619 lines
21 KiB
Go
619 lines
21 KiB
Go
// Copyright 2016 - 2021 The excelize Authors. All rights reserved. Use of
|
|
// this source code is governed by a BSD-style license that can be found in
|
|
// the LICENSE file.
|
|
//
|
|
// Package excelize providing a set of functions that allow you to write to
|
|
// and read from XLSX files. Support reads and writes XLSX file generated by
|
|
// Microsoft Excel™ 2007 and later. Support save file without losing original
|
|
// charts of XLSX. This library needs Go version 1.10 or later.
|
|
|
|
package excelize
|
|
|
|
import (
|
|
"bytes"
|
|
"crypto/aes"
|
|
"crypto/cipher"
|
|
"crypto/hmac"
|
|
"crypto/md5"
|
|
"crypto/sha1"
|
|
"crypto/sha256"
|
|
"crypto/sha512"
|
|
"encoding/base64"
|
|
"encoding/binary"
|
|
"encoding/xml"
|
|
"errors"
|
|
"hash"
|
|
"math/rand"
|
|
"reflect"
|
|
"strings"
|
|
|
|
"github.com/richardlehane/mscfb"
|
|
"golang.org/x/crypto/md4"
|
|
"golang.org/x/crypto/ripemd160"
|
|
"golang.org/x/text/encoding/unicode"
|
|
)
|
|
|
|
var (
|
|
blockKey = []byte{0x14, 0x6e, 0x0b, 0xe7, 0xab, 0xac, 0xd0, 0xd6} // Block keys used for encryption
|
|
blockKeyHmacKey = []byte{0x5f, 0xb2, 0xad, 0x01, 0x0c, 0xb9, 0xe1, 0xf6}
|
|
blockKeyHmacValue = []byte{0xa0, 0x67, 0x7f, 0x02, 0xb2, 0x2c, 0x84, 0x33}
|
|
blockKeyVerifierHashInput = []byte{0xfe, 0xa7, 0xd2, 0x76, 0x3b, 0x4b, 0x9e, 0x79}
|
|
blockKeyVerifierHashValue = []byte{0xd7, 0xaa, 0x0f, 0x6d, 0x30, 0x61, 0x34, 0x4e}
|
|
packageOffset = 8 // First 8 bytes are the size of the stream
|
|
packageEncryptionChunkSize = 4096
|
|
iterCount = 50000
|
|
oleIdentifier = []byte{
|
|
0xd0, 0xcf, 0x11, 0xe0, 0xa1, 0xb1, 0x1a, 0xe1,
|
|
}
|
|
)
|
|
|
|
// Encryption specifies the encryption structure, streams, and storages are
|
|
// required when encrypting ECMA-376 documents.
|
|
type Encryption struct {
|
|
XMLName xml.Name `xml:"encryption"`
|
|
KeyData KeyData `xml:"keyData"`
|
|
DataIntegrity DataIntegrity `xml:"dataIntegrity"`
|
|
KeyEncryptors KeyEncryptors `xml:"keyEncryptors"`
|
|
}
|
|
|
|
// KeyData specifies the cryptographic attributes used to encrypt the data.
|
|
type KeyData struct {
|
|
SaltSize int `xml:"saltSize,attr"`
|
|
BlockSize int `xml:"blockSize,attr"`
|
|
KeyBits int `xml:"keyBits,attr"`
|
|
HashSize int `xml:"hashSize,attr"`
|
|
CipherAlgorithm string `xml:"cipherAlgorithm,attr"`
|
|
CipherChaining string `xml:"cipherChaining,attr"`
|
|
HashAlgorithm string `xml:"hashAlgorithm,attr"`
|
|
SaltValue string `xml:"saltValue,attr"`
|
|
}
|
|
|
|
// DataIntegrity specifies the encrypted copies of the salt and hash values
|
|
// used to help ensure that the integrity of the encrypted data has not been
|
|
// compromised.
