forked from jiuyuan/InfiniTensor
Dev for 202303ddl (#66)
* add activation operatiopn relu, tanh, sigmoid on mlu * commit for format * add activation backward operation * add test for activation_backward * add test * add convbpfilter * fix * add transpsoe code and test * add trigon function operation on mlu: sin,cos,tan,asin,sinh,asinh * add copy operation on mlu * add ceil operation and floor operation * add operation clip * add operation cnnl div, test and test for divdemo bangc kernel * add divnonan operation and test * add erf operation * add exp operation * add operation fill * add log operation * add log1p operation * add l2loss operation * add maximum and minimum operation * add mseloss operation * add negTensor operation * add power operation * add reciprocal operation * add sqrt and rsqrt operation * add transform operation * add addn operation * add muln operation * cherrry pick some operation * add floordiv operation and floordivtrunc operation * add floormod operation * add cumsum operation * add det operation * add pad operation * format * add concat operation * format * add split operation * fix concat and split operation * add round operation * add pooling operation * add square operation * add squaredDifference operation * code format fix * add flip operation * code format fix * add hardtanh operation * add logic operation * add addcdiv and addcmul operation * add arange operation * add bitcompute operation * add net test * fmt Signed-off-by: YdrMaster <ydrml@hotmail.com> * style: rename Signed-off-by: YdrMaster <ydrml@hotmail.com> * fix: 用 NativeCpuRuntime 替换 CpuRuntime Signed-off-by: YdrMaster <ydrml@hotmail.com> * fix code * fix code * fix code by review suggestion * remove operation which is not the onnx operation * fix format * clang format * refactor: tensor 的 print 加一层模板的 dataToString Signed-off-by: YdrMaster <ydrml@hotmail.com> * fix: onnx 导出 Signed-off-by: YdrMaster <ydrml@hotmail.com> * feat: 增加计算图优化接口 Signed-off-by: YdrMaster <ydrml@hotmail.com> * add clip operation * feat: 支持导入 clip Signed-off-by: YdrMaster <ydrml@hotmail.com> * test: 导入导出测试加入 ci Signed-off-by: YdrMaster <ydrml@hotmail.com> * fix batch norm * feat: 增加 Shape 算子 Signed-off-by: YdrMaster <ydrml@hotmail.com> * feat: 支持导入 unsqueeze Signed-off-by: YdrMaster <ydrml@hotmail.com> * fix: 修正 clip 接口 feat: 支持导入 transpose Signed-off-by: YdrMaster <ydrml@hotmail.com> * add broadcast operation * fix elementwise-broadcast * fix elementwise broadcast * add broadcast for gpu elementsie * feat: pad 支持 axes 负数 feat: 不支持的 padding 导出为独立的 pad 算子 feat: 支持导入 onnxsim 过的 inception Signed-off-by: YdrMaster <ydrml@hotmail.com> * fix: 修正池化的测试 Signed-off-by: YdrMaster <ydrml@hotmail.com> * feat: 导出 pads,支持 inception 导入导出,已加入 ci Signed-off-by: YdrMaster <ydrml@hotmail.com> * feat: 支持 densenet 导入导出,并加入 ci Signed-off-by: YdrMaster <ydrml@hotmail.com> * feat: 导入 squeeze Signed-off-by: YdrMaster <ydrml@hotmail.com> * fix softmax * feat: 导出 clip 和 transpose Signed-off-by: YdrMaster <ydrml@hotmail.com> * feat: 支持 Conv 的 bias Signed-off-by: YdrMaster <ydrml@hotmail.com> * fix: bias of conv Signed-off-by: YdrMaster <ydrml@hotmail.com> * fix: bias of conv Signed-off-by: YdrMaster <ydrml@hotmail.com> * feat: 导入 split Signed-off-by: YdrMaster <ydrml@hotmail.com> * feat: 导出 split Signed-off-by: YdrMaster <ydrml@hotmail.com> * fix: conv Signed-off-by: YdrMaster <ydrml@hotmail.com> * fix: conv group Signed-off-by: YdrMaster <ydrml@hotmail.com> * fix: matmul 的 bias 没有放在输入里,修正 Signed-off-by: YdrMaster <ydrml@hotmail.com> * fix exmaple * fix: 改正 reduce_mean 导出 Signed-off-by: YdrMaster <ydrml@hotmail.com> * refactor: 修改 slice 实现与 onnx 一致 Signed-off-by: YdrMaster <ydrml@hotmail.com> * style: 不导出两个 runtime 函数 Signed-off-by: YdrMaster <ydrml@hotmail.com> * doc: 中文使用指南 Signed-off-by: YdrMaster <ydrml@hotmail.com> * doc: 补全指南 Signed-off-by: YdrMaster <ydrml@hotmail.com> * fix: 修复导入数据的问题 Signed-off-by: YdrMaster <ydrml@hotmail.com> * fmt Signed-off-by: YdrMaster <ydrml@hotmail.com> * feat: 添加 Dropout 基本结构,但不支持两个输出是不同的类型 Signed-off-by: YdrMaster <ydrml@hotmail.com> * feat: 重新导出优化接口 feat: dropout 导入 Signed-off-by: YdrMaster <ydrml@hotmail.com> * build: BANG 选项加入 Makefile Signed-off-by: YdrMaster <ydrml@hotmail.com> * fxi code, change of test/kernels/bang/test* is use NativeCpuRuntime. chaneg of include/bang/bang_runtime is for the cntoolkit upgrade. * feat: 导出 bang runtime Signed-off-by: YdrMaster <ydrml@hotmail.com> * add USE_BANG=1 * fix matmul * fix reshape * fix * fix activation * fix transpose * format * format * update Makefile Signed-off-by: YdrMaster <ydrml@hotmail.com> * feat: 支持导入导出 ConvTranspose Signed-off-by: YdrMaster <ydrml@hotmail.com> * add prelu on mlu * fix: ConvTranspose Signed-off-by: YdrMaster <ydrml@hotmail.com> * feat: 支持导入导出 PRelu Signed-off-by: YdrMaster <ydrml@hotmail.com> * add convtrans on mlu * fmt Signed-off-by: YdrMaster <ydrml@hotmail.com> * docs: 更新 README_CN.md Signed-off-by: YdrMaster <ydrml@hotmail.com> * fix code by review suggestions * style Signed-off-by: YdrMaster <ydrml@hotmail.com> * fix: Softmax 的 axis 可以用默认值?感觉是 onnx 不标准 Signed-off-by: YdrMaster <ydrml@hotmail.com> * fix cuda & intelcpu bugs after merging --------- Signed-off-by: YdrMaster <ydrml@hotmail.com> Co-authored-by: wanghailu <wanghailu0717@163.com> Co-authored-by: wanghailu <wanghailu@qiyuanlab.com> Co-authored-by: whjthu <haojie0429@gmail.com>
This commit is contained in:
parent
a1974aabcd
commit
26f0d13c26
|
@ -2,6 +2,9 @@ name: Build and test cpu
|
|||
on:
|
||||
push:
|
||||
branch: 'master'
|
||||
paths-ignore:
|
||||
- '**.md'
|
||||
- 'LICENSE'
|
||||
pull_request:
|
||||
paths-ignore:
|
||||
- '**.md'
|
||||
|
@ -11,8 +14,11 @@ env:
|
|||
protobuf-download: https://github.com/protocolbuffers/protobuf/releases/download/v21.12/protobuf-cpp-3.21.12.tar.gz
|
||||
protobuf-version: "3.21.12"
|
||||
python-version: "3.10"
|
||||
|
||||
resnet-download: https://github.com/onnx/models/raw/main/vision/classification/resnet/model/resnet18-v2-7.onnx
|
||||
resnet-file: resnet18-v2-7.onnx
|
||||
inception-download: https://media.githubusercontent.com/media/onnx/models/main/vision/classification/inception_and_googlenet/inception_v2/model/inception-v2-9.onnx
|
||||
densenet-download: https://github.com/onnx/models/raw/main/vision/classification/densenet-121/model/densenet-12.onnx
|
||||
efficientnet-download: https://github.com/onnx/models/raw/main/vision/classification/efficientnet-lite4/model/efficientnet-lite4-11.onnx
|
||||
|
||||
jobs:
|
||||
build:
|
||||
|
@ -31,28 +37,28 @@ jobs:
|
|||
- name: Install libdw
|
||||
run: sudo apt-get update && sudo apt-get install libdw-dev
|
||||
|
||||
- name: Cache protobuf
|
||||
id: cache-protobuf
|
||||
uses: actions/cache@v3
|
||||
with:
|
||||
path: protobuf-${{ env.protobuf-version }}
|
||||
key: protobuf-${{ env.protobuf-version }}
|
||||
# - name: Cache protobuf
|
||||
# id: cache-protobuf
|
||||
# uses: actions/cache@v3
|
||||
# with:
|
||||
# path: protobuf-${{ env.protobuf-version }}
|
||||
# key: protobuf-${{ env.protobuf-version }}
|
||||
|
||||
- name: Download and compile protobuf
|
||||
if: steps.cache-protobuf.outputs.cache-hit != 'true'
|
||||
run: |
|
||||
wget ${{ env.protobuf-download }}
|
||||
tar xf protobuf-cpp-${{ env.protobuf-version }}.tar.gz
|
||||
cd protobuf-${{ env.protobuf-version }}
|
||||
./autogen.sh
|
||||
./configure CFLAGS="-fPIC" CXXFLAGS="-fPIC"
|
||||
make -j8
|
||||
# - name: Download and compile protobuf
|
||||
# if: steps.cache-protobuf.outputs.cache-hit != 'true'
|
||||
# run: |
|
||||
# wget ${{ env.protobuf-download }}
|
||||
# tar xf protobuf-cpp-${{ env.protobuf-version }}.tar.gz
|
||||
# cd protobuf-${{ env.protobuf-version }}
|
||||
# ./autogen.sh
|
||||
# ./configure CFLAGS="-fPIC" CXXFLAGS="-fPIC"
|
||||
# make -j8
|
||||
|
||||
- name: Install protobuf
|
||||
run: |
|
||||
cd protobuf-${{ env.protobuf-version }}
|
||||
sudo make install
|
||||
sudo ldconfig
|
||||
# - name: Install protobuf
|
||||
# run: |
|
||||
# cd protobuf-${{ env.protobuf-version }}
|
||||
# sudo make install
|
||||
# sudo ldconfig
|
||||
|
||||
- name: Build
|
||||
run: make
|
||||
|
@ -65,8 +71,12 @@ jobs:
|
|||
python -m pip install --upgrade pip
|
||||
make install-python
|
||||
|
||||
- name: Download test model
|
||||
run: wget ${{ env.resnet-download }}
|
||||
- name: Download test models
|
||||
run: |
|
||||
wget ${{ env.resnet-download }}
|
||||
wget ${{ env.inception-download }}
|
||||
wget ${{ env.densenet-download }}
|
||||
wget ${{ env.efficientnet-download }}
|
||||
|
||||
- name: Test onnx frontend
|
||||
run: make test-onnx
|
||||
|
|
|
@ -2,6 +2,9 @@ name: clang-format Check
|
|||
on:
|
||||
push:
|
||||
branch: 'master'
|
||||
paths-ignore:
|
||||
- '**.md'
|
||||
- 'LICENSE'
|
||||
pull_request:
|
||||
paths-ignore:
|
||||
- '**.md'
|
||||
|
|
|
@ -10,3 +10,6 @@
|
|||
[submodule "3rd-party/backward-cpp"]
|
||||
path = 3rd-party/backward-cpp
|
||||
url = git@github.com:bombela/backward-cpp.git
|
||||
[submodule "example"]
|
||||
path = example
|
||||
url = git@github.com:wanghailu0717/NNmodel.git
|
||||
|
|
|
@ -7,8 +7,8 @@ option(USE_CUDA "Support CUDA GPU" OFF)
|
|||
option(USE_BANG "Support BANG MLU" OFF)
|
||||
option(USE_INTELCPU "Support INTELCPU" OFF)
|
||||
option(USE_BACKTRACE "Print backtrace on exception and segmentation fault" ON)
|
||||
option(USE_PROTOBUF "Serialize and deserialize tensors" ON)
|
||||
option(BUILD_TEST "Build tests" ON)
|
||||
option(USE_PROTOBUF "Serialize and deserialize tensors" OFF)
|
||||
option(BUILD_TEST "Build tests" OFF)
|
||||
|
||||
cmake_dependent_option(BUILD_TEST_CORE "Build tests for core components" ON BUILD_TEST OFF)
|
||||
cmake_dependent_option(BUILD_TEST_PET "Build tests for PET" OFF BUILD_TEST OFF)
|
||||
|
@ -151,6 +151,7 @@ if(USE_INTELCPU)
|
|||
set(DNNL_CONFIGURATION "cpu_gomp")
|
||||
find_package(dnnl CONFIG REQUIRED)
|
||||
if(dnnl_FOUND)
|
||||
add_compile_definitions(USE_MKL=1)
|
||||
include_directories(BEFORE ${dnnl_DIR}/../../../cpu_gomp/include/)
|
||||
link_directories(${dnnl_DIR}/../../../cpu_gomp/lib)
|
||||
target_link_libraries(InfiniTensor dnnl)
|
||||
|
@ -179,6 +180,7 @@ if(USE_CUDA)
|
|||
endif()
|
||||
|
||||
if(USE_BANG)
|
||||
add_compile_definitions(USE_BANG=1)
|
||||
include_directories(src/kernels/mlu/include)
|
||||
################################################################################
|
||||
# Neuware Evironment
|
||||
|
@ -212,10 +214,8 @@ if(USE_BANG)
|
|||
################################################################################
|
||||
# BangC Kernels
|
||||
################################################################################
|
||||
add_subdirectory(src/kernels/mlu)
|
||||
|
||||
target_link_libraries(InfiniTensor ${CAMBRICON_CNNL} ${CAMBRICON_CNRT} ${CAMBRICON_CNDRV} stdc++)
|
||||
target_link_libraries(InfiniTensor bangops)
|
||||
endif()
|
||||
|
||||
# # Python bindings
|
||||
|
|
13
Makefile
13
Makefile
|
@ -1,14 +1,17 @@
|
|||
.PHONY : build clean install-python test-cpp test-onnx
|
||||
|
||||
TYPE ?= release
|
||||
CUDA ?= off
|
||||
CUDA ?= OFF
|
||||
BANG ?= OFF
|
||||
INTELCPU ?= off
|
||||
BACKTRACE ?= ON
|
||||
TEST ?= ON
|
||||
|
||||
CMAKE_OPT = -DCMAKE_BUILD_TYPE=$(TYPE)
|
||||
|
||||
ifeq ($(CUDA), ON)
|
||||
CMAKE_OPT += -DUSE_CUDA=ON
|
||||
endif
|
||||
CMAKE_OPT += -DUSE_CUDA=$(CUDA)
|
||||
CMAKE_OPT += -DUSE_BANG=$(BANG)
|
||||
CMAKE_OPT += -DUSE_BACKTRACE=$(BACKTRACE)
|
||||
CMAKE_OPT += -DBUILD_TEST=$(TEST)
|
||||
|
||||
ifeq ($(INTELCPU), ON)
|
||||
CMAKE_OPT += -DUSE_INTELCPU=ON -DCMAKE_CXX_COMPILER=dpcpp
|
||||
|
|
|
@ -24,7 +24,9 @@ cmake -DUSE_INTELCPU=ON -DCMAKE_CXX_COMPILER=dpcpp .. && make -j 12
|
|||
|
||||
---
|
||||
|
||||
> Sets env: `CUDA=ON` to enable cuda.
|
||||
> - Sets env: `TEST=OFF` to accelerate compiling.
|
||||
> - Sets env: `CUDA=ON` to enable cuda.
|
||||
> - Sets env: `BANG=ON` to enable bang.
|
||||
|
||||
### CMake Options
|
||||
|
||||
|
|
|
@ -0,0 +1,221 @@
|
|||
# 使用指南
|
||||
|
||||
## 目录
|
||||
|
||||
- [编译](#编译)
|
||||
- [使用](#使用)
|
||||
- [python-前端应用指南](#python-前端应用指南)
|
||||
- [导入-onnx-模型](#导入-onnx-模型)
|
||||
- [导出-onnx-模型](#导出-onnx-模型)
|
||||
- [执行推理](#执行推理)
|
||||
- [测试](#测试)
|
||||
|
||||
## 编译
|
||||
|
||||
推荐使用 Ubuntu-22.04,本文以此环境为例。
|
||||
|
||||
1. 使用 apt 安装依赖
|
||||
|
||||
> 如果不使用 Ubuntu-22.04,部分软件版本可能不够高。
|
||||
|
||||
```bash
|
||||
sudo apt-get install make cmake build-essential python-is-python3 python-dev-is-python3 python3-pip libdw-dev
|
||||
```
|
||||
|
||||
2. 更新 pip 并换清华源
|
||||
|
||||
```bash
|
||||
python -m pip install -i https://pypi.tuna.tsinghua.edu.cn/simple --upgrade pip
|
||||
pip config set global.index-url https://pypi.tuna.tsinghua.edu.cn/simple
|
||||
```
|
||||
|
||||
3. 编译并安装 python 库
|
||||
|
||||
> 第一次执行会同时安装 python 依赖库,比较慢
|
||||
|
||||
仅编译 CPU 部分:
|
||||
|
||||
```bash
|
||||
make install-python
|
||||
```
|
||||
|
||||
编译 GPU 部分:
|
||||
|
||||
```bash
|
||||
make install-python CUDA=ON
|
||||
```
|
||||
|
||||
## 使用
|
||||
|
||||
项目管理功能已写到 [Makefile](Makefile),支持下列功能:
|
||||
|
||||
- 编译项目:`make`/`make build`
|
||||
- 清理生成文件:`make clean`
|
||||
- 安装 python 库:`make install-python`
|
||||
- 测试 c++ 后端:`make test-cpp`
|
||||
- 测试 python 前端:`make test-onnx`
|
||||
|
||||
并使用下列环境变量传递选项参数:
|
||||
|
||||
- `TYPE`:编译模式(`debug`/`release`),默认值为 `release`
|
||||
- `CUDA`:是否编译 CUDA 后端,默认为 `OFF`,`ON` 打开
|
||||
- `BANG`:是否编译寒武纪后端,默认为 `OFF`,`ON` 打开
|
||||
- `BACKTRACE`:是否启用栈回溯,默认为 `ON`,`OFF` 关闭,建议调试时打开
|
||||
- `TEST`:是否编译 `googletest`,默认为 `ON`,`OFF` 关闭,只有 `test-cpp` 时必要
|
||||
|
||||
## python 前端应用指南
|
||||
|
||||
`make install-python` 会将项目的 python 前端以 `pyinfinitensor` 为名字安装到系统目录,可以直接 `import pyinfinitensor` 来使用。现阶段,项目的主要用法是从 onnx 导入模型进行优化,然后可以再导出优化后的模型到 onnx,也可以直接运行推理。
|
||||
|
||||
### 导入 onnx 模型
|
||||
|
||||
支持的模型:
|
||||
|
||||
- [x] [ResNet18-v2](https://github.com/onnx/models/blob/main/vision/classification/resnet/model/resnet18-v2-7.onnx)
|
||||
- [x] [DenseNet-121-12](https://github.com/onnx/models/blob/main/vision/classification/densenet-121/model/densenet-12.onnx)
|
||||
- [x] [Inception-2](https://github.com/onnx/models/blob/main/vision/classification/inception_and_googlenet/inception_v2/model/inception-v2-9.onnx)
|
||||
- [x] [EfficientNet-Lite4](https://github.com/onnx/models/blob/main/vision/classification/efficientnet-lite4/model/efficientnet-lite4-11.onnx)
|
||||
|
||||
```python
|
||||
import onnx
|
||||
from pyinfinitensor.onnx import OnnxStub
|
||||
from pyinfinitensor import backend
|
||||
|
||||
stub = OnnxStub(onnx.load("model_file"), backend.cpu_runtime())
|
||||
```
|
||||
|
||||
[`onnx.load`](https://onnx.ai/onnx/api/serialization.html#load-a-model) 是 onnx 提供的加载函数,将 onnx 文件读取为保存在内存中的 onnx 模型。
|
||||
|
||||
`OnnxStub` 是 onnx 模型在项目中的表示,通过构造这个对象,将 onnx 模型导入到项目中。其构造器的第一个参数是 onnx 模型文件;第二个参数是模型运行的后端运行时,可以是 `backend.cpu_runtime()`、`backend.cuda_runtime()` 或 `backend.bang_runtime()`。
|
||||
|
||||
构造出的 stub 对象可以用于操作项目中的模型和运行时。
|
||||
|
||||
### 优化
|
||||
|
||||
TODO
|
||||
|
||||
### 导出 onnx 模型
|
||||
|
||||
优化后的模型可以导出成 onnx 文件提供给其他运行时。
|
||||
|
||||
```python
|
||||
with open("optimized.onnx", "wb") as f:
|
||||
f.write(stub.to_onnx("optimized").SerializeToString())
|
||||
```
|
||||
|
||||
`stub.to_onnx(<name>)` 将模型转换为 onnx 模型对象,`<name>` 将填写到 onnx 模型的 `name` 字段。序列化到文件的代码见[官方示例](https://onnx.ai/onnx/intro/python.html#model-serialization)。
|
||||
|
||||
要可视化检查导出的模型文件,可以利用 [onnx 提供的功能](https://onnx.ai/onnx/api/shape_inference.html#infer-shapes)将所有的张量的形状推理出来再导出:
|
||||
|
||||
```python
|
||||
from onnx.shape_inference import infer_shapes
|
||||
|
||||
with open("optimized.onnx", "wb") as f:
|
||||
f.write(infer_shapes(stub.to_onnx("optimized")).SerializeToString())
|
||||
```
|
||||
|
||||
然后用 [Netron](https://netron.app/) 绘制计算图。
|
||||
|
||||
### 执行推理
|
||||
|
||||
也可以使用项目的运行时执行推理。
|
||||
|
||||
第一步是将数据传入计算图。`OnnxStub.inputs` 是一个 `Dict[str, Tensor]`,保存着模型的所有输入的名字和对象。可以用 [`items()`](https://docs.python.org/zh-cn/3/library/stdtypes.html#dict.items) 来遍历。
|
||||
|
||||
这个代码片段显示了如何打印出模型所有输入张量的名字、形状和对象指针:
|
||||
|
||||
```python
|
||||
for name, tensor in stub.inputs.items():
|
||||
print(name, tensor.shape(), tensor)
|
||||
```
|
||||
|
||||
对于 [resnet18-v2-7.onnx](https://github.com/onnx/models/blob/main/vision/classification/resnet/model/resnet18-v2-7.onnx),会打印出:
|
||||
|
||||
```plaintext
|
||||
data [1, 3, 224, 224] <backend.Tensor object at 0x7efeb828e3b0>
|
||||
```
|
||||
|
||||
当然,地址是随机的。这个输出表明需要输入一个名为 “data”,形为 1×3×224×224 的数据。通常来说,这表示一张 224×224 的 rgb 图片。而这个模型是一个 1000 分类的图像分类模型。
|
||||
|
||||
为了方便,这里我们向模型传入一个随机的数据。
|
||||
|
||||
```python
|
||||
import numpy
|
||||
|
||||
stub.init()
|
||||
for name, tensor in stub.inputs.items():
|
||||
print(name, tensor.shape(), tensor)
|
||||
input = numpy.random.random(tensor.shape()).astype(numpy.float32)
|
||||
tensor.copyin_float(input.flatten().tolist())
|
||||
```
|
||||
|
||||
`stub.init()` 为所有张量分配空间。空间是预分配的,所以不支持动态 size 的模型。
|
||||
|
||||
`tensor.copyin_float(<data>)` 向张量传入数据。其参数必须是一个 `List[float]`,即压平的数据。类似的函数还有 `copyin_int32(<data>)` 和 `copyin_int64(<data>)`
|
||||
|
||||
然后,调用 `stub.run()` 执行推理:
|
||||
|
||||
```python
|
||||
stub.run()
|
||||
```
|
||||
|
||||
最后,将结果拷贝出来,传入类似:
|
||||
|
||||
```python
|
||||
stub.init()
|
||||
for name, tensor in stub.outputs.items():
|
||||
print(name, tensor.shape(), tensor)
|
||||
print(tensor.copyout_float())
|
||||
```
|
||||
|
||||
## 测试
|
||||
|
||||
除了单元测试 `make test-cpp` 和 `make test-onnx` 之外,还可以用其他方式来测试单个模型导入导出和优化的正确性。
|
||||
|
||||
这个脚本利用 onnxruntime 来测试导出的模型是否与导入的模型等价:
|
||||
|
||||
```python
|
||||
import onnx
|
||||
import numpy
|
||||
import sys
|
||||
from onnx import ModelProto, ValueInfoProto
|
||||
from pyinfinitensor.onnx import OnnxStub
|
||||
from pyinfinitensor import backend
|
||||
from onnxruntime import InferenceSession
|
||||
|
||||
|
||||
def infer(model: ModelProto, input) -> dict:
|
||||
collection = set()
|
||||
for node in model.graph.node:
|
||||
for output in node.output:
|
||||
collection.add(output)
|
||||
model.graph.output.extend([ValueInfoProto(name=x) for x in collection])
|
||||
session = InferenceSession(model.SerializeToString())
|
||||
i = session.get_inputs()[0].name
|
||||
return dict(
|
||||
zip(
|
||||
[x.name for x in session.get_outputs()],
|
||||
[x.flatten() for x in session.run(None, {i: input})],
|
||||
)
|
||||
)
|
||||
|
||||
|
||||
model0 = onnx.load(sys.argv[1])
|
||||
model1 = OnnxStub(model0, backend.cpu_runtime()).to_onnx("new")
|
||||
|
||||
input_shape = [x.dim_value for x in model1.graph.input[0].type.tensor_type.shape.dim]
|
||||
input = numpy.random.random(input_shape).astype(numpy.float32)
|
||||
|
||||
output0 = infer(model0, input)[model0.graph.output[0].name]
|
||||
output1 = infer(model1, input)[model1.graph.output[0].name]
|
||||
|
||||
print("error =", sum((output1 - output0) ** 2) / len(output0))
|
||||
```
|
||||
|
||||
要运行脚本,先安装 onnxruntime:
|
||||
|
||||
```bash
|
||||
pip install onnxruntime
|
||||
```
|
||||
|
||||
打印出的 `error = ...` 是两个模型输出张量的均方误差。对于不同的模型,这个误差最小为 0,最大不超过 1e-9。
|
|
@ -0,0 +1 @@
|
|||
Subproject commit d6ac8c8c73bf83833a71b41e95820d4eb7741fa9
|
|
@ -1,22 +0,0 @@
|
|||
#pragma once
|
||||
#include "bang/bang_runtime.h"
|
||||
#include "bang_div.h"
|
||||
#include "operators/element_wise.h"
|
||||
namespace infini {
|
||||
|
||||
void element_wise_kernel(const RuntimeObj *obj, const Operator &_op) {
|
||||
auto op = as<ElementWiseObj>(_op);
|
||||
float *const aData = (op->getInputs(0)->getRawDataPtr<float *>());
|
||||
float *const bData = (op->getInputs(1)->getRawDataPtr<float *>());
|
||||
float *const cData = (op->getOutput()->getRawDataPtr<float *>());
|
||||
|
||||
auto dim = op->getInputs(0)->getDims();
|
||||
auto context = dynamic_cast<const BangRuntimeObj *>(obj);
|
||||
int n = dim[0], c = dim[1], h = dim[2], w = dim[3];
|
||||
if (op->getOpType() == OpType::Div)
|
||||
div_kernel(context->cnnlHandle(), aData, bData, cData, n * c * h * w);
|
||||
else
|
||||
IT_TODO_HALT();
|
||||
}
|
||||
|
||||
}; // namespace infini
|
|
@ -52,4 +52,14 @@ template <> inline DataType DataType::get<int16_t>() { return Int16; }
|
|||
template <> inline DataType DataType::get<int32_t>() { return Int32; }
|
||||
template <> inline DataType DataType::get<int64_t>() { return Int64; }
|
||||
|
||||
