2631 lines
70 KiB
Go
2631 lines
70 KiB
Go
// Copyright 2016 - 2020 The excelize Authors. All rights reserved. Use of
|
|
// this source code is governed by a BSD-style license that can be found in
|
|
// the LICENSE file.
|
|
//
|
|
// Package excelize providing a set of functions that allow you to write to
|
|
// and read from XLSX / XLSM / XLTM files. Supports reading and writing
|
|
// spreadsheet documents generated by Microsoft Exce™ 2007 and later. Supports
|
|
// complex components by high compatibility, and provided streaming API for
|
|
// generating or reading data from a worksheet with huge amounts of data. This
|
|
// library needs Go version 1.10 or later.
|
|
|
|
package excelize
|
|
|
|
import (
|
|
"bytes"
|
|
"container/list"
|
|
"errors"
|
|
"fmt"
|
|
"math"
|
|
"math/rand"
|
|
"reflect"
|
|
"strconv"
|
|
"strings"
|
|
"time"
|
|
|
|
"github.com/xuri/efp"
|
|
)
|
|
|
|
// Excel formula errors
|
|
const (
|
|
formulaErrorDIV = "#DIV/0!"
|
|
formulaErrorNAME = "#NAME?"
|
|
formulaErrorNA = "#N/A"
|
|
formulaErrorNUM = "#NUM!"
|
|
formulaErrorVALUE = "#VALUE!"
|
|
formulaErrorREF = "#REF!"
|
|
formulaErrorNULL = "#NULL"
|
|
formulaErrorSPILL = "#SPILL!"
|
|
formulaErrorCALC = "#CALC!"
|
|
formulaErrorGETTINGDATA = "#GETTING_DATA"
|
|
)
|
|
|
|
// cellRef defines the structure of a cell reference.
|
|
type cellRef struct {
|
|
Col int
|
|
Row int
|
|
Sheet string
|
|
}
|
|
|
|
// cellRef defines the structure of a cell range.
|
|
type cellRange struct {
|
|
From cellRef
|
|
To cellRef
|
|
}
|
|
|
|
// formulaArg is the argument of a formula or function.
|
|
type formulaArg struct {
|
|
Value string
|
|
Matrix [][]string
|
|
}
|
|
|
|
// formulaFuncs is the type of the formula functions.
|
|
type formulaFuncs struct{}
|
|
|
|
// CalcCellValue provides a function to get calculated cell value. This
|
|
// feature is currently in working processing. Array formula, table formula
|
|
// and some other formulas are not supported currently.
|
|
func (f *File) CalcCellValue(sheet, cell string) (result string, err error) {
|
|
var (
|
|
formula string
|
|
token efp.Token
|
|
)
|
|
if formula, err = f.GetCellFormula(sheet, cell); err != nil {
|
|
return
|
|
}
|
|
ps := efp.ExcelParser()
|
|
tokens := ps.Parse(formula)
|
|
if tokens == nil {
|
|
return
|
|
}
|
|
if token, err = f.evalInfixExp(sheet, tokens); err != nil {
|
|
return
|
|
}
|
|
result = token.TValue
|
|
return
|
|
}
|
|
|
|
// getPriority calculate arithmetic operator priority.
|
|
func getPriority(token efp.Token) (pri int) {
|
|
var priority = map[string]int{
|
|
"*": 2,
|
|
"/": 2,
|
|
"+": 1,
|
|
"-": 1,
|
|
}
|
|
pri, _ = priority[token.TValue]
|
|
if token.TValue == "-" && token.TType == efp.TokenTypeOperatorPrefix {
|
|
pri = 3
|
|
}
|
|
if token.TSubType == efp.TokenSubTypeStart && token.TType == efp.TokenTypeSubexpression { // (
|
|
pri = 0
|
|
}
|
|
return
|
|
}
|
|
|
|
// evalInfixExp evaluate syntax analysis by given infix expression after
|
|
// lexical analysis. Evaluate an infix expression containing formulas by
|
|
// stacks:
|
|
//
|
|
// opd - Operand
|
|
// opt - Operator
|
|
// opf - Operation formula
|
|
// opfd - Operand of the operation formula
|
|
// opft - Operator of the operation formula
|
|
//
|
|
// Evaluate arguments of the operation formula by list:
|
|
//
|
|
// args - Arguments of the operation formula
|
|
//
|
|
// TODO: handle subtypes: Nothing, Text, Logical, Error, Concatenation, Intersection, Union
|
|
//
|
|
func (f *File) evalInfixExp(sheet string, tokens []efp.Token) (efp.Token, error) {
|
|
var err error
|
|
opdStack, optStack, opfStack, opfdStack, opftStack := NewStack(), NewStack(), NewStack(), NewStack(), NewStack()
|
|
argsList := list.New()
|
|
for i := 0; i < len(tokens); i++ {
|
|
token := tokens[i]
|
|
|
|
// out of function stack
|
|
if opfStack.Len() == 0 {
|
|
if err = f.parseToken(sheet, token, opdStack, optStack); err != nil {
|
|
return efp.Token{}, err
|
|
}
|
|
}
|
|
|
|
// function start
|
|
if token.TType == efp.TokenTypeFunction && token.TSubType == efp.TokenSubTypeStart {
|
|
opfStack.Push(token)
|
|
continue
|
|
}
|
|
|
|
// in function stack, walk 2 token at once
|
|
if opfStack.Len() > 0 {
|
|
var nextToken efp.Token
|
|
if i+1 < len(tokens) {
|
|
nextToken = tokens[i+1]
|
|
}
|
|
|
|
// current token is args or range, skip next token, order required: parse reference first
|
|
if token.TSubType == efp.TokenSubTypeRange {
|
|
if !opftStack.Empty() {
|
|
// parse reference: must reference at here
|
|
result, _, err := f.parseReference(sheet, token.TValue)
|
|
if err != nil {
|
|
return efp.Token{TValue: formulaErrorNAME}, err
|
|
}
|
|
if len(result) != 1 {
|
|
return efp.Token{}, errors.New(formulaErrorVALUE)
|
|
}
|
|
opfdStack.Push(efp.Token{
|
|
TType: efp.TokenTypeOperand,
|
|
TSubType: efp.TokenSubTypeNumber,
|
|
TValue: result[0],
|
|
})
|
|
continue
|
|
}
|
|
if nextToken.TType == efp.TokenTypeArgument || nextToken.TType == efp.TokenTypeFunction {
|
|
// parse reference: reference or range at here
|
|
result, matrix, err := f.parseReference(sheet, token.TValue)
|
|
if err != nil {
|
|
return efp.Token{TValue: formulaErrorNAME}, err
|
|
}
|
|
for idx, val := range result {
|
|
arg := formulaArg{Value: val}
|
|
if idx == 0 {
|
|
arg.Matrix = matrix
|
|
}
|
|
argsList.PushBack(arg)
|
|
}
|
|
if len(result) == 0 {
|
|
return efp.Token{}, errors.New(formulaErrorVALUE)
|
|
}
|
|
continue
|
|
}
|
|
}
|
|
|
|
// check current token is opft
|
|
if err = f.parseToken(sheet, token, opfdStack, opftStack); err != nil {
|
|
return efp.Token{}, err
|
|
}
|
|
|
|
// current token is arg
|
|
if token.TType == efp.TokenTypeArgument {
|
|
for !opftStack.Empty() {
|
|
// calculate trigger
|
|
topOpt := opftStack.Peek().(efp.Token)
|
|
if err := calculate(opfdStack, topOpt); err != nil {
|
|
return efp.Token{}, err
|
|
}
|
|
opftStack.Pop()
|
|
}
|
|
if !opfdStack.Empty() {
|
|
argsList.PushBack(formulaArg{
|
|
Value: opfdStack.Pop().(efp.Token).TValue,
|
|
})
|
|
}
|
|
continue
|
|
}
|
|
|
|
// current token is logical
|
|
if token.TType == efp.OperatorsInfix && token.TSubType == efp.TokenSubTypeLogical {
|
|
}
|
|
|
|
// current token is text
|
|
if token.TType == efp.TokenTypeOperand && token.TSubType == efp.TokenSubTypeText {
|
|
argsList.PushBack(formulaArg{
|
|
Value: token.TValue,
|
|
})
|
|
}
|
|
|
|
// current token is function stop
|
|
if token.TType == efp.TokenTypeFunction && token.TSubType == efp.TokenSubTypeStop {
|
|
for !opftStack.Empty() {
|
|
// calculate trigger
|
|
topOpt := opftStack.Peek().(efp.Token)
|
|
if err := calculate(opfdStack, topOpt); err != nil {
|
|
return efp.Token{}, err
|
|
}
|
|
opftStack.Pop()
|
|
}
|
|
|
|
// push opfd to args
|
|
if opfdStack.Len() > 0 {
|
|
argsList.PushBack(formulaArg{
|
|
Value: opfdStack.Pop().(efp.Token).TValue,
|
|
})
|
|
}
|
|
// call formula function to evaluate
|
|
result, err := callFuncByName(&formulaFuncs{}, strings.NewReplacer(
|
|
"_xlfn", "", ".", "").Replace(opfStack.Peek().(efp.Token).TValue),
|
|
[]reflect.Value{reflect.ValueOf(argsList)})
|
|
if err != nil {
|
|
return efp.Token{}, err
|
|
}
|
|
argsList.Init()
|
|
opfStack.Pop()
|
|
if opfStack.Len() > 0 { // still in function stack
|
|
opfdStack.Push(efp.Token{TValue: result, TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
|
|
} else {
|
|
opdStack.Push(efp.Token{TValue: result, TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
|
|
}
|
|
}
|
|
}
|
|
}
|
|
for optStack.Len() != 0 {
|
|
topOpt := optStack.Peek().(efp.Token)
|
|
if err = calculate(opdStack, topOpt); err != nil {
|
|
return efp.Token{}, err
|
|
}
|
|
optStack.Pop()
|
|
}
|
|
if opdStack.Len() == 0 {
|
|
return efp.Token{}, errors.New("formula not valid")
|
|
}
|
|
return opdStack.Peek().(efp.Token), err
|
|
}
|
|
|
|
// calcAdd evaluate addition arithmetic operations.
|
|
func calcAdd(opdStack *Stack) error {
|
|
if opdStack.Len() < 2 {
|
|
return errors.New("formula not valid")
|
|
}
|
|
rOpd := opdStack.Pop().(efp.Token)
|
|
lOpd := opdStack.Pop().(efp.Token)
|
|
lOpdVal, err := strconv.ParseFloat(lOpd.TValue, 64)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
rOpdVal, err := strconv.ParseFloat(rOpd.TValue, 64)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
result := lOpdVal + rOpdVal
|
|
opdStack.Push(efp.Token{TValue: fmt.Sprintf("%g", result), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
|
|
return nil
|
|
}
|
|
|
|
// calcAdd evaluate subtraction arithmetic operations.
|
|
func calcSubtract(opdStack *Stack) error {
|
|
if opdStack.Len() < 2 {
|
|
return errors.New("formula not valid")
|
|
}
|
|
rOpd := opdStack.Pop().(efp.Token)
|
|
lOpd := opdStack.Pop().(efp.Token)
|
|
lOpdVal, err := strconv.ParseFloat(lOpd.TValue, 64)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
rOpdVal, err := strconv.ParseFloat(rOpd.TValue, 64)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
result := lOpdVal - rOpdVal
|
|
opdStack.Push(efp.Token{TValue: fmt.Sprintf("%g", result), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
|
|
return nil
|
|
}
|
|
|
|
// calcAdd evaluate multiplication arithmetic operations.
|
|
func calcMultiply(opdStack *Stack) error {
|
|
if opdStack.Len() < 2 {
|
|
return errors.New("formula not valid")
|
|
}
|
|
rOpd := opdStack.Pop().(efp.Token)
|
|
lOpd := opdStack.Pop().(efp.Token)
|
|
lOpdVal, err := strconv.ParseFloat(lOpd.TValue, 64)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
rOpdVal, err := strconv.ParseFloat(rOpd.TValue, 64)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
result := lOpdVal * rOpdVal
|
|
opdStack.Push(efp.Token{TValue: fmt.Sprintf("%g", result), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
|
|
return nil
|
|
}
|
|
|
|
// calcAdd evaluate division arithmetic operations.