|
|
type DataIntegrity struct {
|
|
EncryptedHmacKey string `xml:"encryptedHmacKey,attr"`
|
|
EncryptedHmacValue string `xml:"encryptedHmacValue,attr"`
|
|
}
|
|
|
|
// KeyEncryptors specifies the key encryptors used to encrypt the data.
|
|
type KeyEncryptors struct {
|
|
KeyEncryptor []KeyEncryptor `xml:"keyEncryptor"`
|
|
}
|
|
|
|
// KeyEncryptor specifies that the schema used by this encryptor is the schema
|
|
// specified for password-based encryptors.
|
|
type KeyEncryptor struct {
|
|
XMLName xml.Name `xml:"keyEncryptor"`
|
|
URI string `xml:"uri,attr"`
|
|
EncryptedKey EncryptedKey `xml:"encryptedKey"`
|
|
}
|
|
|
|
// EncryptedKey used to generate the encrypting key.
|
|
type EncryptedKey struct {
|
|
XMLName xml.Name `xml:"http://schemas.microsoft.com/office/2006/keyEncryptor/password encryptedKey"`
|
|
SpinCount int `xml:"spinCount,attr"`
|
|
EncryptedVerifierHashInput string `xml:"encryptedVerifierHashInput,attr"`
|
|
EncryptedVerifierHashValue string `xml:"encryptedVerifierHashValue,attr"`
|
|
EncryptedKeyValue string `xml:"encryptedKeyValue,attr"`
|
|
KeyData
|
|
}
|
|
|
|
// StandardEncryptionHeader structure is used by ECMA-376 document encryption
|
|
// [ECMA-376] and Office binary document RC4 CryptoAPI encryption, to specify
|
|
// encryption properties for an encrypted stream.
|
|
type StandardEncryptionHeader struct {
|
|
Flags uint32
|
|
SizeExtra uint32
|
|
AlgID uint32
|
|
AlgIDHash uint32
|
|
KeySize uint32
|
|
ProviderType uint32
|
|
Reserved1 uint32
|
|
Reserved2 uint32
|
|
CspName string
|
|
}
|
|
|
|
// StandardEncryptionVerifier structure is used by Office Binary Document RC4
|
|
// CryptoAPI Encryption and ECMA-376 Document Encryption. Every usage of this
|
|
// structure MUST specify the hashing algorithm and encryption algorithm used
|
|
// in the EncryptionVerifier structure.
|
|
type StandardEncryptionVerifier struct {
|
|
SaltSize uint32
|
|
Salt []byte
|
|
EncryptedVerifier []byte
|
|
VerifierHashSize uint32
|
|
EncryptedVerifierHash []byte
|
|
}
|
|
|
|
// Decrypt API decrypt the CFB file format with ECMA-376 agile encryption and
|
|
// standard encryption. Support cryptographic algorithm: MD4, MD5, RIPEMD-160,
|
|
// SHA1, SHA256, SHA384 and SHA512 currently.
|
|
func Decrypt(raw []byte, opt *Options) (packageBuf []byte, err error) {
|
|
doc, err := mscfb.New(bytes.NewReader(raw))
|
|
if err != nil {
|
|
return
|
|
}
|
|
encryptionInfoBuf, encryptedPackageBuf := extractPart(doc)
|
|
mechanism, err := encryptionMechanism(encryptionInfoBuf)
|
|
if err != nil || mechanism == "extensible" {
|
|
return
|
|
}
|
|
switch mechanism {
|
|
case "agile":
|
|
return agileDecrypt(encryptionInfoBuf, encryptedPackageBuf, opt)
|
|
case "standard":
|
|
return standardDecrypt(encryptionInfoBuf, encryptedPackageBuf, opt)
|
|
default:
|
|
err = errors.New("unsupport encryption mechanism")
|
|
}
|
|
return
|
|
}
|
|
|
|
// Encrypt API encrypt data with the password.