template <int index> struct DT {};
|
||||
template <> struct DT<0> { using t = float; };
|
||||
template <> struct DT<1> { using t = uint32_t; };
|
||||
template <> struct DT<2> { using t = uint8_t; };
|
||||
template <> struct DT<3> { using t = int8_t; };
|
||||
template <> struct DT<4> { using t = uint16_t; };
|
||||
template <> struct DT<5> { using t = int16_t; };
|
||||
template <> struct DT<6> { using t = int32_t; };
|
||||
template <> struct DT<7> { using t = int64_t; };
|
||||
|
||||
} // namespace infini
|
||||
|
|
|
@ -59,6 +59,8 @@ class GraphObj : public Object {
|
|||
*/
|
||||
bool topo_sort();
|
||||
|
||||
void optimize();
|
||||
|
||||
void dataMalloc();
|
||||
|
||||
/**
|
||||
|
|
|
@ -46,6 +46,9 @@ class GraphHandlerObj {
|
|||
|
||||
Tensor conv(Tensor input, Tensor weight, Tensor output, int ph, int pw,
|
||||
int sh, int sw, int dh, int dw);
|
||||
Tensor convTransposed2d(Tensor input, Tensor weight, Tensor output, int ph,
|
||||
int pw, int sh, int sw, int dh, int dw, int oph,
|
||||
int opw);
|
||||
Tensor matmul(Tensor a, Tensor b, Tensor y, bool transA, bool transB,
|
||||
Tensor bias, ActType act);
|
||||
Tensor batchNorm(Tensor input, Tensor output, Tensor mean, Tensor var,
|
||||
|
@ -68,10 +71,17 @@ class GraphHandlerObj {
|
|||
Tensor tanh(Tensor x, Tensor y);
|
||||
Tensor softmax(Tensor x, Tensor y, int axis);
|
||||
Tensor abs(Tensor x, Tensor y);
|
||||
Tensor shape(Tensor x, Tensor y);
|
||||
Tensor identity(Tensor x, Tensor y);
|
||||
Tensor flatten(Tensor s, Tensor y, int axis);
|
||||
Tensor pRelu(Tensor x, Tensor slope, Tensor y);
|
||||
Tensor clip(Tensor x, Tensor y, std::optional<float> min,
|
||||
std::optional<float> max);
|
||||
Tensor transpose(Tensor data, Tensor transposed, Shape perm);
|
||||
Tensor reshape(Tensor data, Tensor reshaped, Shape shape);
|
||||
Tensor concat(TensorVec inputs, Tensor output, int dim);
|
||||
TensorVec split(Tensor input, std::optional<TensorVec> outputs, int axis,
|
||||
int num_outputs);
|
||||
Tensor gather(Tensor data, Tensor indices, Tensor output, int axis);
|
||||
Tensor reduceMean(Tensor data, Tensor reduced,
|
||||
const optional<vector<int>> &axes, bool keepdims);
|
||||
|
@ -85,6 +95,8 @@ class GraphHandlerObj {
|
|||
|
||||
inline bool topo_sort() { return g->topo_sort(); }
|
||||
|
||||
inline void optimize() { g->optimize(); }
|
||||
|
||||
//------ runtime
|
||||
|
||||
inline void data_malloc() { g->dataMalloc(); }
|
||||
|
|
|
@ -6,6 +6,8 @@ enum class OpType {
|
|||
Unknown = 0,
|
||||
// linear
|
||||
Conv = 100,
|
||||
ConvBackwardFilter,
|
||||
ConvBackwardData,
|
||||
Matmul,
|
||||
ConvTrans,
|
||||
ConvTransNHWC,
|
||||
|
@ -34,10 +36,70 @@ enum class OpType {
|
|||
Softmax,
|
||||
Activation,
|
||||
Relu,
|
||||
ReluBackward,
|
||||
PRelu,
|
||||
Sigmoid,
|
||||
SigmoidBackward,
|
||||
Tanh,
|
||||
TanhBackward,
|
||||
Abs,
|
||||
Sin,
|
||||
Cos,
|
||||
Tan,
|
||||
ASin,
|
||||
ACos,
|
||||
ATan,
|
||||
SinH,
|
||||
CosH,
|
||||
TanH,
|
||||
ASinH,
|
||||
ACosH,
|
||||
ATanH,
|
||||
Resize,
|
||||
Arange,
|
||||
Shape,
|
||||
Copy,
|
||||
Ceil,
|
||||
Floor,
|
||||
Clip,
|
||||
Erf,
|
||||
Exp,
|
||||
Fill,
|
||||
Log,
|
||||
L2Loss,
|
||||
Maximum,
|
||||
Minimum,
|
||||
MSELoss,
|
||||
Neg,
|
||||
Power,
|
||||
Reciprocal,
|
||||
Sqrt,
|
||||
Rsqrt,
|
||||
Cast,
|
||||
FloorDiv,
|
||||
FloorMod,
|
||||
Det,
|
||||
Round,
|
||||
Square,
|
||||
SquaredDifference,
|
||||
Hardtanh,
|
||||
Equal,
|
||||
NotEqual,
|
||||
GreaterThan,
|
||||
GreaterEqual,
|
||||
LessThan,
|
||||
LessEqual,
|
||||
And,
|
||||
Or,
|
||||
Xor,
|
||||
Not,
|
||||
BitAnd,
|
||||
BitOr,
|
||||
BitXor,
|
||||
BitNot,
|
||||
BitLeftShift,
|
||||
BitRightShift,
|
||||
Dropout,
|
||||
//
|
||||
MemBound = 300,
|
||||
};
|
||||
|
@ -55,6 +117,8 @@ class OpRegistry {
|
|||
FOP(Unknown);
|
||||
// linear
|
||||
FOP(Conv);
|
||||
FOP(ConvBackwardFilter);
|
||||
FOP(ConvBackwardData);
|
||||
FOP(Matmul);
|
||||
FOP(ConvTrans);
|
||||
FOP(G2BMM);
|
||||
|
@ -76,15 +140,72 @@ class OpRegistry {
|
|||
FOP(ReduceMean);
|
||||
FOP(Reshape);
|
||||
FOP(Identity);
|
||||
FOP(Shape);
|
||||
// element wise
|
||||
FOP(BatchNorm);
|
||||
FOP(Softmax);
|
||||
FOP(Activation);
|
||||
FOP(Relu);
|
||||
FOP(ReluBackward);
|
||||
FOP(PRelu);
|
||||
FOP(Sigmoid);
|
||||
FOP(SigmoidBackward);
|
||||
FOP(Tanh);
|
||||
FOP(TanhBackward);
|
||||
FOP(Abs);
|
||||
FOP(ConvTransNHWC);
|
||||
FOP(Sin);
|
||||
FOP(Cos);
|
||||
FOP(Tan);
|
||||
FOP(ASin);
|
||||
FOP(ACos);
|
||||
FOP(ATan);
|
||||
FOP(SinH);
|
||||
FOP(CosH);
|
||||
FOP(TanH);
|
||||
FOP(ASinH);
|
||||
FOP(ACosH);
|
||||
FOP(ATanH);
|
||||
FOP(Copy);
|
||||
FOP(Ceil);
|
||||
FOP(Floor);
|
||||
FOP(Clip);
|
||||
FOP(Erf);
|
||||
FOP(Exp);
|
||||
FOP(Fill);
|
||||
FOP(Log);
|
||||
FOP(L2Loss);
|
||||
FOP(Maximum);
|
||||
FOP(Minimum);
|
||||
FOP(MSELoss);
|
||||
FOP(Neg);
|
||||
FOP(Power);
|
||||
FOP(Reciprocal);
|
||||
FOP(Sqrt);
|
||||
FOP(Rsqrt);
|
||||
FOP(Cast);
|
||||
FOP(FloorDiv);
|
||||
FOP(FloorMod);
|
||||
FOP(Det);
|
||||
FOP(Round);
|
||||
FOP(Square);
|
||||
FOP(SquaredDifference);
|
||||
FOP(Hardtanh);
|
||||
FOP(Equal);
|
||||
FOP(NotEqual);
|
||||
FOP(GreaterThan);
|
||||
FOP(GreaterEqual);
|
||||
FOP(LessThan);
|
||||
FOP(LessEqual);
|
||||
FOP(And);
|
||||
FOP(Or);
|
||||
FOP(Xor);
|
||||
FOP(Not);
|
||||
FOP(BitAnd);
|
||||
FOP(BitOr);
|
||||
FOP(BitXor);
|
||||
FOP(BitNot);
|
||||
FOP(BitLeftShift);
|
||||
FOP(BitRightShift);
|
||||
//
|
||||
FOP(MemBound);
|
||||
default:
|
||||
|
|
|
@ -73,7 +73,7 @@ class TensorObj : public TensorBaseObj {
|
|||
// FIXME: std::fucntion copies the generator instead of passing it by ref.
|
||||
// Thus the internal state of generator cannot be updated.
|
||||
void setData(
|
||||
const std::function<void(void *, size_t, DataType)> &generator) const;
|
||||
std::function<void(void *, size_t, DataType)> const &generator) const;
|
||||
Tensor clone() const {
|
||||
auto obj = make_ref<TensorObj>(*this);
|
||||
obj->freeData();
|
||||
|
@ -100,26 +100,53 @@ class TensorObj : public TensorBaseObj {
|
|||
template <typename T> bool equalData(const vector<T> &dataVector) {
|
||||
IT_ASSERT(DataType::get<T>() == dtype);
|
||||
IT_ASSERT(size() == dataVector.size());
|
||||
return equalDataImpl(getRawDataPtr<T *>(), dataVector.data(), size(),
|
||||
1e-6);
|
||||
return equalDataImpl(getRawDataPtr<T *>(), dataVector.data(), size());
|
||||
}
|
||||
|
||||
size_t getOffsetByBroadcastOffset(size_t bcOffset, Shape bcShape) const;
|
||||
|
||||
private:
|
||||
void printDataFloat(float *ptr) const;
|
||||
void printDataUint32_t(uint32_t *ptr) const;
|
||||
template <class T> string dataToString() const {
|
||||
std::stringstream builder;
|
||||
builder << "Tensor: " << guid << std::endl;
|
||||
|
||||
auto numDims = shape.size();
|
||||
auto dimSzVec = vector<int>(numDims, 1);
|
||||
auto ptr = data->getPtr<T *>();
|
||||
dimSzVec[numDims - 1] = shape[numDims - 1];
|
||||
|
||||
for (int i = numDims - 1; i != 0; --i)
|
||||
dimSzVec[i - 1] = dimSzVec[i] * shape[i - 1];
|
||||
|
||||
for (size_t i = 0, iEnd = size(); i < iEnd; ++i) {
|
||||
for (size_t j = 0; j < numDims; ++j)
|
||||
if (i % dimSzVec[j] == 0)
|
||||
builder << "[";
|
||||
|
||||
builder << ptr[i];
|
||||
for (size_t j = 0; j < numDims; ++j)
|
||||
if ((int)i % dimSzVec[j] == dimSzVec[j] - 1)
|
||||
builder << "]";
|
||||
|
||||
if (i != size() - 1)
|
||||
builder << ", ";
|
||||
|
||||
auto column = (size_t)dimSzVec[numDims - 1];
|
||||
if (i % column == column - 1)
|
||||
builder << std::endl;
|
||||
}
|
||||
return builder.str();
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
bool equalDataImpl(const T *a, const T *b, size_t size,
|
||||
double relativeError) const {
|
||||
bool equalDataImpl(const T *a, const T *b, size_t size) const {
|
||||
for (size_t i = 0; i < size; ++i) {
|
||||
if constexpr (std::is_integral_v<T>) {
|
||||
if (a[i] != b[i])
|
||||
return false;
|
||||
} else if constexpr (std::is_floating_point_v<T>) {
|
||||
if (fabs(a[i] - b[i]) / std::max(fabs(a[i]), fabs(b[i])) >
|
||||
relativeError) {
|
||||
1e-6) {
|
||||
printf("Error on %lu: %f %f\n", i, a[i], b[i]);
|
||||
return false;
|
||||
}
|
||||
|
|
|
@ -0,0 +1,9 @@
|
|||
#pragma once
|
||||
|
||||
#include "operators/unary.h"
|
||||
|
||||
namespace infini {
|
||||
void clip_kernel(float *input, float *output, int num, float minValue,
|
||||
float maxValue);
|
||||
|
||||
}; // namespace infini
|
|
@ -1,6 +1,8 @@
|
|||
#pragma once
|
||||
|
||||
namespace infini {
|
||||
void div_kernel(float *a, float *b, float *c, int num);
|
||||
void pow_kernel(float *a, float *b, float *c, int num);
|
||||
void div_kernel(float *a, float *b, float *c, int a0, int a1, int a2, int a3,
|
||||
int b0, int b1, int b2, int b3, int c0, int c1, int c2, int c3);
|
||||
void pow_kernel(float *a, float *b, float *c, int a0, int a1, int a2, int a3,
|
||||
int b0, int b1, int b2, int b3, int c0, int c1, int c2, int c3);
|
||||
}; // namespace infini
|
||||
|
|
|
@ -231,7 +231,7 @@ template <typename... T> std::string type_list_to_string() {
|
|||
result.pop_back();
|
||||
}
|
||||
return result;
|
||||
}
|
||||
} // namespace dbg
|
||||
|
||||
template <typename... T> std::string get_type_name(type_tag<std::tuple<T...>>) {
|
||||
return "std::tuple<" + type_list_to_string<T...>() + ">";
|
||||
|
|
|
@ -0,0 +1,32 @@
|
|||
#pragma once
|
||||
#include "core/operator.h"
|
||||
|
||||
namespace infini {
|
||||
class ActivationBackwardObj : public OperatorObj {
|
||||
public:
|
||||
ActivationBackwardObj(OpType type, GraphObj *graph, Tensor y, Tensor diff_y,
|
||||
Tensor x, Tensor diff_x);
|
||||
OP_CLONE(ActivationBackwardObj);
|
||||
optional<vector<Shape>> inferShape(const TensorVec &inputs) const override;
|
||||
|
||||
std::string toString() const override;
|
||||
int numInputs() const override { return 3; }
|
||||
int numOutputs() const override { return 1; }
|
||||
|
||||
private:
|
||||
vector<int> getWorkloadVector() const override;
|
||||
vector<int> getOpAttrVector() const override;
|
||||
};
|
||||
|
||||
#define DEFINE_ACTIVATION_BACKWARD_OBJ(prefix, type) \
|
||||
class prefix##Obj : public ActivationBackwardObj { \
|
||||
public: \
|
||||
prefix##Obj(GraphObj *graph, Tensor y, Tensor diff_y, Tensor x, \
|
||||
Tensor diff_x) \
|
||||
: ActivationBackwardObj(type, graph, y, diff_y, x, diff_x) {} \
|
||||
};
|
||||
|
||||
DEFINE_ACTIVATION_BACKWARD_OBJ(ReluBackward, OpType::ReluBackward)
|
||||
DEFINE_ACTIVATION_BACKWARD_OBJ(SigmoidBackward, OpType::SigmoidBackward)
|
||||
DEFINE_ACTIVATION_BACKWARD_OBJ(TanhBackward, OpType::TanhBackward)
|
||||
}; // namespace infini
|
|
@ -9,7 +9,7 @@ namespace infini {
|
|||
*/
|
||||
class BatchNormObj : public OperatorObj {
|
||||
float momentum, eps;
|
||||
bool training;
|
||||
bool trainingMode;
|
||||
|
||||
public:
|
||||
/**
|
||||
|
@ -28,11 +28,11 @@ class BatchNormObj : public OperatorObj {
|
|||
* Default is 0.9.
|
||||
* @param eps The epsilon value to use to avoid division by zero. Default is
|
||||
* 1e-5.
|
||||
* @param training Set to true when used for training.
|
||||
* @param trainingMode Set to true when used for training.
|
||||
*/
|
||||
BatchNormObj(GraphObj *graph, Tensor input, Tensor output, Tensor mean,
|
||||
Tensor var, Tensor scale, Tensor bias, float momentum = 0.9,
|
||||
float eps = 1e-5, bool training = false);
|
||||
float eps = 1e-5, bool trainingMode = false);
|
||||
OP_CLONE(BatchNormObj);
|
||||
optional<vector<Shape>> inferShape(const TensorVec &inputs) const override;
|
||||
std::string toString() const override;
|
||||
|
@ -42,7 +42,7 @@ class BatchNormObj : public OperatorObj {
|
|||
int numOutputs() const override { return outputs.size(); }
|
||||
float getMomentum() const { return momentum; }
|
||||
float getEps() const { return eps; }
|
||||
bool getTraining() const { return training; }
|
||||
bool getTrainingMode() const { return trainingMode; }
|
||||
|
||||
private:
|
||||
vector<int> getWorkloadVector() const override;
|
||||
|
|
|
@ -149,6 +149,29 @@ class ConvObj : public ConvBaseObj {
|
|||
void setAuxilaryAttributes(PaddingMode mode) override;
|
||||
};
|
||||
|
||||
class ConvBackwardFilterObj : public ConvBaseObj {
|
||||
private:
|
||||
ActType act;
|
||||
|
||||
public:
|
||||
ConvBackwardFilterObj(GraphObj *graph, Tensor inputX, Tensor diffY,
|
||||
Tensor diffW, int ph, int pw, int sh = 1, int sw = 1,
|
||||
int dh = 1, int dw = 1, Tensor bias = nullptr,
|
||||
ActType act = ActType::None);
|
||||
// Constructors for setting padding mode
|
||||
ConvBackwardFilterObj(GraphObj *graph, Tensor inputX, Tensor diffY,
|
||||
Tensor diffW, PaddingMode mode = PaddingMode::Same,
|
||||
int sh = 1, int sw = 1, int dh = 1, int dw = 1,
|
||||
Tensor bias = nullptr, ActType act = ActType::None);
|
||||
|
||||
optional<vector<Shape>> inferShape(const TensorVec &inputs) const override;
|
||||
ActType getAct() const { return act; }
|
||||
int getNumGroups() const override { return c / getChannelPerGroup(); }
|
||||
|
||||
private:
|
||||
void setAuxilaryAttributes(PaddingMode mode) override;
|
||||
};
|
||||
|
||||
class ConvTransposed2dObj : public ConvBaseObj {
|
||||
private:
|
||||
int oph, opw;
|
||||
|
@ -170,6 +193,7 @@ class ConvTransposed2dObj : public ConvBaseObj {
|
|||
|
||||
optional<vector<Shape>> inferShape(const TensorVec &inputs) const override;
|
||||
int getNumGroups() const override { return group; }
|
||||
std::pair<int, int> getOutputPadding() const { return {oph, opw}; }
|
||||
|
||||
private:
|
||||
void setAuxilaryAttributes(PaddingMode mode) override;
|
||||
|
|
|
@ -0,0 +1,22 @@
|
|||
#pragma once
|
||||
#include "core/operator.h"
|
||||
|
||||
namespace infini {
|
||||
class DetObj : public OperatorObj {
|
||||
public:
|
||||
enum Mode { NormalDet = 0, LogDet };
|
||||
DetObj(GraphObj *graph, Tensor input, Tensor output, Mode mode);
|
||||
OP_CLONE(DetObj);
|
||||
optional<vector<Shape>> inferShape(const TensorVec &inputs) const override;
|
||||
|
||||
std::string toString() const override;
|
||||
int numInputs() const override { return 1; }
|
||||
int numOutputs() const override { return 1; }
|
||||
Mode getMode() const { return modeValue; }
|
||||
|
||||
private:
|
||||
Mode modeValue;
|
||||
vector<int> getWorkloadVector() const override;
|
||||
vector<int> getOpAttrVector() const override;
|
||||
};
|
||||
}; // namespace infini
|
|
@ -0,0 +1,52 @@
|
|||
#pragma once
|
||||
#include "core/operator.h"
|
||||
|
||||
namespace infini {
|
||||
/**
|
||||
* @brief Copy a tensor along a centain dimension for multiple times.
|
||||
*/
|
||||
class DropoutObj : public OperatorObj {
|
||||
float ratio;
|
||||
// bool training_mode; // TODO must be false.
|
||||
|
||||
public:
|
||||
/**
|
||||
* @brief Dropout takes an input floating-point tensor, an input ratio
|
||||
* (floating-point scalar) and an input training_mode (boolean scalar). It
|
||||
* produces two tensor outputs, output (floating-point tensor) and mask
|
||||
* (bool tensor). If training_mode is true then the output Y will be a
|
||||
* random dropout; Note that this Dropout scales the masked input data by
|
||||
* the following equation, so to convert the trained model into inference
|
||||
* mode, the user can simply not pass training_mode input or set it to
|
||||
* false.
|
||||
*
|
||||
* @param graph The computation graph that this operator belongs to.
|
||||
* @param data The input tensor.
|
||||
* @param output The output tensor.
|
||||
* @param mask The mask tensor.
|
||||
* @param ratio The ratio of random dropout, with value in [0, 1). If this
|
||||
* input was not set, or if it was set to 0, the output would be a simple
|
||||
* copy of the input. If it’s non-zero, output will be a random dropout of
|
||||
* the scaled input, which is typically the case during training.
|
||||
* @param training_mode If set to true then it indicates dropout is being
|
||||
* used for training. It is an optional value hence unless specified
|
||||
* explicitly, it is false. If it is false, ratio is ignored and the
|
||||
* operation mimics inference mode where nothing will be dropped from the
|
||||
* input data and if mask is requested as output it will contain all ones.
|
||||
*/
|
||||
DropoutObj(GraphObj *graph, Tensor data, Tensor output, Tensor mask,
|
||||
float ratio, bool training_mode);
|
||||
OP_CLONE(DropoutObj);
|
||||
optional<vector<Shape>> inferShape(const TensorVec &inputs) const override;
|
||||
|
||||
std::string toString() const override;
|
||||
int numInputs() const override { return 1; }
|
||||
int numOutputs() const override { return 2; }
|
||||
float getRatio() const { return ratio; }
|
||||
bool getTrainingMode() const { return false; }
|
||||
|
||||
private:
|
||||
vector<int> getWorkloadVector() const override;
|
||||
vector<int> getOpAttrVector() const override;
|
||||
};
|
||||
} // namespace infini
|
|
@ -32,6 +32,25 @@ class ElementWiseObj : public OperatorObj {
|
|||
vector<int> getOpAttrVector() const override;
|
||||
};
|
||||
|
||||
class MSELossObj : public OperatorObj {
|
||||
public:
|
||||
enum Reduction { None = 0, Sum, Mean };
|
||||
MSELossObj(GraphObj *graph, Tensor input0, Tensor input1,
|
||||
Reduction reduction, Tensor output);
|
||||
OP_CLONE(MSELossObj);
|
||||
optional<vector<Shape>> inferShape(const TensorVec &inputs) const override;
|
||||
|
||||
Reduction getReduction() const { return reductionMode; }
|
||||
std::string toString() const override;
|
||||
int numInputs() const override { return 2; }
|
||||
int numOutputs() const override { return 1; }
|
||||
|
||||
private:
|
||||
Reduction reductionMode;
|
||||
vector<int> getWorkloadVector() const override;
|
||||
vector<int> getOpAttrVector() const override;
|
||||
};
|
||||
|
||||
#define DEFINE_ELEMENT_WISE_OBJ(prefix, type) \
|
||||
class prefix##Obj : public ElementWiseObj { \
|
||||
public: \
|
||||
|
@ -46,4 +65,26 @@ DEFINE_ELEMENT_WISE_OBJ(Sub, OpType::Sub)
|
|||
DEFINE_ELEMENT_WISE_OBJ(Mul, OpType::Mul)
|
||||
DEFINE_ELEMENT_WISE_OBJ(Div, OpType::Div)
|
||||
DEFINE_ELEMENT_WISE_OBJ(Pow, OpType::Pow)
|
||||
DEFINE_ELEMENT_WISE_OBJ(Maximum, OpType::Maximum)
|
||||
DEFINE_ELEMENT_WISE_OBJ(Minimum, OpType::Minimum)
|
||||
DEFINE_ELEMENT_WISE_OBJ(Power, OpType::Power)
|
||||
DEFINE_ELEMENT_WISE_OBJ(FloorDiv, OpType::FloorDiv)
|
||||
DEFINE_ELEMENT_WISE_OBJ(FloorMod, OpType::FloorMod)
|
||||
DEFINE_ELEMENT_WISE_OBJ(SquaredDifference, OpType::SquaredDifference)
|
||||
DEFINE_ELEMENT_WISE_OBJ(Equal, OpType::Equal)
|
||||
DEFINE_ELEMENT_WISE_OBJ(NotEqual, OpType::NotEqual)
|
||||
DEFINE_ELEMENT_WISE_OBJ(GreaterThan, OpType::GreaterThan)
|
||||
DEFINE_ELEMENT_WISE_OBJ(GreaterEqual, OpType::GreaterEqual)
|
||||
DEFINE_ELEMENT_WISE_OBJ(LessThan, OpType::LessThan)
|
||||
DEFINE_ELEMENT_WISE_OBJ(LessEqual, OpType::LessEqual)
|
||||
DEFINE_ELEMENT_WISE_OBJ(And, OpType::And)
|
||||
DEFINE_ELEMENT_WISE_OBJ(Or, OpType::Or)
|
||||
DEFINE_ELEMENT_WISE_OBJ(Xor, OpType::Xor)
|
||||
DEFINE_ELEMENT_WISE_OBJ(Not, OpType::Not)
|
||||
DEFINE_ELEMENT_WISE_OBJ(BitAnd, OpType::BitAnd)
|
||||
DEFINE_ELEMENT_WISE_OBJ(BitOr, OpType::BitOr)
|
||||
DEFINE_ELEMENT_WISE_OBJ(BitXor, OpType::BitXor)
|
||||
DEFINE_ELEMENT_WISE_OBJ(BitNot, OpType::BitNot)
|
||||
DEFINE_ELEMENT_WISE_OBJ(BitLeftShift, OpType::BitLeftShift)
|
||||
DEFINE_ELEMENT_WISE_OBJ(BitRightShift, OpType::BitRightShift)
|
||||
}; // namespace infini
|
||||
|
|
|
@ -47,10 +47,10 @@ class MatmulObj : public OperatorObj {
|
|||
std::string toString() const override;
|
||||
optional<vector<Shape>> inferShape(const TensorVec &inputs) const override;
|
||||
|
||||
int numInputs() const override { return 2; }
|
||||
int numInputs() const override { return inputs.size(); }
|
||||
int numOutputs() const override { return 1; }
|
||||
|
||||
Tensor getBias() const { return inputs[2]; }
|
||||
Tensor getBias() const { return inputs.size() > 2 ? inputs[2] : nullptr; }
|
||||
ActType getAct() const { return act; }
|
||||
auto getBMNKTransAB() const { return tuple(b, m, n, k, transA, transB); }
|
||||
bool getTransA() const { return transA; }
|
||||
|
|
|
@ -7,7 +7,8 @@ namespace infini {
|
|||
*
|
||||
*/
|
||||
class SliceObj : public OperatorObj {
|
||||
vector<int> starts, ends; // the start no. and end no. for all dims.