|
|
func calcDivide(opdStack *Stack) error {
|
|
if opdStack.Len() < 2 {
|
|
return errors.New("formula not valid")
|
|
}
|
|
rOpd := opdStack.Pop().(efp.Token)
|
|
lOpd := opdStack.Pop().(efp.Token)
|
|
lOpdVal, err := strconv.ParseFloat(lOpd.TValue, 64)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
rOpdVal, err := strconv.ParseFloat(rOpd.TValue, 64)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
result := lOpdVal / rOpdVal
|
|
if rOpdVal == 0 {
|
|
return errors.New(formulaErrorDIV)
|
|
}
|
|
opdStack.Push(efp.Token{TValue: fmt.Sprintf("%g", result), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
|
|
return nil
|
|
}
|
|
|
|
// calculate evaluate basic arithmetic operations.
|
|
func calculate(opdStack *Stack, opt efp.Token) error {
|
|
if opt.TValue == "-" && opt.TType == efp.TokenTypeOperatorPrefix {
|
|
if opdStack.Len() < 1 {
|
|
return errors.New("formula not valid")
|
|
}
|
|
opd := opdStack.Pop().(efp.Token)
|
|
opdVal, err := strconv.ParseFloat(opd.TValue, 64)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
result := 0 - opdVal
|
|
opdStack.Push(efp.Token{TValue: fmt.Sprintf("%g", result), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
|
|
}
|
|
|
|
if opt.TValue == "+" {
|
|
if err := calcAdd(opdStack); err != nil {
|
|
return err
|
|
}
|
|
}
|
|
if opt.TValue == "-" && opt.TType == efp.TokenTypeOperatorInfix {
|
|
if err := calcSubtract(opdStack); err != nil {
|
|
return err
|
|
}
|
|
}
|
|
if opt.TValue == "*" {
|
|
if err := calcMultiply(opdStack); err != nil {
|
|
return err
|
|
}
|
|
}
|
|
if opt.TValue == "/" {
|
|
if err := calcDivide(opdStack); err != nil {
|
|
return err
|
|
}
|
|
}
|
|
return nil
|
|
}
|
|
|
|
// parseOperatorPrefixToken parse operator prefix token.
|
|
func (f *File) parseOperatorPrefixToken(optStack, opdStack *Stack, token efp.Token) (err error) {
|
|
if optStack.Len() == 0 {
|
|
optStack.Push(token)
|
|
} else {
|
|
tokenPriority := getPriority(token)
|
|
topOpt := optStack.Peek().(efp.Token)
|
|
topOptPriority := getPriority(topOpt)
|
|
if tokenPriority > topOptPriority {
|
|
optStack.Push(token)
|
|
} else {
|
|
for tokenPriority <= topOptPriority {
|
|
optStack.Pop()
|
|
if err = calculate(opdStack, topOpt); err != nil {
|
|
return
|
|
}
|
|
if optStack.Len() > 0 {
|
|
topOpt = optStack.Peek().(efp.Token)
|
|
topOptPriority = getPriority(topOpt)
|
|
continue
|
|
}
|
|
break
|
|
}
|
|
optStack.Push(token)
|
|
}
|
|
}
|
|
return
|
|
}
|
|
|
|
// isOperatorPrefixToken determine if the token is parse operator prefix
|
|
// token.
|
|
func isOperatorPrefixToken(token efp.Token) bool {
|
|
if (token.TValue == "-" && token.TType == efp.TokenTypeOperatorPrefix) ||
|
|
token.TValue == "+" || token.TValue == "-" || token.TValue == "*" || token.TValue == "/" {
|
|
return true
|
|
}
|
|
return false
|
|
}
|
|
|
|
// parseToken parse basic arithmetic operator priority and evaluate based on
|
|
// operators and operands.
|
|
func (f *File) parseToken(sheet string, token efp.Token, opdStack, optStack *Stack) error {
|
|
// parse reference: must reference at here
|
|
if token.TSubType == efp.TokenSubTypeRange {
|
|
result, _, err := f.parseReference(sheet, token.TValue)
|
|
if err != nil {
|
|
return errors.New(formulaErrorNAME)
|
|
}
|
|
if len(result) != 1 {
|
|
return errors.New(formulaErrorVALUE)
|
|
}
|
|
token.TValue = result[0]
|
|
token.TType = efp.TokenTypeOperand
|
|
token.TSubType = efp.TokenSubTypeNumber
|
|
}
|
|
if isOperatorPrefixToken(token) {
|
|
if err := f.parseOperatorPrefixToken(optStack, opdStack, token); err != nil {
|
|
return err
|
|
}
|
|
}
|
|
if token.TType == efp.TokenTypeSubexpression && token.TSubType == efp.TokenSubTypeStart { // (
|
|
optStack.Push(token)
|
|
}
|
|
if token.TType == efp.TokenTypeSubexpression && token.TSubType == efp.TokenSubTypeStop { // )
|
|
for optStack.Peek().(efp.Token).TSubType != efp.TokenSubTypeStart && optStack.Peek().(efp.Token).TType != efp.TokenTypeSubexpression { // != (
|
|
topOpt := optStack.Peek().(efp.Token)
|
|
if err := calculate(opdStack, topOpt); err != nil {
|
|
return err
|
|
}
|
|
optStack.Pop()
|
|
}
|
|
optStack.Pop()
|
|
}
|
|
// opd
|
|
if token.TType == efp.TokenTypeOperand && token.TSubType == efp.TokenSubTypeNumber {
|
|
opdStack.Push(token)
|
|
}
|
|
return nil
|
|
}
|
|
|
|
// parseReference parse reference and extract values by given reference
|
|
// characters and default sheet name.
|
|
func (f *File) parseReference(sheet, reference string) (result []string, matrix [][]string, err error) {
|
|
reference = strings.Replace(reference, "$", "", -1)
|
|
refs, cellRanges, cellRefs := list.New(), list.New(), list.New()
|
|
for _, ref := range strings.Split(reference, ":") {
|
|
tokens := strings.Split(ref, "!")
|
|
cr := cellRef{}
|
|
if len(tokens) == 2 { // have a worksheet name
|
|
cr.Sheet = tokens[0]
|
|
if cr.Col, cr.Row, err = CellNameToCoordinates(tokens[1]); err != nil {
|
|
return
|
|
}
|
|
if refs.Len() > 0 {
|
|
e := refs.Back()
|
|
cellRefs.PushBack(e.Value.(cellRef))
|
|
refs.Remove(e)
|
|
}
|
|
refs.PushBack(cr)
|
|
continue
|
|
}
|
|
if cr.Col, cr.Row, err = CellNameToCoordinates(tokens[0]); err != nil {
|
|
return
|
|
}
|
|
e := refs.Back()
|
|
if e == nil {
|
|
cr.Sheet = sheet
|
|
refs.PushBack(cr)
|
|
continue
|
|
}
|
|
cellRanges.PushBack(cellRange{
|
|
From: e.Value.(cellRef),
|
|
To: cr,
|
|
})
|
|
refs.Remove(e)
|
|
}
|
|
if refs.Len() > 0 {
|
|
e := refs.Back()
|
|
cellRefs.PushBack(e.Value.(cellRef))
|
|
refs.Remove(e)
|
|
}
|
|
|
|
result, matrix, err = f.rangeResolver(cellRefs, cellRanges)
|
|
return
|
|
}
|
|
|
|
// prepareValueRange prepare value range.
|
|
func prepareValueRange(cr cellRange, valueRange []int) {
|
|
if cr.From.Row < valueRange[0] {
|
|
valueRange[0] = cr.From.Row
|
|
}
|
|
if cr.From.Col < valueRange[2] {
|
|
valueRange[2] = cr.From.Col
|
|
}
|
|
if cr.To.Row > valueRange[0] {
|
|
valueRange[1] = cr.To.Row
|
|
}
|
|
if cr.To.Col > valueRange[3] {
|
|
valueRange[3] = cr.To.Col
|
|
}
|
|
}
|
|
|
|
// prepareValueRef prepare value reference.
|
|
func prepareValueRef(cr cellRef, valueRange []int) {
|
|
if cr.Row < valueRange[0] {
|
|
valueRange[0] = cr.Row
|
|
}
|
|
if cr.Col < valueRange[2] {
|
|
valueRange[2] = cr.Col
|
|
}
|
|
if cr.Row > valueRange[0] {
|
|
valueRange[1] = cr.Row
|
|
}
|
|
if cr.Col > valueRange[3] {
|
|
valueRange[3] = cr.Col
|
|
}
|
|
}
|
|
|
|
// rangeResolver extract value as string from given reference and range list.
|
|
// This function will not ignore the empty cell. For example, A1:A2:A2:B3 will
|
|
// be reference A1:B3.
|
|
func (f *File) rangeResolver(cellRefs, cellRanges *list.List) (result []string, matrix [][]string, err error) {
|
|
// value range order: from row, to row, from column, to column
|
|
valueRange := []int{1, 1, 1, 1}
|
|
var sheet string
|
|
filter := map[string]string{}
|
|
// prepare value range
|
|
for temp := cellRanges.Front(); temp != nil; temp = temp.Next() {
|
|
cr := temp.Value.(cellRange)
|
|
if cr.From.Sheet != cr.To.Sheet {
|
|
err = errors.New(formulaErrorVALUE)
|
|
}
|
|
rng := []int{cr.From.Col, cr.From.Row, cr.To.Col, cr.To.Row}
|
|
sortCoordinates(rng)
|
|
prepareValueRange(cr, valueRange)
|
|
if cr.From.Sheet != "" {
|
|
sheet = cr.From.Sheet
|
|
}
|
|
}
|
|
for temp := cellRefs.Front(); temp != nil; temp = temp.Next() {
|
|
cr := temp.Value.(cellRef)
|
|
if cr.Sheet != "" {
|
|
sheet = cr.Sheet
|
|
}
|
|
prepareValueRef(cr, valueRange)
|
|
}
|
|
// extract value from ranges
|
|
if cellRanges.Len() > 0 {
|
|
for row := valueRange[0]; row <= valueRange[1]; row++ {
|
|
var matrixRow = []string{}
|
|
for col := valueRange[2]; col <= valueRange[3]; col++ {
|
|
var cell, value string
|
|
if cell, err = CoordinatesToCellName(col, row); err != nil {
|
|
return
|
|
}
|
|
if value, err = f.GetCellValue(sheet, cell); err != nil {
|
|
return
|
|
}
|
|
filter[cell] = value
|
|
matrixRow = append(matrixRow, value)
|
|
result = append(result, value)
|
|
}
|
|
matrix = append(matrix, matrixRow)
|
|
}
|
|
return
|
|
}
|
|
// extract value from references
|
|
for temp := cellRefs.Front(); temp != nil; temp = temp.Next() {
|
|
cr := temp.Value.(cellRef)
|
|
var cell string
|
|
if cell, err = CoordinatesToCellName(cr.Col, cr.Row); err != nil {
|
|
return
|
|
}
|
|
if filter[cell], err = f.GetCellValue(cr.Sheet, cell); err != nil {
|
|
return
|
|
}
|
|
}
|
|
|
|
for _, val := range filter {
|
|
result = append(result, val)
|
|
}
|
|
return
|
|
}
|
|
|
|
// callFuncByName calls the no error or only error return function with
|
|
// reflect by given receiver, name and parameters.
|
|
func callFuncByName(receiver interface{}, name string, params []reflect.Value) (result string, err error) {
|
|
function := reflect.ValueOf(receiver).MethodByName(name)
|
|
if function.IsValid() {
|
|
rt := function.Call(params)
|
|
if len(rt) == 0 {
|
|
return
|
|
}
|
|
if !rt[1].IsNil() {
|
|
err = rt[1].Interface().(error)
|
|
return
|
|
}
|
|
result = rt[0].Interface().(string)
|
|
return
|
|
}
|
|
err = fmt.Errorf("not support %s function", name)
|
|
return
|
|
}
|
|
|
|
// Math and Trigonometric functions
|
|
|
|
// ABS function returns the absolute value of any supplied number. The syntax
|
|
// of the function is:
|
|
//
|
|
// ABS(number)
|
|
//
|
|
func (fn *formulaFuncs) ABS(argsList *list.List) (result string, err error) {
|
|
if argsList.Len() != 1 {
|
|
err = errors.New("ABS requires 1 numeric argument")
|
|
return
|
|
}
|
|
var val float64
|
|
if val, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).Value, 64); err != nil {
|
|
err = errors.New(formulaErrorVALUE)
|
|
return
|
|
}
|
|
result = fmt.Sprintf("%g", math.Abs(val))
|
|
return
|
|
}
|
|
|
|
// ACOS function calculates the arccosine (i.e. the inverse cosine) of a given
|
|
// number, and returns an angle, in radians, between 0 and π. The syntax of
|
|
// the function is:
|
|
//
|
|
// ACOS(number)
|
|
//
|
|
func (fn *formulaFuncs) ACOS(argsList *list.List) (result string, err error) {
|
|
if argsList.Len() != 1 {
|
|
err = errors.New("ACOS requires 1 numeric argument")
|
|
return
|
|
}
|
|
var val float64
|
|
if val, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).Value, 64); err != nil {
|
|
err = errors.New(formulaErrorVALUE)
|
|
return
|
|
}
|
|
result = fmt.Sprintf("%g", math.Acos(val))
|
|
return
|
|
}
|
|
|
|
// ACOSH function calculates the inverse hyperbolic cosine of a supplied number.