|
|
func Encrypt(raw []byte, opt *Options) (packageBuf []byte, err error) {
|
|
// Generate a random key to use to encrypt the document. Excel uses 32 bytes. We'll use the password to encrypt this key.
|
|
packageKey, _ := randomBytes(32)
|
|
keyDataSaltValue, _ := randomBytes(16)
|
|
keyEncryptors, _ := randomBytes(16)
|
|
encryptionInfo := Encryption{
|
|
KeyData: KeyData{
|
|
BlockSize: 16,
|
|
KeyBits: len(packageKey) * 8,
|
|
HashSize: 64,
|
|
CipherAlgorithm: "AES",
|
|
CipherChaining: "ChainingModeCBC",
|
|
HashAlgorithm: "SHA512",
|
|
SaltValue: base64.StdEncoding.EncodeToString(keyDataSaltValue),
|
|
},
|
|
KeyEncryptors: KeyEncryptors{KeyEncryptor: []KeyEncryptor{{
|
|
EncryptedKey: EncryptedKey{SpinCount: 100000, KeyData: KeyData{
|
|
CipherAlgorithm: "AES",
|
|
CipherChaining: "ChainingModeCBC",
|
|
HashAlgorithm: "SHA512",
|
|
HashSize: 64,
|
|
BlockSize: 16,
|
|
KeyBits: 256,
|
|
SaltValue: base64.StdEncoding.EncodeToString(keyEncryptors)},
|
|
}}},
|
|
},
|
|
}
|
|
|
|
// Package Encryption
|
|
|
|
// Encrypt package using the package key.
|
|
encryptedPackage, err := cryptPackage(true, packageKey, raw, encryptionInfo)
|
|
if err != nil {
|
|
return
|
|
}
|
|
|
|
// Data Integrity
|
|
|
|
// Create the data integrity fields used by clients for integrity checks.
|
|
// Generate a random array of bytes to use in HMAC. The docs say to use the same length as the key salt, but Excel seems to use 64.
|
|
hmacKey, _ := randomBytes(64)
|
|
if err != nil {
|
|
return
|
|
}
|
|
// Create an initialization vector using the package encryption info and the appropriate block key.
|
|
hmacKeyIV, err := createIV(blockKeyHmacKey, encryptionInfo)
|
|
if err != nil {
|
|
return
|
|
}
|
|
// Use the package key and the IV to encrypt the HMAC key.
|
|
encryptedHmacKey, _ := crypt(true, encryptionInfo.KeyData.CipherAlgorithm, encryptionInfo.KeyData.CipherChaining, packageKey, hmacKeyIV, hmacKey)
|
|
// Create the HMAC.
|
|
h := hmac.New(sha512.New, append(hmacKey, encryptedPackage...))
|
|
for _, buf := range [][]byte{hmacKey, encryptedPackage} {
|
|
_, _ = h.Write(buf)
|
|
}
|
|
hmacValue := h.Sum(nil)
|
|
// Generate an initialization vector for encrypting the resulting HMAC value.
|
|
hmacValueIV, err := createIV(blockKeyHmacValue, encryptionInfo)
|
|
if err != nil {
|
|
return
|
|
}
|
|
// Encrypt the value.
|
|
encryptedHmacValue, _ := crypt(true, encryptionInfo.KeyData.CipherAlgorithm, encryptionInfo.KeyData.CipherChaining, packageKey, hmacValueIV, hmacValue)
|
|
// Put the encrypted key and value on the encryption info.
|
|
encryptionInfo.DataIntegrity.EncryptedHmacKey = base64.StdEncoding.EncodeToString(encryptedHmacKey)
|
|
encryptionInfo.DataIntegrity.EncryptedHmacValue = base64.StdEncoding.EncodeToString(encryptedHmacValue)
|
|
|
|
// Key Encryption
|
|
|
|
// Convert the password to an encryption key.