|
||||
template <class T> struct range_t { T start, end, step; };
|
||||
vector<range_t<int>> axes;
|
||||
|
||||
public:
|
||||
/**
|
||||
|
@ -33,9 +34,26 @@ class SliceObj : public OperatorObj {
|
|||
|
||||
optional<vector<Shape>> inferShape(const TensorVec &inputs) const override;
|
||||
std::string toString() const override;
|
||||
int numInputs() const override { return 1; }
|
||||
int numOutputs() const override { return 1; }
|
||||
Shape getStart() const { return starts; }
|
||||
inline int numInputs() const override { return 1; }
|
||||
inline int numOutputs() const override { return 1; }
|
||||
inline Shape getStarts() const {
|
||||
Shape ans(axes.size());
|
||||
std::transform(axes.begin(), axes.end(), ans.begin(),
|
||||
[](auto x) { return x.start; });
|
||||
return ans;
|
||||
}
|
||||
inline Shape getEnds() const {
|
||||
Shape ans(axes.size());
|
||||
std::transform(axes.begin(), axes.end(), ans.begin(),
|
||||
[](auto x) { return x.end; });
|
||||
return ans;
|
||||
}
|
||||
inline Shape getSteps() const {
|
||||
Shape ans(axes.size());
|
||||
std::transform(axes.begin(), axes.end(), ans.begin(),
|
||||
[](auto x) { return x.step; });
|
||||
return ans;
|
||||
}
|
||||
|
||||
private:
|
||||
vector<int> getWorkloadVector() const override;
|
||||
|
|
|
@ -0,0 +1,22 @@
|
|||
#pragma once
|
||||
#include "core/operator.h"
|
||||
|
||||
namespace infini {
|
||||
class TransposeObj : public OperatorObj {
|
||||
public:
|
||||
TransposeObj(GraphObj *graph, Tensor input, Tensor output,
|
||||
vector<int> permute);
|
||||
OP_CLONE(TransposeObj);
|
||||
optional<vector<Shape>> inferShape(const TensorVec &inputs) const override;
|
||||
|
||||
std::string toString() const override;
|
||||
int numInputs() const override { return 1; }
|
||||
int numOutputs() const override { return 1; }
|
||||
std::vector<int> getPermute() const { return transposePermute; }
|
||||
|
||||
private:
|
||||
vector<int> transposePermute = {1, 1, 1, 1};
|
||||
vector<int> getWorkloadVector() const override;
|
||||
vector<int> getOpAttrVector() const override;
|
||||
};
|
||||
}; // namespace infini
|
|
@ -28,6 +28,244 @@ class UnaryObj : public OperatorObj {
|
|||
vector<int> getOpAttrVector() const override;
|
||||
};
|
||||
|
||||
class ClipObj : public OperatorObj {
|
||||
public:
|
||||
ClipObj(GraphObj *graph, Tensor input, Tensor output,
|
||||
std::optional<float> min, std::optional<float> max);
|
||||
OP_CLONE(ClipObj);
|
||||
optional<vector<Shape>> inferShape(const TensorVec &inputs) const override;
|
||||
|
||||
std::string toString() const override;
|
||||
std::optional<float> getMin() const { return minValue; };
|
||||
std::optional<float> getMax() const { return maxValue; };
|
||||
int numInputs() const override { return 1; }
|
||||
int numOutputs() const override { return 1; }
|
||||
|
||||
private:
|
||||
std::optional<float> minValue, maxValue;
|
||||
vector<int> getWorkloadVector() const override;
|
||||
vector<int> getOpAttrVector() const override;
|
||||
};
|
||||
|
||||
class HardtanhObj : public OperatorObj {
|
||||
public:
|
||||
HardtanhObj(GraphObj *graph, Tensor input, Tensor output, float min,
|
||||
float max);
|
||||
OP_CLONE(HardtanhObj);
|
||||
optional<vector<Shape>> inferShape(const TensorVec &inputs) const override;
|
||||
|
||||
std::string toString() const override;
|
||||
float getMin() const { return minValue; };
|
||||
float getMax() const { return maxValue; };
|
||||
int numInputs() const override { return 1; }
|
||||
int numOutputs() const override { return 1; }
|
||||
|
||||
private:
|
||||
float minValue, maxValue;
|
||||
vector<int> getWorkloadVector() const override;
|
||||
vector<int> getOpAttrVector() const override;
|
||||
};
|
||||
|
||||
class FlipObj : public OperatorObj {
|
||||
public:
|
||||
FlipObj(GraphObj *graph, Tensor input, Tensor output, vector<int> axis);
|
||||
OP_CLONE(FlipObj);
|
||||
optional<vector<Shape>> inferShape(const TensorVec &inputs) const override;
|
||||
|
||||
std::string toString() const override;
|
||||
vector<int> getAxis() const { return axisValue; };
|
||||
int numInputs() const override { return 1; }
|
||||
int numOutputs() const override { return 1; }
|
||||
|
||||
private:
|
||||
vector<int> axisValue;
|
||||
vector<int> getWorkloadVector() const override;
|
||||
vector<int> getOpAttrVector() const override;
|
||||
};
|
||||
|
||||
class FillObj : public OperatorObj {
|
||||
public:
|
||||
FillObj(GraphObj *graph, Tensor input, Tensor output, float value);
|
||||
OP_CLONE(FillObj);
|
||||
optional<vector<Shape>> inferShape(const TensorVec &inputs) const override;
|
||||
|
||||
std::string toString() const override;
|
||||
float getValue() const { return setValue; };
|
||||
int numInputs() const override { return 1; }
|
||||
int numOutputs() const override { return 1; }
|
||||
|
||||
private:
|
||||
float setValue;
|
||||
vector<int> getWorkloadVector() const override;
|
||||
vector<int> getOpAttrVector() const override;
|
||||
};
|
||||
|
||||
class L2LossObj : public OperatorObj {
|
||||
public:
|
||||
L2LossObj(GraphObj *graph, Tensor input, Tensor output);
|
||||
OP_CLONE(L2LossObj);
|
||||
optional<vector<Shape>> inferShape(const TensorVec &inputs) const override;
|
||||
|
||||
std::string toString() const override;
|
||||
int numInputs() const override { return 1; }
|
||||
int numOutputs() const override { return 1; }
|
||||
|
||||
private:
|
||||
vector<int> getWorkloadVector() const override;
|
||||
vector<int> getOpAttrVector() const override;
|
||||
};
|
||||
|
||||
class TransformObj : public OperatorObj {
|
||||
public:
|
||||
TransformObj(GraphObj *graph, Tensor input, Tensor output, float alpha,
|
||||
float beta);
|
||||
OP_CLONE(TransformObj);
|
||||
optional<vector<Shape>> inferShape(const TensorVec &inputs) const override;
|
||||
|
||||
std::string toString() const override;
|
||||
float getAlpha() const { return alphaValue; }
|
||||
float getBeta() const { return betaValue; }
|
||||
int numInputs() const override { return 1; }
|
||||
int numOutputs() const override { return 1; }
|
||||
|
||||
private:
|
||||
float alphaValue, betaValue;
|
||||
vector<int> getWorkloadVector() const override;
|
||||
vector<int> getOpAttrVector() const override;
|
||||
};
|
||||
|
||||
class CastObj : public OperatorObj {
|
||||
public:
|
||||
enum CastType {
|
||||
Float2Half = 0,
|
||||
Float2Int64,
|
||||
Float2Int32,
|
||||
Float2Int16,
|
||||
Float2Int8,
|
||||
Int322Float,
|
||||
Int322Int8,
|
||||
Int322Int16,
|
||||
Int162Float,
|
||||
Int162Int32,
|
||||
Int82Float,
|
||||
Int82Int16,
|
||||
Int82Int32,
|
||||
Uint82Float,
|
||||
Uint82Int32,
|
||||
Uint82Int64,
|
||||
Int322Int64,
|
||||
Int642Int32,
|
||||
Int642Uint32,
|
||||
Int642Float,
|
||||
Uint322Int64,
|
||||
};
|
||||
CastObj(GraphObj *graph, Tensor input, Tensor output, CastType type);
|
||||
OP_CLONE(CastObj);
|
||||
optional<vector<Shape>> inferShape(const TensorVec &inputs) const override;
|
||||
vector<DataType> inferDataType(const TensorVec &inputs) const override;
|
||||
|
||||
std::string toString() const override;
|
||||
CastType getType() const { return castType; }
|
||||
DataType getOutputDataType() const;
|
||||
int numInputs() const override { return 1; }
|
||||
int numOutputs() const override { return 1; }
|
||||
|
||||
private:
|
||||
CastType castType;
|
||||
vector<int> getWorkloadVector() const override;
|
||||
vector<int> getOpAttrVector() const override;
|
||||
};
|
||||
|
||||
class CumsumObj : public OperatorObj {
|
||||
public:
|
||||
CumsumObj(GraphObj *graph, Tensor input, Tensor output, int axis,
|
||||
bool exclusive, bool reverse);
|
||||
OP_CLONE(CumsumObj);
|
||||
optional<vector<Shape>> inferShape(const TensorVec &inputs) const override;
|
||||
|
||||
std::string toString() const override;
|
||||
int getAxis() const { return axisValue; }
|
||||
float getExclusive() const { return exclusiveValue; }
|
||||
float getReverse() const { return reverseValue; }
|
||||
int numInputs() const override { return 1; }
|
||||
int numOutputs() const override { return 1; }
|
||||
|
||||
private:
|
||||
int axisValue;
|
||||
bool exclusiveValue, reverseValue;
|
||||
vector<int> getWorkloadVector() const override;
|
||||
vector<int> getOpAttrVector() const override;
|
||||
};
|
||||
|
||||
class ArangeObj : public OperatorObj {
|
||||
public:
|
||||
ArangeObj(GraphObj *graph, float start, float step, int length,
|
||||
Tensor output);
|
||||
OP_CLONE(ArangeObj);
|
||||
optional<vector<Shape>> inferShape(const TensorVec &inputs) const override;
|
||||
|
||||
std::string toString() const override;
|
||||
int numInputs() const override { return 0; }
|
||||
int numOutputs() const override { return 1; }
|
||||
float getStartValue() { return startValue; }
|
||||
float getStepValue() { return stepValue; }
|
||||
int getLength() { return lengthValue; }
|
||||
|
||||
private:
|
||||
float startValue, stepValue;
|
||||
int lengthValue;
|
||||
vector<int> getWorkloadVector() const override;
|
||||
vector<int> getOpAttrVector() const override;
|
||||
};
|
||||
|
||||
class ShapeObj : public OperatorObj {
|
||||
public:
|
||||
ShapeObj(GraphObj *graph, Tensor input, Tensor output);
|
||||
OP_CLONE(ShapeObj);
|
||||
optional<vector<Shape>> inferShape(const TensorVec &inputs) const override;
|
||||
|
||||
std::string toString() const override;
|
||||
int numInputs() const override { return 1; }
|
||||
int numOutputs() const override { return 1; }
|
||||
};
|
||||
|
||||
class PReluObj : public OperatorObj {
|
||||
public:
|
||||
PReluObj(GraphObj *graph, Tensor input, Tensor alpha, Tensor output);
|
||||
OP_CLONE(PReluObj);
|
||||
optional<vector<Shape>> inferShape(const TensorVec &inputs) const override;
|
||||
|
||||
std::string toString() const override;
|
||||
int numInputs() const override { return 2; }
|
||||
int numOutputs() const override { return 1; }
|
||||
|
||||
private:
|
||||
vector<int> getWorkloadVector() const override;
|
||||
vector<int> getOpAttrVector() const override;
|
||||
};
|
||||
|
||||
class LogObj : public OperatorObj {
|
||||
public:
|
||||
enum LogType {
|
||||
LogE = 0,
|
||||
Log2,
|
||||
Log10,
|
||||
};
|
||||
LogObj(GraphObj *graph, Tensor input, Tensor output, LogType type);
|
||||
OP_CLONE(LogObj);
|
||||
optional<vector<Shape>> inferShape(const TensorVec &inputs) const override;
|
||||
|
||||
std::string toString() const override;
|
||||
LogType getType() const { return logType; }
|
||||
int numInputs() const override { return 1; }
|
||||
int numOutputs() const override { return 1; }
|
||||
|
||||
private:
|
||||
LogType logType;
|
||||
vector<int> getWorkloadVector() const override;
|
||||
vector<int> getOpAttrVector() const override;
|
||||
};
|
||||
|
||||
#define DEFINE_UNARY_OBJ(prefix, type) \
|
||||
class prefix##Obj : public UnaryObj { \
|
||||
public: \
|
||||
|
@ -42,4 +280,28 @@ DEFINE_UNARY_OBJ(Tanh, OpType::Tanh)
|
|||
// DEFINE_UNARY_OBJ(Softmax, OpType::Softmax)
|
||||
DEFINE_UNARY_OBJ(Abs, OpType::Abs)
|
||||
|
||||
DEFINE_UNARY_OBJ(Sin, OpType::Sin)
|
||||
DEFINE_UNARY_OBJ(Cos, OpType::Cos)
|
||||
DEFINE_UNARY_OBJ(Tan, OpType::Tan)
|
||||
DEFINE_UNARY_OBJ(ASin, OpType::ASin)
|
||||
DEFINE_UNARY_OBJ(ACos, OpType::ACos)
|
||||
DEFINE_UNARY_OBJ(ATan, OpType::ATan)
|
||||
DEFINE_UNARY_OBJ(SinH, OpType::SinH)
|
||||
DEFINE_UNARY_OBJ(CosH, OpType::CosH)
|
||||
DEFINE_UNARY_OBJ(TanH, OpType::TanH)
|
||||
DEFINE_UNARY_OBJ(ASinH, OpType::ASinH)
|
||||
DEFINE_UNARY_OBJ(ACosH, OpType::ACosH)
|
||||
DEFINE_UNARY_OBJ(ATanH, OpType::ATanH)
|
||||
|
||||
DEFINE_UNARY_OBJ(Copy, OpType::Copy)
|
||||
DEFINE_UNARY_OBJ(Ceil, OpType::Ceil)
|
||||
DEFINE_UNARY_OBJ(Floor, OpType::Floor)
|
||||
DEFINE_UNARY_OBJ(Erf, OpType::Erf)
|
||||
DEFINE_UNARY_OBJ(Exp, OpType::Exp)
|
||||
DEFINE_UNARY_OBJ(Neg, OpType::Neg)
|
||||
DEFINE_UNARY_OBJ(Reciprocal, OpType::Reciprocal)
|
||||
DEFINE_UNARY_OBJ(Sqrt, OpType::Sqrt)
|
||||
DEFINE_UNARY_OBJ(Rsqrt, OpType::Rsqrt)
|
||||
DEFINE_UNARY_OBJ(Round, OpType::Round)
|
||||
DEFINE_UNARY_OBJ(Square, OpType::Square)
|
||||
}; // namespace infini
|
||||
|
|
|
@ -8,7 +8,7 @@ version = "0.0.0"
|
|||
authors = [{ name = "YdrMaster", email = "ydrml@hotmail.com" }]
|
||||
description = "Python frontend of InfiniTensor"
|
||||
readme = "README.md"
|
||||
requires-python = ">=3.8"
|
||||
requires-python = ">=3.7"
|
||||
keywords = ["optimizer"]
|
||||
license = { text = "Apache" }
|
||||
classifiers = ["Programming Language :: Python :: 3"]
|
||||
|
|
|
@ -22,12 +22,17 @@ from onnx.checker import (
|
|||
check_tensor,
|
||||
)
|
||||
from onnx.shape_inference import infer_shapes
|
||||
from onnx.numpy_helper import to_array
|
||||
from typing import Dict, List, Any, Tuple, Sequence, Union, Optional
|
||||
from functools import reduce
|
||||
|
||||
runtime = backend.runtime()
|
||||
|
||||
class OnnxStub:
|
||||
"""
|
||||
The Onnx model imported into infinitensor.
|
||||
It can be generated from an Onnx model object.
|
||||
"""
|
||||
|
||||
inputs: Dict[str, backend.Tensor] = {}
|
||||
outputs: Dict[str, backend.Tensor] = {}
|
||||
initializer: Dict[int, TensorProto] = {}
|
||||
|
@ -53,6 +58,8 @@ class OnnxStub:
|
|||
)
|
||||
|
||||
for initializer in model.graph.initializer:
|
||||
dims = [d for d in initializer.dims]
|
||||
tensors[initializer.name] = self.handler.tensor(dims, initializer.data_type)
|
||||
data[initializer.name] = initializer
|
||||
|
||||
for node in model.graph.node:
|
||||
|
@ -61,14 +68,81 @@ class OnnxStub:
|
|||
node,
|
||||
{
|
||||
"dilations": [1, 1],
|
||||
"pads": [0, 0],
|
||||
"pads": [0, 0, 0, 0],
|
||||
"strides": [1, 1],
|
||||
},
|
||||
)
|
||||
(d, p, s) = (
|
||||
attributes[name] for name in ["dilations", "pads", "strides"]
|
||||
)
|
||||
if p[0] != p[2] or p[1] != p[3]:
|
||||
adapt = "{}-adapt".format(node.output[0])
|
||||
tensors[adapt] = self.handler.pad(
|
||||
tensors[node.input[0]], None, p, [-2, -1]
|
||||
)
|
||||
p = [0, 0, 0, 0]
|
||||
else:
|
||||
adapt = node.input[0]
|
||||
|
||||
if len(node.input) > 2:
|
||||
bias = "{}-bias".format(node.output[0])
|
||||
reshape = "{}-reshape".format(node.output[0])
|
||||
tensors[bias] = self.handler.conv(
|
||||
tensors[adapt],
|
||||
tensors[node.input[1]],
|
||||
None,
|
||||
p[0],
|
||||
p[1],
|
||||
s[0],
|
||||
s[1],
|
||||
d[0],
|
||||
d[1],
|
||||
)
|
||||
tensors[reshape] = self.handler.reshape(
|
||||
tensors[node.input[2]],
|
||||
None,
|
||||
[
|
||||
1,
|
||||
reduce(
|
||||
lambda acc, x: acc * x,
|
||||
_search_shape(model, node.input[2]),
|
||||
),
|
||||
1,
|
||||
1,
|
||||
],
|
||||
)
|
||||
tensors[node.output[0]] = self.handler.add(
|
||||
tensors[bias],
|
||||
tensors[reshape],
|
||||
tensors.get(node.output[0]),
|
||||
)
|
||||
else:
|
||||
tensors[node.output[0]] = self.handler.conv(
|
||||
tensors[adapt],
|
||||
tensors[node.input[1]],
|
||||
tensors.get(node.output[0]),
|
||||
p[0],
|
||||
p[1],
|
||||
s[0],
|
||||
s[1],
|
||||
d[0],
|
||||
d[1],
|
||||
)
|
||||
elif node.op_type == "ConvTranspose":
|
||||
attributes = _parse_attribute(
|
||||
node,
|
||||
{
|
||||
"dilations": [1, 1],
|
||||
"pads": [0, 0],
|
||||
"strides": [1, 1],
|
||||
"output_padding": [0, 0],
|
||||
},
|
||||
)
|
||||
(d, p, s, op) = (
|
||||
attributes[name]
|
||||
for name in ["dilations", "pads", "strides", "output_padding"]
|
||||
)
|
||||
tensors[node.output[0]] = self.handler.convTransposed2d(
|
||||
tensors[node.input[0]],
|
||||
tensors[node.input[1]],
|
||||
tensors.get(node.output[0]),
|
||||
|
@ -78,6 +152,8 @@ class OnnxStub:
|
|||
s[1],
|
||||
d[0],
|
||||
d[1],
|
||||
op[0],
|
||||
op[1],
|
||||
)
|
||||
elif node.op_type == "MatMul":
|
||||
tensors[node.output[0]] = self.handler.matmul(
|
||||
|
@ -129,7 +205,7 @@ class OnnxStub:
|
|||
{
|
||||
"kernel_shape": None,
|
||||
"dilations": [1, 1],
|
||||
"pads": [0, 0],
|
||||
"pads": [0, 0, 0, 0],
|
||||
"strides": [1, 1],
|
||||
},
|
||||
)
|
||||
|
@ -137,6 +213,24 @@ class OnnxStub:
|
|||
attributes[name]
|
||||
for name in ["kernel_shape", "dilations", "pads", "strides"]
|
||||
)
|
||||
if p[0] != p[2] or p[1] != p[3]:
|
||||
adapt = "{}-adapt".format(node.output[0])
|
||||
tensors[adapt] = self.handler.pad(
|
||||
tensors.get(node.input[0]), None, p, [-2, -1]
|
||||
)
|
||||
tensors[node.output[0]] = self.handler.maxPool(
|
||||
tensors[adapt],
|
||||
tensors.get(node.output[0]),
|
||||
k[0],
|
||||
k[1],
|
||||
d[0],
|
||||
d[1],
|
||||
0,
|
||||
0,
|
||||
s[0],
|
||||
s[1],
|
||||
)
|
||||
else:
|
||||
tensors[node.output[0]] = self.handler.maxPool(
|
||||
tensors[node.input[0]],
|
||||
tensors.get(node.output[0]),
|
||||
|
@ -154,13 +248,31 @@ class OnnxStub:
|
|||
node,
|
||||
{
|
||||
"kernel_shape": None,
|
||||
"pads": [0, 0],
|
||||
"pads": [0, 0, 0, 0],
|
||||
"strides": [1, 1],
|
||||
},
|
||||
)
|
||||
(k, p, s) = (
|
||||
attributes[name] for name in ["kernel_shape", "pads", "strides"]
|
||||
)
|
||||
if p[0] != p[2] or p[1] != p[3]:
|
||||
adapt = "{}-adapt".format(node.output[0])
|
||||
tensors[adapt] = self.handler.pad(
|
||||
tensors.get(node.input[0]), None, p, [-2, -1]
|
||||
)
|
||||
tensors[node.output[0]] = self.handler.avgPool(
|
||||
tensors[adapt],
|
||||
tensors.get(node.output[0]),
|
||||
k[0],
|
||||
k[1],
|
||||
1,
|
||||
1,
|
||||
0,
|
||||
0,
|
||||
s[0],
|
||||
s[1],
|
||||
)
|
||||
else:
|
||||
tensors[node.output[0]] = self.handler.avgPool(
|
||||
tensors[node.input[0]],
|
||||
tensors.get(node.output[0]),
|
||||
|
@ -174,19 +286,7 @@ class OnnxStub:
|
|||
s[1],
|
||||
)
|
||||
elif node.op_type == "GlobalAveragePool":
|
||||
shape = next(
|
||||
(
|
||||
value.type.tensor_type.shape
|
||||
for value in model.graph.value_info
|
||||
if value.name == node.input[0]
|
||||
),
|
||||
None,
|
||||
) or next(
|
||||
input.type.tensor_type.shape
|
||||
for input in model.graph.input
|
||||
if input.name == node.input[0]
|
||||
)
|
||||
[_, _, h, w] = _take_shape_dim(shape)
|
||||
[_, _, h, w] = _search_shape(model, node.input[0])
|
||||
tensors[node.output[0]] = self.handler.avgPool(
|
||||
tensors[node.input[0]],
|
||||
tensors.get(node.output[0]),
|
||||
|
@ -248,58 +348,123 @@ class OnnxStub:
|
|||
tensors[node.output[0]] = self.handler.softmax(
|
||||
tensors[node.input[0]],
|
||||
tensors.get(node.output[0]),
|
||||
next((attr.i for attr in node.attribute if attr.name == "axis")),
|
||||
next(
|
||||
(attr.i for attr in node.attribute if attr.name == "axis"), -1
|
||||
),
|
||||
)
|
||||
elif node.op_type == "Abs":
|
||||
tensors[node.output[0]] = self.handler.abs(
|
||||
tensors[node.input[0]],
|
||||
tensors.get(node.output[0]),
|
||||
)
|
||||
elif node.op_type == "Shape":
|
||||
tensors[node.output[0]] = self.handler.shape(
|
||||
tensors[node.input[0]],
|
||||
tensors.get(node.output[0]),
|
||||
)
|
||||
elif node.op_type == "Identity":
|
||||
tensors[node.output[0]] = self.handler.identity(
|
||||
tensors[node.input[0]],
|
||||
tensors.get(node.output[0]),
|
||||
)
|
||||
elif node.op_type == "Flatten":
|
||||
|
||||
tensors[node.output[0]] = self.handler.flatten(
|
||||
tensors[node.input[0]],
|
||||
tensors.get(node.output[0]),
|
||||
next((attr.i for attr in node.attribute if attr.name == "axis")),
|
||||
)
|
||||
elif node.op_type == "Reshape":
|
||||
input_shape = next(
|
||||
(
|
||||
value.type.tensor_type.shape
|
||||
for value in model.graph.value_info
|
||||
if value.name == node.input[0]
|
||||
),
|
||||
None,
|
||||
) or next(
|
||||
input.type.tensor_type.shape
|
||||
for input in model.graph.input
|
||||
if input.name == node.input[0]
|
||||
elif node.op_type == "PRelu":
|
||||
tensors[node.output[0]] = self.handler.pRelu(
|
||||
tensors[node.input[0]],
|
||||
tensors[node.input[1]],
|
||||
tensors.get(node.output[0]),
|
||||
)
|
||||
dims = _take_shape_dim(input_shape)
|
||||
elif node.op_type == "Clip":
|
||||
tensors[node.output[0]] = self.handler.clip(
|
||||
tensors[node.input[0]],
|
||||
tensors.get(node.output[0]),
|
||||
next(_parse_data(data[node.input[1]]).__iter__(), None)
|
||||
if len(node.input) > 1
|
||||
else None,
|
||||
next(_parse_data(data[node.input[2]]).__iter__(), None)
|
||||
if len(node.input) > 2
|
||||
else None,
|
||||
)
|
||||
elif node.op_type == "Transpose":
|
||||
perm = next(
|
||||
(attr.ints for attr in node.attribute if attr.name == "perm"), None
|
||||
)
|
||||
tensors[node.output[0]] = self.handler.transpose(
|
||||
tensors[node.input[0]],
|
||||
tensors.get(node.output[0]),
|
||||