|
|
// of the function is:
|
|
//
|
|
// ACOSH(number)
|
|
//
|
|
func (fn *formulaFuncs) ACOSH(argsList *list.List) (result string, err error) {
|
|
if argsList.Len() != 1 {
|
|
err = errors.New("ACOSH requires 1 numeric argument")
|
|
return
|
|
}
|
|
var val float64
|
|
if val, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).Value, 64); err != nil {
|
|
err = errors.New(formulaErrorVALUE)
|
|
return
|
|
}
|
|
result = fmt.Sprintf("%g", math.Acosh(val))
|
|
return
|
|
}
|
|
|
|
// ACOT function calculates the arccotangent (i.e. the inverse cotangent) of a
|
|
// given number, and returns an angle, in radians, between 0 and π. The syntax
|
|
// of the function is:
|
|
//
|
|
// ACOT(number)
|
|
//
|
|
func (fn *formulaFuncs) ACOT(argsList *list.List) (result string, err error) {
|
|
if argsList.Len() != 1 {
|
|
err = errors.New("ACOT requires 1 numeric argument")
|
|
return
|
|
}
|
|
var val float64
|
|
if val, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).Value, 64); err != nil {
|
|
err = errors.New(formulaErrorVALUE)
|
|
return
|
|
}
|
|
result = fmt.Sprintf("%g", math.Pi/2-math.Atan(val))
|
|
return
|
|
}
|
|
|
|
// ACOTH function calculates the hyperbolic arccotangent (coth) of a supplied
|
|
// value. The syntax of the function is:
|
|
//
|
|
// ACOTH(number)
|
|
//
|
|
func (fn *formulaFuncs) ACOTH(argsList *list.List) (result string, err error) {
|
|
if argsList.Len() != 1 {
|
|
err = errors.New("ACOTH requires 1 numeric argument")
|
|
return
|
|
}
|
|
var val float64
|
|
if val, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).Value, 64); err != nil {
|
|
err = errors.New(formulaErrorVALUE)
|
|
return
|
|
}
|
|
result = fmt.Sprintf("%g", math.Atanh(1/val))
|
|
return
|
|
}
|
|
|
|
// ARABIC function converts a Roman numeral into an Arabic numeral. The syntax
|
|
// of the function is:
|
|
//
|
|
// ARABIC(text)
|
|
//
|
|
func (fn *formulaFuncs) ARABIC(argsList *list.List) (result string, err error) {
|
|
if argsList.Len() != 1 {
|
|
err = errors.New("ARABIC requires 1 numeric argument")
|
|
return
|
|
}
|
|
charMap := map[rune]float64{'I': 1, 'V': 5, 'X': 10, 'L': 50, 'C': 100, 'D': 500, 'M': 1000}
|
|
val, last, prefix := 0.0, 0.0, 1.0
|
|
for _, char := range argsList.Front().Value.(formulaArg).Value {
|
|
digit := 0.0
|
|
if char == '-' {
|
|
prefix = -1
|
|
continue
|
|
}
|
|
digit, _ = charMap[char]
|
|
val += digit
|
|
switch {
|
|
case last == digit && (last == 5 || last == 50 || last == 500):
|
|
result = formulaErrorVALUE
|
|
return
|
|
case 2*last == digit:
|
|
result = formulaErrorVALUE
|
|
return
|
|
}
|
|
if last < digit {
|
|
val -= 2 * last
|
|
}
|
|
last = digit
|
|
}
|
|
result = fmt.Sprintf("%g", prefix*val)
|
|
return
|
|
}
|
|
|
|
// ASIN function calculates the arcsine (i.e. the inverse sine) of a given
|
|
// number, and returns an angle, in radians, between -π/2 and π/2. The syntax
|
|
// of the function is:
|
|
//
|
|
// ASIN(number)
|
|
//
|
|
func (fn *formulaFuncs) ASIN(argsList *list.List) (result string, err error) {
|
|
if argsList.Len() != 1 {
|
|
err = errors.New("ASIN requires 1 numeric argument")
|
|
return
|
|
}
|
|
var val float64
|
|
if val, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).Value, 64); err != nil {
|
|
err = errors.New(formulaErrorVALUE)
|
|
return
|
|
}
|
|
result = fmt.Sprintf("%g", math.Asin(val))
|
|
return
|
|
}
|
|
|
|
// ASINH function calculates the inverse hyperbolic sine of a supplied number.
|
|
// The syntax of the function is:
|
|
//
|
|
// ASINH(number)
|
|
//
|
|
func (fn *formulaFuncs) ASINH(argsList *list.List) (result string, err error) {
|
|
if argsList.Len() != 1 {
|
|
err = errors.New("ASINH requires 1 numeric argument")
|
|
return
|
|
}
|
|
var val float64
|
|
if val, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).Value, 64); err != nil {
|
|
err = errors.New(formulaErrorVALUE)
|
|
return
|
|
}
|
|
result = fmt.Sprintf("%g", math.Asinh(val))
|
|
return
|
|
}
|
|
|
|
// ATAN function calculates the arctangent (i.e. the inverse tangent) of a
|
|
// given number, and returns an angle, in radians, between -π/2 and +π/2. The
|
|
// syntax of the function is:
|
|
//
|
|
// ATAN(number)
|
|
//
|
|
func (fn *formulaFuncs) ATAN(argsList *list.List) (result string, err error) {
|
|
if argsList.Len() != 1 {
|
|
err = errors.New("ATAN requires 1 numeric argument")
|
|
return
|
|
}
|
|
var val float64
|
|
if val, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).Value, 64); err != nil {
|
|
err = errors.New(formulaErrorVALUE)
|
|
return
|
|
}
|
|
result = fmt.Sprintf("%g", math.Atan(val))
|
|
return
|
|
}
|
|
|
|
// ATANH function calculates the inverse hyperbolic tangent of a supplied
|
|
// number. The syntax of the function is:
|
|
//
|
|
// ATANH(number)
|
|
//
|
|
func (fn *formulaFuncs) ATANH(argsList *list.List) (result string, err error) {
|
|
if argsList.Len() != 1 {
|
|
err = errors.New("ATANH requires 1 numeric argument")
|
|
return
|
|
}
|
|
var val float64
|
|
if val, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).Value, 64); err != nil {
|
|
err = errors.New(formulaErrorVALUE)
|
|
return
|
|
}
|
|
result = fmt.Sprintf("%g", math.Atanh(val))
|
|
return
|
|
}
|
|
|
|
// ATAN2 function calculates the arctangent (i.e. the inverse tangent) of a
|
|
// given set of x and y coordinates, and returns an angle, in radians, between
|
|
// -π/2 and +π/2. The syntax of the function is:
|
|
//
|
|
// ATAN2(x_num,y_num)
|
|
//
|
|
func (fn *formulaFuncs) ATAN2(argsList *list.List) (result string, err error) {
|
|
if argsList.Len() != 2 {
|
|
err = errors.New("ATAN2 requires 2 numeric arguments")
|
|
return
|
|
}
|
|
var x, y float64
|
|
if x, err = strconv.ParseFloat(argsList.Back().Value.(formulaArg).Value, 64); err != nil {
|
|
err = errors.New(formulaErrorVALUE)
|
|
return
|
|
}
|
|
if y, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).Value, 64); err != nil {
|
|
err = errors.New(formulaErrorVALUE)
|
|
return
|
|
}
|
|
result = fmt.Sprintf("%g", math.Atan2(x, y))
|
|
return
|
|
}
|
|
|
|
// BASE function converts a number into a supplied base (radix), and returns a
|
|
// text representation of the calculated value. The syntax of the function is:
|
|
//
|
|
// BASE(number,radix,[min_length])
|
|
//
|
|
func (fn *formulaFuncs) BASE(argsList *list.List) (result string, err error) {
|
|
if argsList.Len() < 2 {
|
|
err = errors.New("BASE requires at least 2 arguments")
|
|
return
|
|
}
|
|
if argsList.Len() > 3 {
|
|
err = errors.New("BASE allows at most 3 arguments")
|
|
return
|
|
}
|
|
var number float64
|
|
var radix, minLength int
|
|
if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).Value, 64); err != nil {
|
|
err = errors.New(formulaErrorVALUE)
|
|
return
|
|
}
|
|
if radix, err = strconv.Atoi(argsList.Front().Next().Value.(formulaArg).Value); err != nil {
|
|
err = errors.New(formulaErrorVALUE)
|
|
return
|
|
}
|
|
if radix < 2 || radix > 36 {
|
|
err = errors.New("radix must be an integer >= 2 and <= 36")
|
|
return
|
|
}
|
|
if argsList.Len() > 2 {
|
|
if minLength, err = strconv.Atoi(argsList.Back().Value.(formulaArg).Value); err != nil {
|
|
err = errors.New(formulaErrorVALUE)
|
|
return
|
|
}
|
|
}
|
|
result = strconv.FormatInt(int64(number), radix)
|
|
if len(result) < minLength {
|
|
result = strings.Repeat("0", minLength-len(result)) + result
|
|
}
|
|
result = strings.ToUpper(result)
|
|
return
|
|
}
|
|
|
|
// CEILING function rounds a supplied number away from zero, to the nearest
|
|
// multiple of a given number. The syntax of the function is:
|
|
//
|
|
// CEILING(number,significance)
|
|
//
|
|
func (fn *formulaFuncs) CEILING(argsList *list.List) (result string, err error) {
|
|
if argsList.Len() == 0 {
|
|
err = errors.New("CEILING requires at least 1 argument")
|
|
return
|
|
}
|
|
if argsList.Len() > 2 {
|
|
err = errors.New("CEILING allows at most 2 arguments")
|
|
return
|
|
}
|
|
number, significance, res := 0.0, 1.0, 0.0
|
|
if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).Value, 64); err != nil {
|
|
err = errors.New(formulaErrorVALUE)
|
|
return
|
|
}
|
|
if number < 0 {
|
|
significance = -1
|
|
}
|
|
if argsList.Len() > 1 {
|
|
if significance, err = strconv.ParseFloat(argsList.Back().Value.(formulaArg).Value, 64); err != nil {
|
|
err = errors.New(formulaErrorVALUE)
|
|
return
|
|
}
|
|
}
|
|
if significance < 0 && number > 0 {
|
|
err = errors.New("negative sig to CEILING invalid")
|
|
return
|
|
}
|
|
if argsList.Len() == 1 {
|
|
result = fmt.Sprintf("%g", math.Ceil(number))
|
|
return
|
|
}
|
|
number, res = math.Modf(number / significance)
|
|
if res > 0 {
|
|
number++
|
|
}
|
|
result = fmt.Sprintf("%g", number*significance)
|
|
return
|
|
}
|
|
|
|
// CEILINGMATH function rounds a supplied number up to a supplied multiple of
|
|
// significance. The syntax of the function is:
|
|
//
|
|
// CEILING.MATH(number,[significance],[mode])
|
|
//
|
|
func (fn *formulaFuncs) CEILINGMATH(argsList *list.List) (result string, err error) {
|
|
if argsList.Len() == 0 {
|
|
err = errors.New("CEILING.MATH requires at least 1 argument")
|
|
return
|
|
}
|
|
if argsList.Len() > 3 {
|
|
err = errors.New("CEILING.MATH allows at most 3 arguments")
|
|
return
|
|
}
|
|
number, significance, mode := 0.0, 1.0, 1.0
|
|
if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).Value, 64); err != nil {
|
|
err = errors.New(formulaErrorVALUE)
|
|
return
|
|
}
|
|
if number < 0 {
|
|
significance = -1
|
|
}
|
|
if argsList.Len() > 1 {
|
|
if significance, err = strconv.ParseFloat(argsList.Front().Next().Value.(formulaArg).Value, 64); err != nil {
|
|