|
|
key, err := convertPasswdToKey(opt.Password, blockKey, encryptionInfo)
|
|
if err != nil {
|
|
return
|
|
}
|
|
// Encrypt the package key with the encryption key.
|
|
encryptedKeyValue, _ := crypt(true, encryptionInfo.KeyEncryptors.KeyEncryptor[0].EncryptedKey.CipherAlgorithm, encryptionInfo.KeyEncryptors.KeyEncryptor[0].EncryptedKey.CipherChaining, key, keyEncryptors, packageKey)
|
|
encryptionInfo.KeyEncryptors.KeyEncryptor[0].EncryptedKey.EncryptedKeyValue = base64.StdEncoding.EncodeToString(encryptedKeyValue)
|
|
|
|
// Verifier hash
|
|
|
|
// Create a random byte array for hashing.
|
|
verifierHashInput, _ := randomBytes(16)
|
|
// Create an encryption key from the password for the input.
|
|
verifierHashInputKey, err := convertPasswdToKey(opt.Password, blockKeyVerifierHashInput, encryptionInfo)
|
|
if err != nil {
|
|
return
|
|
}
|
|
// Use the key to encrypt the verifier input.
|
|
encryptedVerifierHashInput, err := crypt(true, encryptionInfo.KeyData.CipherAlgorithm, encryptionInfo.KeyData.CipherChaining, verifierHashInputKey, keyEncryptors, verifierHashInput)
|
|
if err != nil {
|
|
return
|
|
}
|
|
encryptionInfo.KeyEncryptors.KeyEncryptor[0].EncryptedKey.EncryptedVerifierHashInput = base64.StdEncoding.EncodeToString(encryptedVerifierHashInput)
|
|
// Create a hash of the input.
|
|
verifierHashValue := hashing(encryptionInfo.KeyData.HashAlgorithm, verifierHashInput)
|
|
// Create an encryption key from the password for the hash.
|
|
verifierHashValueKey, err := convertPasswdToKey(opt.Password, blockKeyVerifierHashValue, encryptionInfo)
|
|
if err != nil {
|
|
return
|
|
}
|
|
// Use the key to encrypt the hash value.
|
|
encryptedVerifierHashValue, err := crypt(true, encryptionInfo.KeyData.CipherAlgorithm, encryptionInfo.KeyData.CipherChaining, verifierHashValueKey, keyEncryptors, verifierHashValue)
|
|
if err != nil {
|
|
return
|
|
}
|
|
encryptionInfo.KeyEncryptors.KeyEncryptor[0].EncryptedKey.EncryptedVerifierHashValue = base64.StdEncoding.EncodeToString(encryptedVerifierHashValue)
|
|
// Marshal the encryption info buffer.
|
|
encryptionInfoBuffer, err := xml.Marshal(encryptionInfo)
|
|
if err != nil {
|
|
return
|
|
}
|
|
// TODO: Create a new CFB.
|
|
_, _ = encryptedPackage, encryptionInfoBuffer
|
|
err = errors.New("not support encryption currently")
|
|
return
|
|
}
|
|
|
|
// extractPart extract data from storage by specified part name.
|
|
func extractPart(doc *mscfb.Reader) (encryptionInfoBuf, encryptedPackageBuf []byte) {
|
|
for entry, err := doc.Next(); err == nil; entry, err = doc.Next() {
|
|
switch entry.Name {
|
|
case "EncryptionInfo":
|
|
buf := make([]byte, entry.Size)
|
|
i, _ := doc.Read(buf)
|
|
if i > 0 {
|
|
encryptionInfoBuf = buf
|
|
break
|
|
}
|
|
case "EncryptedPackage":
|
|
buf := make([]byte, entry.Size)
|
|
i, _ := doc.Read(buf)
|
|
if i > 0 {
|
|
encryptedPackageBuf = buf
|
|
break
|
|
}
|
|
}
|
|
}
|
|
return
|
|
}
|
|
|
|
// encryptionMechanism parse password-protected documents created mechanism.
