// Copyright 2016 - 2019 The excelize Authors. All rights reserved. Use of // this source code is governed by a BSD-style license that can be found in // the LICENSE file. // // Package excelize providing a set of functions that allow you to write to // and read from XLSX files. Support reads and writes XLSX file generated by // Microsoft Excelâ„¢ 2007 and later. Support save file without losing original // charts of XLSX. This library needs Go version 1.8 or later. package excelize import ( "archive/zip" "bytes" "fmt" "io" "log" "strconv" "strings" ) // ReadZipReader can be used to read an XLSX in memory without touching the // filesystem. func ReadZipReader(r *zip.Reader) (map[string][]byte, int, error) { fileList := make(map[string][]byte) worksheets := 0 for _, v := range r.File { fileList[v.Name] = readFile(v) if len(v.Name) > 18 { if v.Name[0:19] == "xl/worksheets/sheet" { worksheets++ } } } return fileList, worksheets, nil } // readXML provides a function to read XML content as string. func (f *File) readXML(name string) []byte { if content, ok := f.XLSX[name]; ok { return content } return []byte{} } // saveFileList provides a function to update given file content in file list // of XLSX. func (f *File) saveFileList(name string, content []byte) { newContent := make([]byte, 0, len(XMLHeader)+len(content)) newContent = append(newContent, []byte(XMLHeader)...) newContent = append(newContent, content...) f.XLSX[name] = newContent } // Read file content as string in a archive file. func readFile(file *zip.File) []byte { rc, err := file.Open() if err != nil { log.Fatal(err) } buff := bytes.NewBuffer(nil) _, _ = io.Copy(buff, rc) rc.Close() return buff.Bytes() } // SplitCellName splits cell name to column name and row number. // // Example: // // excelize.SplitCellName("AK74") // return "AK", 74, nil // func SplitCellName(cell string) (string, int, error) { alpha := func(r rune) bool { return ('A' <= r && r <= 'Z') || ('a' <= r && r <= 'z') } if strings.IndexFunc(cell, alpha) == 0 { i := strings.LastIndexFunc(cell, alpha) if i >= 0 && i < len(cell)-1 { col, rowstr := cell[:i+1], cell[i+1:] if row, err := strconv.Atoi(rowstr); err == nil && row > 0 { return col, row, nil } } } return "", -1, newInvalidCellNameError(cell) } // JoinCellName joins cell name from column name and row number func JoinCellName(col string, row int) (string, error) { normCol := strings.Map(func(rune rune) rune { switch { case 'A' <= rune && rune <= 'Z': return rune case 'a' <= rune && rune <= 'z': return rune - 32 } return -1 }, col) if len(col) == 0 || len(col) != len(normCol) { return "", newInvalidColumnNameError(col) } if row < 1 { return "", newInvalidRowNumberError(row) } return fmt.Sprintf("%s%d", normCol, row), nil } // ColumnNameToNumber provides a function to convert Excel sheet // column name to int. Column name case insencitive // Function returns error if column name incorrect. // // Example: // // excelize.ColumnNameToNumber("AK") // returns 37, nil // func ColumnNameToNumber(name string) (int, error) { if len(name) == 0 { return -1, newInvalidColumnNameError(name) } col := 0 multi := 1 for i := len(name) - 1; i >= 0; i-- { r := name[i] if r >= 'A' && r <= 'Z' { col += int(r-'A'+1) * multi } else if r >= 'a' && r <= 'z' { col += int(r-'a'+1) * multi } else { return -1, newInvalidColumnNameError(name) } multi *= 26 } return col, nil } // MustColumnNameToNumber provides a function to convert Excel sheet column // name to int. Column name case insencitive. // Function returns error if column name incorrect. // // Example: // // excelize.MustColumnNameToNumber("AK") // returns 37 // func MustColumnNameToNumber(name string) int { n, err := ColumnNameToNumber(name) if err != nil { panic(err) } return n } // ColumnNumberToName provides a function to convert integer // to Excel sheet column title. // // Example: // // excelize.ColumnNumberToName(37) // returns "AK", nil // func ColumnNumberToName(num int) (string, error) { if num < 1 { return "", fmt.Errorf("incorrect column