err = errors.New(formulaErrorVALUE)
|
|
return
|
|
}
|
|
}
|
|
if argsList.Len() == 1 {
|
|
result = fmt.Sprintf("%g", math.Ceil(number))
|
|
return
|
|
}
|
|
if argsList.Len() > 2 {
|
|
if mode, err = strconv.ParseFloat(argsList.Back().Value.(formulaArg).Value, 64); err != nil {
|
|
err = errors.New(formulaErrorVALUE)
|
|
return
|
|
}
|
|
}
|
|
val, res := math.Modf(number / significance)
|
|
if res != 0 {
|
|
if number > 0 {
|
|
val++
|
|
} else if mode < 0 {
|
|
val--
|
|
}
|
|
}
|
|
result = fmt.Sprintf("%g", val*significance)
|
|
return
|
|
}
|
|
|
|
// CEILINGPRECISE function rounds a supplied number up (regardless of the
|
|
// number's sign), to the nearest multiple of a given number. The syntax of
|
|
// the function is:
|
|
//
|
|
// CEILING.PRECISE(number,[significance])
|
|
//
|
|
func (fn *formulaFuncs) CEILINGPRECISE(argsList *list.List) (result string, err error) {
|
|
if argsList.Len() == 0 {
|
|
err = errors.New("CEILING.PRECISE requires at least 1 argument")
|
|
return
|
|
}
|
|
if argsList.Len() > 2 {
|
|
err = errors.New("CEILING.PRECISE allows at most 2 arguments")
|
|
return
|
|
}
|
|
number, significance := 0.0, 1.0
|
|
if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).Value, 64); err != nil {
|
|
err = errors.New(formulaErrorVALUE)
|
|
return
|
|
}
|
|
if number < 0 {
|
|
significance = -1
|
|
}
|
|
if argsList.Len() == 1 {
|
|
result = fmt.Sprintf("%g", math.Ceil(number))
|
|
return
|
|
}
|
|
if argsList.Len() > 1 {
|
|
if significance, err = strconv.ParseFloat(argsList.Back().Value.(formulaArg).Value, 64); err != nil {
|
|
err = errors.New(formulaErrorVALUE)
|
|
return
|
|
}
|
|
significance = math.Abs(significance)
|
|
if significance == 0 {
|
|
result = "0"
|
|
return
|
|
}
|
|
}
|
|
val, res := math.Modf(number / significance)
|
|
if res != 0 {
|
|
if number > 0 {
|
|
val++
|
|
}
|
|
}
|
|
result = fmt.Sprintf("%g", val*significance)
|
|
return
|
|
}
|
|
|
|
// COMBIN function calculates the number of combinations (in any order) of a
|
|
// given number objects from a set. The syntax of the function is:
|
|
//
|
|
// COMBIN(number,number_chosen)
|
|
//
|
|
func (fn *formulaFuncs) COMBIN(argsList *list.List) (result string, err error) {
|
|
if argsList.Len() != 2 {
|
|
err = errors.New("COMBIN requires 2 argument")
|
|
return
|
|
}
|
|
number, chosen, val := 0.0, 0.0, 1.0
|
|
if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).Value, 64); err != nil {
|
|
err = errors.New(formulaErrorVALUE)
|
|
return
|
|
}
|
|
if chosen, err = strconv.ParseFloat(argsList.Back().Value.(formulaArg).Value, 64); err != nil {
|
|
err = errors.New(formulaErrorVALUE)
|
|
return
|
|
}
|
|
number, chosen = math.Trunc(number), math.Trunc(chosen)
|
|
if chosen > number {
|
|
err = errors.New("COMBIN requires number >= number_chosen")
|
|
return
|
|
}
|
|
if chosen == number || chosen == 0 {
|
|
result = "1"
|
|
return
|
|
}
|
|
for c := float64(1); c <= chosen; c++ {
|
|
val *= (number + 1 - c) / c
|
|
}
|
|
result = fmt.Sprintf("%g", math.Ceil(val))
|
|
return
|
|
}
|
|
|
|
// COMBINA function calculates the number of combinations, with repetitions,
|
|
// of a given number objects from a set. The syntax of the function is:
|
|
//
|
|
// COMBINA(number,number_chosen)
|
|
//
|
|
func (fn *formulaFuncs) COMBINA(argsList *list.List) (result string, err error) {
|
|
if argsList.Len() != 2 {
|
|
err = errors.New("COMBINA requires 2 argument")
|
|
return
|
|
}
|
|
var number, chosen float64
|
|
if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).Value, 64); err != nil {
|
|
err = errors.New(formulaErrorVALUE)
|
|
return
|
|
}
|
|
if chosen, err = strconv.ParseFloat(argsList.Back().Value.(formulaArg).Value, 64); err != nil {
|
|
err = errors.New(formulaErrorVALUE)
|
|
return
|
|
}
|
|
number, chosen = math.Trunc(number), math.Trunc(chosen)
|
|
if number < chosen {
|
|
err = errors.New("COMBINA requires number > number_chosen")
|
|
return
|
|
}
|
|
if number == 0 {
|
|
result = "0"
|
|
return
|
|
}
|
|
args := list.New()
|
|
args.PushBack(formulaArg{
|
|
Value: fmt.Sprintf("%g", number+chosen-1),
|
|
})
|
|
args.PushBack(formulaArg{
|
|
Value: fmt.Sprintf("%g", number-1),
|
|
})
|
|
return fn.COMBIN(args)
|
|
}
|
|
|
|
// COS function calculates the cosine of a given angle. The syntax of the
|
|
// function is:
|
|
//
|
|
// COS(number)
|
|
//
|
|
func (fn *formulaFuncs) COS(argsList *list.List) (result string, err error) {
|
|
if argsList.Len() != 1 {
|
|
err = errors.New("COS requires 1 numeric argument")
|
|
return
|
|
}
|
|
var val float64
|
|
if val, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).Value, 64); err != nil {
|
|
err = errors.New(formulaErrorVALUE)
|
|
return
|
|
}
|
|
result = fmt.Sprintf("%g", math.Cos(val))
|
|
return
|
|
}
|
|
|
|
// COSH function calculates the hyperbolic cosine (cosh) of a supplied number.
|
|
// The syntax of the function is:
|
|
//
|
|
// COSH(number)
|
|
//
|
|
func (fn *formulaFuncs) COSH(argsList *list.List) (result string, err error) {
|
|
if argsList.Len() != 1 {
|
|
err = errors.New("COSH requires 1 numeric argument")
|
|
return
|
|
}
|
|
var val float64
|
|
if val, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).Value, 64); err != nil {
|
|
err = errors.New(formulaErrorVALUE)
|
|
return
|
|
}
|
|
result = fmt.Sprintf("%g", math.Cosh(val))
|
|
return
|
|
}
|
|
|
|
// COT function calculates the cotangent of a given angle. The syntax of the
|
|
// function is:
|
|
//
|
|
// COT(number)
|
|
//
|
|
func (fn *formulaFuncs) COT(argsList *list.List) (result string, err error) {
|
|
if argsList.Len() != 1 {
|
|
err = errors.New("COT requires 1 numeric argument")
|
|
return
|
|
}
|
|
var val float64
|
|
if val, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).Value, 64); err != nil {
|
|
err = errors.New(formulaErrorVALUE)
|
|
return
|
|
}
|
|
if val == 0 {
|
|
err = errors.New(formulaErrorDIV)
|
|
return
|
|
}
|
|
result = fmt.Sprintf("%g", math.Tan(val))
|
|
return
|
|
}
|
|
|
|
// COTH function calculates the hyperbolic cotangent (coth) of a supplied
|
|
// angle. The syntax of the function is:
|
|
//
|
|
// COTH(number)
|
|
//
|
|
func (fn *formulaFuncs) COTH(argsList *list.List) (result string, err error) {
|
|
if argsList.Len() != 1 {
|
|
err = errors.New("COTH requires 1 numeric argument")
|
|
return
|
|
}
|
|
var val float64
|
|
if val, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).Value, 64); err != nil {
|
|
err = errors.New(formulaErrorVALUE)
|
|
return
|
|
}
|
|
if val == 0 {
|
|
err = errors.New(formulaErrorDIV)
|
|
return
|
|
}
|
|
result = fmt.Sprintf("%g", math.Tanh(val))
|
|
return
|
|
}
|
|
|
|
// CSC function calculates the cosecant of a given angle. The syntax of the
|
|
// function is:
|
|
//
|
|
// CSC(number)
|
|
//
|
|
func (fn *formulaFuncs) CSC(argsList *list.List) (result string, err error) {
|
|
if argsList.Len() != 1 {
|
|
err = errors.New("CSC requires 1 numeric argument")
|
|
return
|
|
}
|
|
var val float64
|
|
if val, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).Value, 64); err != nil {
|
|
err = errors.New(formulaErrorVALUE)
|
|
return
|
|
}
|
|
if val == 0 {
|
|
err = errors.New(formulaErrorDIV)
|
|
return
|
|
}
|
|
result = fmt.Sprintf("%g", 1/math.Sin(val))
|
|
return
|
|
}
|
|
|
|
// CSCH function calculates the hyperbolic cosecant (csch) of a supplied
|
|
// angle. The syntax of the function is:
|
|
//
|
|
// CSCH(number)
|
|
//
|
|
func (fn *formulaFuncs) CSCH(argsList *list.List) (result string, err error) {
|
|
if argsList.Len() != 1 {
|
|
err = errors.New("CSCH requires 1 numeric argument")
|
|
return
|
|
}
|
|
var val float64
|
|
if val, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).Value, 64); err != nil {
|
|
err = errors.New(formulaErrorVALUE)
|
|
return
|
|
}
|
|
if val == 0 {
|
|
err = errors.New(formulaErrorDIV)
|
|
return
|
|
}
|
|
result = fmt.Sprintf("%g", 1/math.Sinh(val))
|
|
return
|
|
}
|
|
|
|
// DECIMAL function converts a text representation of a number in a specified
|
|
// base, into a decimal value. The syntax of the function is:
|
|
//
|
|
// DECIMAL(text,radix)
|
|
//
|
|
func (fn *formulaFuncs) DECIMAL(argsList *list.List) (result string, err error) {
|
|
if argsList.Len() != 2 {
|
|
err = errors.New("DECIMAL requires 2 numeric arguments")
|
|
return
|
|
}
|
|
var text = argsList.Front().Value.(formulaArg).Value
|
|
var radix int
|
|
if radix, err = strconv.Atoi(argsList.Back().Value.(formulaArg).Value); err != nil {
|
|
err = errors.New(formulaErrorVALUE)
|
|
return
|
|
}
|
|
if len(text) > 2 && (strings.HasPrefix(text, "0x") || strings.HasPrefix(text, "0X")) {
|
|
text = text[2:]
|
|
}
|
|
val, err := strconv.ParseInt(text, radix, 64)
|
|
if err != nil {
|
|
err = errors.New(formulaErrorVALUE)
|
|
return
|
|
}
|
|
result = fmt.Sprintf("%g", float64(val))
|
|
return
|
|
}
|
|
|
|
// DEGREES function converts radians into degrees. The syntax of the function
|
|
// is:
|
|
//
|
|
// DEGREES(angle)
|
|
//
|
|
func (fn *formulaFuncs) DEGREES(argsList *list.List) (result string, err error) {
|
|
if argsList.Len() != 1 {
|
|
err = errors.New("DEGREES requires 1 numeric argument")
|
|
return
|
|
}
|
|
var val float64
|
|
if val, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).Value, 64); err != nil {
|
|
err = errors.New(formulaErrorVALUE)
|
|
return
|
|
}
|
|
if val == 0 {
|
|
err = errors.New(formulaErrorDIV)
|
|
return
|
|
}
|
|
result = fmt.Sprintf("%g", 180.0/math.Pi*val)
|
|
return
|
|
}
|
|
|
|
// EVEN function rounds a supplied number away from zero (i.e. rounds a
|
|
// positive number up and a negative number down), to the next even number.