|
|
func encryptionMechanism(buffer []byte) (mechanism string, err error) {
|
|
if len(buffer) < 4 {
|
|
err = errors.New("unknown encryption mechanism")
|
|
return
|
|
}
|
|
versionMajor, versionMinor := binary.LittleEndian.Uint16(buffer[0:2]), binary.LittleEndian.Uint16(buffer[2:4])
|
|
if versionMajor == 4 && versionMinor == 4 {
|
|
mechanism = "agile"
|
|
return
|
|
} else if (2 <= versionMajor && versionMajor <= 4) && versionMinor == 2 {
|
|
mechanism = "standard"
|
|
return
|
|
} else if (versionMajor == 3 || versionMajor == 4) && versionMinor == 3 {
|
|
mechanism = "extensible"
|
|
}
|
|
err = errors.New("unsupport encryption mechanism")
|
|
return
|
|
}
|
|
|
|
// ECMA-376 Standard Encryption
|
|
|
|
// standardDecrypt decrypt the CFB file format with ECMA-376 standard encryption.
|
|
func standardDecrypt(encryptionInfoBuf, encryptedPackageBuf []byte, opt *Options) ([]byte, error) {
|
|
encryptionHeaderSize := binary.LittleEndian.Uint32(encryptionInfoBuf[8:12])
|
|
block := encryptionInfoBuf[12 : 12+encryptionHeaderSize]
|
|
header := StandardEncryptionHeader{
|
|
Flags: binary.LittleEndian.Uint32(block[:4]),
|
|
SizeExtra: binary.LittleEndian.Uint32(block[4:8]),
|
|
AlgID: binary.LittleEndian.Uint32(block[8:12]),
|
|
AlgIDHash: binary.LittleEndian.Uint32(block[12:16]),
|
|
KeySize: binary.LittleEndian.Uint32(block[16:20]),
|
|
ProviderType: binary.LittleEndian.Uint32(block[20:24]),
|
|
Reserved1: binary.LittleEndian.Uint32(block[24:28]),
|
|
Reserved2: binary.LittleEndian.Uint32(block[28:32]),
|
|
CspName: string(block[32:]),
|
|
}
|
|
block = encryptionInfoBuf[12+encryptionHeaderSize:]
|
|
algIDMap := map[uint32]string{
|
|
0x0000660E: "AES-128",
|
|
0x0000660F: "AES-192",
|
|
0x00006610: "AES-256",
|
|
}
|
|
algorithm := "AES"
|
|
_, ok := algIDMap[header.AlgID]
|
|
if !ok {
|
|
algorithm = "RC4"
|
|
}
|
|
verifier := standardEncryptionVerifier(algorithm, block)
|
|
secretKey, err := standardConvertPasswdToKey(header, verifier, opt)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
// decrypted data
|
|
x := encryptedPackageBuf[8:]
|
|
blob, err := aes.NewCipher(secretKey)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
decrypted := make([]byte, len(x))
|
|
size := 16
|
|
for bs, be := 0, size; bs < len(x); bs, be = bs+size, be+size {
|
|
blob.Decrypt(decrypted[bs:be], x[bs:be])
|
|
}
|
|
return decrypted, err
|
|
}
|
|
|
|
// standardEncryptionVerifier extract ECMA-376 standard encryption verifier.
|
|
func standardEncryptionVerifier(algorithm string, blob []byte) StandardEncryptionVerifier {
|
|
verifier := StandardEncryptionVerifier{
|
|
SaltSize: binary.LittleEndian.Uint32(blob[:4]),
|
|
Salt: blob[4:20],
|
|
EncryptedVerifier: blob[20:36],
|
|
VerifierHashSize: binary.LittleEndian.Uint32(blob[36:40]),
|
|
}
|
|
if algorithm == "RC4" {
|
|
verifier.EncryptedVerifierHash = blob[40:60]
|
|
} else if algorithm == "AES" {
|
|
verifier.EncryptedVerifierHash = blob[40:72]
|
|
}
|
|
return verifier
|
|
}
|
|
|
|
// standardConvertPasswdToKey generate intermediate key from given password.