number %d", num) } var col string for num > 0 { col = string((num-1)%26+65) + col num = (num - 1) / 26 } return col, nil } // CellNameToCoordinates converts alpha-numeric cell name // to [X, Y] coordinates or retrusn an error. // // Example: // CellCoordinates("A1") // returns 1, 1, nil // CellCoordinates("Z3") // returns 26, 3, nil // func CellNameToCoordinates(cell string) (int, int, error) { const msg = "cannot convert cell %q to coordinates: %v" colname, row, err := SplitCellName(cell) if err != nil { return -1, -1, fmt.Errorf(msg, cell, err) } col, err := ColumnNameToNumber(colname) if err != nil { return -1, -1, fmt.Errorf(msg, cell, err) } return col, row, nil } // MustCellNameToCoordinates converts alpha-numeric cell name // to [X, Y] coordinates or panics. // // Example: // MustCellNameToCoordinates("A1") // returns 1, 1 // MustCellNameToCoordinates("Z3") // returns 26, 3 // func MustCellNameToCoordinates(cell string) (int, int) { c, r, err := CellNameToCoordinates(cell) if err != nil { panic(err) } return c, r } // CoordinatesToCellName converts [X, Y] coordinates to alpha-numeric cell name or returns an error. // // Example: // CoordinatesToCellName(1, 1) // returns "A1", nil // func CoordinatesToCellName(col, row int) (string, error) { if col < 1 || row < 1 { return "", fmt.Errorf("invalid cell coordinates [%d, %d]", col, row) } colname, err := ColumnNumberToName(col) if err != nil { return "", fmt.Errorf("invalid cell coordinates [%d, %d]: %v", col, row, err) } return fmt.Sprintf("%s%d", colname, row), nil } // MustCoordinatesToCellName converts [X, Y] coordinates to alpha-numeric cell name or panics. // // Example: // MustCoordinatesToCellName(1, 1) // returns "A1" // func MustCoordinatesToCellName(col, row int) string { n, err := CoordinatesToCellName(col, row) if err != nil { panic(err) } return n } // boolPtr returns a pointer to a bool with the given value. func boolPtr(b bool) *bool { return &b } // defaultTrue returns true if b is nil, or the pointed value. func defaultTrue(b *bool) bool { if b == nil { return true } return *b } // parseFormatSet provides a method to convert format string to []byte and // handle empty string. func parseFormatSet(formatSet string) []byte { if formatSet != "" { return []byte(formatSet) } return []byte("{}") } // namespaceStrictToTransitional provides a method to convert Strict and // Transitional namespaces. func namespaceStrictToTransitional(content []byte) []byte { var namespaceTranslationDic = map[string]string{ StrictSourceRelationship: SourceRelationship, StrictSourceRelationshipChart: SourceRelationshipChart, StrictSourceRelationshipComments: SourceRelationshipComments, StrictSourceRelationshipImage: SourceRelationshipImage, StrictNameSpaceSpreadSheet: NameSpaceSpreadSheet, } for s, n := range namespaceTranslationDic { content = bytes.Replace(content, []byte(s), []byte(n), -1) } return content } // genSheetPasswd provides a method to generate password for worksheet // protection by given plaintext. When an Excel sheet is being protected with // a password, a 16-bit (two byte) long hash is generated. To verify a // password, it is compared to the hash. Obviously, if the input data volume // is great, numerous passwords will match the same hash. Here is the // algorithm to create the hash value: // // take the ASCII values of all characters shift left the first character 1 bit, // the second 2 bits and so on (use only the lower 15 bits and rotate all higher bits, // the highest bit of the 16-bit value is always 0 [signed short]) // XOR all these values // XOR the count of characters // XOR the constant 0xCE4B func genSheetPasswd(plaintext string) string { var password int64 = 0x0000 var charPos uint = 1 for _, v := range plaintext { value := int64(v) << charPos charPos++ rotatedBits := value >> 15 // rotated bits beyond bit 15 value &= 0x7fff // first 15 bits password ^= (value | rotatedBits) } password ^= int64(len(plaintext)) password ^= 0xCE4B return strings.ToUpper(strconv.FormatInt(password, 16)) }