|
|
// The syntax of the function is:
|
|
//
|
|
// EVEN(number)
|
|
//
|
|
func (fn *formulaFuncs) EVEN(argsList *list.List) (result string, err error) {
|
|
if argsList.Len() != 1 {
|
|
err = errors.New("EVEN requires 1 numeric argument")
|
|
return
|
|
}
|
|
var number float64
|
|
if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).Value, 64); err != nil {
|
|
err = errors.New(formulaErrorVALUE)
|
|
return
|
|
}
|
|
sign := math.Signbit(number)
|
|
m, frac := math.Modf(number / 2)
|
|
val := m * 2
|
|
if frac != 0 {
|
|
if !sign {
|
|
val += 2
|
|
} else {
|
|
val -= 2
|
|
}
|
|
}
|
|
result = fmt.Sprintf("%g", val)
|
|
return
|
|
}
|
|
|
|
// EXP function calculates the value of the mathematical constant e, raised to
|
|
// the power of a given number. The syntax of the function is:
|
|
//
|
|
// EXP(number)
|
|
//
|
|
func (fn *formulaFuncs) EXP(argsList *list.List) (result string, err error) {
|
|
if argsList.Len() != 1 {
|
|
err = errors.New("EXP requires 1 numeric argument")
|
|
return
|
|
}
|
|
var number float64
|
|
if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).Value, 64); err != nil {
|
|
err = errors.New(formulaErrorVALUE)
|
|
return
|
|
}
|
|
result = strings.ToUpper(fmt.Sprintf("%g", math.Exp(number)))
|
|
return
|
|
}
|
|
|
|
// fact returns the factorial of a supplied number.
|
|
func fact(number float64) float64 {
|
|
val := float64(1)
|
|
for i := float64(2); i <= number; i++ {
|
|
val *= i
|
|
}
|
|
return val
|
|
}
|
|
|
|
// FACT function returns the factorial of a supplied number. The syntax of the
|
|
// function is:
|
|
//
|
|
// FACT(number)
|
|
//
|
|
func (fn *formulaFuncs) FACT(argsList *list.List) (result string, err error) {
|
|
if argsList.Len() != 1 {
|
|
err = errors.New("FACT requires 1 numeric argument")
|
|
return
|
|
}
|
|
var number float64
|
|
if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).Value, 64); err != nil {
|
|
err = errors.New(formulaErrorVALUE)
|
|
return
|
|
}
|
|
if number < 0 {
|
|
err = errors.New(formulaErrorNUM)
|
|
}
|
|
result = strings.ToUpper(fmt.Sprintf("%g", fact(number)))
|
|
return
|
|
}
|
|
|
|
// FACTDOUBLE function returns the double factorial of a supplied number. The
|
|
// syntax of the function is:
|
|
//
|
|
// FACTDOUBLE(number)
|
|
//
|
|
func (fn *formulaFuncs) FACTDOUBLE(argsList *list.List) (result string, err error) {
|
|
if argsList.Len() != 1 {
|
|
err = errors.New("FACTDOUBLE requires 1 numeric argument")
|
|
return
|
|
}
|
|
number, val := 0.0, 1.0
|
|
if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).Value, 64); err != nil {
|
|
err = errors.New(formulaErrorVALUE)
|
|
return
|
|
}
|
|
if number < 0 {
|
|
err = errors.New(formulaErrorNUM)
|
|
return
|
|
}
|
|
for i := math.Trunc(number); i > 1; i -= 2 {
|
|
val *= i
|
|
}
|
|
result = strings.ToUpper(fmt.Sprintf("%g", val))
|
|
return
|
|
}
|
|
|
|
// FLOOR function rounds a supplied number towards zero to the nearest
|
|
// multiple of a specified significance. The syntax of the function is:
|
|
//
|
|
// FLOOR(number,significance)
|
|
//
|
|
func (fn *formulaFuncs) FLOOR(argsList *list.List) (result string, err error) {
|
|
if argsList.Len() != 2 {
|
|
err = errors.New("FLOOR requires 2 numeric arguments")
|
|
return
|
|
}
|
|
var number, significance float64
|
|
if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).Value, 64); err != nil {
|
|
err = errors.New(formulaErrorVALUE)
|
|
return
|
|
}
|
|
if significance, err = strconv.ParseFloat(argsList.Back().Value.(formulaArg).Value, 64); err != nil {
|
|
err = errors.New(formulaErrorVALUE)
|
|
return
|
|
}
|
|
if significance < 0 && number >= 0 {
|
|
err = errors.New(formulaErrorNUM)
|
|
return
|
|
}
|
|
val := number
|
|
val, res := math.Modf(val / significance)
|
|
if res != 0 {
|
|
if number < 0 && res < 0 {
|
|
val--
|
|
}
|
|
}
|
|
result = strings.ToUpper(fmt.Sprintf("%g", val*significance))
|
|
return
|
|
}
|
|
|
|
// FLOORMATH function rounds a supplied number down to a supplied multiple of
|
|
// significance. The syntax of the function is:
|
|
//
|
|
// FLOOR.MATH(number,[significance],[mode])
|
|
//
|
|
func (fn *formulaFuncs) FLOORMATH(argsList *list.List) (result string, err error) {
|
|
if argsList.Len() == 0 {
|
|
err = errors.New("FLOOR.MATH requires at least 1 argument")
|
|
return
|
|
}
|
|
if argsList.Len() > 3 {
|
|
err = errors.New("FLOOR.MATH allows at most 3 arguments")
|
|
return
|
|
}
|
|
number, significance, mode := 0.0, 1.0, 1.0
|
|
if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).Value, 64); err != nil {
|
|
err = errors.New(formulaErrorVALUE)
|
|
return
|
|
}
|
|
if number < 0 {
|
|
significance = -1
|
|
}
|
|
if argsList.Len() > 1 {
|
|
if significance, err = strconv.ParseFloat(argsList.Front().Next().Value.(formulaArg).Value, 64); err != nil {
|
|
err = errors.New(formulaErrorVALUE)
|
|
return
|
|
}
|
|
}
|
|
if argsList.Len() == 1 {
|
|
result = fmt.Sprintf("%g", math.Floor(number))
|
|
return
|
|
}
|
|
if argsList.Len() > 2 {
|
|
if mode, err = strconv.ParseFloat(argsList.Back().Value.(formulaArg).Value, 64); err != nil {
|
|
err = errors.New(formulaErrorVALUE)
|
|
return
|
|
}
|
|
}
|
|
val, res := math.Modf(number / significance)
|
|
if res != 0 && number < 0 && mode > 0 {
|
|
val--
|
|
}
|
|
result = fmt.Sprintf("%g", val*significance)
|
|
return
|
|
}
|
|
|
|
// FLOORPRECISE function rounds a supplied number down to a supplied multiple
|
|
// of significance. The syntax of the function is:
|
|
//
|
|
// FLOOR.PRECISE(number,[significance])
|
|
//
|
|
func (fn *formulaFuncs) FLOORPRECISE(argsList *list.List) (result string, err error) {
|
|
if argsList.Len() == 0 {
|
|
err = errors.New("FLOOR.PRECISE requires at least 1 argument")
|
|
return
|
|
}
|
|
if argsList.Len() > 2 {
|
|
err = errors.New("FLOOR.PRECISE allows at most 2 arguments")
|
|
return
|
|
}
|
|
var number, significance float64
|
|
if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).Value, 64); err != nil {
|
|
err = errors.New(formulaErrorVALUE)
|
|
return
|
|
}
|
|
if number < 0 {
|
|
significance = -1
|
|
}
|
|
if argsList.Len() == 1 {
|
|
result = fmt.Sprintf("%g", math.Floor(number))
|
|
return
|
|
}
|
|
if argsList.Len() > 1 {
|
|
if significance, err = strconv.ParseFloat(argsList.Back().Value.(formulaArg).Value, 64); err != nil {
|
|
err = errors.New(formulaErrorVALUE)
|
|
return
|
|
}
|
|
significance = math.Abs(significance)
|
|
if significance == 0 {
|
|
result = "0"
|
|
return
|
|
}
|
|
}
|
|
val, res := math.Modf(number / significance)
|
|
if res != 0 {
|
|
if number < 0 {
|
|
val--
|
|
}
|
|
}
|
|
result = fmt.Sprintf("%g", val*significance)
|
|
return
|
|
}
|
|
|
|
// gcd returns the greatest common divisor of two supplied integers.
|
|
func gcd(x, y float64) float64 {
|
|
x, y = math.Trunc(x), math.Trunc(y)
|
|
if x == 0 {
|
|
return y
|
|
}
|
|
if y == 0 {
|
|
return x
|
|
}
|
|
for x != y {
|
|
if x > y {
|
|
x = x - y
|
|
} else {
|
|
y = y - x
|
|
}
|
|
}
|
|
return x
|
|
}
|
|
|
|
// GCD function returns the greatest common divisor of two or more supplied
|
|
// integers. The syntax of the function is:
|
|
//
|
|
// GCD(number1,[number2],...)
|
|
//
|
|
func (fn *formulaFuncs) GCD(argsList *list.List) (result string, err error) {
|
|
if argsList.Len() == 0 {
|
|
err = errors.New("GCD requires at least 1 argument")
|
|
return
|
|
}
|
|
var (
|
|
val float64
|
|
nums = []float64{}
|
|
)
|
|
for arg := argsList.Front(); arg != nil; arg = arg.Next() {
|
|
token := arg.Value.(formulaArg).Value
|
|
if token == "" {
|
|
continue
|
|
}
|
|
if val, err = strconv.ParseFloat(token, 64); err != nil {
|
|
err = errors.New(formulaErrorVALUE)
|
|
return
|
|
}
|
|
nums = append(nums, val)
|
|
}
|
|
if nums[0] < 0 {
|
|
err = errors.New("GCD only accepts positive arguments")
|
|
return
|
|
}
|
|
if len(nums) == 1 {
|
|
result = fmt.Sprintf("%g", nums[0])
|
|
return
|
|
}
|
|
cd := nums[0]
|
|
for i := 1; i < len(nums); i++ {
|
|
if nums[i] < 0 {
|
|
err = errors.New("GCD only accepts positive arguments")
|
|
return
|
|
}
|
|
cd = gcd(cd, nums[i])
|
|
}
|
|
result = fmt.Sprintf("%g", cd)
|
|
return
|
|
}
|
|
|
|
// INT function truncates a supplied number down to the closest integer. The
|
|
// syntax of the function is:
|
|
//
|
|
// INT(number)
|
|
//
|
|
func (fn *formulaFuncs) INT(argsList *list.List) (result string, err error) {
|
|
if argsList.Len() != 1 {
|
|
err = errors.New("INT requires 1 numeric argument")
|
|
return
|
|
}
|
|
var number float64
|
|
if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).Value, 64); err != nil {
|
|
err = errors.New(formulaErrorVALUE)
|
|
return
|
|
}
|
|
val, frac := math.Modf(number)
|
|
if frac < 0 {
|
|
val--
|
|
}
|
|
result = fmt.Sprintf("%g", val)
|
|
return
|
|
}
|
|
|
|
// ISOCEILING function rounds a supplied number up (regardless of the number's
|
|
// sign), to the nearest multiple of a supplied significance. The syntax of
|
|
// the function is:
|
|
//
|
|
// ISO.CEILING(number,[significance])
|
|
//
|
|
func (fn *formulaFuncs) ISOCEILING(argsList *list.List) (result string, err error) {
|
|
if argsList.Len() == 0 {
|
|
err = errors.New("ISO.CEILING requires at least 1 argument")
|
|
return
|
|
}
|
|
if argsList.Len() > 2 {
|
|
err = errors.New("ISO.CEILING allows at most 2 arguments")
|
|
return
|
|
}
|
|
var number, significance float64
|
|
if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).Value, 64); err != nil {
|
|
err = errors.New(formulaErrorVALUE)
|
|
return
|
|
}
|
|
if number < 0 {
|
|
significance = -1
|
|
}
|
|
if argsList.Len() == 1 {
|
|
result = fmt.Sprintf("%g", math.Ceil(number))
|
|
return
|
|
}
|
|
if argsList.Len() > 1 {
|
|
if significance, err = strconv.ParseFloat(argsList.Back().Value.(formulaArg).Value, 64); err != nil {
|
|
err = errors.New(formulaErrorVALUE)
|
|
return
|
|
}
|
|
significance = math.Abs(significance)
|
|
if significance == 0 {
|
|
result = "0"
|
|
return
|
|
}
|
|
}
|
|
val, res := math.Modf(number / significance)
|
|
if res != 0 {
|
|
if number > 0 {
|
|
val++
|
|
}
|
|
}
|
|
result = fmt.Sprintf("%g", val*significance)
|
|
return
|
|
}
|
|
|
|
// lcm returns the least common multiple of two supplied integers.