|
|
func standardConvertPasswdToKey(header StandardEncryptionHeader, verifier StandardEncryptionVerifier, opt *Options) ([]byte, error) {
|
|
encoder := unicode.UTF16(unicode.LittleEndian, unicode.IgnoreBOM).NewEncoder()
|
|
passwordBuffer, err := encoder.Bytes([]byte(opt.Password))
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
key := hashing("sha1", verifier.Salt, passwordBuffer)
|
|
for i := 0; i < iterCount; i++ {
|
|
iterator := createUInt32LEBuffer(i, 4)
|
|
key = hashing("sha1", iterator, key)
|
|
}
|
|
var block int
|
|
hfinal := hashing("sha1", key, createUInt32LEBuffer(block, 4))
|
|
cbRequiredKeyLength := int(header.KeySize) / 8
|
|
cbHash := sha1.Size
|
|
buf1 := bytes.Repeat([]byte{0x36}, 64)
|
|
buf1 = append(standardXORBytes(hfinal, buf1[:cbHash]), buf1[cbHash:]...)
|
|
x1 := hashing("sha1", buf1)
|
|
buf2 := bytes.Repeat([]byte{0x5c}, 64)
|
|
buf2 = append(standardXORBytes(hfinal, buf2[:cbHash]), buf2[cbHash:]...)
|
|
x2 := hashing("sha1", buf2)
|
|
x3 := append(x1, x2...)
|
|
keyDerived := x3[:cbRequiredKeyLength]
|
|
return keyDerived, err
|
|
}
|
|
|
|
// standardXORBytes perform XOR operations for two bytes slice.
|
|
func standardXORBytes(a, b []byte) []byte {
|
|
r := make([][2]byte, len(a))
|
|
for i, e := range a {
|
|
r[i] = [2]byte{e, b[i]}
|
|
}
|
|
buf := make([]byte, len(a))
|
|
for p, q := range r {
|
|
buf[p] = q[0] ^ q[1]
|
|
}
|
|
return buf
|
|
}
|
|
|
|
// ECMA-376 Agile Encryption
|
|
|
|
// agileDecrypt decrypt the CFB file format with ECMA-376 agile encryption.
|
|
// Support cryptographic algorithm: MD4, MD5, RIPEMD-160, SHA1, SHA256, SHA384 and SHA512.
|
|
func agileDecrypt(encryptionInfoBuf, encryptedPackageBuf []byte, opt *Options) (packageBuf []byte, err error) {
|
|
var encryptionInfo Encryption
|
|
if encryptionInfo, err = parseEncryptionInfo(encryptionInfoBuf[8:]); err != nil {
|
|
return
|
|
}
|
|
// Convert the password into an encryption key.
|
|
key, err := convertPasswdToKey(opt.Password, blockKey, encryptionInfo)
|
|
if err != nil {
|
|
return
|
|
}
|
|
// Use the key to decrypt the package key.
|
|
encryptedKey := encryptionInfo.KeyEncryptors.KeyEncryptor[0].EncryptedKey
|
|
saltValue, err := base64.StdEncoding.DecodeString(encryptedKey.SaltValue)
|
|
if err != nil {
|
|
return
|
|
}
|
|
encryptedKeyValue, err := base64.StdEncoding.DecodeString(encryptedKey.EncryptedKeyValue)
|
|
if err != nil {
|
|
return
|
|
}
|
|
packageKey, _ := crypt(false, encryptedKey.CipherAlgorithm, encryptedKey.CipherChaining, key, saltValue, encryptedKeyValue)
|
|
// Use the package key to decrypt the package.