perm,
|
||||
)
|
||||
elif node.op_type == "Reshape":
|
||||
dims = _search_shape(model, node.input[0])
|
||||
size = reduce(lambda acc, x: acc * x, dims)
|
||||
output_shape = [int(i) for i in data[node.input[1]].int64_data]
|
||||
for i, x in enumerate(output_shape):
|
||||
input_shape = _parse_data(data[node.input[1]])
|
||||
for i, x in enumerate(input_shape):
|
||||
if x == 0:
|
||||
output_shape[i] = dims[i]
|
||||
temp = reduce(lambda acc, x: acc * x, output_shape)
|
||||
input_shape[i] = dims[i]
|
||||
temp = reduce(lambda acc, x: acc * x, input_shape, 1)
|
||||
if temp < 0:
|
||||
output_shape[output_shape.index(-1)] = size // -temp
|
||||
input_shape[input_shape.index(-1)] = size // -temp
|
||||
tensors[node.output[0]] = self.handler.reshape(
|
||||
tensors[node.input[0]],
|
||||
tensors.get(node.output[0]),
|
||||
input_shape,
|
||||
)
|
||||
elif node.op_type == "Squeeze":
|
||||
input_shape = _search_shape(model, node.input[0])
|
||||
axes = set(
|
||||
[int(i) for i in data[node.input[1]].int64_data]
|
||||
if len(node.input) > 1
|
||||
else _parse_attribute(node, {"axes": None})["axes"]
|
||||
)
|
||||
assert all(input_shape[d] == 1 for d in axes)
|
||||
output_shape = []
|
||||
for i, x in enumerate(input_shape):
|
||||
if i not in axes:
|
||||
output_shape.append(x)
|
||||
tensors[node.output[0]] = self.handler.reshape(
|
||||
tensors[node.input[0]],
|
||||
tensors.get(node.output[0]),
|
||||
output_shape,
|
||||
)
|
||||
elif node.op_type == "Unsqueeze":
|
||||
input_shape = _search_shape(model, node.input[0])
|
||||
axes = (
|
||||
[int(i) for i in data[node.input[1]].int64_data]
|
||||
if len(node.input) > 1
|
||||
else _parse_attribute(node, {"axes": None})["axes"]
|
||||
)
|
||||
for i in axes:
|
||||
input_shape.insert(i, 1)
|
||||
tensors[node.output[0]] = self.handler.reshape(
|
||||
tensors[node.input[0]],
|
||||
tensors.get(node.output[0]),
|
||||
input_shape,
|
||||
)
|
||||
elif node.op_type == "Concat":
|
||||
tensors[node.output[0]] = self.handler.concat(
|
||||
[tensors[name] for name in node.input],
|
||||
tensors.get(node.output[0]),
|
||||
next((attr.i for attr in node.attribute if attr.name == "axis")),
|
||||
)
|
||||
elif node.op_type == "Split":
|
||||
for name, tensor in zip(
|
||||
node.output,
|
||||
self.handler.split(
|
||||
tensors[node.input[0]],
|
||||
None,
|
||||
next(
|
||||
(attr.i for attr in node.attribute if attr.name == "axis"),
|
||||
0,
|
||||
),
|
||||
len(node.output),
|
||||
),
|
||||
):
|
||||
tensors[name] = tensor
|
||||
elif node.op_type == "Gather":
|
||||
tensors[node.output[0]] = self.handler.gather(
|
||||
tensors[node.input[0]],
|
||||
|
@ -331,6 +496,22 @@ class OnnxStub:
|
|||
_parse_data(data[node.input[1]]),
|
||||
_parse_data(data[node.input[3]]) if len(node.input) > 3 else None,
|
||||
)
|
||||
elif node.op_type == "Dropout":
|
||||
for name, tensor in zip(
|
||||
node.output,
|
||||
self.handler.dropout(
|
||||
tensors[node.input[0]],
|
||||
tensors.get(node.output[0]),
|
||||
tensors.get(node.output[1]) if len(node.output) > 1 else None,
|
||||
_parse_data(data[node.input[1]])[0]
|
||||
if len(node.input) > 1
|
||||
else 0.5,
|
||||
_parse_data(data[node.input[2]])[0]
|
||||
if len(node.input) > 2
|
||||
else False,
|
||||
),
|
||||
):
|
||||
tensors[name] = tensor
|
||||
else:
|
||||
raise Exception('Unsupported operator "{}"'.format(node.op_type))
|
||||
|
||||
|
@ -344,11 +525,11 @@ class OnnxStub:
|
|||
else:
|
||||
self.initializer[obj.fuid()] = tensor
|
||||
if tensor.data_type == TensorProto.INT32:
|
||||
obj.copyin_int32([int(i) for i in tensor.int32_data])
|
||||
obj.copyin_int32(_parse_data(tensor))
|
||||
elif tensor.data_type == TensorProto.INT64:
|
||||
obj.copyin_int64([int(i) for i in tensor.int64_data])
|
||||
obj.copyin_int64(_parse_data(tensor))
|
||||
elif tensor.data_type == TensorProto.FLOAT:
|
||||
obj.copyin_float([int(i) for i in tensor.float_data])
|
||||
obj.copyin_float(_parse_data(tensor))
|
||||
else:
|
||||
assert False, "Unsupported Tensor Type: {}".format(tensor.data_type)
|
||||
|
||||
|
@ -398,14 +579,15 @@ class OnnxStub:
|
|||
self.count_in += 1
|
||||
name = "input{}".format(self.count_in)
|
||||
self.names[tensor] = name
|
||||
if init != None:
|
||||
init.name = name
|
||||
self.initializers.append(init)
|
||||
else:
|
||||
shape = tensor.shape()
|
||||
dtype = backend.tensor_dtype(tensor)
|
||||
value_info = make_tensor_value_info(name, dtype, shape)
|
||||
check_value_info(value_info)
|
||||
self.inputs.append(value_info)
|
||||
if init != None:
|
||||
init.name = name
|
||||
self.initializers.append(init)
|
||||
return name
|
||||
|
||||
def push_data_input(
|
||||
|
@ -417,11 +599,8 @@ class OnnxStub:
|
|||
vals: Any,
|
||||
) -> str:
|
||||
name = "{}_{}".format(node_name, attr_name)
|
||||
value_info = make_tensor_value_info(name, elem_type, shape)
|
||||
tensor = make_tensor(name, elem_type, shape, vals)
|
||||
check_value_info(value_info)
|
||||
check_tensor(tensor)
|
||||
self.inputs.append(value_info)
|
||||
self.initializers.append(tensor)
|
||||
return name
|
||||
|
||||
|
@ -459,20 +638,40 @@ class OnnxStub:
|
|||
for (i, it) in enumerate(op.outputs())
|
||||
]
|
||||
if ty == backend.OpType.Conv:
|
||||
ph, pw, sh, sw, dh, dw = backend.conv_attrs_of(op)
|
||||
ph, pw, dh, dw, sh, sw = backend.conv_attrs_of(op)
|
||||
ctx.push_node(
|
||||
make_node(
|
||||
ty.name,
|
||||
inputs,
|
||||
outputs,
|
||||
name,
|
||||
pads=[ph, pw, ph, pw],
|
||||
strides=[sh, sw],
|
||||
dilations=[dh, dw],
|
||||
group=op.inputs()[0].shape()[1] // op.inputs()[1].shape()[1],
|
||||
)
|
||||
)
|
||||
elif ty == backend.OpType.ConvTrans:
|
||||
ph, pw, sh, sw, dh, dw, oph, opw = backend.conv_trans_attrs_of(op)
|
||||
ctx.push_node(
|
||||
make_node(
|
||||
"ConvTranspose",
|
||||
inputs,
|
||||
outputs,
|
||||
name,
|
||||
pads=[ph, pw],
|
||||
strides=[sh, sw],
|
||||
dilations=[dh, dw],
|
||||
output_padding=[oph, opw],
|
||||
)
|
||||
)
|
||||
elif ty == backend.OpType.Matmul:
|
||||
ctx.push_node(make_node("MatMul", inputs, outputs, name))
|
||||
transA, transB = backend.matmul_attrs_of(op)
|
||||
ctx.push_node(
|
||||
make_node(
|
||||
"Gemm", inputs, outputs, name, transA=transA, transB=transB
|
||||
)
|
||||
)
|
||||
elif ty == backend.OpType.BatchNorm:
|
||||
inputs = [inputs[i] for i in [0, 3, 4, 1, 2]]
|
||||
momentum, eps, training = backend.batch_norm_attrs_of(op)
|
||||
|
@ -496,7 +695,7 @@ class OnnxStub:
|
|||
outputs,
|
||||
name,
|
||||
kernel_shape=[kh, kw],
|
||||
pads=[ph, pw],
|
||||
pads=[ph, pw, ph, pw],
|
||||
dilations=[dh, dw],
|
||||
strides=[sh, sw],
|
||||
)
|
||||
|
@ -510,7 +709,7 @@ class OnnxStub:
|
|||
outputs,
|
||||
name,
|
||||
kernel_shape=[kh, kw],
|
||||
pads=[ph, pw],
|
||||
pads=[ph, pw, ph, pw],
|
||||
strides=[sh, sw],
|
||||
)
|
||||
)
|
||||
|
@ -526,17 +725,21 @@ class OnnxStub:
|
|||
backend.OpType.Softmax,
|
||||
backend.OpType.Abs,
|
||||
backend.OpType.Identity,
|
||||
backend.OpType.PRelu,
|
||||
]:
|
||||
ctx.push_node(make_node(ty.name, inputs, outputs, name))
|
||||
elif ty == backend.OpType.Flatten:
|
||||
raise Exception("TODO")
|
||||
elif ty == backend.OpType.Transpose:
|
||||
perm = backend.transpose_permute_of(op)
|
||||
ctx.push_node(make_node(ty.name, inputs, outputs, name, perm=perm))
|
||||
elif ty == backend.OpType.Reshape:
|
||||
shape = backend.reshape_shape_of(op)
|
||||
inputs.append(
|
||||
ctx.push_data_input(
|
||||
name,
|
||||
"shape",
|
||||
TensorProto.INT32,
|
||||
TensorProto.INT64,
|
||||
[len(shape)],
|
||||
shape,
|
||||
)
|
||||
|
@ -545,29 +748,81 @@ class OnnxStub:
|
|||
elif ty == backend.OpType.Concat:
|
||||
axis = backend.concat_axis_of(op)
|
||||
ctx.push_node(make_node(ty.name, inputs, outputs, name, axis=axis))
|
||||
elif ty == backend.OpType.Split:
|
||||
axis = backend.split_axis_of(op)
|
||||
num_outputs = len(outputs)
|
||||
split = op.inputs()[0].shape()[axis] // num_outputs
|
||||
inputs.append(
|
||||
ctx.push_data_input(
|
||||
name,
|
||||
"split",
|
||||
TensorProto.INT64,
|
||||
[len(outputs)],
|
||||
[split for _ in range(0, num_outputs)],
|
||||
)
|
||||
)
|
||||
ctx.push_node(
|
||||
make_node(
|
||||
ty.name,
|
||||
inputs,
|
||||
outputs,
|
||||
name,
|
||||
axis=axis,
|
||||
)
|
||||
)
|
||||
elif ty == backend.OpType.Gather:
|
||||
axis = backend.gather_axis_of(op)
|
||||
ctx.push_node(make_node(ty.name, inputs, outputs, name, axis=axis))
|
||||
elif ty == backend.OpType.ReduceMean:
|
||||
axes = backend.reduce_mean_axes_of(op)
|
||||
axes, keepdims = backend.reduce_mean_attrs_of(op)
|
||||
inputs.append(
|
||||
ctx.push_data_input(
|
||||
name, "axes", TensorProto.INT32, [len(axes)], axes
|
||||
name, "axes", TensorProto.INT64, [len(axes)], axes
|
||||
)
|
||||
)
|
||||
ctx.push_node(make_node(ty.name, inputs, outputs, name, keepdims=1))
|
||||
ctx.push_node(
|
||||
make_node(ty.name, inputs, outputs, name, keepdims=keepdims)
|
||||
)
|
||||
elif ty == backend.OpType.Slice:
|
||||
raise Exception("TODO")
|
||||
elif ty == backend.OpType.Pad:
|
||||
raise Exception("TODO")
|
||||
pads = backend.pad_pads_of(op)
|
||||
inputs.append(
|
||||
ctx.push_data_input(
|
||||
name, "pads", TensorProto.INT64, [len(pads)], pads
|
||||
)
|
||||
)
|
||||
ctx.push_node(make_node(ty.name, inputs, outputs, name))
|
||||
elif ty == backend.OpType.Clip:
|
||||
min, max = backend.clip_attrs_of(op)
|
||||
if min != None:
|
||||
inputs.append(
|
||||
ctx.push_data_input(name, "min", TensorProto.FLOAT, [], [min])
|
||||
)
|
||||
else:
|
||||
raise Exception("Unsupported OpType {}".format(ty.name))
|
||||
inputs.append(
|
||||
ctx.push_data_input(name, "min", TensorProto.FLOAT, [], [])
|
||||
)
|
||||
if max != None:
|
||||
inputs.append(
|
||||
ctx.push_data_input(name, "max", TensorProto.FLOAT, [], [max])
|
||||
)
|
||||
else:
|
||||
inputs.append(
|
||||
ctx.push_data_input(name, "max", TensorProto.FLOAT, [], [])
|
||||
)
|
||||
ctx.push_node(make_node(ty.name, inputs, outputs, name))
|
||||
else:
|
||||
raise Exception("Unsupported OpType", ty)
|
||||
|
||||
return ctx.build(name)
|
||||
|
||||
def init(self) -> None:
|
||||
self.handler.data_malloc()
|
||||
|
||||
def optimize(self) -> None:
|
||||
self.handler.optimize()
|
||||
|
||||
def run(self) -> None:
|
||||
self.handler.run()
|
||||
|
||||
|
@ -576,9 +831,39 @@ def from_onnx(model: ModelProto, runtime):
|
|||
stub = OnnxStub(model, runtime)
|
||||
return stub.inputs, stub.outputs, stub.handler
|
||||
|
||||
def run_onnx(model: ModelProto, runtime):
|
||||
stub = OnnxStub(model, runtime)
|
||||
stub.run()
|
||||
|
||||
def _search_shape(model: ModelProto, name: str) -> List[int]:
|
||||
ans = (
|
||||
next(
|
||||
(
|
||||
[
|
||||
(d.dim_value if d.dim_value > 0 else 1)
|
||||
for d in tensor.type.tensor_type.shape.dim
|
||||
]
|
||||
for tensor in model.graph.value_info
|
||||
if tensor.name == name
|
||||
),
|
||||
None,
|
||||
)
|
||||
or next(
|
||||
(
|
||||
[
|
||||
(d.dim_value if d.dim_value > 0 else 1)
|
||||
for d in tensor.type.tensor_type.shape.dim
|
||||
]
|
||||
for tensor in model.graph.input
|
||||
if tensor.name == name
|
||||
),
|
||||
None,
|
||||
)
|
||||
or next(
|
||||
[int(d) for d in tensor.dims]
|
||||
for tensor in model.graph.initializer
|
||||
if tensor.name == name
|
||||
)
|
||||
)
|
||||
return ans
|
||||
|
||||
|
||||
def _parse_attribute(node: NodeProto, attrs: Dict[str, Any] = dict()) -> Dict[str, Any]:
|
||||
for attr in node.attribute:
|
||||
|
@ -598,15 +883,8 @@ def _parse_attribute(node: NodeProto, attrs: Dict[str, Any] = dict()) -> Dict[st
|
|||
return attrs
|
||||
|
||||
|
||||
def _parse_data(tensor: TensorProto) -> List[Union[int, float]]:
|
||||
if tensor.data_type == TensorProto.INT32:
|
||||
return [int(i) for i in tensor.int32_data]
|
||||
elif tensor.data_type == TensorProto.INT64:
|
||||
return [int(i) for i in tensor.int64_data]
|
||||
elif tensor.data_type == TensorProto.FLOAT:
|
||||
return [float(i) for i in tensor.float_data]
|
||||
else:
|
||||
assert False, "Unsupported Tensor Type: {}".format(tensor.data_type)
|
||||
def _parse_data(tensor: TensorProto) -> List[Any]:
|
||||
return to_array(tensor).flatten().tolist()
|
||||
|
||||
|
||||
def _take_shape_dim(shape: TensorShapeProto) -> List[int]:
|
||||
|
|
|
@ -7,14 +7,16 @@ from onnx.helper import (
|
|||
make_graph,
|
||||
make_tensor_value_info,
|
||||
)
|
||||
from onnx.checker import check_model
|
||||
from pyinfinitensor.onnx import from_onnx, backend, runtime, run_onnx
|
||||
from onnx.checker import check_model, check_graph
|
||||
from onnx.shape_inference import infer_shapes
|
||||
from pyinfinitensor.onnx import from_onnx, OnnxStub, backend
|
||||
|
||||
|
||||
def make_and_import_model(graph: onnx.GraphProto):
|
||||
check_graph(graph)
|
||||
model = make_model(graph)
|
||||
check_model(model)
|
||||
from_onnx(model, runtime)
|
||||
from_onnx(model, backend.cpu_runtime())
|
||||
|
||||
|
||||
class TestStringMethods(unittest.TestCase):
|
||||
|
@ -31,16 +33,17 @@ class TestStringMethods(unittest.TestCase):
|
|||
# run_onnx(onnx.load(model_file), runtime)
|
||||
|
||||
def test_load(self):
|
||||
model_file = next(
|
||||
(name for name in os.listdir() if name.endswith(".onnx")), None
|
||||
)
|
||||
if model_file != None:
|
||||
for model_file in os.listdir():
|
||||
if model_file.endswith(".onnx"):
|
||||
print(
|
||||
"model: {file}({size:.2f} MiB)".format(
|
||||
file=model_file, size=os.path.getsize(model_file) / 1024 / 1024
|
||||
)
|
||||
)
|
||||
from_onnx(onnx.load(model_file), runtime)
|
||||
model = OnnxStub(onnx.load(model_file), backend.cpu_runtime()).to_onnx(
|
||||
"new"
|
||||
)
|
||||
model = infer_shapes(model)
|
||||
|
||||
def test_tensor(self):
|
||||
x = make_tensor_value_info("x", TensorProto.FLOAT, [1, 2, 3])
|
||||
|
@ -55,7 +58,7 @@ class TestStringMethods(unittest.TestCase):
|
|||
["i", "w"],
|
||||
["o"],
|
||||
"conv",
|
||||
pads=[1, 1],
|
||||
pads=[1, 1, 1, 1],
|
||||
strides=[2, 1],
|
||||
dilations=[1, 2],
|
||||
)
|
||||
|
@ -102,7 +105,7 @@ class TestStringMethods(unittest.TestCase):
|
|||
["y"],
|
||||
kernel_shape=[3, 3],
|
||||
dilations=[1, 1],
|
||||
pads=[0, 0],
|
||||
pads=[0, 0, 0, 0],
|
||||
strides=[2, 2],
|
||||
name="maxPool",
|
||||
)
|
||||
|
@ -116,7 +119,7 @@ class TestStringMethods(unittest.TestCase):
|
|||
["x"],
|
||||
["y"],
|
||||
kernel_shape=[3, 3],
|
||||
pads=[0, 0],
|
||||
pads=[0, 0, 0, 0],
|
||||
strides=[2, 2],
|
||||
name="avgPool",
|
||||
)
|
||||
|
@ -254,22 +257,19 @@ class TestStringMethods(unittest.TestCase):
|
|||
|
||||
def test_slice(self):
|
||||
data = make_tensor_value_info("data", TensorProto.UINT32, [10, 64, 162, 162])
|
||||
output = make_tensor_value_info("output", TensorProto.UINT32, [1, 0, 99, 95])
|
||||
starts = make_tensor_value_info("starts", TensorProto.INT64, [4])
|
||||
starts_data = make_tensor("starts", TensorProto.INT64, [4], [2, 10, 1, 5])
|
||||
ends = make_tensor_value_info("ends", TensorProto.INT64, [4])
|
||||
ends_data = make_tensor("ends", TensorProto.INT64, [4], [3, 10, 100, 100])
|
||||
output = make_tensor_value_info("output", TensorProto.UINT32, [1, 1, 99, 95])
|
||||
starts = make_tensor("starts", TensorProto.INT64, [4], [2, 9, 1, 5])
|
||||
ends = make_tensor("ends", TensorProto.INT64, [4], [3, 10, 100, 100])
|
||||
slice = make_node("Slice", ["data", "starts", "ends"], ["output"], name="slice")
|
||||
# FIXME 后端的实现是 axis:[start,end],onnx 的实现是 axis:[start,end)
|
||||
# make_and_import_model(
|
||||
make_and_import_model(
|
||||
make_graph(
|
||||
[slice],
|
||||
"slice",
|
||||
[data, starts, ends],
|
||||
[data],
|
||||
[output],
|
||||
[starts_data, ends_data],
|
||||
[starts, ends],
|
||||
)
|
||||
)
|
||||
# )
|
||||
|
||||
def test_pad(self):
|
||||
data = make_tensor_value_info("data", TensorProto.UINT32, [1, 64, 162, 162])
|
||||
|
@ -300,10 +300,10 @@ class TestStringMethods(unittest.TestCase):
|
|||
graph = make_graph([matmul, add], "lr", [x, a, b], [y])
|
||||
model = make_model(graph)
|
||||
check_model(model)
|
||||
from_onnx(model, runtime)
|
||||
from_onnx(model, backend.cpu_runtime())
|
||||
|
||||
def test_frontend(self):
|
||||
handler = backend.GraphHandler(runtime)
|
||||
handler = backend.GraphHandler(backend.cpu_runtime())
|
||||
a = handler.tensor([1, 2, 3], 12)
|
||||
b = handler.tensor([1, 2, 3], 12)
|
||||
c = handler.tensor([1, 2, 3], 12)
|
||||
|
|
|
@ -114,6 +114,15 @@ bool GraphObj::topo_sort() {
|
|||
return this->sorted = true;
|
||||
}
|
||||
|
||||
void GraphObj::optimize() {
|
||||
for (auto &op : ops) {
|
||||
switch (op->getOpType()) {
|
||||
default:
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void GraphObj::dataMalloc() {
|
||||
for (auto &tensor : tensors) {
|
||||
tensor->dataMalloc();
|
||||
|
|
|
@ -11,6 +11,8 @@
|
|||
#include "operators/reshape.h"
|
||||
#include "operators/slice.h"
|
||||
#include "operators/softmax.h"
|
||||
#include "operators/split.h"
|
||||
#include "operators/transpose.h"
|
||||
#include "operators/unary.h"
|
||||
|
||||
namespace infini {
|
||||
|
@ -35,6 +37,24 @@ Tensor GraphHandlerObj::conv(Tensor input, Tensor weight, Tensor output, int ph,
|
|||
}
|
||||
}
|
||||
|
||||
Tensor GraphHandlerObj::convTransposed2d(Tensor input, Tensor weight,
|
||||
Tensor output, int ph, int pw, int sh,
|
||||
int sw, int dh, int dw, int oph,
|
||||
int opw) {
|
||||
if (output) {
|
||||
g->addOpWithOutputs<ConvTransposed2dObj>(std::move(input),
|
||||
std::move(weight), output, ph,
|
||||
pw, sh, sw, dh, dw, oph, opw);
|
||||
return output;
|
||||
} else {
|
||||
return g
|
||||
->addOp<ConvTransposed2dObj>(std::move(input), std::move(weight),
|
||||
output, ph, pw, sh, sw, dh, dw, oph,
|
||||
opw)
|
||||
->getOutput();
|
||||
}
|
||||
}
|
||||
|
||||
Tensor GraphHandlerObj::matmul(Tensor a, Tensor b, Tensor y, bool transA,
|
||||
bool transB, Tensor bias, ActType act) {
|
||||
if (y) {
|
||||
|
@ -128,9 +148,31 @@ DEFINE_UNARY_METHOD(relu, Relu)
|
|||
DEFINE_UNARY_METHOD(sigmoid, Sigmoid)
|
||||
DEFINE_UNARY_METHOD(tanh, Tanh)
|
||||
DEFINE_UNARY_METHOD(abs, Abs)
|
||||
DEFINE_UNARY_METHOD(shape, Shape)
|
||||
|
||||
// see operators/reshape.h
|
||||
DEFINE_UNARY_METHOD(identity, Identity)
|
||||
|
||||
Tensor GraphHandlerObj::pRelu(Tensor x, Tensor slope, Tensor y) {
|
||||
if (y) {
|
||||
g->addOpWithOutputs<PReluObj>(std::move(x), std::move(slope), y);
|
||||
return y;
|
||||
} else {
|
||||
return g->addOp<PReluObj>(std::move(x), std::move(slope), y)
|
||||
->getOutput();
|
||||
}
|
||||
}
|
||||
|
||||
Tensor GraphHandlerObj::clip(Tensor x, Tensor y, std::optional<float> min,
|
||||
std::optional<float> max) {
|
||||
if (y) {
|
||||
g->addOpWithOutputs<ClipObj>(std::move(x), y, min, max);
|
||||
return y;
|
||||
} else {
|
||||
return g->addOp<ClipObj>(std::move(x), y, min, max)->getOutput();
|
||||
}
|
||||
}
|
||||
|
||||
Tensor GraphHandlerObj::softmax(Tensor input, Tensor output, int axis) {
|
||||
if (output) {
|
||||
g->addOpWithOutputs<SoftmaxObj>(std::move(input), output, axis);
|
||||
|
@ -151,6 +193,16 @@ Tensor GraphHandlerObj::flatten(Tensor input, Tensor output, int axis) {
|
|||
}
|
||||
}
|
||||
|
||||
Tensor GraphHandlerObj::transpose(Tensor data, Tensor transposed, Shape perm) {
|
||||
if (transposed) {
|
||||
g->addOpWithOutputs<TransposeObj>(std::move(data), transposed, perm);
|
||||
return transposed;
|
||||
} else {
|
||||
return g->addOp<TransposeObj>(std::move(data), transposed, perm)
|
||||
->getOutput();
|
||||
}
|
||||
}
|
||||
|
||||
Tensor GraphHandlerObj::reshape(Tensor data, Tensor reshaped, Shape shape) {
|
||||
if (reshaped) {
|
||||
g->addOpWithOutputs<ReshapeObj>(std::move(data), reshaped,
|
||||
|
@ -171,6 +223,18 @@ Tensor GraphHandlerObj::concat(TensorVec inputs, Tensor output, int dim) {
|
|||
}
|
||||
}
|
||||
|
||||
TensorVec GraphHandlerObj::split(Tensor input, std::optional<TensorVec> outputs,
|
||||
int axis, int num_outputs) {
|
||||
if (outputs) {
|
||||
g->addOpWithOutputs<SplitObj>(std::move(input), outputs, axis,
|
||||
num_outputs);
|
||||
return *outputs;
|
||||
} else {
|
||||
return g->addOp<SplitObj>(std::move(input), outputs, axis, num_outputs)
|
||||
->getOutputs();
|
||||
}
|
||||
}
|
||||
|
||||
Tensor GraphHandlerObj::gather(Tensor data, Tensor indices, Tensor output,
|
||||
int axis) {
|
||||
if (output) {
|
||||
|
|
|
@ -64,79 +64,24 @@ vector<size_t> TensorObj::getStride() const {
|
|||
|
||||