|
|
func lcm(a, b float64) float64 {
|
|
a = math.Trunc(a)
|
|
b = math.Trunc(b)
|
|
if a == 0 && b == 0 {
|
|
return 0
|
|
}
|
|
return a * b / gcd(a, b)
|
|
}
|
|
|
|
// LCM function returns the least common multiple of two or more supplied
|
|
// integers. The syntax of the function is:
|
|
//
|
|
// LCM(number1,[number2],...)
|
|
//
|
|
func (fn *formulaFuncs) LCM(argsList *list.List) (result string, err error) {
|
|
if argsList.Len() == 0 {
|
|
err = errors.New("LCM requires at least 1 argument")
|
|
return
|
|
}
|
|
var (
|
|
val float64
|
|
nums = []float64{}
|
|
)
|
|
for arg := argsList.Front(); arg != nil; arg = arg.Next() {
|
|
token := arg.Value.(formulaArg).Value
|
|
if token == "" {
|
|
continue
|
|
}
|
|
if val, err = strconv.ParseFloat(token, 64); err != nil {
|
|
err = errors.New(formulaErrorVALUE)
|
|
return
|
|
}
|
|
nums = append(nums, val)
|
|
}
|
|
if nums[0] < 0 {
|
|
err = errors.New("LCM only accepts positive arguments")
|
|
return
|
|
}
|
|
if len(nums) == 1 {
|
|
result = fmt.Sprintf("%g", nums[0])
|
|
return
|
|
}
|
|
cm := nums[0]
|
|
for i := 1; i < len(nums); i++ {
|
|
if nums[i] < 0 {
|
|
err = errors.New("LCM only accepts positive arguments")
|
|
return
|
|
}
|
|
cm = lcm(cm, nums[i])
|
|
}
|
|
result = fmt.Sprintf("%g", cm)
|
|
return
|
|
}
|
|
|
|
// LN function calculates the natural logarithm of a given number. The syntax
|
|
// of the function is:
|
|
//
|
|
// LN(number)
|
|
//
|
|
func (fn *formulaFuncs) LN(argsList *list.List) (result string, err error) {
|
|
if argsList.Len() != 1 {
|
|
err = errors.New("LN requires 1 numeric argument")
|
|
return
|
|
}
|
|
var number float64
|
|
if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).Value, 64); err != nil {
|
|
err = errors.New(formulaErrorVALUE)
|
|
return
|
|
}
|
|
result = fmt.Sprintf("%g", math.Log(number))
|
|
return
|
|
}
|
|
|
|
// LOG function calculates the logarithm of a given number, to a supplied
|
|
// base. The syntax of the function is:
|
|
//
|
|
// LOG(number,[base])
|
|
//
|
|
func (fn *formulaFuncs) LOG(argsList *list.List) (result string, err error) {
|
|
if argsList.Len() == 0 {
|
|
err = errors.New("LOG requires at least 1 argument")
|
|
return
|
|
}
|
|
if argsList.Len() > 2 {
|
|
err = errors.New("LOG allows at most 2 arguments")
|
|
return
|
|
}
|
|
number, base := 0.0, 10.0
|
|
if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).Value, 64); err != nil {
|
|
err = errors.New(formulaErrorVALUE)
|
|
return
|
|
}
|
|
if argsList.Len() > 1 {
|
|
if base, err = strconv.ParseFloat(argsList.Back().Value.(formulaArg).Value, 64); err != nil {
|
|
err = errors.New(formulaErrorVALUE)
|
|
return
|
|
}
|
|
}
|
|
if number == 0 {
|
|
err = errors.New(formulaErrorNUM)
|
|
return
|
|
}
|
|
if base == 0 {
|
|
err = errors.New(formulaErrorNUM)
|
|
return
|
|
}
|
|
if base == 1 {
|
|
err = errors.New(formulaErrorDIV)
|
|
return
|
|
}
|
|
result = fmt.Sprintf("%g", math.Log(number)/math.Log(base))
|
|
return
|
|
}
|
|
|
|
// LOG10 function calculates the base 10 logarithm of a given number. The
|
|
// syntax of the function is:
|
|
//
|
|
// LOG10(number)
|
|
//
|
|
func (fn *formulaFuncs) LOG10(argsList *list.List) (result string, err error) {
|
|
if argsList.Len() != 1 {
|
|
err = errors.New("LOG10 requires 1 numeric argument")
|
|
return
|
|
}
|
|
var number float64
|
|
if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).Value, 64); err != nil {
|
|
err = errors.New(formulaErrorVALUE)
|
|
return
|
|
}
|
|
result = fmt.Sprintf("%g", math.Log10(number))
|
|
return
|
|
}
|
|
|
|
func minor(sqMtx [][]float64, idx int) [][]float64 {
|
|
ret := [][]float64{}
|
|
for i := range sqMtx {
|
|
if i == 0 {
|
|
continue
|
|
}
|
|
row := []float64{}
|
|
for j := range sqMtx {
|
|
if j == idx {
|
|
continue
|
|
}
|
|
row = append(row, sqMtx[i][j])
|
|
}
|
|
ret = append(ret, row)
|
|
}
|
|
return ret
|
|
}
|
|
|
|
// det determinant of the 2x2 matrix.
|
|
func det(sqMtx [][]float64) float64 {
|
|
if len(sqMtx) == 2 {
|
|
m00 := sqMtx[0][0]
|
|
m01 := sqMtx[0][1]
|
|
m10 := sqMtx[1][0]
|
|
m11 := sqMtx[1][1]
|
|
return m00*m11 - m10*m01
|
|
}
|
|
var res, sgn float64 = 0, 1
|
|
for j := range sqMtx {
|
|
res += sgn * sqMtx[0][j] * det(minor(sqMtx, j))
|
|
sgn *= -1
|
|
}
|
|
return res
|
|
}
|
|
|
|
// MDETERM calculates the determinant of a square matrix. The
|
|
// syntax of the function is:
|
|
//
|
|
// MDETERM(array)
|
|
//
|
|
func (fn *formulaFuncs) MDETERM(argsList *list.List) (result string, err error) {
|
|
var num float64
|
|
var numMtx = [][]float64{}
|
|
var strMtx = argsList.Front().Value.(formulaArg).Matrix
|
|
if argsList.Len() < 1 {
|
|
return
|
|
}
|
|
var rows = len(strMtx)
|
|
for _, row := range argsList.Front().Value.(formulaArg).Matrix {
|
|
if len(row) != rows {
|
|
err = errors.New(formulaErrorVALUE)
|
|
return
|
|
}
|
|
numRow := []float64{}
|
|
for _, ele := range row {
|
|
if num, err = strconv.ParseFloat(ele, 64); err != nil {
|
|
return
|
|
}
|
|
numRow = append(numRow, num)
|
|
}
|
|
numMtx = append(numMtx, numRow)
|
|
}
|
|
result = fmt.Sprintf("%g", det(numMtx))
|
|
return
|
|
}
|
|
|
|
// MOD function returns the remainder of a division between two supplied
|
|
// numbers. The syntax of the function is:
|
|
//
|
|
// MOD(number,divisor)
|
|
//
|
|
func (fn *formulaFuncs) MOD(argsList *list.List) (result string, err error) {
|
|
if argsList.Len() != 2 {
|
|
err = errors.New("MOD requires 2 numeric arguments")
|
|
return
|
|
}
|
|
var number, divisor float64
|
|
if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).Value, 64); err != nil {
|
|
err = errors.New(formulaErrorVALUE)
|
|
return
|
|
}
|
|
if divisor, err = strconv.ParseFloat(argsList.Back().Value.(formulaArg).Value, 64); err != nil {
|
|
err = errors.New(formulaErrorVALUE)
|
|
return
|
|
}
|
|
if divisor == 0 {
|
|
err = errors.New(formulaErrorDIV)
|
|
return
|
|
}
|
|
trunc, rem := math.Modf(number / divisor)
|
|
if rem < 0 {
|
|
trunc--
|
|
}
|
|
result = fmt.Sprintf("%g", number-divisor*trunc)
|
|
return
|
|
}
|
|
|
|
// MROUND function rounds a supplied number up or down to the nearest multiple
|
|
// of a given number. The syntax of the function is:
|
|
//
|
|
// MOD(number,multiple)
|
|
//
|
|
func (fn *formulaFuncs) MROUND(argsList *list.List) (result string, err error) {
|
|
if argsList.Len() != 2 {
|
|
err = errors.New("MROUND requires 2 numeric arguments")
|
|
return
|
|
}
|
|
var number, multiple float64
|
|
if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).Value, 64); err != nil {
|
|
err = errors.New(formulaErrorVALUE)
|
|
return
|
|
}
|
|
if multiple, err = strconv.ParseFloat(argsList.Back().Value.(formulaArg).Value, 64); err != nil {
|
|
err = errors.New(formulaErrorVALUE)
|
|
return
|
|
}
|
|
if multiple == 0 {
|
|
err = errors.New(formulaErrorNUM)
|
|
return
|
|
}
|
|
if multiple < 0 && number > 0 ||
|
|
multiple > 0 && number < 0 {
|
|
err = errors.New(formulaErrorNUM)
|
|
return
|
|
}
|
|
number, res := math.Modf(number / multiple)
|
|
if math.Trunc(res+0.5) > 0 {
|
|
number++
|
|
}
|
|
result = fmt.Sprintf("%g", number*multiple)
|
|
return
|
|
}
|
|
|
|
// MULTINOMIAL function calculates the ratio of the factorial of a sum of
|
|
// supplied values to the product of factorials of those values. The syntax of
|
|
// the function is:
|
|
//
|
|
// MULTINOMIAL(number1,[number2],...)
|
|
//
|
|
func (fn *formulaFuncs) MULTINOMIAL(argsList *list.List) (result string, err error) {
|
|
val, num, denom := 0.0, 0.0, 1.0
|
|
for arg := argsList.Front(); arg != nil; arg = arg.Next() {
|
|
token := arg.Value.(formulaArg)
|
|
if token.Value == "" {
|
|
continue
|
|
}
|
|
if val, err = strconv.ParseFloat(token.Value, 64); err != nil {
|
|
err = errors.New(formulaErrorVALUE)
|
|
return
|
|
}
|
|
num += val
|
|
denom *= fact(val)
|
|
}
|
|
result = fmt.Sprintf("%g", fact(num)/denom)
|
|
return
|
|
}
|
|
|
|
// MUNIT function returns the unit matrix for a specified dimension. The
|
|
// syntax of the function is:
|
|
//
|
|
// MUNIT(dimension)
|
|
//
|
|
func (fn *formulaFuncs) MUNIT(argsList *list.List) (result string, err error) {
|
|
if argsList.Len() != 1 {
|
|
err = errors.New("MUNIT requires 1 numeric argument")
|
|
return
|
|
}
|
|
var dimension int
|
|
if dimension, err = strconv.Atoi(argsList.Front().Value.(formulaArg).Value); err != nil {
|
|
err = errors.New(formulaErrorVALUE)
|
|
return
|
|
}
|
|
matrix := make([][]float64, 0, dimension)
|
|
for i := 0; i < dimension; i++ {
|
|
row := make([]float64, dimension)
|
|
for j := 0; j < dimension; j++ {
|
|
if i == j {
|
|
row[j] = float64(1.0)
|
|
} else {
|
|
row[j] = float64(0.0)
|
|
}
|
|
}
|
|
matrix = append(matrix, row)
|
|
}
|
|
return
|
|
}
|
|
|
|
// ODD function ounds a supplied number away from zero (i.e. rounds a positive
|
|
// number up and a negative number down), to the next odd number. The syntax
|
|
// of the function is:
|
|
//
|
|
// ODD(number)
|
|
//
|
|
func (fn *formulaFuncs) ODD(argsList *list.List) (result string, err error) {
|
|
if argsList.Len() != 1 {
|
|
err = errors.New("ODD requires 1 numeric argument")
|
|
return
|
|
}
|
|
var number float64
|
|
if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).Value, 64); err != nil {
|
|
err = errors.New(formulaErrorVALUE)
|
|
return
|
|
}
|
|
if number == 0 {
|
|
result = "1"
|
|
return
|
|
}
|
|
sign := math.Signbit(number)
|
|
m, frac := math.Modf((number - 1) / 2)
|
|
val := m*2 + 1
|
|
if frac != 0 {
|
|
if !sign {
|
|
val += 2
|
|
} else {
|
|
val -= 2
|
|
}
|
|
}
|
|
result = fmt.Sprintf("%g", val)
|
|
return
|
|
}
|
|
|
|
// PI function returns the value of the mathematical constant π (pi), accurate
|
|
// to 15 digits (14 decimal places). The syntax of the function is:
|
|
//
|
|
// PI()
|
|
//
|
|
func (fn *formulaFuncs) PI(argsList *list.List) (result string, err error) {
|
|
if argsList.Len() != 0 {
|
|
err = errors.New("PI accepts no arguments")
|
|
return
|
|
}
|
|
result = fmt.Sprintf("%g", math.Pi)
|
|
return
|
|
}
|
|
|
|
// POWER function calculates a given number, raised to a supplied power.