|
|
return cryptPackage(false, packageKey, encryptedPackageBuf, encryptionInfo)
|
|
}
|
|
|
|
// convertPasswdToKey convert the password into an encryption key.
|
|
func convertPasswdToKey(passwd string, blockKey []byte, encryption Encryption) (key []byte, err error) {
|
|
var b bytes.Buffer
|
|
saltValue, err := base64.StdEncoding.DecodeString(encryption.KeyEncryptors.KeyEncryptor[0].EncryptedKey.SaltValue)
|
|
if err != nil {
|
|
return
|
|
}
|
|
b.Write(saltValue)
|
|
encoder := unicode.UTF16(unicode.LittleEndian, unicode.IgnoreBOM).NewEncoder()
|
|
passwordBuffer, err := encoder.Bytes([]byte(passwd))
|
|
if err != nil {
|
|
return
|
|
}
|
|
b.Write(passwordBuffer)
|
|
// Generate the initial hash.
|
|
key = hashing(encryption.KeyData.HashAlgorithm, b.Bytes())
|
|
// Now regenerate until spin count.
|
|
for i := 0; i < encryption.KeyEncryptors.KeyEncryptor[0].EncryptedKey.SpinCount; i++ {
|
|
iterator := createUInt32LEBuffer(i, 4)
|
|
key = hashing(encryption.KeyData.HashAlgorithm, iterator, key)
|
|
}
|
|
// Now generate the final hash.
|
|
key = hashing(encryption.KeyData.HashAlgorithm, key, blockKey)
|
|
// Truncate or pad as needed to get to length of keyBits.
|
|
keyBytes := encryption.KeyEncryptors.KeyEncryptor[0].EncryptedKey.KeyBits / 8
|
|
if len(key) < keyBytes {
|
|
tmp := make([]byte, 0x36)
|
|
key = append(key, tmp...)
|
|
key = tmp
|
|
} else if len(key) > keyBytes {
|
|
key = key[:keyBytes]
|
|
}
|
|
return
|
|
}
|
|
|
|
// hashing data by specified hash algorithm.
|
|
func hashing(hashAlgorithm string, buffer ...[]byte) (key []byte) {
|
|
var hashMap = map[string]hash.Hash{
|
|
"md4": md4.New(),
|
|
"md5": md5.New(),
|
|
"ripemd-160": ripemd160.New(),
|
|
"sha1": sha1.New(),
|
|
"sha256": sha256.New(),
|
|
"sha384": sha512.New384(),
|
|
"sha512": sha512.New(),
|
|
}
|
|
handler, ok := hashMap[strings.ToLower(hashAlgorithm)]
|
|
if !ok {
|
|
return key
|
|
}
|
|
for _, buf := range buffer {
|
|
_, _ = handler.Write(buf)
|
|
}
|
|
key = handler.Sum(nil)
|
|
return key
|
|
}
|
|
|
|
// createUInt32LEBuffer create buffer with little endian 32-bit unsigned
|
|
// integer.
|
|
func createUInt32LEBuffer(value int, bufferSize int) []byte {
|
|
buf := make([]byte, bufferSize)
|
|
binary.LittleEndian.PutUint32(buf, uint32(value))
|
|
return buf
|
|
}
|
|
|
|
// parseEncryptionInfo parse the encryption info XML into an object.
|
|
func parseEncryptionInfo(encryptionInfo []byte) (encryption Encryption, err error) {
|
|
err = xml.Unmarshal(encryptionInfo, &encryption)
|
|
return
|
|
}
|
|
|
|
// crypt encrypt / decrypt input by given cipher algorithm, cipher chaining,
|
|
// key and initialization vector.