void TensorObj::printData() const {
|
||||
IT_ASSERT(data != nullptr);
|
||||
void *ptr = nullptr;
|
||||
Blob buffer;
|
||||
if (!runtime->isCpu()) {
|
||||
buffer = NativeCpuRuntimeObj::getInstance()->allocBlob(getBytes());
|
||||
runtime->copyBlobToCPU(buffer->getPtr<void *>(),
|
||||
getRawDataPtr<void *>(), getBytes());
|
||||
ptr = buffer->getPtr<void *>();
|
||||
} else
|
||||
ptr = data->getPtr<float *>();
|
||||
if (dtype == DataType::Float32)
|
||||
printDataFloat(static_cast<float *>(ptr));
|
||||
else if (dtype == DataType::UInt32)
|
||||
printDataUint32_t(static_cast<uint32_t *>(ptr));
|
||||
else
|
||||
if (!runtime->isCpu())
|
||||
IT_TODO_HALT();
|
||||
}
|
||||
|
||||
void TensorObj::printDataFloat(float *ptr) const {
|
||||
std::cout << "Tensor: " << guid << std::endl;
|
||||
auto numDims = shape.size();
|
||||
auto dimSzVec = std::vector<int>(numDims, 1);
|
||||
dimSzVec[numDims - 1] = shape[numDims - 1];
|
||||
for (int i = numDims - 1; i != 0; --i)
|
||||
dimSzVec[i - 1] = dimSzVec[i] * shape[i - 1];
|
||||
for (size_t i = 0, iEnd = size(); i < iEnd; ++i) {
|
||||
if (iEnd > 1000 && i > 20 && i < iEnd - 20) {
|
||||
printf("... , ");
|
||||
i = iEnd - 20;
|
||||
continue;
|
||||
}
|
||||
for (size_t j = 0; j < numDims; ++j) {
|
||||
if (i % dimSzVec[j] == 0) {
|
||||
std::cout << "[";
|
||||
}
|
||||
}
|
||||
printf("%.1f", ptr[i]);
|
||||
for (size_t j = 0; j < numDims; ++j) {
|
||||
if ((int)i % dimSzVec[j] == dimSzVec[j] - 1) {
|
||||
std::cout << "]";
|
||||
}
|
||||
}
|
||||
if (i != size() - 1)
|
||||
std::cout << ", ";
|
||||
if ((int)i % dimSzVec[numDims - 1] == dimSzVec[numDims - 1] - 1)
|
||||
std::cout << std::endl;
|
||||
}
|
||||
}
|
||||
#define TRY_PRINT(N) \
|
||||
if (dtype == DataType(N)) \
|
||||
std::cout << dataToString<DT<N>::t>() << std::endl;
|
||||
|
||||
void TensorObj::printDataUint32_t(uint32_t *ptr) const {
|
||||
IT_ASSERT(data != nullptr);
|
||||
std::cout << "Tensor: " << guid << std::endl;
|
||||
auto numDims = shape.size();
|
||||
auto dimSzVec = std::vector<int>(numDims, 1);
|
||||
dimSzVec[numDims - 1] = shape[numDims - 1];
|
||||
for (int i = numDims - 1; i != 0; --i)
|
||||
dimSzVec[i - 1] = dimSzVec[i] * shape[i - 1];
|
||||
for (size_t i = 0, iEnd = size(); i < iEnd; ++i) {
|
||||
for (size_t j = 0; j < numDims; ++j) {
|
||||
if (i % dimSzVec[j] == 0) {
|
||||
std::cout << "[";
|
||||
}
|
||||
}
|
||||
std::cout << ptr[i];
|
||||
for (size_t j = 0; j < numDims; ++j) {
|
||||
if ((int)i % dimSzVec[j] == dimSzVec[j] - 1) {
|
||||
std::cout << "]";
|
||||
}
|
||||
}
|
||||
if (i != size() - 1)
|
||||
std::cout << ", ";
|
||||
if ((int)i % dimSzVec[numDims - 1] == dimSzVec[numDims - 1] - 1)
|
||||
std::cout << std::endl;
|
||||
}
|
||||
TRY_PRINT(0) // fmt: new line
|
||||
else TRY_PRINT(1) //
|
||||
else TRY_PRINT(2) //
|
||||
else TRY_PRINT(3) //
|
||||
else TRY_PRINT(4) //
|
||||
else TRY_PRINT(5) //
|
||||
else TRY_PRINT(6) //
|
||||
else TRY_PRINT(7) //
|
||||
else IT_TODO_HALT();
|
||||
|
||||
#undef TRY_PRINT
|
||||
}
|
||||
|
||||
bool TensorObj::equalData(const Tensor &rhs, double relativeError) const {
|
||||
|
@ -147,19 +92,27 @@ bool TensorObj::equalData(const Tensor &rhs, double relativeError) const {
|
|||
IT_ASSERT(rhs->getRuntime()->isCpu());
|
||||
if (size() != rhs->size())
|
||||
return false;
|
||||
if (getDType() == DataType::UInt32)
|
||||
return equalDataImpl(getRawDataPtr<uint32_t *>(),
|
||||
rhs->getRawDataPtr<uint32_t *>(), size(), 0);
|
||||
else if (getDType() == DataType::Float32)
|
||||
return equalDataImpl(getRawDataPtr<float *>(),
|
||||
rhs->getRawDataPtr<float *>(), size(),
|
||||
relativeError);
|
||||
else
|
||||
IT_TODO_HALT();
|
||||
|
||||
#define TEST_EQUAL(N) \
|
||||
if (dtype == DataType(N)) \
|
||||
return equalDataImpl(getRawDataPtr<DT<N>::t *>(), \
|
||||
rhs->getRawDataPtr<DT<N>::t *>(), size());
|
||||
|
||||
TEST_EQUAL(0) // fmt: new line
|
||||
else TEST_EQUAL(1) //
|
||||
else TEST_EQUAL(2) //
|
||||
else TEST_EQUAL(3) //
|
||||
else TEST_EQUAL(4) //
|
||||
else TEST_EQUAL(5) //
|
||||
else TEST_EQUAL(6) //
|
||||
else TEST_EQUAL(7) //
|
||||
else IT_TODO_HALT();
|
||||
|
||||
#undef TEST_EQUAL
|
||||
}
|
||||
|
||||
void TensorObj::dataMalloc() {
|
||||
if (data == nullptr)
|
||||
if (!data)
|
||||
data = runtime->allocBlob(getBytes());
|
||||
}
|
||||
|
||||
|
@ -201,9 +154,9 @@ Shape TensorObj::getPosByOffset(size_t offset, Shape dim) const {
|
|||
size_t TensorObj::getOffsetByPos(Shape pos, Shape dim) const {
|
||||
int n = dim.size();
|
||||
size_t offset = pos.at(0);
|
||||
for (auto i = 1; i < n; i++) {
|
||||
for (auto i = 1; i < n; i++)
|
||||
offset = offset * dim.at(i) + pos.at(i);
|
||||
}
|
||||
|
||||
return offset;
|
||||
}
|
||||
|
||||
|
@ -213,10 +166,10 @@ size_t TensorObj::getOffsetByBroadcastOffset(size_t bcOffset,
|
|||
|
||||
Shape pos = bcPos;
|
||||
int n = shape.size();
|
||||
for (auto i = 0; i < n; i++) {
|
||||
for (auto i = 0; i < n; i++)
|
||||
if (shape.at(i) == 1)
|
||||
pos[i] = 0;
|
||||
}
|
||||
|
||||
return getOffsetByPos(pos, shape);
|
||||
}
|
||||
}; // namespace infini
|
||||
|
|
|
@ -1,6 +1,7 @@
|
|||
#include "cuda/cuda_runtime.h"
|
||||
#include "core/kernel.h"
|
||||
#include "core/perf_engine.h"
|
||||
#include "core/runtime.h"
|
||||
#include "operators/conv.h"
|
||||
#include "operators/matmul.h"
|
||||
namespace infini {
|
||||
|
@ -16,12 +17,13 @@ void CudaRuntimeObj::runWithoutSync(const Graph &graph) const {
|
|||
auto perfKey = PerfEngine::Key{kernelAttrs, op->getOpPerfKey()};
|
||||
auto perfData = perfEngine.getPerfData(perfKey);
|
||||
// IT_ASSERT(perfData, "No perf data for OP " + op->toString());
|
||||
if (perfData)
|
||||
if (perfData) {
|
||||
kernel->compute(op, perfData, this);
|
||||
else
|
||||
} else {
|
||||
kernel->compute(op, this);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void CudaRuntimeObj::tune(const Graph &graph, bool profiling = false) const {
|
||||
const auto &kernelRegistry = KernelRegistry::getInstance();
|
||||
|
|
|
@ -3,15 +3,24 @@
|
|||
#include "operators/concat.h"
|
||||
#include "operators/conv.h"
|
||||
#include "operators/gather.h"
|
||||
#include "operators/matmul.h"
|
||||
#include "operators/pad.h"
|
||||
#include "operators/pooling.h"
|
||||
#include "operators/reduce_mean.h"
|
||||
#include "operators/reshape.h"
|
||||
#include "operators/split.h"
|
||||
#include "operators/transpose.h"
|
||||
#include "operators/unary.h"
|
||||
#include <algorithm>
|
||||
#include <pybind11/stl.h>
|
||||
|
||||
#ifdef USE_CUDA
|
||||
#include "cuda/cuda_runtime.h"
|
||||
#include "cuda/operator_timer.h"
|
||||
#endif
|
||||
#ifdef USE_BANG
|
||||
#include "bang/bang_runtime.h"
|
||||
#endif
|
||||
#ifdef USE_INTELCPU
|
||||
#include "intelcpu/mkl_runtime.h"
|
||||
#include "intelcpu/operator_timer.h"
|
||||
|
@ -57,6 +66,7 @@ void export_values(py::module &m) {
|
|||
.VALUE(OpType, G2BMM)
|
||||
.VALUE(OpType, GBMM)
|
||||
.VALUE(OpType, Pad)
|
||||
.VALUE(OpType, Clip)
|
||||
.VALUE(OpType, Slice)
|
||||
.VALUE(OpType, Concat)
|
||||
.VALUE(OpType, Split)
|
||||
|
@ -78,11 +88,12 @@ void export_values(py::module &m) {
|
|||
.VALUE(OpType, Softmax)
|
||||
.VALUE(OpType, Activation)
|
||||
.VALUE(OpType, Relu)
|
||||
.VALUE(OpType, PRelu)
|
||||
.VALUE(OpType, Sigmoid)
|
||||
.VALUE(OpType, Tanh)
|
||||
.VALUE(OpType, Abs)
|
||||
.VALUE(OpType, Resize)
|
||||
.VALUE(OpType, MemBound)
|
||||
.VALUE(OpType, Dropout)
|
||||
.export_values();
|
||||
|
||||
#undef VALUE
|
||||
|
@ -112,6 +123,10 @@ static int tensor_dtype(Tensor t) {
|
|||
static Ref<CudaRuntimeObj> cuda_runtime() { return make_ref<CudaRuntimeObj>(); }
|
||||
#endif
|
||||
|
||||
#ifdef USE_BANG
|
||||
static Ref<BangRuntimeObj> bang_runtime() { return make_ref<BangRuntimeObj>(); }
|
||||
#endif
|
||||
|
||||
#ifdef USE_INTELCPU
|
||||
static Ref<RuntimeObj> intelcpu_runtime() { return make_ref<MklRuntimeObj>(); }
|
||||
#endif
|
||||
|
@ -123,11 +138,27 @@ static std::tuple<int, int, int, int, int, int> conv_attrs_of(Operator op) {
|
|||
conv->getDw(), conv->getSh(), conv->getSw());
|
||||
}
|
||||
|
||||
static std::tuple<int, int, int, int, int, int, int, int>
|
||||
conv_trans_attrs_of(Operator op) {
|
||||
IT_ASSERT(op->getOpType() == OpType::ConvTrans);
|
||||
auto conv = dynamic_cast<const ConvTransposed2dObj *>(op.get());
|
||||
auto [oph, opw] = conv->getOutputPadding();
|
||||
return std::make_tuple(conv->getPh(), conv->getPw(), conv->getDh(),
|
||||
conv->getDw(), conv->getSh(), conv->getSw(), oph,
|
||||
opw);
|
||||
}
|
||||
|
||||
static std::tuple<bool, bool> matmul_attrs_of(Operator op) {
|
||||
IT_ASSERT(op->getOpType() == OpType::Matmul);
|
||||
auto matmul = dynamic_cast<const MatmulObj *>(op.get());
|
||||
return std::make_tuple(matmul->getTransA(), matmul->getTransB());
|
||||
}
|
||||
|
||||
static std::tuple<float, float, bool> batch_norm_attrs_of(Operator op) {
|
||||
IT_ASSERT(op->getOpType() == OpType::BatchNorm);
|
||||
auto batchnorm = dynamic_cast<const BatchNormObj *>(op.get());
|
||||
return std::make_tuple(batchnorm->getMomentum(), batchnorm->getEps(),
|
||||
batchnorm->getTraining());
|
||||
batchnorm->getTrainingMode());
|
||||
}
|
||||
|
||||
static std::tuple<int, int, int, int, int, int, int, int>
|
||||
|
@ -140,45 +171,88 @@ pool_attrs_of(Operator op) {
|
|||
pool->getSh(), pool->getSw());
|
||||
}
|
||||
|
||||
static std::tuple<std::optional<float>, std::optional<float>>
|
||||
clip_attrs_of(Operator op) {
|
||||
IT_ASSERT(op->getOpType() == OpType::Clip);
|
||||
auto clip = dynamic_cast<const ClipObj *>(op.get());
|
||||
return std::make_tuple(clip->getMin(), clip->getMax());
|
||||
}
|
||||
|
||||
static std::tuple<vector<int>, bool> reduce_mean_attrs_of(Operator op) {
|
||||
IT_ASSERT(op->getOpType() == OpType::ReduceMean);
|
||||
auto reduce_mean = dynamic_cast<const ReduceMeanObj *>(op.get());
|
||||
auto &set = reduce_mean->getAxes();
|
||||
return std::make_tuple(vector(set.begin(), set.end()),
|
||||
reduce_mean->getKeepDims());
|
||||
}
|
||||
|
||||
static int concat_axis_of(Operator op) {
|
||||
IT_ASSERT(op->getOpType() == OpType::Concat);
|
||||
return dynamic_cast<const ConcatObj *>(op.get())->getDim();
|
||||
}
|
||||
|
||||
static int split_axis_of(Operator op) {
|
||||
IT_ASSERT(op->getOpType() == OpType::Split);
|
||||
return dynamic_cast<const SplitObj *>(op.get())->getDim();
|
||||
}
|
||||
|
||||
static int gather_axis_of(Operator op) {
|
||||
IT_ASSERT(op->getOpType() == OpType::Gather);
|
||||
return dynamic_cast<const GatherObj *>(op.get())->getAxis();
|
||||
}
|
||||
|
||||
static vector<int> reduce_mean_axes_of(Operator op) {
|
||||
IT_ASSERT(op->getOpType() == OpType::ReduceMean);
|
||||
auto &set = dynamic_cast<const ReduceMeanObj *>(op.get())->getAxes();
|
||||
return vector(set.begin(), set.end());
|
||||
static vector<int64_t> reshape_shape_of(Operator op) {
|
||||
IT_ASSERT(op->getOpType() == OpType::Reshape);
|
||||
auto shape = dynamic_cast<const ReshapeObj *>(op.get())->getShape();
|
||||
vector<int64_t> ans(shape.size());
|
||||
std::transform(shape.begin(), shape.end(), ans.begin(),
|
||||
[](auto x) { return static_cast<int64_t>(x); });
|
||||
return ans;
|
||||
}
|
||||
|
||||
static Shape reshape_shape_of(Operator op) {
|
||||
IT_ASSERT(op->getOpType() == OpType::Reshape);
|
||||
return dynamic_cast<const ReshapeObj *>(op.get())->getShape();
|
||||
static vector<int64_t> pad_pads_of(Operator op) {
|
||||
IT_ASSERT(op->getOpType() == OpType::Pad);
|
||||
auto shape = dynamic_cast<const PadObj *>(op.get())->getPads();
|
||||
vector<int64_t> ans(shape.size());
|
||||
std::transform(shape.begin(), shape.end(), ans.begin(),
|
||||
[](auto x) { return static_cast<int64_t>(x); });
|
||||
return ans;
|
||||
}
|
||||
|
||||
static vector<int> transpose_permute_of(Operator op) {
|
||||
IT_ASSERT(op->getOpType() == OpType::Transpose);
|
||||
return dynamic_cast<const TransposeObj *>(op.get())->getPermute();
|
||||
}
|
||||
|
||||
void export_functions(py::module &m) {
|
||||
#define FUNCTION(NAME) def(#NAME, &NAME)
|
||||
m.def("cpu_runtime", &NativeCpuRuntimeObj::getInstance)
|
||||
#ifdef USE_CUDA
|
||||
m.def("runtime", cuda_runtime)
|
||||
#elif USE_INTELCPU
|
||||
m.def("runtime", intelcpu_runtime)
|
||||
#else
|
||||
m.def("runtime", &NativeCpuRuntimeObj::getInstance)
|
||||
.def("cuda_runtime", cuda_runtime)
|
||||
#endif
|
||||
#ifdef USE_INTELCPU
|
||||
.def("intelcpu_runtime", intelcpu_runtime)
|
||||
#endif
|
||||
#ifdef USE_CUDA
|
||||
.FUNCTION(cuda_runtime)
|
||||
#endif
|
||||
#ifdef USE_BANG
|
||||
.FUNCTION(bang_runtime)
|
||||
#endif
|
||||
|
||||
.FUNCTION(conv_attrs_of)
|
||||
.FUNCTION(conv_trans_attrs_of)
|
||||
.FUNCTION(matmul_attrs_of)
|
||||
.FUNCTION(batch_norm_attrs_of)
|
||||
.FUNCTION(pool_attrs_of)
|
||||
.FUNCTION(clip_attrs_of)
|
||||
.FUNCTION(reduce_mean_attrs_of)
|
||||
.FUNCTION(tensor_dtype)
|
||||
.FUNCTION(reshape_shape_of)
|
||||
.FUNCTION(pad_pads_of)
|
||||
.FUNCTION(transpose_permute_of)
|
||||
.FUNCTION(concat_axis_of)
|
||||
.FUNCTION(gather_axis_of)
|
||||
.FUNCTION(reduce_mean_axes_of);
|
||||
.FUNCTION(split_axis_of)
|
||||
.FUNCTION(gather_axis_of);
|
||||
#undef FUNCTION
|
||||
}
|
||||
|
||||
|
@ -191,6 +265,10 @@ void init_graph_builder(py::module &m) {
|
|||
#ifdef USE_CUDA
|
||||
py::class_<CudaRuntimeObj, std::shared_ptr<CudaRuntimeObj>, RuntimeObj>(
|
||||
m, "CudaRuntime");
|
||||
#endif
|
||||
#ifdef USE_BANG
|
||||
py::class_<BangRuntimeObj, std::shared_ptr<BangRuntimeObj>, RuntimeObj>(
|
||||
m, "BangRuntime");
|
||||
#endif
|
||||
py::class_<TensorObj, std::shared_ptr<TensorObj>>(m, "Tensor")
|
||||
.def("fuid", &TensorObj::getFuid, policy::automatic)
|
||||
|
@ -215,6 +293,7 @@ void init_graph_builder(py::module &m) {
|
|||
.def(py::init<Runtime>())
|
||||
.def("tensor", &Handler::tensor, policy::move)
|
||||
.def("conv", &Handler::conv, policy::move)
|
||||
.def("convTransposed2d", &Handler::convTransposed2d, policy::move)
|
||||
.def("matmul", &Handler::matmul, policy::move)
|
||||
.def("batchNorm", &Handler::batchNorm, policy::move)
|
||||
.def("maxPool", &Handler::maxPool, policy::move)
|
||||
|
@ -229,15 +308,21 @@ void init_graph_builder(py::module &m) {
|
|||
.def("tanh", &Handler::tanh, policy::move)
|
||||
.def("softmax", &Handler::softmax, policy::move)
|
||||
.def("abs", &Handler::abs, policy::move)
|
||||
.def("shape", &Handler::shape, policy::move)
|
||||
.def("identity", &Handler::identity, policy::move)
|
||||
.def("flatten", &Handler::flatten, policy::move)
|
||||
.def("pRelu", &Handler::pRelu, policy::move)
|
||||
.def("clip", &Handler::clip, policy::move)
|
||||
.def("transpose", &Handler::transpose, policy::move)
|
||||
.def("reshape", &Handler::reshape, policy::move)
|
||||
.def("concat", &Handler::concat, policy::move)
|
||||
.def("split", &Handler::split, policy::move)
|
||||
.def("gather", &Handler::gather, policy::move)
|
||||
.def("reduce_mean", &Handler::reduceMean, policy::move)
|
||||
.def("slice", &Handler::slice, policy::move)
|
||||
.def("pad", &Handler::pad, policy::move)
|
||||
.def("topo_sort", &Handler::topo_sort, policy::automatic)
|
||||
.def("optimize", &Handler::optimize, policy::automatic)
|
||||
.def("operators", &Handler::operators, policy::move)
|
||||
.def("data_malloc", &Handler::data_malloc, policy::automatic)
|
||||
.def("run", &Handler::run, policy::automatic);
|
||||
|
|
|
@ -0,0 +1,208 @@
|
|||
#include "bang/bang_kernel_without_config.h"
|
||||
#include "bang/bang_runtime.h"
|
||||
#include "operators/unary.h"
|
||||
|
||||
namespace infini {
|
||||
class UnaryCnnl : public BangKernelWithoutConfig {
|
||||
virtual cnnlActivationMode_t getOpType() const = 0;
|
||||
virtual float getCoef() const = 0;
|
||||
virtual tuple<float, float> getAlphBeta() const { return {1.f, 0.f}; }
|
||||
void compute(const Operator &_op,
|
||||
const RuntimeObj *_context) const override {
|
||||
auto op = as<UnaryObj>(_op);
|
||||
auto context = dynamic_cast<const BangRuntimeObj *>(_context);
|
||||
|
||||
void *const aData = (op->getInputs(0)->getRawDataPtr<void *>());
|
||||
void *const cData = (op->getOutput()->getRawDataPtr<void *>());
|
||||
|
||||
cnnlTensorDescriptor_t aDesc, cDesc;
|
||||
auto dim = op->getInputs(0)->getDims();
|
||||
int len = dim.size();
|
||||
int size = 1;
|
||||
for (int i = 0; i < len; ++i) {
|
||||
size *= dim[i];
|
||||
}
|
||||
|
||||
int dim_array[1] = {size};
|
||||
// get inputs
|
||||
checkCnnlError(cnnlCreateTensorDescriptor(&aDesc));
|
||||
checkCnnlError(cnnlSetTensorDescriptor(aDesc, CNNL_LAYOUT_ARRAY,
|
||||
CNNL_DTYPE_FLOAT, 1, dim_array));
|
||||
|
||||
// get outputs
|
||||
checkCnnlError(cnnlCreateTensorDescriptor(&cDesc));
|
||||
checkCnnlError(cnnlSetTensorDescriptor(cDesc, CNNL_LAYOUT_ARRAY,
|
||||
CNNL_DTYPE_FLOAT, 1, dim_array));
|
||||
|
||||
// get op descriptor
|
||||
cnnlActivationDescriptor_t opDesc;
|
||||
checkCnnlError(cnnlCreateActivationDescriptor(&opDesc));
|
||||
checkCnnlError(cnnlSetActivationDescriptor(
|
||||
opDesc, getOpType(), CNNL_NOT_PROPAGATE_NAN, getCoef()));
|
||||
|
||||
auto [alpha, beta] = getAlphBeta();
|
||||
cnnlStatus_t stat =
|
||||
cnnlActivationForward(context->cnnlHandle(), opDesc, &alpha, aDesc,
|
||||
aData, &beta, cDesc, cData);
|
||||
if (stat != CNNL_STATUS_SUCCESS)
|
||||
return;
|
||||
|
||||
// Destories in BANG does not require sync. But cnnl does not state
|
||||
// whether sync is required before destories.
|
||||
checkCnnlError(cnnlDestroyTensorDescriptor(aDesc));
|
||||
checkCnnlError(cnnlDestroyTensorDescriptor(cDesc));
|
||||
checkCnnlError(cnnlDestroyActivationDescriptor(opDesc));
|
||||
}
|
||||
};
|
||||
|
||||
class RoundCnnl : public BangKernelWithoutConfig {
|
||||
void compute(const Operator &_op,
|
||||
const RuntimeObj *_context) const override {
|
||||
auto op = as<UnaryObj>(_op);
|
||||
auto context = dynamic_cast<const BangRuntimeObj *>(_context);
|
||||
|
||||
void *const aData = (op->getInputs(0)->getRawDataPtr<void *>());
|
||||
void *const cData = (op->getOutput()->getRawDataPtr<void *>());
|
||||
|
||||
cnnlTensorDescriptor_t aDesc, cDesc;
|
||||
auto dim = op->getInputs(0)->getDims();
|
||||
if (dim.size() != 4)
|
||||
IT_TODO_HALT();
|
||||
|
||||
int dim_array[4] = {dim[0], dim[1], dim[2], dim[3]};
|
||||
// get inputs
|
||||
checkCnnlError(cnnlCreateTensorDescriptor(&aDesc));
|
||||
checkCnnlError(cnnlSetTensorDescriptor(aDesc, CNNL_LAYOUT_NCHW,
|
||||
CNNL_DTYPE_FLOAT, 4, dim_array));
|
||||
|
||||
// get outputs
|
||||
checkCnnlError(cnnlCreateTensorDescriptor(&cDesc));
|
||||
checkCnnlError(cnnlSetTensorDescriptor(cDesc, CNNL_LAYOUT_NCHW,
|
||||
CNNL_DTYPE_FLOAT, 4, dim_array));
|
||||
|
||||
cnnlStatus_t stat =
|
||||
cnnlRound(context->cnnlHandle(), aDesc, aData, cDesc, cData);
|
||||
if (stat != CNNL_STATUS_SUCCESS)
|
||||
return;
|
||||
|
||||
// Destories in BANG does not require sync. But cnnl does not state
|
||||
// whether sync is required before destories.
|
||||
checkCnnlError(cnnlDestroyTensorDescriptor(aDesc));
|
||||
checkCnnlError(cnnlDestroyTensorDescriptor(cDesc));
|
||||
}
|
||||
};
|
||||
|
||||
class SquareCnnl : public BangKernelWithoutConfig {
|
||||
void compute(const Operator &_op,
|
||||
const RuntimeObj *_context) const override {
|
||||
auto op = as<UnaryObj>(_op);
|
||||
auto context = dynamic_cast<const BangRuntimeObj *>(_context);
|
||||
|
||||
void *const aData = (op->getInputs(0)->getRawDataPtr<void *>());
|
||||
void *const cData = (op->getOutput()->getRawDataPtr<void *>());
|
||||
|
||||
cnnlTensorDescriptor_t aDesc, cDesc;
|
||||
auto dim = op->getInputs(0)->getDims();
|
||||
if (dim.size() != 4)
|
||||
IT_TODO_HALT();
|
||||
|
||||
int dim_array[4] = {dim[0], dim[1], dim[2], dim[3]};
|
||||
// get inputs
|
||||
checkCnnlError(cnnlCreateTensorDescriptor(&aDesc));
|
||||
checkCnnlError(cnnlSetTensorDescriptor(aDesc, CNNL_LAYOUT_NCHW,
|
||||
CNNL_DTYPE_FLOAT, 4, dim_array));
|
||||
|
||||
// get outputs
|
||||
checkCnnlError(cnnlCreateTensorDescriptor(&cDesc));
|
||||
checkCnnlError(cnnlSetTensorDescriptor(cDesc, CNNL_LAYOUT_NCHW,
|
||||
CNNL_DTYPE_FLOAT, 4, dim_array));
|
||||
|
||||
cnnlStatus_t stat =
|
||||
cnnlSquare(context->cnnlHandle(), aDesc, aData, cDesc, cData);
|
||||
if (stat != CNNL_STATUS_SUCCESS)
|
||||
return;
|
||||
|
||||
// Destories in BANG does not require sync. But cnnl does not state
|
||||
// whether sync is required before destories.
