList.Back().Value.(formulaArg).Value, 64); err != nil {
return
}
if y == 0 {
err = errors.New(formulaErrorDIV)
return
}
result = fmt.Sprintf("%g", math.Trunc(x/y))
return
}

View File

@ -218,10 +218,54 @@ func TestCalcCellValue(t *testing.T) {
"=LOG10(1000)": "3",
"=LOG10(0.001)": "-3",
"=LOG10(25)": "1.3979400086720375",
// MOD
"=MOD(6,4)": "2",
"=MOD(6,3)": "0",
"=MOD(6,2.5)": "1",
"=MOD(6,1.333)": "0.6680000000000001",
// MROUND
"=MROUND(333.7,0.5)": "333.5",
"=MROUND(333.8,1)": "334",
"=MROUND(333.3,2)": "334",
"=MROUND(555.3,400)": "400",
"=MROUND(555,1000)": "1000",
"=MROUND(-555.7,-1)": "-556",
"=MROUND(-555.4,-1)": "-555",
"=MROUND(-1555,-1000)": "-2000",
// MULTINOMIAL
"=MULTINOMIAL(3,1,2,5)": "27720",
// _xlfn.MUNIT
"=_xlfn.MUNIT(4)": "", // not support currently
// ODD
"=ODD(22)": "23",
"=ODD(1.22)": "3",
"=ODD(1.22+4)": "7",
"=ODD(0)": "1",
"=ODD(-1.3)": "-3",
"=ODD(-10)": "-11",
"=ODD(-3)": "-3",
// PI
"=PI()": "3.141592653589793",
// POWER
"=POWER(4,2)": "16",
// PRODUCT
"=PRODUCT(3,6)": "18",
// QUOTIENT
"=QUOTIENT(5,2)": "2",
"=QUOTIENT(4.5,3.1)": "1",
"=QUOTIENT(-10,3)": "-3",
// RADIANS
"=RADIANS(50)": "0.8726646259971648",
"=RADIANS(-180)": "-3.141592653589793",
"=RADIANS(180)": "3.141592653589793",
"=RADIANS(360)": "6.283185307179586",
// ROMAN
"=ROMAN(499,0)": "CDXCIX",
"=ROMAN(1999,0)": "MCMXCIX",
"=ROMAN(1999,1)": "MLMVLIV",
"=ROMAN(1999,2)": "MXMIX",
"=ROMAN(1999,3)": "MVMIV",
"=ROMAN(1999,4)": "MIM",
// SIGN
"=SIGN(9.5)": "1",
"=SIGN(-9.5)": "-1",
@ -244,10 +288,6 @@ func TestCalcCellValue(t *testing.T) {
"=((3+5*2)+3)/5+(-6)/4*2+3": "3.2",
"=1+SUM(SUM(1,2*3),4)*-4/2+5+(4+2)*3": "2",
"=1+SUM(SUM(1,2*3),4)*4/3+5+(4+2)*3": "38.666666666666664",
// QUOTIENT
"=QUOTIENT(5, 2)": "2",
"=QUOTIENT(4.5, 3.1)": "1",
"=QUOTIENT(-10, 3)": "-3",
}
for formula, expected := range mathCalc {
f := prepareData()
@ -362,18 +402,40 @@ func TestCalcCellValue(t *testing.T) {
"=LOG(1,1)": "#DIV/0!",
// LOG10
"=LOG10()": "LOG10 requires 1 numeric argument",
// MOD
"=MOD()": "MOD requires 2 numeric arguments",
"=MOD(6,0)": "#DIV/0!",
// MROUND
"=MROUND()": "MROUND requires 2 numeric arguments",
"=MROUND(1,0)": "#NUM!",
// _xlfn.MUNIT
"=_xlfn.MUNIT()": "MUNIT requires 1 numeric argument", // not support currently
// ODD
"=ODD()": "ODD requires 1 numeric argument",
// PI
"=PI(1)": "PI accepts no arguments",
// POWER
"=POWER(0,0)": "#NUM!",
"=POWER(0,-1)": "#DIV/0!",
"=POWER(1)": "POWER requires 2 numeric arguments",
// QUOTIENT
"=QUOTIENT(1,0)": "#DIV/0!",
"=QUOTIENT(1)": "QUOTIENT requires 2 numeric arguments",
// RADIANS
"=RADIANS()": "RADIANS requires 1 numeric argument",
// RAND
"=RAND(1)": "RAND accepts no arguments",
// RANDBETWEEN
"=RANDBETWEEN()": "RANDBETWEEN requires 2 numeric arguments",
"=RANDBETWEEN(2,1)": "#NUM!",
// ROMAN
"=ROMAN()": "ROMAN requires at least 1 argument",
"=ROMAN(1,2,3)": "ROMAN allows at most 2 arguments",
// SIGN
"=SIGN()": "SIGN requires 1 numeric argument",
// SQRT
"=SQRT(-1)": "#NUM!",
"=SQRT(1,2)": "SQRT requires 1 numeric argument",
// QUOTIENT
"=QUOTIENT(1,0)": "#DIV/0!",
"=QUOTIENT(1)": "QUOTIENT requires 2 numeric arguments",
}
for formula, expected := range mathCalcError {
f := prepareData()