|
|
// The syntax of the function is:
|
|
//
|
|
// POWER(number,power)
|
|
//
|
|
func (fn *formulaFuncs) POWER(argsList *list.List) (result string, err error) {
|
|
if argsList.Len() != 2 {
|
|
err = errors.New("POWER requires 2 numeric arguments")
|
|
return
|
|
}
|
|
var x, y float64
|
|
if x, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).Value, 64); err != nil {
|
|
err = errors.New(formulaErrorVALUE)
|
|
return
|
|
}
|
|
if y, err = strconv.ParseFloat(argsList.Back().Value.(formulaArg).Value, 64); err != nil {
|
|
err = errors.New(formulaErrorVALUE)
|
|
return
|
|
}
|
|
if x == 0 && y == 0 {
|
|
err = errors.New(formulaErrorNUM)
|
|
return
|
|
}
|
|
if x == 0 && y < 0 {
|
|
err = errors.New(formulaErrorDIV)
|
|
return
|
|
}
|
|
result = fmt.Sprintf("%g", math.Pow(x, y))
|
|
return
|
|
}
|
|
|
|
// PRODUCT function returns the product (multiplication) of a supplied set of
|
|
// numerical values. The syntax of the function is:
|
|
//
|
|
// PRODUCT(number1,[number2],...)
|
|
//
|
|
func (fn *formulaFuncs) PRODUCT(argsList *list.List) (result string, err error) {
|
|
val, product := 0.0, 1.0
|
|
for arg := argsList.Front(); arg != nil; arg = arg.Next() {
|
|
token := arg.Value.(formulaArg)
|
|
if token.Value == "" {
|
|
continue
|
|
}
|
|
if val, err = strconv.ParseFloat(token.Value, 64); err != nil {
|
|
err = errors.New(formulaErrorVALUE)
|
|
return
|
|
}
|
|
product = product * val
|
|
}
|
|
result = fmt.Sprintf("%g", product)
|
|
return
|
|
}
|
|
|
|
// QUOTIENT function returns the integer portion of a division between two
|
|
// supplied numbers. The syntax of the function is:
|
|
//
|
|
// QUOTIENT(numerator,denominator)
|
|
//
|
|
func (fn *formulaFuncs) QUOTIENT(argsList *list.List) (result string, err error) {
|
|
if argsList.Len() != 2 {
|
|
err = errors.New("QUOTIENT requires 2 numeric arguments")
|
|
return
|
|
}
|
|
var x, y float64
|
|
if x, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).Value, 64); err != nil {
|
|
err = errors.New(formulaErrorVALUE)
|
|
return
|
|
}
|
|
if y, err = strconv.ParseFloat(argsList.Back().Value.(formulaArg).Value, 64); err != nil {
|
|
err = errors.New(formulaErrorVALUE)
|
|
return
|
|
}
|
|
if y == 0 {
|
|
err = errors.New(formulaErrorDIV)
|
|
return
|
|
}
|
|
result = fmt.Sprintf("%g", math.Trunc(x/y))
|
|
return
|
|
}
|
|
|
|
// RADIANS function converts radians into degrees. The syntax of the function is:
|
|
//
|
|
// RADIANS(angle)
|
|
//
|
|
func (fn *formulaFuncs) RADIANS(argsList *list.List) (result string, err error) {
|
|
if argsList.Len() != 1 {
|
|
err = errors.New("RADIANS requires 1 numeric argument")
|
|
return
|
|
}
|
|
var angle float64
|
|
if angle, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).Value, 64); err != nil {
|
|
err = errors.New(formulaErrorVALUE)
|
|
return
|
|
}
|
|
result = fmt.Sprintf("%g", math.Pi/180.0*angle)
|
|
return
|
|
}
|
|
|
|
// RAND function generates a random real number between 0 and 1. The syntax of
|
|
// the function is:
|
|
//
|
|
// RAND()
|
|
//
|
|
func (fn *formulaFuncs) RAND(argsList *list.List) (result string, err error) {
|
|
if argsList.Len() != 0 {
|
|
err = errors.New("RAND accepts no arguments")
|
|
return
|
|
}
|
|
result = fmt.Sprintf("%g", rand.New(rand.NewSource(time.Now().UnixNano())).Float64())
|
|
return
|
|
}
|
|
|
|
// RANDBETWEEN function generates a random integer between two supplied
|
|
// integers. The syntax of the function is:
|
|
//
|
|
// RANDBETWEEN(bottom,top)
|
|
//
|
|
func (fn *formulaFuncs) RANDBETWEEN(argsList *list.List) (result string, err error) {
|
|
if argsList.Len() != 2 {
|
|
err = errors.New("RANDBETWEEN requires 2 numeric arguments")
|
|
return
|
|
}
|
|
var bottom, top int64
|
|
if bottom, err = strconv.ParseInt(argsList.Front().Value.(formulaArg).Value, 10, 64); err != nil {
|
|
err = errors.New(formulaErrorVALUE)
|
|
return
|
|
}
|
|
if top, err = strconv.ParseInt(argsList.Back().Value.(formulaArg).Value, 10, 64); err != nil {
|
|
err = errors.New(formulaErrorVALUE)
|
|
return
|
|
}
|
|
if top < bottom {
|
|
err = errors.New(formulaErrorNUM)
|
|
return
|
|
}
|
|
result = fmt.Sprintf("%g", float64(rand.New(rand.NewSource(time.Now().UnixNano())).Int63n(top-bottom+1)+bottom))
|
|
return
|
|
}
|
|
|
|
// romanNumerals defined a numeral system that originated in ancient Rome and
|
|
// remained the usual way of writing numbers throughout Europe well into the
|
|
// Late Middle Ages.
|
|
type romanNumerals struct {
|
|
n float64
|
|
s string
|
|
}
|
|
|
|
var romanTable = [][]romanNumerals{{{1000, "M"}, {900, "CM"}, {500, "D"}, {400, "CD"}, {100, "C"}, {90, "XC"}, {50, "L"}, {40, "XL"}, {10, "X"}, {9, "IX"}, {5, "V"}, {4, "IV"}, {1, "I"}},
|
|
{{1000, "M"}, {950, "LM"}, {900, "CM"}, {500, "D"}, {450, "LD"}, {400, "CD"}, {100, "C"}, {95, "VC"}, {90, "XC"}, {50, "L"}, {45, "VL"}, {40, "XL"}, {10, "X"}, {9, "IX"}, {5, "V"}, {4, "IV"}, {1, "I"}},
|
|
{{1000, "M"}, {990, "XM"}, {950, "LM"}, {900, "CM"}, {500, "D"}, {490, "XD"}, {450, "LD"}, {400, "CD"}, {100, "C"}, {99, "IC"}, {90, "XC"}, {50, "L"}, {45, "VL"}, {40, "XL"}, {10, "X"}, {9, "IX"}, {5, "V"}, {4, "IV"}, {1, "I"}},
|
|
{{1000, "M"}, {995, "VM"}, {990, "XM"}, {950, "LM"}, {900, "CM"}, {500, "D"}, {495, "VD"}, {490, "XD"}, {450, "LD"}, {400, "CD"}, {100, "C"}, {99, "IC"}, {90, "XC"}, {50, "L"}, {45, "VL"}, {40, "XL"}, {10, "X"}, {9, "IX"}, {5, "V"}, {4, "IV"}, {1, "I"}},
|
|
{{1000, "M"}, {999, "IM"}, {995, "VM"}, {990, "XM"}, {950, "LM"}, {900, "CM"}, {500, "D"}, {499, "ID"}, {495, "VD"}, {490, "XD"}, {450, "LD"}, {400, "CD"}, {100, "C"}, {99, "IC"}, {90, "XC"}, {50, "L"}, {45, "VL"}, {40, "XL"}, {10, "X"}, {9, "IX"}, {5, "V"}, {4, "IV"}, {1, "I"}}}
|
|
|
|
// ROMAN function converts an arabic number to Roman. I.e. for a supplied
|
|
// integer, the function returns a text string depicting the roman numeral
|
|
// form of the number. The syntax of the function is:
|
|
//
|
|
// ROMAN(number,[form])
|
|
//
|
|
func (fn *formulaFuncs) ROMAN(argsList *list.List) (result string, err error) {
|
|
if argsList.Len() == 0 {
|
|
err = errors.New("ROMAN requires at least 1 argument")
|
|
return
|
|
}
|
|
if argsList.Len() > 2 {
|
|
err = errors.New("ROMAN allows at most 2 arguments")
|
|
return
|
|
}
|
|
var number float64
|
|
var form int
|
|
if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).Value, 64); err != nil {
|
|
err = errors.New(formulaErrorVALUE)
|
|
return
|
|
}
|
|
if argsList.Len() > 1 {
|
|
if form, err = strconv.Atoi(argsList.Back().Value.(formulaArg).Value); err != nil {
|
|
err = errors.New(formulaErrorVALUE)
|
|
return
|
|
}
|
|
if form < 0 {
|
|
form = 0
|
|
} else if form > 4 {
|
|
form = 4
|
|
}
|
|
}
|
|
decimalTable := romanTable[0]
|
|
switch form {
|
|
case 1:
|
|
decimalTable = romanTable[1]
|
|
case 2:
|
|
decimalTable = romanTable[2]
|
|
case 3:
|
|
decimalTable = romanTable[3]
|
|
case 4:
|
|
decimalTable = romanTable[4]
|
|
}
|
|
val := math.Trunc(number)
|
|
buf := bytes.Buffer{}
|
|
for _, r := range decimalTable {
|
|
for val >= r.n {
|
|
buf.WriteString(r.s)
|
|
val -= r.n
|
|
}
|
|
}
|
|
result = buf.String()
|
|
return
|
|
}
|
|
|
|
type roundMode byte
|
|
|
|
const (
|
|
closest roundMode = iota
|
|
down
|
|
up
|
|
)
|
|
|
|
// round rounds a supplied number up or down.