|
||||
checkCnnlError(cnnlDestroyTensorDescriptor(aDesc));
|
||||
checkCnnlError(cnnlDestroyTensorDescriptor(cDesc));
|
||||
}
|
||||
};
|
||||
|
||||
class PReluCnnl : public BangKernelWithoutConfig {
|
||||
void compute(const Operator &_op,
|
||||
const RuntimeObj *_context) const override {
|
||||
auto op = as<PReluObj>(_op);
|
||||
auto context = dynamic_cast<const BangRuntimeObj *>(_context);
|
||||
|
||||
void *const aData = (op->getInputs(0)->getRawDataPtr<void *>());
|
||||
void *const bData = (op->getInputs(1)->getRawDataPtr<void *>());
|
||||
void *const cData = (op->getOutput()->getRawDataPtr<void *>());
|
||||
|
||||
cnnlTensorDescriptor_t aDesc, bDesc, cDesc;
|
||||
auto dim = op->getInputs(0)->getDims();
|
||||
if (dim.size() != 4)
|
||||
IT_TODO_HALT();
|
||||
|
||||
int dim_array[4] = {dim[0], dim[1], dim[2], dim[3]};
|
||||
int alpha_array[4] = {1, 1, 1, 1};
|
||||
// get inputs
|
||||
checkCnnlError(cnnlCreateTensorDescriptor(&aDesc));
|
||||
checkCnnlError(cnnlSetTensorDescriptor(aDesc, CNNL_LAYOUT_NCHW,
|
||||
CNNL_DTYPE_FLOAT, 4, dim_array));
|
||||
checkCnnlError(cnnlCreateTensorDescriptor(&bDesc));
|
||||
checkCnnlError(cnnlSetTensorDescriptor(
|
||||
bDesc, CNNL_LAYOUT_NCHW, CNNL_DTYPE_FLOAT, 4, alpha_array));
|
||||
// get outputs
|
||||
checkCnnlError(cnnlCreateTensorDescriptor(&cDesc));
|
||||
checkCnnlError(cnnlSetTensorDescriptor(cDesc, CNNL_LAYOUT_NCHW,
|
||||
CNNL_DTYPE_FLOAT, 4, dim_array));
|
||||
|
||||
cnnlStatus_t stat = cnnlPrelu(context->cnnlHandle(), aDesc, aData,
|
||||
bDesc, bData, cDesc, cData);
|
||||
if (stat != CNNL_STATUS_SUCCESS)
|
||||
return;
|
||||
|
||||
// Destories in BANG does not require sync. But cnnl does not state
|
||||
// whether sync is required before destories.
|
||||
checkCnnlError(cnnlDestroyTensorDescriptor(aDesc));
|
||||
checkCnnlError(cnnlDestroyTensorDescriptor(bDesc));
|
||||
checkCnnlError(cnnlDestroyTensorDescriptor(cDesc));
|
||||
}
|
||||
};
|
||||
|
||||
class ReluCnnl : public UnaryCnnl {
|
||||
cnnlActivationMode_t getOpType() const override {
|
||||
return CNNL_ACTIVATION_RELU;
|
||||
}
|
||||
float getCoef() const override { return 0.0; }
|
||||
};
|
||||
|
||||
class SigmoidCnnl : public UnaryCnnl {
|
||||
cnnlActivationMode_t getOpType() const override {
|
||||
return CNNL_ACTIVATION_SIGMOID;
|
||||
}
|
||||
float getCoef() const override { return 0.0; }
|
||||
};
|
||||
|
||||
class TanhCnnl : public UnaryCnnl {
|
||||
cnnlActivationMode_t getOpType() const override {
|
||||
return CNNL_ACTIVATION_TANH;
|
||||
}
|
||||
float getCoef() const override { return 0.0; }
|
||||
};
|
||||
|
||||
REGISTER_KERNEL(Device::BANG, OpType::Relu, DataType::Float32, ReluCnnl,
|
||||
"Relu_cnnl_BANG_Float32");
|
||||
REGISTER_KERNEL(Device::BANG, OpType::PRelu, DataType::Float32, PReluCnnl,
|
||||
"PRelu_cnnl_BANG_Float32");
|
||||
REGISTER_KERNEL(Device::BANG, OpType::Sigmoid, DataType::Float32, SigmoidCnnl,
|
||||
"Sigmoid_cnnl_BANG_Float32");
|
||||
REGISTER_KERNEL(Device::BANG, OpType::Tanh, DataType::Float32, TanhCnnl,
|
||||
"Tanh_cnnl_BANG_Float32");
|
||||
REGISTER_KERNEL(Device::BANG, OpType::Round, DataType::Float32, RoundCnnl,
|
||||
"Round_cnnl_BANG_Float32");
|
||||
REGISTER_KERNEL(Device::BANG, OpType::Square, DataType::Float32, SquareCnnl,
|
||||
"Square_cnnl_BANG_Float32");
|
||||
|
||||
}; // namespace infini
|
|
@ -0,0 +1,94 @@
|
|||
#include "operators/activation_backward.h"
|
||||
#include "bang/bang_kernel_without_config.h"
|
||||
#include "bang/bang_runtime.h"
|
||||
|
||||
namespace infini {
|
||||
class ActivationBackwardCnnl : public BangKernelWithoutConfig {
|
||||
virtual cnnlActivationMode_t getOpType() const = 0;
|
||||
virtual float getCoef() const = 0;
|
||||
virtual tuple<float, float> getAlphBeta() const { return {1.f, 0.f}; }
|
||||
void compute(const Operator &_op,
|
||||
const RuntimeObj *_context) const override {
|
||||
auto op = as<ActivationBackwardObj>(_op);
|
||||
auto context = dynamic_cast<const BangRuntimeObj *>(_context);
|
||||
|
||||
void *const yData = (op->getInputs(0)->getRawDataPtr<void *>());
|
||||
void *const diffYData = (op->getInputs(1)->getRawDataPtr<void *>());
|
||||
void *const xData = (op->getInputs(2)->getRawDataPtr<void *>());
|
||||
void *const diffXData = (op->getOutput()->getRawDataPtr<void *>());
|
||||
|
||||
cnnlTensorDescriptor_t yDesc, diffYDesc, xDesc, diffXDesc;
|
||||
auto dim = op->getInputs(0)->getDims();
|
||||
if (dim.size() != 4)
|
||||
IT_TODO_HALT();
|
||||
|
||||
int dim_array[4] = {dim[0], dim[1], dim[2], dim[3]};
|
||||
// get inputs
|
||||
checkCnnlError(cnnlCreateTensorDescriptor(&yDesc));
|
||||
checkCnnlError(cnnlSetTensorDescriptor(yDesc, CNNL_LAYOUT_NCHW,
|
||||
CNNL_DTYPE_FLOAT, 4, dim_array));
|
||||
// get inputs
|
||||
checkCnnlError(cnnlCreateTensorDescriptor(&diffYDesc));
|
||||
checkCnnlError(cnnlSetTensorDescriptor(diffYDesc, CNNL_LAYOUT_NCHW,
|
||||
CNNL_DTYPE_FLOAT, 4, dim_array));
|
||||
// get inputs
|
||||
checkCnnlError(cnnlCreateTensorDescriptor(&xDesc));
|
||||
checkCnnlError(cnnlSetTensorDescriptor(xDesc, CNNL_LAYOUT_NCHW,
|
||||
CNNL_DTYPE_FLOAT, 4, dim_array));
|
||||
// get outputs
|
||||
checkCnnlError(cnnlCreateTensorDescriptor(&diffXDesc));
|
||||
checkCnnlError(cnnlSetTensorDescriptor(diffXDesc, CNNL_LAYOUT_NCHW,
|
||||
CNNL_DTYPE_FLOAT, 4, dim_array));
|
||||
|
||||
// get op descriptor
|
||||
cnnlActivationDescriptor_t opDesc;
|
||||
checkCnnlError(cnnlCreateActivationDescriptor(&opDesc));
|
||||
checkCnnlError(cnnlSetActivationDescriptor(
|
||||
opDesc, getOpType(), CNNL_NOT_PROPAGATE_NAN, getCoef()));
|
||||
|
||||
auto [alpha, beta] = getAlphBeta();
|
||||
cnnlStatus_t stat = cnnlActivationBackward(
|
||||
context->cnnlHandle(), opDesc, &alpha, yDesc, yData, diffYDesc,
|
||||
diffYData, xDesc, xData, &beta, diffXDesc, diffXData);
|
||||
if (stat != CNNL_STATUS_SUCCESS)
|
||||
return;
|
||||
|
||||
// Destories in BANG does not require sync. But cnnl does not state
|
||||
// whether sync is required before destories.
|
||||
checkCnnlError(cnnlDestroyTensorDescriptor(yDesc));
|
||||
checkCnnlError(cnnlDestroyTensorDescriptor(diffYDesc));
|
||||
checkCnnlError(cnnlDestroyTensorDescriptor(xDesc));
|
||||
checkCnnlError(cnnlDestroyTensorDescriptor(diffXDesc));
|
||||
checkCnnlError(cnnlDestroyActivationDescriptor(opDesc));
|
||||
}
|
||||
};
|
||||
|
||||
class ReluBackwardCnnl : public ActivationBackwardCnnl {
|
||||
cnnlActivationMode_t getOpType() const override {
|
||||
return CNNL_ACTIVATION_RELU;
|
||||
}
|
||||
float getCoef() const override { return 0.0; }
|
||||
};
|
||||
|
||||
class SigmoidBackwardCnnl : public ActivationBackwardCnnl {
|
||||
cnnlActivationMode_t getOpType() const override {
|
||||
return CNNL_ACTIVATION_SIGMOID;
|
||||
}
|
||||
float getCoef() const override { return 0.0; }
|
||||
};
|
||||
|
||||
class TanhBackwardCnnl : public ActivationBackwardCnnl {
|
||||
cnnlActivationMode_t getOpType() const override {
|
||||
return CNNL_ACTIVATION_TANH;
|
||||
}
|
||||
float getCoef() const override { return 0.0; }
|
||||
};
|
||||
|
||||
REGISTER_KERNEL(Device::BANG, OpType::ReluBackward, DataType::Float32,
|
||||
ReluBackwardCnnl, "ReluBackward_cnnl_BANG_Float32");
|
||||
REGISTER_KERNEL(Device::BANG, OpType::SigmoidBackward, DataType::Float32,
|
||||
SigmoidBackwardCnnl, "SigmoidBackward_cnnl_BANG_Float32");
|
||||
REGISTER_KERNEL(Device::BANG, OpType::TanhBackward, DataType::Float32,
|
||||
TanhBackwardCnnl, "TanhBackward_cnnl_BANG_Float32");
|
||||
|
||||
}; // namespace infini
|
|
@ -0,0 +1,185 @@
|
|||
#include "bang/bang_kernel_without_config.h"
|
||||
#include "bang/bang_runtime.h"
|
||||
#include "operators/unary.h"
|
||||
|
||||
namespace infini {
|
||||
class CastCnnl : public BangKernelWithoutConfig {
|
||||
void compute(const Operator &_op,
|
||||
const RuntimeObj *_context) const override {
|
||||
auto op = as<CastObj>(_op);
|
||||
auto context = dynamic_cast<const BangRuntimeObj *>(_context);
|
||||
|
||||
void *const aData = (op->getInputs(0)->getRawDataPtr<void *>());
|
||||
void *const cData = (op->getOutput()->getRawDataPtr<void *>());
|
||||
|
||||
cnnlTensorDescriptor_t aDesc, cDesc;
|
||||
auto dim = op->getInputs(0)->getDims();
|
||||
if (dim.size() != 4)
|
||||
IT_TODO_HALT();
|
||||
|
||||
int dim_array[4] = {dim[0], dim[1], dim[2], dim[3]};
|
||||
// get inputs
|
||||
checkCnnlError(cnnlCreateTensorDescriptor(&aDesc));
|
||||
checkCnnlError(cnnlCreateTensorDescriptor(&cDesc));
|
||||
cnnlCastDataType_t NlCastType;
|
||||
CastObj::CastType type = op->getType();
|
||||
switch (type) {
|
||||
case CastObj::Float2Int64:
|
||||
checkCnnlError(cnnlSetTensorDescriptor(
|
||||
aDesc, CNNL_LAYOUT_NCHW, CNNL_DTYPE_FLOAT, 4, dim_array));
|
||||
checkCnnlError(cnnlSetTensorDescriptor(
|
||||
cDesc, CNNL_LAYOUT_NCHW, CNNL_DTYPE_INT64, 4, dim_array));
|
||||
NlCastType = CNNL_CAST_FLOAT_TO_INT64;
|
||||
break;
|
||||
case CastObj::Float2Int32:
|
||||
checkCnnlError(cnnlSetTensorDescriptor(
|
||||
aDesc, CNNL_LAYOUT_NCHW, CNNL_DTYPE_FLOAT, 4, dim_array));
|
||||
checkCnnlError(cnnlSetTensorDescriptor(
|
||||
cDesc, CNNL_LAYOUT_NCHW, CNNL_DTYPE_INT32, 4, dim_array));
|
||||
NlCastType = CNNL_CAST_FLOAT_TO_INT32;
|
||||
break;
|
||||
case CastObj::Float2Int16:
|
||||
checkCnnlError(cnnlSetTensorDescriptor(
|
||||
aDesc, CNNL_LAYOUT_NCHW, CNNL_DTYPE_FLOAT, 4, dim_array));
|
||||
checkCnnlError(cnnlSetTensorDescriptor(
|
||||
cDesc, CNNL_LAYOUT_NCHW, CNNL_DTYPE_INT16, 4, dim_array));
|
||||
NlCastType = CNNL_CAST_FLOAT_TO_INT16;
|
||||
break;
|
||||
case CastObj::Float2Int8:
|
||||
checkCnnlError(cnnlSetTensorDescriptor(
|
||||
aDesc, CNNL_LAYOUT_NCHW, CNNL_DTYPE_FLOAT, 4, dim_array));
|
||||
checkCnnlError(cnnlSetTensorDescriptor(
|
||||
cDesc, CNNL_LAYOUT_NCHW, CNNL_DTYPE_INT8, 4, dim_array));
|
||||
NlCastType = CNNL_CAST_FLOAT_TO_INT8;
|
||||
break;
|
||||
case CastObj::Int322Float:
|
||||
checkCnnlError(cnnlSetTensorDescriptor(
|
||||
aDesc, CNNL_LAYOUT_NCHW, CNNL_DTYPE_INT32, 4, dim_array));
|
||||
checkCnnlError(cnnlSetTensorDescriptor(
|
||||
cDesc, CNNL_LAYOUT_NCHW, CNNL_DTYPE_FLOAT, 4, dim_array));
|
||||
NlCastType = CNNL_CAST_INT32_TO_FLOAT;
|
||||
break;
|
||||
case CastObj::Int322Int8:
|
||||
checkCnnlError(cnnlSetTensorDescriptor(
|
||||
aDesc, CNNL_LAYOUT_NCHW, CNNL_DTYPE_INT32, 4, dim_array));
|
||||
checkCnnlError(cnnlSetTensorDescriptor(
|
||||
cDesc, CNNL_LAYOUT_NCHW, CNNL_DTYPE_INT8, 4, dim_array));
|
||||
NlCastType = CNNL_CAST_INT32_TO_INT8;
|
||||
break;
|
||||
case CastObj::Int322Int16:
|
||||
checkCnnlError(cnnlSetTensorDescriptor(
|
||||
aDesc, CNNL_LAYOUT_NCHW, CNNL_DTYPE_INT32, 4, dim_array));
|
||||
checkCnnlError(cnnlSetTensorDescriptor(
|
||||
cDesc, CNNL_LAYOUT_NCHW, CNNL_DTYPE_INT16, 4, dim_array));
|
||||
NlCastType = CNNL_CAST_INT32_TO_INT16;
|
||||
break;
|
||||
case CastObj::Int162Float:
|
||||
checkCnnlError(cnnlSetTensorDescriptor(
|
||||
aDesc, CNNL_LAYOUT_NCHW, CNNL_DTYPE_INT16, 4, dim_array));
|
||||
checkCnnlError(cnnlSetTensorDescriptor(
|
||||
cDesc, CNNL_LAYOUT_NCHW, CNNL_DTYPE_FLOAT, 4, dim_array));
|
||||
NlCastType = CNNL_CAST_INT16_TO_FLOAT;
|
||||
break;
|
||||
case CastObj::Int162Int32:
|
||||
checkCnnlError(cnnlSetTensorDescriptor(
|
||||
aDesc, CNNL_LAYOUT_NCHW, CNNL_DTYPE_INT16, 4, dim_array));
|
||||
checkCnnlError(cnnlSetTensorDescriptor(
|
||||
cDesc, CNNL_LAYOUT_NCHW, CNNL_DTYPE_INT32, 4, dim_array));
|
||||
NlCastType = CNNL_CAST_INT16_TO_INT32;
|
||||
break;
|
||||
case CastObj::Int82Float:
|
||||
checkCnnlError(cnnlSetTensorDescriptor(
|
||||
aDesc, CNNL_LAYOUT_NCHW, CNNL_DTYPE_INT8, 4, dim_array));
|
||||
checkCnnlError(cnnlSetTensorDescriptor(
|
||||
cDesc, CNNL_LAYOUT_NCHW, CNNL_DTYPE_FLOAT, 4, dim_array));
|
||||
NlCastType = CNNL_CAST_INT8_TO_FLOAT;
|
||||
break;
|
||||
case CastObj::Int82Int16:
|
||||
checkCnnlError(cnnlSetTensorDescriptor(
|
||||
aDesc, CNNL_LAYOUT_NCHW, CNNL_DTYPE_INT8, 4, dim_array));
|
||||
checkCnnlError(cnnlSetTensorDescriptor(
|
||||
cDesc, CNNL_LAYOUT_NCHW, CNNL_DTYPE_INT16, 4, dim_array));
|
||||
NlCastType = CNNL_CAST_INT8_TO_INT16;
|
||||
break;
|
||||
case CastObj::Int82Int32:
|
||||
checkCnnlError(cnnlSetTensorDescriptor(
|
||||
aDesc, CNNL_LAYOUT_NCHW, CNNL_DTYPE_INT8, 4, dim_array));
|
||||
checkCnnlError(cnnlSetTensorDescriptor(
|
||||
cDesc, CNNL_LAYOUT_NCHW, CNNL_DTYPE_INT32, 4, dim_array));
|
||||
NlCastType = CNNL_CAST_INT8_TO_INT32;
|
||||
break;
|
||||
case CastObj::Uint82Float:
|
||||
checkCnnlError(cnnlSetTensorDescriptor(
|
||||
aDesc, CNNL_LAYOUT_NCHW, CNNL_DTYPE_UINT8, 4, dim_array));
|
||||
checkCnnlError(cnnlSetTensorDescriptor(
|
||||
cDesc, CNNL_LAYOUT_NCHW, CNNL_DTYPE_FLOAT, 4, dim_array));
|
||||
NlCastType = CNNL_CAST_UINT8_TO_FLOAT;
|
||||
break;
|
||||
case CastObj::Uint82Int32:
|
||||
checkCnnlError(cnnlSetTensorDescriptor(
|
||||
aDesc, CNNL_LAYOUT_NCHW, CNNL_DTYPE_UINT8, 4, dim_array));
|
||||
checkCnnlError(cnnlSetTensorDescriptor(
|
||||
cDesc, CNNL_LAYOUT_NCHW, CNNL_DTYPE_INT32, 4, dim_array));
|
||||
NlCastType = CNNL_CAST_UINT8_TO_INT32;
|
||||
break;
|
||||
case CastObj::Uint82Int64:
|
||||
checkCnnlError(cnnlSetTensorDescriptor(
|
||||
aDesc, CNNL_LAYOUT_NCHW, CNNL_DTYPE_UINT8, 4, dim_array));
|
||||
checkCnnlError(cnnlSetTensorDescriptor(
|
||||
cDesc, CNNL_LAYOUT_NCHW, CNNL_DTYPE_INT64, 4, dim_array));
|
||||
NlCastType = CNNL_CAST_UINT8_TO_INT64;
|
||||
break;
|
||||
case CastObj::Int322Int64:
|
||||
checkCnnlError(cnnlSetTensorDescriptor(
|
||||
aDesc, CNNL_LAYOUT_NCHW, CNNL_DTYPE_INT32, 4, dim_array));
|
||||
checkCnnlError(cnnlSetTensorDescriptor(
|
||||
cDesc, CNNL_LAYOUT_NCHW, CNNL_DTYPE_INT64, 4, dim_array));
|
||||
NlCastType = CNNL_CAST_INT32_TO_INT64;
|
||||
break;
|
||||
case CastObj::Int642Int32:
|
||||
checkCnnlError(cnnlSetTensorDescriptor(
|
||||
aDesc, CNNL_LAYOUT_NCHW, CNNL_DTYPE_INT64, 4, dim_array));
|
||||
checkCnnlError(cnnlSetTensorDescriptor(
|
||||
cDesc, CNNL_LAYOUT_NCHW, CNNL_DTYPE_INT32, 4, dim_array));
|
||||
NlCastType = CNNL_CAST_INT64_TO_INT32;
|
||||
break;
|
||||
case CastObj::Int642Uint32:
|
||||
checkCnnlError(cnnlSetTensorDescriptor(
|
||||
aDesc, CNNL_LAYOUT_NCHW, CNNL_DTYPE_INT64, 4, dim_array));
|
||||
checkCnnlError(cnnlSetTensorDescriptor(
|
||||
cDesc, CNNL_LAYOUT_NCHW, CNNL_DTYPE_UINT32, 4, dim_array));
|
||||
NlCastType = CNNL_CAST_INT64_TO_UINT32;
|
||||
break;
|
||||
case CastObj::Int642Float:
|
||||
checkCnnlError(cnnlSetTensorDescriptor(
|
||||
aDesc, CNNL_LAYOUT_NCHW, CNNL_DTYPE_INT64, 4, dim_array));
|
||||
checkCnnlError(cnnlSetTensorDescriptor(
|
||||
cDesc, CNNL_LAYOUT_NCHW, CNNL_DTYPE_FLOAT, 4, dim_array));
|
||||
NlCastType = CNNL_CAST_INT64_TO_FLOAT;
|
||||
break;
|
||||
case CastObj::Uint322Int64:
|
||||
checkCnnlError(cnnlSetTensorDescriptor(
|
||||
aDesc, CNNL_LAYOUT_NCHW, CNNL_DTYPE_UINT32, 4, dim_array));
|
||||
checkCnnlError(cnnlSetTensorDescriptor(
|
||||
cDesc, CNNL_LAYOUT_NCHW, CNNL_DTYPE_INT64, 4, dim_array));
|
||||
NlCastType = CNNL_CAST_UINT32_TO_INT64;
|
||||
break;
|
||||
default:
|
||||
IT_TODO_HALT();
|
||||
}
|
||||
cnnlStatus_t stat = cnnlCastDataType(context->cnnlHandle(), aDesc,
|
||||
aData, NlCastType, cDesc, cData);
|
||||
if (stat != CNNL_STATUS_SUCCESS)
|
||||
return;
|
||||
|
||||
// Destories in BANG does not require sync. But cnnl does not state
|
||||
// whether sync is required before destories.
|
||||
checkCnnlError(cnnlDestroyTensorDescriptor(aDesc));
|
||||
checkCnnlError(cnnlDestroyTensorDescriptor(cDesc));
|
||||
}
|
||||
};
|
||||
|
||||
REGISTER_KERNEL(Device::BANG, OpType::Cast, DataType::Float32, CastCnnl,
|
||||
"Cast_cnnl_BANG_Float32");
|
||||
|
||||
}; // namespace infini
|
|
@ -0,0 +1,46 @@
|
|||
#include "bang/bang_kernel_without_config.h"
|
||||
#include "bang/bang_runtime.h"
|
||||
#include "operators/unary.h"
|
||||
|
||||
namespace infini {
|
||||
class CeilCnnl : public BangKernelWithoutConfig {
|
||||
void compute(const Operator &_op,
|
||||
const RuntimeObj *_context) const override {
|
||||
auto op = as<UnaryObj>(_op);
|
||||
auto context = dynamic_cast<const BangRuntimeObj *>(_context);
|
||||
|
||||
void *const aData = (op->getInputs(0)->getRawDataPtr<void *>());
|
||||
void *const cData = (op->getOutput()->getRawDataPtr<void *>());
|
||||
|
||||
cnnlTensorDescriptor_t aDesc, cDesc;
|
||||
auto dim = op->getInputs(0)->getDims();
|
||||
if (dim.size() != 4)
|
||||
IT_TODO_HALT();
|
||||
|
||||
int dim_array[4] = {dim[0], dim[1], dim[2], dim[3]};
|
||||
// get inputs
|
||||
checkCnnlError(cnnlCreateTensorDescriptor(&aDesc));
|
||||
checkCnnlError(cnnlSetTensorDescriptor(aDesc, CNNL_LAYOUT_NCHW,
|
||||
CNNL_DTYPE_FLOAT, 4, dim_array));
|
||||
|
||||
// get outputs
|
||||
checkCnnlError(cnnlCreateTensorDescriptor(&cDesc));
|
||||
checkCnnlError(cnnlSetTensorDescriptor(cDesc, CNNL_LAYOUT_NCHW,
|
||||
CNNL_DTYPE_FLOAT, 4, dim_array));
|
||||
|
||||
cnnlStatus_t stat =
|
||||
cnnlCeil(context->cnnlHandle(), aDesc, aData, cDesc, cData);
|
||||
if (stat != CNNL_STATUS_SUCCESS)
|
||||
return;
|
||||
|
||||
// Destories in BANG does not require sync. But cnnl does not state
|
||||
// whether sync is required before destories.