|
|
func crypt(encrypt bool, cipherAlgorithm, cipherChaining string, key, iv, input []byte) (packageKey []byte, err error) {
|
|
block, err := aes.NewCipher(key)
|
|
if err != nil {
|
|
return input, err
|
|
}
|
|
var stream cipher.BlockMode
|
|
if encrypt {
|
|
stream = cipher.NewCBCEncrypter(block, iv)
|
|
} else {
|
|
stream = cipher.NewCBCDecrypter(block, iv)
|
|
}
|
|
stream.CryptBlocks(input, input)
|
|
return input, nil
|
|
}
|
|
|
|
// cryptPackage encrypt / decrypt package by given packageKey and encryption
|
|
// info.
|
|
func cryptPackage(encrypt bool, packageKey, input []byte, encryption Encryption) (outputChunks []byte, err error) {
|
|
encryptedKey := encryption.KeyData
|
|
var offset = packageOffset
|
|
if encrypt {
|
|
offset = 0
|
|
}
|
|
var i, start, end int
|
|
var iv, outputChunk []byte
|
|
for end < len(input) {
|
|
start = end
|
|
end = start + packageEncryptionChunkSize
|
|
|
|
if end > len(input) {
|
|
end = len(input)
|
|
}
|
|
// Grab the next chunk
|
|
var inputChunk []byte
|
|
if (end + offset) < len(input) {
|
|
inputChunk = input[start+offset : end+offset]
|
|
} else {
|
|
inputChunk = input[start+offset : end]
|
|
}
|
|
|
|
// Pad the chunk if it is not an integer multiple of the block size
|
|
remainder := len(inputChunk) % encryptedKey.BlockSize
|
|
if remainder != 0 {
|
|
inputChunk = append(inputChunk, make([]byte, encryptedKey.BlockSize-remainder)...)
|
|
}
|
|
// Create the initialization vector
|
|
iv, err = createIV(i, encryption)
|
|
if err != nil {
|
|
return
|
|
}
|
|
// Encrypt/decrypt the chunk and add it to the array
|
|
outputChunk, err = crypt(encrypt, encryptedKey.CipherAlgorithm, encryptedKey.CipherChaining, packageKey, iv, inputChunk)
|
|
if err != nil {
|
|
return
|
|
}
|
|
outputChunks = append(outputChunks, outputChunk...)
|
|
i++
|
|
}
|
|
if encrypt {
|
|
outputChunks = append(createUInt32LEBuffer(len(input), 8), outputChunks...)
|
|
}
|
|
return
|
|
}
|
|
|
|
// createIV create an initialization vector (IV).
|
|
func createIV(blockKey interface{}, encryption Encryption) ([]byte, error) {
|
|
encryptedKey := encryption.KeyData
|
|
// Create the block key from the current index
|
|
var blockKeyBuf []byte
|
|
if reflect.TypeOf(blockKey).Kind() == reflect.Int {
|
|
blockKeyBuf = createUInt32LEBuffer(blockKey.(int), 4)
|
|
} else {
|
|
blockKeyBuf = blockKey.([]byte)
|
|
}
|
|
saltValue, err := base64.StdEncoding.DecodeString(encryptedKey.SaltValue)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
// Create the initialization vector by hashing the salt with the block key.
|
|
// Truncate or pad as needed to meet the block size.
|
|
iv := hashing(encryptedKey.HashAlgorithm, append(saltValue, blockKeyBuf...))
|
|
if len(iv) < encryptedKey.BlockSize {
|
|
tmp := make([]byte, 0x36)
|
|
iv = append(iv, tmp...)
|
|
iv = tmp
|
|
} else if len(iv) > encryptedKey.BlockSize {
|
|
iv = iv[0:encryptedKey.BlockSize]
|
|
}
|
|
return iv, nil
|
|
}
|
|
|
|
// randomBytes returns securely generated random bytes. It will return an error if the system's
|
|
// secure random number generator fails to function correctly, in which case the caller should not
|
|
// continue.
|
|
func randomBytes(n int) ([]byte, error) {
|
|
b := make([]byte, n)
|
|
_, err := rand.Read(b)
|
|
return b, err
|
|
}
|