|
|
func (fn *formulaFuncs) round(number, digits float64, mode roundMode) float64 {
|
|
var significance float64
|
|
if digits > 0 {
|
|
significance = math.Pow(1/10.0, digits)
|
|
} else {
|
|
significance = math.Pow(10.0, -digits)
|
|
}
|
|
val, res := math.Modf(number / significance)
|
|
switch mode {
|
|
case closest:
|
|
const eps = 0.499999999
|
|
if res >= eps {
|
|
val++
|
|
} else if res <= -eps {
|
|
val--
|
|
}
|
|
case down:
|
|
case up:
|
|
if res > 0 {
|
|
val++
|
|
} else if res < 0 {
|
|
val--
|
|
}
|
|
}
|
|
return val * significance
|
|
}
|
|
|
|
// ROUND function rounds a supplied number up or down, to a specified number
|
|
// of decimal places. The syntax of the function is:
|
|
//
|
|
// ROUND(number,num_digits)
|
|
//
|
|
func (fn *formulaFuncs) ROUND(argsList *list.List) (result string, err error) {
|
|
if argsList.Len() != 2 {
|
|
err = errors.New("ROUND requires 2 numeric arguments")
|
|
return
|
|
}
|
|
var number, digits float64
|
|
if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).Value, 64); err != nil {
|
|
err = errors.New(formulaErrorVALUE)
|
|
return
|
|
}
|
|
if digits, err = strconv.ParseFloat(argsList.Back().Value.(formulaArg).Value, 64); err != nil {
|
|
err = errors.New(formulaErrorVALUE)
|
|
return
|
|
}
|
|
result = fmt.Sprintf("%g", fn.round(number, digits, closest))
|
|
return
|
|
}
|
|
|
|
// ROUNDDOWN function rounds a supplied number down towards zero, to a
|
|
// specified number of decimal places. The syntax of the function is:
|
|
//
|
|
// ROUNDDOWN(number,num_digits)
|
|
//
|
|
func (fn *formulaFuncs) ROUNDDOWN(argsList *list.List) (result string, err error) {
|
|
if argsList.Len() != 2 {
|
|
err = errors.New("ROUNDDOWN requires 2 numeric arguments")
|
|
return
|
|
}
|
|
var number, digits float64
|
|
if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).Value, 64); err != nil {
|
|
err = errors.New(formulaErrorVALUE)
|
|
return
|
|
}
|
|
if digits, err = strconv.ParseFloat(argsList.Back().Value.(formulaArg).Value, 64); err != nil {
|
|
err = errors.New(formulaErrorVALUE)
|
|
return
|
|
}
|
|
result = fmt.Sprintf("%g", fn.round(number, digits, down))
|
|
return
|
|
}
|
|
|
|
// ROUNDUP function rounds a supplied number up, away from zero, to a
|
|
// specified number of decimal places. The syntax of the function is:
|
|
//
|
|
// ROUNDUP(number,num_digits)
|
|
//
|
|
func (fn *formulaFuncs) ROUNDUP(argsList *list.List) (result string, err error) {
|
|
if argsList.Len() != 2 {
|
|
err = errors.New("ROUNDUP requires 2 numeric arguments")
|
|
return
|
|
}
|
|
var number, digits float64
|
|
if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).Value, 64); err != nil {
|
|
err = errors.New(formulaErrorVALUE)
|
|
return
|
|
}
|
|
if digits, err = strconv.ParseFloat(argsList.Back().Value.(formulaArg).Value, 64); err != nil {
|
|
err = errors.New(formulaErrorVALUE)
|
|
return
|
|
}
|
|
result = fmt.Sprintf("%g", fn.round(number, digits, up))
|
|
return
|
|
}
|
|
|
|
// SEC function calculates the secant of a given angle. The syntax of the
|
|
// function is:
|
|
//
|
|
// SEC(number)
|
|
//
|
|
func (fn *formulaFuncs) SEC(argsList *list.List) (result string, err error) {
|
|
if argsList.Len() != 1 {
|
|
err = errors.New("SEC requires 1 numeric argument")
|
|
return
|
|
}
|
|
var number float64
|
|
if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).Value, 64); err != nil {
|
|
err = errors.New(formulaErrorVALUE)
|
|
return
|
|
}
|
|
result = fmt.Sprintf("%g", math.Cos(number))
|
|
return
|
|
}
|
|
|
|
// SECH function calculates the hyperbolic secant (sech) of a supplied angle.
|
|
// The syntax of the function is:
|
|
//
|
|
// SECH(number)
|
|
//
|
|
func (fn *formulaFuncs) SECH(argsList *list.List) (result string, err error) {
|
|
if argsList.Len() != 1 {
|
|
err = errors.New("SECH requires 1 numeric argument")
|
|
return
|
|
}
|
|
var number float64
|
|
if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).Value, 64); err != nil {
|
|
err = errors.New(formulaErrorVALUE)
|
|
return
|
|
}
|
|
result = fmt.Sprintf("%g", 1/math.Cosh(number))
|
|
return
|
|
}
|
|
|
|
// SIGN function returns the arithmetic sign (+1, -1 or 0) of a supplied
|
|
// number. I.e. if the number is positive, the Sign function returns +1, if
|
|
// the number is negative, the function returns -1 and if the number is 0
|
|
// (zero), the function returns 0. The syntax of the function is:
|
|
//
|
|
// SIGN(number)
|
|
//
|
|
func (fn *formulaFuncs) SIGN(argsList *list.List) (result string, err error) {
|
|
if argsList.Len() != 1 {
|
|
err = errors.New("SIGN requires 1 numeric argument")
|
|
return
|
|
}
|
|
var val float64
|
|
if val, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).Value, 64); err != nil {
|
|
err = errors.New(formulaErrorVALUE)
|
|
return
|
|
}
|
|
if val < 0 {
|
|
result = "-1"
|
|
return
|
|
}
|
|
if val > 0 {
|
|
result = "1"
|
|
return
|
|
}
|
|
result = "0"
|
|
return
|
|
}
|
|
|
|
// SIN function calculates the sine of a given angle. The syntax of the
|
|
// function is:
|
|
//
|
|
// SIN(number)
|
|
//
|
|
func (fn *formulaFuncs) SIN(argsList *list.List) (result string, err error) {
|
|
if argsList.Len() != 1 {
|
|
err = errors.New("SIN requires 1 numeric argument")
|
|
return
|
|
}
|
|
var number float64
|
|
if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).Value, 64); err != nil {
|
|
err = errors.New(formulaErrorVALUE)
|
|
return
|
|
}
|
|
result = fmt.Sprintf("%g", math.Sin(number))
|
|
return
|
|
}
|
|
|
|
// SINH function calculates the hyperbolic sine (sinh) of a supplied number.
|
|
// The syntax of the function is:
|
|
//
|
|
// SINH(number)
|
|
//
|
|
func (fn *formulaFuncs) SINH(argsList *list.List) (result string, err error) {
|
|
if argsList.Len() != 1 {
|
|
err = errors.New("SINH requires 1 numeric argument")
|
|
return
|
|
}
|
|
var number float64
|
|
if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).Value, 64); err != nil {
|
|
err = errors.New(formulaErrorVALUE)
|
|
return
|
|
}
|
|
result = fmt.Sprintf("%g", math.Sinh(number))
|
|
return
|
|
}
|
|
|
|
// SQRT function calculates the positive square root of a supplied number. The
|
|
// syntax of the function is:
|
|
//
|
|
// SQRT(number)
|
|
//
|
|
func (fn *formulaFuncs) SQRT(argsList *list.List) (result string, err error) {
|
|
if argsList.Len() != 1 {
|
|
err = errors.New("SQRT requires 1 numeric argument")
|
|
return
|
|
}
|
|
var res float64
|
|
var value = argsList.Front().Value.(formulaArg).Value
|
|
if value == "" {
|
|
result = "0"
|
|
return
|
|
}
|
|
if res, err = strconv.ParseFloat(value, 64); err != nil {
|
|
err = errors.New(formulaErrorVALUE)
|
|
return
|
|
}
|
|
if res < 0 {
|
|
err = errors.New(formulaErrorNUM)
|
|
return
|
|
}
|
|
result = fmt.Sprintf("%g", math.Sqrt(res))
|
|
return
|
|
}
|
|
|
|
// SQRTPI function returns the square root of a supplied number multiplied by
|
|
// the mathematical constant, π. The syntax of the function is:
|
|
//
|
|
// SQRTPI(number)
|
|
//
|
|
func (fn *formulaFuncs) SQRTPI(argsList *list.List) (result string, err error) {
|
|
if argsList.Len() != 1 {
|
|
err = errors.New("SQRTPI requires 1 numeric argument")
|
|
return
|
|
}
|
|
var number float64
|
|
if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).Value, 64); err != nil {
|
|
err = errors.New(formulaErrorVALUE)
|
|
return
|
|
}
|
|
result = fmt.Sprintf("%g", math.Sqrt(number*math.Pi))
|
|
return
|
|
}
|
|
|
|
// SUM function adds together a supplied set of numbers and returns the sum of
|
|
// these values. The syntax of the function is:
|
|
//
|
|
// SUM(number1,[number2],...)
|
|
//
|
|
func (fn *formulaFuncs) SUM(argsList *list.List) (result string, err error) {
|
|
var val, sum float64
|
|
for arg := argsList.Front(); arg != nil; arg = arg.Next() {
|
|
token := arg.Value.(formulaArg)
|
|
if token.Value == "" {
|
|
continue
|
|
}
|
|
if val, err = strconv.ParseFloat(token.Value, 64); err != nil {
|
|
err = errors.New(formulaErrorVALUE)
|
|
return
|
|
}
|
|
sum += val
|
|
}
|
|
result = fmt.Sprintf("%g", sum)
|
|
return
|
|
}
|
|
|
|
// SUMSQ function returns the sum of squares of a supplied set of values. The
|
|
// syntax of the function is:
|
|
//
|
|
// SUMSQ(number1,[number2],...)
|
|
//
|
|
func (fn *formulaFuncs) SUMSQ(argsList *list.List) (result string, err error) {
|
|
var val, sq float64
|
|
for arg := argsList.Front(); arg != nil; arg = arg.Next() {
|
|
token := arg.Value.(formulaArg)
|
|
if token.Value == "" {
|
|
continue
|
|
}
|
|
if val, err = strconv.ParseFloat(token.Value, 64); err != nil {
|
|
err = errors.New(formulaErrorVALUE)
|
|
return
|
|
}
|
|
sq += val * val
|
|
}
|
|
result = fmt.Sprintf("%g", sq)
|
|
return
|
|
}
|
|
|
|
// TAN function calculates the tangent of a given angle. The syntax of the
|
|
// function is:
|
|
//
|
|
// TAN(number)
|
|
//
|
|
func (fn *formulaFuncs) TAN(argsList *list.List) (result string, err error) {
|
|
if argsList.Len() != 1 {
|
|
err = errors.New("TAN requires 1 numeric argument")
|
|
return
|
|
}
|
|
var number float64
|
|
if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).Value, 64); err != nil {
|
|
err = errors.New(formulaErrorVALUE)
|
|
return
|
|
}
|
|
result = fmt.Sprintf("%g", math.Tan(number))
|
|
return
|
|
}
|
|
|
|
// TANH function calculates the hyperbolic tangent (tanh) of a supplied
|
|
// number. The syntax of the function is:
|
|
//
|
|
// TANH(number)
|
|
//
|
|
func (fn *formulaFuncs) TANH(argsList *list.List) (result string, err error) {
|
|
if argsList.Len() != 1 {
|
|
err = errors.New("TANH requires 1 numeric argument")
|
|
return
|
|
}
|
|
var number float64
|
|
if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).Value, 64); err != nil {
|
|
err = errors.New(formulaErrorVALUE)
|
|
return
|
|
}
|
|
result = fmt.Sprintf("%g", math.Tanh(number))
|
|
return
|
|
}
|
|
|
|
// TRUNC function truncates a supplied number to a specified number of decimal
|
|
// places. The syntax of the function is:
|
|
//
|
|
// TRUNC(number,[number_digits])
|
|
//
|
|
func (fn *formulaFuncs) TRUNC(argsList *list.List) (result string, err error) {
|
|
if argsList.Len() == 0 {
|
|
err = errors.New("TRUNC requires at least 1 argument")
|
|
return
|
|
}
|
|
var number, digits, adjust, rtrim float64
|
|
if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).Value, 64); err != nil {
|
|
err = errors.New(formulaErrorVALUE)
|
|
return
|
|
}
|
|
if argsList.Len() > 1 {
|
|
if digits, err = strconv.ParseFloat(argsList.Back().Value.(formulaArg).Value, 64); err != nil {
|
|
err = errors.New(formulaErrorVALUE)
|
|
return
|
|
}
|
|
digits = math.Floor(digits)
|
|
}
|
|
adjust = math.Pow(10, digits)
|
|
x := int((math.Abs(number) - math.Abs(float64(int(number)))) * adjust)
|
|
if x != 0 {
|
|
if rtrim, err = strconv.ParseFloat(strings.TrimRight(strconv.Itoa(x), "0"), 64); err != nil {
|
|
return
|
|
}
|
|
}
|
|
if (digits > 0) && (rtrim < adjust/10) {
|
|
result = fmt.Sprintf("%g", number)
|
|
return
|
|
}
|
|
result = fmt.Sprintf("%g", float64(int(number*adjust))/adjust)
|
|
return
|
|
}
|
|
|
|
// Statistical functions
|