|
||||
checkCnnlError(cnnlDestroyTensorDescriptor(aDesc));
|
||||
checkCnnlError(cnnlDestroyTensorDescriptor(cDesc));
|
||||
}
|
||||
};
|
||||
|
||||
REGISTER_KERNEL(Device::BANG, OpType::Ceil, DataType::Float32, CeilCnnl,
|
||||
"Ceil_cnnl_BANG_Float32");
|
||||
|
||||
}; // namespace infini
|
|
@ -0,0 +1,42 @@
|
|||
#include "bang/bang_kernel_without_config.h"
|
||||
#include "bang/bang_runtime.h"
|
||||
#include "operators/unary.h"
|
||||
|
||||
namespace infini {
|
||||
class ClipCnnl : public BangKernelWithoutConfig {
|
||||
void compute(const Operator &_op,
|
||||
const RuntimeObj *_context) const override {
|
||||
auto op = as<ClipObj>(_op);
|
||||
auto context = dynamic_cast<const BangRuntimeObj *>(_context);
|
||||
|
||||
void *const aData = (op->getInputs(0)->getRawDataPtr<void *>());
|
||||
void *const cData = (op->getOutput()->getRawDataPtr<void *>());
|
||||
float min = op->getMin().value();
|
||||
float max = op->getMax().value();
|
||||
|
||||
cnnlTensorDescriptor_t aDesc;
|
||||
auto dim = op->getInputs(0)->getDims();
|
||||
if (dim.size() != 4)
|
||||
IT_TODO_HALT();
|
||||
|
||||
int dim_array[4] = {dim[0], dim[1], dim[2], dim[3]};
|
||||
// get inputs
|
||||
checkCnnlError(cnnlCreateTensorDescriptor(&aDesc));
|
||||
checkCnnlError(cnnlSetTensorDescriptor(aDesc, CNNL_LAYOUT_NCHW,
|
||||
CNNL_DTYPE_FLOAT, 4, dim_array));
|
||||
|
||||
cnnlStatus_t stat =
|
||||
cnnlClip(context->cnnlHandle(), aDesc, aData, &min, &max, cData);
|
||||
if (stat != CNNL_STATUS_SUCCESS)
|
||||
return;
|
||||
|
||||
// Destories in BANG does not require sync. But cnnl does not state
|
||||
// whether sync is required before destories.
|
||||
checkCnnlError(cnnlDestroyTensorDescriptor(aDesc));
|
||||
}
|
||||
};
|
||||
|
||||
REGISTER_KERNEL(Device::BANG, OpType::Clip, DataType::Float32, ClipCnnl,
|
||||
"Clip_cnnl_BANG_Float32");
|
||||
|
||||
}; // namespace infini
|
|
@ -0,0 +1,68 @@
|
|||
#include "operators/concat.h"
|
||||
#include "bang/bang_kernel_without_config.h"
|
||||
#include "bang/bang_runtime.h"
|
||||
|
||||
namespace infini {
|
||||
class ConcatCnnl : public BangKernelWithoutConfig {
|
||||
void compute(const Operator &_op,
|
||||
const RuntimeObj *_context) const override {
|
||||
auto op = as<ConcatObj>(_op);
|
||||
auto context = dynamic_cast<const BangRuntimeObj *>(_context);
|
||||
int num = op->numInputs();
|
||||
int axis = op->getDim();
|
||||
void *argv[num];
|
||||
for (int i = 0; i < num; ++i) {
|
||||
argv[i] = op->getInputs(i)->getRawDataPtr<void *>();
|
||||
}
|
||||
void *const cData = (op->getOutput()->getRawDataPtr<void *>());
|
||||
|
||||
cnnlTensorDescriptor_t desc;
|
||||
|
||||
int dim_array[num][4];
|
||||
for (int i = 0; i < num; ++i) {
|
||||
auto dim = op->getInputs(i)->getDims();
|
||||
if (dim.size() != 4) {
|
||||
IT_TODO_HALT();
|
||||
}
|
||||
dim_array[i][0] = dim[0];
|
||||
dim_array[i][1] = dim[1];
|
||||
dim_array[i][2] = dim[2];
|
||||
dim_array[i][3] = dim[3];
|
||||
}
|
||||
|
||||
auto dim = op->getOutput()->getDims();
|
||||
int dimout_array[4] = {dim[0], dim[1], dim[2], dim[3]};
|
||||
|
||||
checkCnnlError(cnnlCreateTensorDescriptor(&desc));
|
||||
checkCnnlError(cnnlSetTensorDescriptor(
|
||||
desc, CNNL_LAYOUT_NCHW, CNNL_DTYPE_FLOAT, 4, dimout_array));
|
||||
cnnlTensorDescriptor_t descArray[num];
|
||||
for (int i = 0; i < num; ++i) {
|
||||
checkCnnlError(cnnlCreateTensorDescriptor(&descArray[i]));
|
||||
checkCnnlError(
|
||||
cnnlSetTensorDescriptor(descArray[i], CNNL_LAYOUT_NCHW,
|
||||
CNNL_DTYPE_FLOAT, 4, dim_array[i]));
|
||||
}
|
||||
|
||||
size_t wsSize;
|
||||
cnnlGetConcatWorkspaceSize(context->cnnlHandle(), num, &wsSize);
|
||||
BangPtr wsData = context->getWorkspace(wsSize);
|
||||
|
||||
cnnlStatus_t stat =
|
||||
cnnlConcat(context->cnnlHandle(), num, axis, descArray, argv,
|
||||
wsData, wsSize, desc, cData);
|
||||
if (stat != CNNL_STATUS_SUCCESS)
|
||||
return;
|
||||
|
||||
// Destories in BANG does not require sync. But cnnl does not state
|
||||
// whether sync is required before destories.
|
||||
for (int i = 0; i < num; ++i) {
|
||||
checkCnnlError(cnnlDestroyTensorDescriptor(descArray[i]));
|
||||
}
|
||||
checkCnnlError(cnnlDestroyTensorDescriptor(desc));
|
||||
}
|
||||
};
|
||||
|
||||
REGISTER_KERNEL(Device::BANG, OpType::Concat, DataType::Float32, ConcatCnnl,
|
||||
"Concat_cnnl_BANG_Float32");
|
||||
}; // namespace infini
|
|
@ -0,0 +1,88 @@
|
|||
#include "bang/bang_kernel_without_config.h"
|
||||
#include "bang/bang_runtime.h"
|
||||
#include "operators/conv.h"
|
||||
|
||||
namespace infini {
|
||||
class ConvTransCnnl : public BangKernelWithoutConfig {
|
||||
void compute(const Operator &_op,
|
||||
const RuntimeObj *_context) const override {
|
||||
auto op = as<ConvBaseObj>(_op);
|
||||
auto context = dynamic_cast<const BangRuntimeObj *>(_context);
|
||||
|
||||
const auto [ph, pw, sh, sw, dh, dw] = op->getPadStrideDilation();
|
||||
const auto [n, c, h, w, f, r, s] = op->getNCHWFRS();
|
||||
const int cpg = op->getChannelPerGroup();
|
||||
const int g = c / cpg;
|
||||
|
||||
int pad[4] = {ph, ph, pw, pw};
|
||||
int stride[2] = {sh, sw};
|
||||
int dilation[2] = {dh, dw};
|
||||
|
||||
cnnlConvolutionDescriptor_t convDesc;
|
||||
checkCnnlError(cnnlCreateConvolutionDescriptor(&convDesc));
|
||||
checkCnnlError(cnnlSetConvolutionDescriptor(
|
||||
convDesc, 4, pad, stride, dilation, g, CNNL_DTYPE_FLOAT));
|
||||
|
||||
void *const aData = (op->getInputs(0)->getRawDataPtr<void *>());
|
||||
void *const bData = (op->getInputs(1)->getRawDataPtr<void *>());
|
||||
void *const cData = (op->getOutput()->getRawDataPtr<void *>());
|
||||
|
||||
cnnlTensorDescriptor_t aDesc, bDesc, cDesc;
|
||||
auto dimInputs0 = op->getInputs(0)->getDims();
|
||||
auto dimInputs1 = op->getInputs(1)->getDims();
|
||||
auto dimOutput = op->getOutput()->getDims();
|
||||
|
||||
if (dimInputs0.size() != 4)
|
||||
IT_TODO_HALT();
|
||||
if (dimInputs1.size() != 4)
|
||||
IT_TODO_HALT();
|
||||
if (dimOutput.size() != 4)
|
||||
IT_TODO_HALT();
|
||||
|
||||
int inputs0[4] = {dimInputs0[0], dimInputs0[1], dimInputs0[2],
|
||||
dimInputs0[3]};
|
||||
int inputs1[4] = {dimInputs1[0], dimInputs1[1], dimInputs1[2],
|
||||
dimInputs1[3]};
|
||||
int output[4] = {dimOutput[0], dimOutput[1], dimOutput[2],
|
||||
dimOutput[3]};
|
||||
|
||||
// get inputs
|
||||
checkCnnlError(cnnlCreateTensorDescriptor(&aDesc));
|
||||
checkCnnlError(cnnlSetTensorDescriptor(aDesc, CNNL_LAYOUT_NCHW,
|
||||
CNNL_DTYPE_FLOAT, 4, inputs0));
|
||||
checkCnnlError(cnnlCreateTensorDescriptor(&bDesc));
|
||||
checkCnnlError(cnnlSetTensorDescriptor(bDesc, CNNL_LAYOUT_NCHW,
|
||||
CNNL_DTYPE_FLOAT, 4, inputs1));
|
||||
// get outputs
|
||||
checkCnnlError(cnnlCreateTensorDescriptor(&cDesc));
|
||||
checkCnnlError(cnnlSetTensorDescriptor(cDesc, CNNL_LAYOUT_NCHW,
|
||||
CNNL_DTYPE_FLOAT, 4, output));
|
||||
|
||||
cnnlConvolutionBwdDataAlgo_t algo;
|
||||
cnnlGetConvolutionBackwardDataAlgorithm(
|
||||
context->cnnlHandle(), aDesc, bDesc, convDesc, cDesc,
|
||||
CNNL_CONVOLUTION_BWD_DATA_FASTEST, &algo);
|
||||
size_t wsSize;
|
||||
cnnlGetConvolutionBackwardDataWorkspaceSize(context->cnnlHandle(),
|
||||
aDesc, bDesc, convDesc,
|
||||
cDesc, algo, &wsSize);
|
||||
BangPtr wsData = context->getWorkspace(wsSize);
|
||||
|
||||
cnnlStatus_t stat = cnnlConvolutionBackwardData(
|
||||
context->cnnlHandle(), NULL, aDesc, aData, bDesc, bData, convDesc,
|
||||
algo, wsData, wsSize, NULL, cDesc, cData);
|
||||
if (stat != CNNL_STATUS_SUCCESS)
|
||||
return;
|
||||
|
||||
// Destories in BANG does not require sync. But cnnl does not state
|
||||
// whether sync is required before destories.
|
||||
checkCnnlError(cnnlDestroyTensorDescriptor(aDesc));
|
||||
checkCnnlError(cnnlDestroyTensorDescriptor(bDesc));
|
||||
checkCnnlError(cnnlDestroyTensorDescriptor(cDesc));
|
||||
checkCnnlError(cnnlDestroyConvolutionDescriptor(convDesc));
|
||||
}
|
||||
};
|
||||
|
||||
REGISTER_KERNEL(Device::BANG, OpType::ConvTrans, DataType::Float32,
|
||||
ConvTransCnnl, "ConvTrans_cnnl_BANG_Float32");
|
||||
}; // namespace infini
|
|
@ -0,0 +1,159 @@
|
|||
#include "bang/bang_kernel_without_config.h"
|
||||
#include "bang/bang_runtime.h"
|
||||
#include "operators/conv.h"
|
||||
|
||||
namespace infini {
|
||||
class ConvBackwardFilterCnnl : public BangKernelWithoutConfig {
|
||||
void compute(const Operator &_op,
|
||||
const RuntimeObj *_context) const override {
|
||||
auto op = as<ConvBackwardFilterObj>(_op);
|
||||
auto context = dynamic_cast<const BangRuntimeObj *>(_context);
|
||||
|
||||
const auto [ph, pw, sh, sw, dh, dw] = op->getPadStrideDilation();
|
||||
const auto [n, c, h, w, f, r, s] = op->getNCHWFRS();
|
||||
const int cpg = op->getChannelPerGroup();
|
||||
const int g = c / cpg;
|
||||
|
||||
int pad[4] = {ph, ph, pw, pw};
|
||||
int stride[2] = {sh, sw};
|
||||
int dilation[2] = {dh, dw};
|
||||
|
||||
cnnlConvolutionDescriptor_t convDesc;
|
||||
checkCnnlError(cnnlCreateConvolutionDescriptor(&convDesc));
|
||||
checkCnnlError(cnnlSetConvolutionDescriptor(
|
||||
convDesc, 4, pad, stride, dilation, g, CNNL_DTYPE_FLOAT));
|
||||
|
||||
void *const aData = (op->getInputs(0)->getRawDataPtr<void *>());
|
||||
void *const bData = (op->getInputs(1)->getRawDataPtr<void *>());
|
||||
void *const cData = (op->getOutput()->getRawDataPtr<void *>());
|
||||
|
||||
cnnlTensorDescriptor_t aDesc, bDesc, cDesc, aDescTrans, bDescTrans,
|
||||
cDescTrans;
|
||||
auto dimInputs0 = op->getInputs(0)->getDims();
|
||||
auto dimInputs1 = op->getInputs(1)->getDims();
|
||||
auto dimOutput = op->getOutput()->getDims();
|
||||
|
||||
if (dimInputs0.size() != 4)
|
||||
IT_TODO_HALT();
|
||||
if (dimInputs1.size() != 4)
|
||||
IT_TODO_HALT();
|
||||
if (dimOutput.size() != 4)
|
||||
IT_TODO_HALT();
|
||||
|
||||
int inputs0Array[4] = {dimInputs0[0], dimInputs0[1], dimInputs0[2],
|
||||
dimInputs0[3]};
|
||||
int inputs1Array[4] = {dimInputs1[0], dimInputs1[1], dimInputs1[2],
|
||||
dimInputs1[3]};
|
||||
int outputArray[4] = {dimOutput[0], dimOutput[1], dimOutput[2],
|
||||
dimOutput[3]};
|
||||
|
||||
int inputs0ArrayTrans[4] = {dimInputs0[0], dimInputs0[2], dimInputs0[3],
|
||||
dimInputs0[1]};
|
||||
int inputs1ArrayTrans[4] = {dimInputs1[0], dimInputs1[2], dimInputs1[3],
|
||||
dimInputs1[1]};
|
||||
int outputArrayTrans[4] = {dimOutput[0], dimOutput[2], dimOutput[3],
|
||||
dimOutput[1]};
|
||||
|
||||
int transMode[4] = {0, 2, 3, 1};
|
||||
cnnlTransposeDescriptor_t transDesc;
|
||||
checkCnnlError(cnnlCreateTransposeDescriptor(&transDesc));
|
||||
checkCnnlError(cnnlSetTransposeDescriptor(transDesc, 4, transMode));
|
||||
|
||||
// get inputs
|
||||
checkCnnlError(cnnlCreateTensorDescriptor(&aDesc));
|
||||
checkCnnlError(cnnlSetTensorDescriptor(
|
||||
aDesc, CNNL_LAYOUT_NCHW, CNNL_DTYPE_FLOAT, 4, inputs0Array));
|
||||
|
||||
checkCnnlError(cnnlCreateTensorDescriptor(&aDescTrans));
|
||||
checkCnnlError(cnnlSetTensorDescriptor(aDescTrans, CNNL_LAYOUT_NHWC,
|
||||
CNNL_DTYPE_FLOAT, 4,
|
||||
inputs0ArrayTrans));
|
||||
|
||||
size_t wsTrans1Size = dimInputs0[0] * dimInputs0[1] * dimInputs0[2] *
|
||||
dimInputs0[3] * sizeof(float);
|
||||
BangPtr wsTrans1Data = context->getWorkspace(wsTrans1Size);
|
||||
|
||||
cnnlStatus_t stat =
|
||||
cnnlTranspose(context->cnnlHandle(), transDesc, aDesc, aData,
|
||||
aDescTrans, wsTrans1Data);
|
||||
if (stat != CNNL_STATUS_SUCCESS)
|
||||
return;
|
||||
|
||||
checkCnnlError(cnnlCreateTensorDescriptor(&bDesc));
|
||||
checkCnnlError(cnnlSetTensorDescriptor(
|
||||
bDesc, CNNL_LAYOUT_NCHW, CNNL_DTYPE_FLOAT, 4, inputs1Array));
|
||||
|
||||
checkCnnlError(cnnlCreateTensorDescriptor(&bDescTrans));
|
||||
checkCnnlError(cnnlSetTensorDescriptor(bDescTrans, CNNL_LAYOUT_NHWC,
|
||||
CNNL_DTYPE_FLOAT, 4,
|
||||
inputs1ArrayTrans));
|
||||
|
||||
size_t wsTrans2Size = dimInputs1[0] * dimInputs1[1] * dimInputs1[2] *
|
||||
dimInputs1[3] * sizeof(float);
|
||||
BangPtr wsTrans2Data = context->getWorkspace(wsTrans2Size);
|
||||
|
||||
stat = cnnlTranspose(context->cnnlHandle(), transDesc, bDesc, bData,
|
||||
bDescTrans, wsTrans2Data);
|
||||
if (stat != CNNL_STATUS_SUCCESS)
|
||||
return;
|
||||
|
||||
// get outputs
|
||||
checkCnnlError(cnnlCreateTensorDescriptor(&cDesc));
|
||||
checkCnnlError(cnnlSetTensorDescriptor(
|
||||
cDesc, CNNL_LAYOUT_NCHW, CNNL_DTYPE_FLOAT, 4, outputArray));
|
||||
|
||||
checkCnnlError(cnnlCreateTensorDescriptor(&cDescTrans));
|
||||
checkCnnlError(cnnlSetTensorDescriptor(cDescTrans, CNNL_LAYOUT_NHWC,
|
||||
CNNL_DTYPE_FLOAT, 4,
|
||||
outputArrayTrans));
|
||||
|
||||
size_t wsTrans3Size = dimOutput[0] * dimOutput[1] * dimOutput[2] *
|
||||
dimOutput[3] * sizeof(float);
|
||||
BangPtr wsTrans3Data = context->getWorkspace(wsTrans3Size);
|
||||
|
||||
cnnlConvolutionBwdFilterAlgo_t algo;
|
||||
cnnlGetConvolutionBackwardFilterAlgorithm(
|
||||
context->cnnlHandle(), convDesc, aDescTrans, bDescTrans, cDescTrans,
|
||||
CNNL_CONVOLUTION_BWD_FILTER_FASTEST, &algo);
|
||||
|
||||
size_t wsSize;
|
||||
cnnlGetConvolutionBackwardFilterWorkspaceSize(
|
||||
context->cnnlHandle(), aDescTrans, bDescTrans, cDescTrans, convDesc,
|
||||
algo, &wsSize);
|
||||
BangPtr wsData = context->getWorkspace(wsSize);
|
||||
|
||||
stat = cnnlConvolutionBackwardFilter(
|
||||
context->cnnlHandle(), NULL, aDescTrans, wsTrans1Data, bDescTrans,
|
||||
wsTrans2Data, convDesc, algo, wsData, wsSize, NULL, cDescTrans,
|
||||
wsTrans3Data);
|
||||
if (stat != CNNL_STATUS_SUCCESS)
|
||||
return;
|
||||
|
||||
int transMode2[4] = {0, 3, 1, 2};
|
||||
cnnlTransposeDescriptor_t transOutputDesc;
|
||||
checkCnnlError(cnnlCreateTransposeDescriptor(&transOutputDesc));
|
||||
checkCnnlError(
|
||||
cnnlSetTransposeDescriptor(transOutputDesc, 4, transMode2));
|
||||
|
||||
stat = cnnlTranspose(context->cnnlHandle(), transOutputDesc, cDescTrans,
|
||||
wsTrans3Data, cDesc, cData);
|
||||
if (stat != CNNL_STATUS_SUCCESS)
|
||||
return;
|
||||
|
||||
// Destories in BANG does not require sync. But cnnl does not state
|
||||
// whether sync is required before destories.
|
||||
checkCnnlError(cnnlDestroyTensorDescriptor(aDesc));
|
||||
checkCnnlError(cnnlDestroyTensorDescriptor(bDesc));
|
||||
checkCnnlError(cnnlDestroyTensorDescriptor(cDesc));
|
||||
checkCnnlError(cnnlDestroyTensorDescriptor(aDescTrans));
|
||||
checkCnnlError(cnnlDestroyTensorDescriptor(bDescTrans));
|
||||
checkCnnlError(cnnlDestroyTensorDescriptor(cDescTrans));
|
||||
checkCnnlError(cnnlDestroyTransposeDescriptor(transDesc));
|
||||
checkCnnlError(cnnlDestroyTransposeDescriptor(transOutputDesc));
|
||||
checkCnnlError(cnnlDestroyConvolutionDescriptor(convDesc));
|
||||
}
|
||||
};
|
||||
|
||||
REGISTER_KERNEL(Device::BANG, OpType::ConvBackwardFilter, DataType::Float32,
|
||||
ConvBackwardFilterCnnl, "ConvBackwardFilter_cnnl_BANG_Float32");
|
||||
}; // namespace infini
|
|
@ -0,0 +1,46 @@
|
|||
#include "bang/bang_kernel_without_config.h"
|
||||
#include "bang/bang_runtime.h"
|
||||
#include "operators/unary.h"
|
||||
|
||||
namespace infini {
|
||||
class CopyCnnl : public BangKernelWithoutConfig {
|
||||
void compute(const Operator &_op,
|
||||
const RuntimeObj *_context) const override {
|
||||
auto op = as<UnaryObj>(_op);
|
||||
auto context = dynamic_cast<const BangRuntimeObj *>(_context);
|
||||
|
||||
void *const aData = (op->getInputs(0)->getRawDataPtr<void *>());
|
||||
void *const cData = (op->getOutput()->getRawDataPtr<void *>());
|
||||
|
||||
cnnlTensorDescriptor_t aDesc, cDesc;
|
||||
auto dim = op->getInputs(0)->getDims();
|
||||
if (dim.size() != 4)
|
||||
IT_TODO_HALT();
|
||||
|
||||
int dim_array[4] = {dim[0], dim[1], dim[2], dim[3]};
|
||||
// get inputs
|
||||
checkCnnlError(cnnlCreateTensorDescriptor(&aDesc));
|
||||
checkCnnlError(cnnlSetTensorDescriptor(aDesc, CNNL_LAYOUT_NCHW,
|
||||
CNNL_DTYPE_FLOAT, 4, dim_array));
|
||||
|
||||
// get outputs
|
||||
checkCnnlError(cnnlCreateTensorDescriptor(&cDesc));
|
||||
checkCnnlError(cnnlSetTensorDescriptor(cDesc, CNNL_LAYOUT_NCHW,
|
||||
CNNL_DTYPE_FLOAT, 4, dim_array));
|
||||
|
||||
cnnlStatus_t stat =
|
||||
cnnlCopy(context->cnnlHandle(), aDesc, aData, cDesc, cData);
|
||||
if (stat != CNNL_STATUS_SUCCESS)
|
||||
return;
|
||||
|
||||
// Destories in BANG does not require sync. But cnnl does not state
|
||||
// whether sync is required before destories.
|
||||
checkCnnlError(cnnlDestroyTensorDescriptor(aDesc));
|
||||
checkCnnlError(cnnlDestroyTensorDescriptor(cDesc));
|
||||
}
|
||||
};
|
||||
|
||||
REGISTER_KERNEL(Device::BANG, OpType::Copy, DataType::Float32, CopyCnnl,
|
||||
"Copy_cnnl_BANG_Float32");
|
||||
|
||||
}; // namespace infini
|
|
@ -0,0 +1,53 @@
|
|||
#include "operators/det.h"
|
||||
#include "bang/bang_kernel_without_config.h"
|
||||
#include "bang/bang_runtime.h"
|
||||
|
||||
namespace infini {
|
||||
class DetCnnl : public BangKernelWithoutConfig {
|
||||
void compute(const Operator &_op,
|
||||
const RuntimeObj *_context) const override {
|
||||
auto op = as<DetObj>(_op);
|
||||
auto context = dynamic_cast<const BangRuntimeObj *>(_context);
|
||||
|
||||
void *const aData = (op->getInputs(0)->getRawDataPtr<void *>());
|
||||
void *const cData = (op->getOutput()->getRawDataPtr<void *>());
|
||||
DetObj::Mode mode = op->getMode();
|
||||
cnnlDetMode_t nlMode;
|
||||
if (mode == DetObj::LogDet) {
|
||||
nlMode = CNNL_DET_MODE_LOGDET;
|
||||
} else {
|
||||
nlMode = CNNL_DET_MODE_DET;
|
||||
}
|
||||
cnnlTensorDescriptor_t aDesc, cDesc;
|
||||
auto dimin = op->getInputs(0)->getDims();
|
||||
auto dimout = op->getOutput()->getDims();
|
||||
if (dimin.size() != 4 || dimout.size() != 2)
|
||||
IT_TODO_HALT();
|
||||
|
||||
int dimin_array[4] = {dimin[0], dimin[1], dimin[2], dimin[3]};
|
||||
int dimout_array[2] = {dimout[0], dimout[1]};
|
||||
// get inputs
|
||||
checkCnnlError(cnnlCreateTensorDescriptor(&aDesc));
|
||||
checkCnnlError(cnnlSetTensorDescriptor(
|
||||
aDesc, CNNL_LAYOUT_ARRAY, CNNL_DTYPE_FLOAT, 4, dimin_array));
|
||||
|
||||
// get outputs
|
||||
checkCnnlError(cnnlCreateTensorDescriptor(&cDesc));
|
||||
checkCnnlError(cnnlSetTensorDescriptor(
|
||||
cDesc, CNNL_LAYOUT_ARRAY, CNNL_DTYPE_FLOAT, 2, dimout_array));
|
||||
|
||||
cnnlStatus_t stat =
|
||||
cnnlDet(context->cnnlHandle(), nlMode, aDesc, aData, cDesc, cData);
|
||||
if (stat != CNNL_STATUS_SUCCESS)
|
||||
return;
|
||||
|
||||
// Destories in BANG does not require sync. But cnnl does not state
|
||||
// whether sync is required before destories.
|
||||
checkCnnlError(cnnlDestroyTensorDescriptor(aDesc));
|
||||
checkCnnlError(cnnlDestroyTensorDescriptor(cDesc));
|
||||
}
|
||||
};
|
||||
|
||||
REGISTER_KERNEL(Device::BANG, OpType::Det, DataType::Float32, DetCnnl,
|
||||
"Det_cnnl_BANG_Float32");
|
||||
}; // namespace infini
|
|
@ -1,5 +1,4 @@
|
|||
#include "operators/element_wise.h"
|
||||
#include "bang/bang_element_wise.h"
|
||||
#include "bang/bang_kernel_without_config.h"
|
||||
#include "bang/bang_runtime.h"
|
||||
|
||||
|
@ -66,6 +65,514 @@ class ElementWiseCnnl : public BangKernelWithoutConfig {
|
|||
}
|
||||
};
|
||||
|
||||
class LogicOpCnnl : public BangKernelWithoutConfig {
|
||||
virtual cnnlLogicOp_t getOpType() const = 0;
|
||||
void compute(const Operator &_op,
|
||||
const RuntimeObj *_context) const override {
|
||||
auto op = as<ElementWiseObj>(_op);
|
||||
auto context = dynamic_cast<const BangRuntimeObj *>(_context);
|
||||
|
||||
void *const aData = (op->getInputs(0)->getRawDataPtr<void *>());
|
||||
void *const bData = (op->getInputs(1)->getRawDataPtr<void *>());
|
||||
void *const cData = (op->getOutput()->getRawDataPtr<void *>());
|
||||
|
||||
cnnlTensorDescriptor_t aDesc, bDesc, cDesc;
|
||||
auto dim = op->getInputs(0)->getDims();
|
||||
if (dim.size() != 4)
|
||||
IT_TODO_HALT();
|
||||
|
||||
int dim_array[4] = {dim[0], dim[1], dim[2], dim[3]};
|
||||
// get inputs
|
||||
checkCnnlError(cnnlCreateTensorDescriptor(&aDesc));
|
||||
checkCnnlError(cnnlSetTensorDescriptor(aDesc, CNNL_LAYOUT_NCHW,
|
||||
CNNL_DTYPE_FLOAT, 4, dim_array));
|
||||
|
||||
checkCnnlError(cnnlCreateTensorDescriptor(&bDesc));
|
||||
checkCnnlError(cnnlSetTensorDescriptor(bDesc, CNNL_LAYOUT_NCHW,
|
||||
CNNL_DTYPE_FLOAT, 4, dim_array));
|
||||
|
||||
// get outputs
|
||||
checkCnnlError(cnnlCreateTensorDescriptor(&cDesc));
|
||||
checkCnnlError(cnnlSetTensorDescriptor(cDesc, CNNL_LAYOUT_NCHW,
|
||||
CNNL_DTYPE_FLOAT, 4, dim_array));
|
||||
|
||||
size_t wsSize;
|
||||
cnnlGetLogicOpWorkspaceSize(context->cnnlHandle(), aDesc, bDesc, cDesc,
|
||||
&wsSize);
|
||||
|
||||
BangPtr wsData = context->getWorkspace(wsSize);
|
||||
|
||||
cnnlStatus_t stat =
|
||||
cnnlLogicOp(context->cnnlHandle(), getOpType(), aDesc, aData, bDesc,
|
||||
bData, wsData, wsSize, cDesc, cData);
|
||||
if (stat != CNNL_STATUS_SUCCESS)
|
||||
return;
|
||||
|
||||
// Destories in BANG does not require sync. But cnnl does not state
|
||||
// whether sync is required before destories.
|
||||
checkCnnlError(cnnlDestroyTensorDescriptor(aDesc));
|
||||
checkCnnlError(cnnlDestroyTensorDescriptor(bDesc));
|
||||
checkCnnlError(cnnlDestroyTensorDescriptor(cDesc));
|
||||
}
|
||||
};
|
||||
|
||||
class BitComputeCnnl : public BangKernelWithoutConfig {
|
||||
virtual cnnlBitComputeOp_t getOpType() const = 0;
|
||||
void compute(const Operator &_op,
|
||||
const RuntimeObj *_context) const override {
|
||||
auto op = as<ElementWiseObj>(_op);
|
||||
auto context = dynamic_cast<const BangRuntimeObj *>(_context);
|
||||
|
||||
void *const aData = (op->getInputs(0)->getRawDataPtr<void *>());
|
||||
void *const bData = (op->getInputs(1)->getRawDataPtr<void *>());
|
||||
void *const cData = (op->getOutput()->getRawDataPtr<void *>());
|
||||
|
||||
cnnlTensorDescriptor_t aDesc, bDesc, cDesc;
|
||||
auto dim = op->getInputs(0)->getDims();
|
||||
if (dim.size() != 4)
|
||||
IT_TODO_HALT();
|
||||
|
||||
int dim_array[4] = {dim[0], dim[1], dim[2], dim[3]};
|
||||
// get inputs
|
||||
checkCnnlError(cnnlCreateTensorDescriptor(&aDesc));
|
||||
checkCnnlError(cnnlSetTensorDescriptor(aDesc, CNNL_LAYOUT_NCHW,
|
||||
CNNL_DTYPE_INT32, 4, dim_array));
|
||||
|
||||
checkCnnlError(cnnlCreateTensorDescriptor(&bDesc));
|
||||
checkCnnlError(cnnlSetTensorDescriptor(bDesc, CNNL_LAYOUT_NCHW,
|
||||
CNNL_DTYPE_INT32, 4, dim_array));
|
||||
|
||||
// get outputs
|
||||
checkCnnlError(cnnlCreateTensorDescriptor(&cDesc));
|
||||
checkCnnlError(cnnlSetTensorDescriptor(cDesc, CNNL_LAYOUT_NCHW,
|
||||
CNNL_DTYPE_INT32, 4, dim_array));
|
||||
|
||||
size_t wsSize;
|
||||
cnnlGetBitComputeWorkspaceSize(context->cnnlHandle(), aDesc, bDesc,
|
||||
cDesc, &wsSize);
|
||||
|
||||
BangPtr wsData = context->getWorkspace(wsSize);
|
||||
|
||||
cnnlStatus_t stat =
|
||||
cnnlBitCompute_v2(context->cnnlHandle(), getOpType(), aDesc, aData,
|
||||
bDesc, bData, cDesc, cData, wsData, wsSize);
|
||||
if (stat != CNNL_STATUS_SUCCESS)
|
||||
return;
|
||||
|
||||
// Destories in BANG does not require sync. But cnnl does not state
|
||||
// whether sync is required before destories.
|
||||
checkCnnlError(cnnlDestroyTensorDescriptor(aDesc));
|
||||
checkCnnlError(cnnlDestroyTensorDescriptor(bDesc));
|
||||
checkCnnlError(cnnlDestroyTensorDescriptor(cDesc));
|
||||
}
|
||||
};
|
||||
|
||||
class DivCnnl : public BangKernelWithoutConfig {
|
||||
void compute(const Operator &_op,
|
||||
const RuntimeObj *_context) const override {
|
||||
auto op = as<ElementWiseObj>(_op);
|
||||
auto context = dynamic_cast<const BangRuntimeObj *>(_context);
|
||||
|
||||
void *const aData = (op->getInputs(0)->getRawDataPtr<void *>());
|
||||
void *const bData = (op->getInputs(1)->getRawDataPtr<void *>());
|
||||
void *const cData = (op->getOutput()->getRawDataPtr<void *>());
|
||||
|
||||
cnnlTensorDescriptor_t aDesc, bDesc, cDesc;
|
||||
auto dim = op->getInputs(0)->getDims();
|
||||
if (dim.size() != 4)
|
||||
IT_TODO_HALT();
|
||||
|
||||
int dim_array[4] = {dim[0], dim[1], dim[2], dim[3]};
|
||||
// get inputs
|
||||
checkCnnlError(cnnlCreateTensorDescriptor(&aDesc));
|
||||
checkCnnlError(cnnlSetTensorDescriptor(aDesc, CNNL_LAYOUT_NCHW,
|
||||
CNNL_DTYPE_FLOAT, 4, dim_array));
|
||||
|
||||
checkCnnlError(cnnlCreateTensorDescriptor(&bDesc));
|
||||
checkCnnlError(cnnlSetTensorDescriptor(bDesc, CNNL_LAYOUT_NCHW,
|
||||
CNNL_DTYPE_FLOAT, 4, dim_array));
|
||||
|
||||
// get outputs
|
||||
checkCnnlError(cnnlCreateTensorDescriptor(&cDesc));
|
||||
checkCnnlError(cnnlSetTensorDescriptor(cDesc, CNNL_LAYOUT_NCHW,
|
||||
CNNL_DTYPE_FLOAT, 4, dim_array));
|
||||
|
||||
size_t wsSize;
|
||||
cnnlGetDivWorkspaceSize(context->cnnlHandle(), aDesc, bDesc, cDesc,
|
||||
&wsSize);
|
||||
|
||||
BangPtr wsData = context->getWorkspace(wsSize);
|
||||
|
||||
cnnlStatus_t stat = cnnlDiv_v2(
|
||||
context->cnnlHandle(), CNNL_COMPUTATION_HIGH_PRECISION, aDesc,
|
||||
aData, bDesc, bData, wsData, wsSize, cDesc, cData);
|
||||
if (stat != CNNL_STATUS_SUCCESS)
|
||||
return;
|
||||
|
||||
// Destories in BANG does not require sync. But cnnl does not state
|
||||
// whether sync is required before destories.
|
||||
checkCnnlError(cnnlDestroyTensorDescriptor(aDesc));
|
||||
checkCnnlError(cnnlDestroyTensorDescriptor(bDesc));
|
||||
checkCnnlError(cnnlDestroyTensorDescriptor(cDesc));
|
||||
}
|
||||
};
|
||||
|
||||
class MaximumCnnl : public BangKernelWithoutConfig {
|
||||
void compute(const Operator &_op,
|
||||
const RuntimeObj *_context) const override {
|
||||
auto op = as<ElementWiseObj>(_op);
|
||||
auto context = dynamic_cast<const BangRuntimeObj *>(_context);
|
||||
|
||||
void *const aData = (op->getInputs(0)->getRawDataPtr<void *>());
|
||||
void *const bData = (op->getInputs(1)->getRawDataPtr<void *>());
|
||||
void *const cData = (op->getOutput()->getRawDataPtr<void *>());
|
||||
|
||||
cnnlTensorDescriptor_t aDesc, bDesc, cDesc;
|
||||
auto dim = op->getInputs(0)->getDims();
|
||||
if (dim.size() != 4)
|
||||
IT_TODO_HALT();
|
||||
|
||||
int dim_array[4] = {dim[0], dim[1], dim[2], dim[3]};
|
||||
// get inputs
|
||||
checkCnnlError(cnnlCreateTensorDescriptor(&aDesc));
|
||||
checkCnnlError(cnnlSetTensorDescriptor(aDesc, CNNL_LAYOUT_NCHW,
|
||||
CNNL_DTYPE_FLOAT, 4, dim_array));
|
||||
|
||||
checkCnnlError(cnnlCreateTensorDescriptor(&bDesc));
|
||||
checkCnnlError(cnnlSetTensorDescriptor(bDesc, CNNL_LAYOUT_NCHW,
|
||||
CNNL_DTYPE_FLOAT, 4, dim_array));
|
||||
|
||||
// get outputs
|
||||
checkCnnlError(cnnlCreateTensorDescriptor(&cDesc));
|
||||
checkCnnlError(cnnlSetTensorDescriptor(cDesc, CNNL_LAYOUT_NCHW,
|
||||
CNNL_DTYPE_FLOAT, 4, dim_array));
|
||||
|
||||
// get op descriptor
|
||||
size_t wsSize;
|
||||
cnnlGetMaximumWorkspaceSize(context->cnnlHandle(), cDesc, &wsSize);
|
||||
BangPtr wsData = context->getWorkspace(wsSize);
|
||||
|
||||
cnnlStatus_t stat =
|
||||
cnnlMaximum(context->cnnlHandle(), aDesc, aData, bDesc, bData,
|
||||
cDesc, cData, wsData, wsSize);
|
||||
if (stat != CNNL_STATUS_SUCCESS)
|
||||
return;
|
||||
|
||||
// Destories in BANG does not require sync. But cnnl does not state
|
||||
// whether sync is required before destories.
|
||||
checkCnnlError(cnnlDestroyTensorDescriptor(aDesc));
|
||||
checkCnnlError(cnnlDestroyTensorDescriptor(bDesc));
|
||||
checkCnnlError(cnnlDestroyTensorDescriptor(cDesc));
|
||||
}
|
||||
};
|
||||
|
||||
class MinimumCnnl : public BangKernelWithoutConfig {
|
||||
void compute(const Operator &_op,
|
||||
const RuntimeObj *_context) const override {
|
||||
auto op = as<ElementWiseObj>(_op);
|
||||
auto context = dynamic_cast<const BangRuntimeObj *>(_context);
|
||||
|
||||
void *const aData = (op->getInputs(0)->getRawDataPtr<void *>());
|
||||
void *const bData = (op->getInputs(1)->getRawDataPtr<void *>());
|
||||
void *const cData = (op->getOutput()->getRawDataPtr<void *>());
|
||||
|
||||
cnnlTensorDescriptor_t aDesc, bDesc, cDesc;
|
||||
auto dim = op->getInputs(0)->getDims();
|
||||
if (dim.size() != 4)
|
||||
IT_TODO_HALT();
|
||||
|
||||
int dim_array[4] = {dim[0], dim[1], dim[2], dim[3]};
|
||||
// get inputs
|
||||
checkCnnlError(cnnlCreateTensorDescriptor(&aDesc));
|
||||
checkCnnlError(cnnlSetTensorDescriptor(aDesc, CNNL_LAYOUT_NCHW,
|
||||
CNNL_DTYPE_FLOAT, 4, dim_array));
|
||||
|
||||
checkCnnlError(cnnlCreateTensorDescriptor(&bDesc));
|
||||
checkCnnlError(cnnlSetTensorDescriptor(bDesc, CNNL_LAYOUT_NCHW,
|
||||
CNNL_DTYPE_FLOAT, 4, dim_array));
|
||||
|
||||
// get outputs
|
||||
checkCnnlError(cnnlCreateTensorDescriptor(&cDesc));
|
||||
checkCnnlError(cnnlSetTensorDescriptor(cDesc, CNNL_LAYOUT_NCHW,
|
||||
CNNL_DTYPE_FLOAT, 4, dim_array));
|
||||
|
||||
// get op descriptor
|
||||
size_t wsSize;
|
||||
cnnlGetMinimumWorkspaceSize(context->cnnlHandle(), cDesc, &wsSize);
|
||||
BangPtr wsData = context->getWorkspace(wsSize);
|
||||
|
||||
cnnlStatus_t stat =
|
||||
cnnlMinimum(context->cnnlHandle(), aDesc, aData, bDesc, bData,
|
||||
cDesc, cData, wsData, wsSize);
|
||||
if (stat != CNNL_STATUS_SUCCESS)
|
||||
return;
|
||||
|
||||
// Destories in BANG does not require sync. But cnnl does not state
|
||||
// whether sync is required before destories.
|
||||
checkCnnlError(cnnlDestroyTensorDescriptor(aDesc));
|
||||
checkCnnlError(cnnlDestroyTensorDescriptor(bDesc));
|
||||
checkCnnlError(cnnlDestroyTensorDescriptor(cDesc));
|
||||
}
|
||||
};
|
||||
|
||||
class MSELossCnnl : public BangKernelWithoutConfig {
|
||||
void compute(const Operator &_op,
|
||||
const RuntimeObj *_context) const override {
|
||||
auto op = as<MSELossObj>(_op);
|
||||
auto context = dynamic_cast<const BangRuntimeObj *>(_context);
|
||||
|
||||
void *const aData = (op->getInputs(0)->getRawDataPtr<void *>());
|
||||
void *const bData = (op->getInputs(1)->getRawDataPtr<void *>());
|
||||
void *const cData = (op->getOutput()->getRawDataPtr<void *>());
|
||||
MSELossObj::Reduction reduction = op->getReduction();
|
||||
cnnlTensorDescriptor_t aDesc, bDesc, cDesc;
|
||||
auto dim = op->getInputs(0)->getDims();
|
||||
if (dim.size() != 4)
|
||||
IT_TODO_HALT();
|
||||
|
||||
int dim_array[4] = {dim[0], dim[1], dim[2], dim[3]};
|
||||
int dim_out[4] = {1, 1, 1, 1};
|
||||
// get inputs
|
||||
checkCnnlError(cnnlCreateTensorDescriptor(&aDesc));
|
||||
checkCnnlError(cnnlSetTensorDescriptor(aDesc, CNNL_LAYOUT_NCHW,
|
||||
CNNL_DTYPE_FLOAT, 4, dim_array));
|
||||
|
||||
checkCnnlError(cnnlCreateTensorDescriptor(&bDesc));
|
||||
checkCnnlError(cnnlSetTensorDescriptor(bDesc, CNNL_LAYOUT_NCHW,
|
||||
CNNL_DTYPE_FLOAT, 4, dim_array));
|
||||
|
||||
// get outputs
|
||||
checkCnnlError(cnnlCreateTensorDescriptor(&cDesc));
|
||||
if (reduction == MSELossObj::None) {
|
||||
checkCnnlError(cnnlSetTensorDescriptor(
|
||||
cDesc, CNNL_LAYOUT_NCHW, CNNL_DTYPE_FLOAT, 4, dim_array));
|
||||
} else {
|
||||
checkCnnlError(cnnlSetTensorDescriptor(
|
||||
cDesc, CNNL_LAYOUT_NCHW, CNNL_DTYPE_FLOAT, 4, dim_out));
|
||||
}
|
||||
cnnlStatus_t stat;
|
||||
if (reduction == MSELossObj::None) {
|
||||
stat = cnnlMSELoss(context->cnnlHandle(), CNNL_MSE_LOSS_NONE, aDesc,
|
||||
aData, bDesc, bData, cDesc, cData);
|
||||
} else if (reduction == MSELossObj::Sum) {
|
||||
stat = cnnlMSELoss(context->cnnlHandle(), CNNL_MSE_LOSS_SUM, aDesc,
|
||||
aData, bDesc, bData, cDesc, cData);
|
||||
} else {
|
||||
stat = cnnlMSELoss(context->cnnlHandle(), CNNL_MSE_LOSS_MEAN, aDesc,
|
||||
aData, bDesc, bData, cDesc, cData);
|
||||
}
|
||||
|
||||
if (stat != CNNL_STATUS_SUCCESS)
|
||||
return;
|
||||
|
||||
// Destories in BANG does not require sync. But cnnl does not state
|
||||
// whether sync is required before destories.
|
||||
checkCnnlError(cnnlDestroyTensorDescriptor(aDesc));
|
||||
checkCnnlError(cnnlDestroyTensorDescriptor(bDesc));
|
||||
checkCnnlError(cnnlDestroyTensorDescriptor(cDesc));
|
||||
}
|
||||
};
|
||||
|
||||
class PowerCnnl : public BangKernelWithoutConfig {
|
||||
void compute(const Operator &_op,
|
||||
const RuntimeObj *_context) const override {
|
||||
auto op = as<ElementWiseObj>(_op);
|
||||
auto context = dynamic_cast<const BangRuntimeObj *>(_context);
|
||||
|
||||
void *const aData = (op->getInputs(0)->getRawDataPtr<void *>());
|
||||
void *const bData = (op->getInputs(1)->getRawDataPtr<void *>());
|
||||
void *const cData = (op->getOutput()->getRawDataPtr<void *>());
|
||||
|
||||
cnnlTensorDescriptor_t aDesc, bDesc, cDesc;
|
||||
auto dim = op->getInputs(0)->getDims();
|
||||
if (dim.size() != 4)
|
||||
IT_TODO_HALT();
|
||||
|
||||
int dim_array[4] = {dim[0], dim[1], dim[2], dim[3]};
|
||||
// get inputs
|
||||
checkCnnlError(cnnlCreateTensorDescriptor(&aDesc));
|
||||
checkCnnlError(cnnlSetTensorDescriptor(aDesc, CNNL_LAYOUT_NCHW,
|
||||
CNNL_DTYPE_FLOAT, 4, dim_array));
|
||||
|
||||
checkCnnlError(cnnlCreateTensorDescriptor(&bDesc));
|
||||
checkCnnlError(cnnlSetTensorDescriptor(bDesc, CNNL_LAYOUT_NCHW,
|
||||
CNNL_DTYPE_FLOAT, 4, dim_array));
|
||||
|
||||
// get outputs
|
||||
checkCnnlError(cnnlCreateTensorDescriptor(&cDesc));
|
||||
checkCnnlError(cnnlSetTensorDescriptor(cDesc, CNNL_LAYOUT_NCHW,
|
||||
CNNL_DTYPE_FLOAT, 4, dim_array));
|
||||
|
||||
// get op descriptor
|
||||
size_t wsSize;
|
||||
cnnlGetPowWorkspaceSize(context->cnnlHandle(), aDesc, bDesc, cDesc,
|
||||
&wsSize);
|
||||
BangPtr wsData = context->getWorkspace(wsSize);
|
||||
|
||||
cnnlStatus_t stat =
|
||||
cnnlPow(context->cnnlHandle(), CNNL_COMPUTATION_HIGH_PRECISION,
|
||||
aDesc, aData, bDesc, bData, wsData, wsSize, cDesc, cData);
|
||||
if (stat != CNNL_STATUS_SUCCESS)
|
||||
return;
|
||||
|
||||
// Destories in BANG does not require sync. But cnnl does not state
|
||||
// whether sync is required before destories.
|
||||
checkCnnlError(cnnlDestroyTensorDescriptor(aDesc));
|
||||
checkCnnlError(cnnlDestroyTensorDescriptor(bDesc));
|
||||
checkCnnlError(cnnlDestroyTensorDescriptor(cDesc));
|
||||
}
|
||||
};
|
||||
|
||||
class FloorDivCnnl : public BangKernelWithoutConfig {
|
||||
void compute(const Operator &_op,
|
||||
const RuntimeObj *_context) const override {
|
||||
auto op = as<ElementWiseObj>(_op);
|
||||
auto context = dynamic_cast<const BangRuntimeObj *>(_context);
|
||||
|
||||
void *const aData = (op->getInputs(0)->getRawDataPtr<void *>());
|
||||
void *const bData = (op->getInputs(1)->getRawDataPtr<void *>());
|
||||
void *const cData = (op->getOutput()->getRawDataPtr<void *>());
|
||||
|
||||
cnnlTensorDescriptor_t aDesc, bDesc, cDesc;
|
||||
auto dim = op->getInputs(0)->getDims();
|
||||
if (dim.size() != 4)
|
||||
IT_TODO_HALT();
|
||||
|
||||
int dim_array[4] = {dim[0], dim[1], dim[2], dim[3]};
|
||||
// get inputs
|
||||
checkCnnlError(cnnlCreateTensorDescriptor(&aDesc));
|
||||
checkCnnlError(cnnlSetTensorDescriptor(aDesc, CNNL_LAYOUT_NCHW,
|
||||
CNNL_DTYPE_FLOAT, 4, dim_array));
|
||||
|
||||
checkCnnlError(cnnlCreateTensorDescriptor(&bDesc));
|
||||
checkCnnlError(cnnlSetTensorDescriptor(bDesc, CNNL_LAYOUT_NCHW,
|
||||
CNNL_DTYPE_FLOAT, 4, dim_array));
|
||||
|
||||
// get outputs
|
||||
checkCnnlError(cnnlCreateTensorDescriptor(&cDesc));
|
||||
checkCnnlError(cnnlSetTensorDescriptor(cDesc, CNNL_LAYOUT_NCHW,
|
||||
CNNL_DTYPE_FLOAT, 4, dim_array));
|
||||
|
||||
size_t wsSize;
|
||||
cnnlGetFloorDivWorkspaceSize(context->cnnlHandle(), aDesc, bDesc, cDesc,
|
||||
&wsSize);
|
||||
|
||||
BangPtr wsData = context->getWorkspace(wsSize);
|
||||
|
||||
cnnlStatus_t stat = cnnlFloorDiv_v2(
|
||||
context->cnnlHandle(), CNNL_COMPUTATION_HIGH_PRECISION, aDesc,
|
||||
aData, bDesc, bData, cDesc, cData, wsData, wsSize);
|
||||
if (stat != CNNL_STATUS_SUCCESS)
|
||||
return;
|
||||
|
||||
// Destories in BANG does not require sync. But cnnl does not state
|
||||
// whether sync is required before destories.
|
||||
checkCnnlError(cnnlDestroyTensorDescriptor(aDesc));
|
||||
checkCnnlError(cnnlDestroyTensorDescriptor(bDesc));
|
||||
checkCnnlError(cnnlDestroyTensorDescriptor(cDesc));
|
||||
}
|
||||
};
|
||||
|
||||
class FloorModCnnl : public BangKernelWithoutConfig {
|
||||
void compute(const Operator &_op,
|
||||
const RuntimeObj *_context) const override {
|
||||
auto op = as<ElementWiseObj>(_op);
|
||||
auto context = dynamic_cast<const BangRuntimeObj *>(_context);
|
||||
|
||||
void *const aData = (op->getInputs(0)->getRawDataPtr<void *>());
|
||||
void *const bData = (op->getInputs(1)->getRawDataPtr<void *>());
|
||||
void *const cData = (op->getOutput()->getRawDataPtr<void *>());
|
||||
|
||||
cnnlTensorDescriptor_t aDesc, bDesc, cDesc;
|
||||
auto dim = op->getInputs(0)->getDims();
|
||||
if (dim.size() != 4)
|
||||
IT_TODO_HALT();
|
||||
|
||||
int dim_array[4] = {dim[0], dim[1], dim[2], dim[3]};
|
||||
// get inputs
|
||||
checkCnnlError(cnnlCreateTensorDescriptor(&aDesc));
|
||||
checkCnnlError(cnnlSetTensorDescriptor(aDesc, CNNL_LAYOUT_NCHW,
|
||||
CNNL_DTYPE_FLOAT, 4, dim_array));
|
||||
|
||||
checkCnnlError(cnnlCreateTensorDescriptor(&bDesc));
|
||||
checkCnnlError(cnnlSetTensorDescriptor(bDesc, CNNL_LAYOUT_NCHW,
|
||||
CNNL_DTYPE_FLOAT, 4, dim_array));
|
||||
|
||||
// get outputs
|
||||
checkCnnlError(cnnlCreateTensorDescriptor(&cDesc));
|
||||
checkCnnlError(cnnlSetTensorDescriptor(cDesc, CNNL_LAYOUT_NCHW,
|
||||
CNNL_DTYPE_FLOAT, 4, dim_array));
|
||||
|
||||
size_t wsSize;
|
||||
cnnlGetFloorModWorkspaceSize(context->cnnlHandle(), aDesc, bDesc, cDesc,
|
||||
&wsSize);
|
||||
|
||||
BangPtr wsData = context->getWorkspace(wsSize);
|
||||
|
||||
cnnlStatus_t stat =
|
||||
cnnlFloorMod(context->cnnlHandle(), aDesc, aData, bDesc, bData,
|
||||
cDesc, cData, wsData, wsSize);
|
||||
if (stat != CNNL_STATUS_SUCCESS)
|
||||
return;
|
||||
|
||||
// Destories in BANG does not require sync. But cnnl does not state
|
||||
// whether sync is required before destories.
|
||||
checkCnnlError(cnnlDestroyTensorDescriptor(aDesc));
|
||||
checkCnnlError(cnnlDestroyTensorDescriptor(bDesc));
|
||||
checkCnnlError(cnnlDestroyTensorDescriptor(cDesc));
|
||||
}
|
||||
};
|
||||
|
||||
class SquaredDifferenceCnnl : public BangKernelWithoutConfig {
|
||||
void compute(const Operator &_op,
|
||||
const RuntimeObj *_context) const override {
|
||||
auto op = as<ElementWiseObj>(_op);
|
||||
auto context = dynamic_cast<const BangRuntimeObj *>(_context);
|
||||
|
||||
void *const aData = (op->getInputs(0)->getRawDataPtr<void *>());
|
||||
void *const bData = (op->getInputs(1)->getRawDataPtr<void *>());
|
||||
void *const cData = (op->getOutput()->getRawDataPtr<void *>());
|
||||
|
||||
cnnlTensorDescriptor_t aDesc, bDesc, cDesc;
|
||||
auto dim = op->getInputs(0)->getDims();
|
||||
if (dim.size() != 4)
|
||||
IT_TODO_HALT();
|
||||
|
||||
int dim_array[4] = {dim[0], dim[1], dim[2], dim[3]};
|
||||
// get inputs
|
||||
checkCnnlError(cnnlCreateTensorDescriptor(&aDesc));
|
||||
checkCnnlError(cnnlSetTensorDescriptor(aDesc, CNNL_LAYOUT_NCHW,
|
||||
CNNL_DTYPE_FLOAT, 4, dim_array));
|
||||
|
||||
checkCnnlError(cnnlCreateTensorDescriptor(&bDesc));
|
||||
checkCnnlError(cnnlSetTensorDescriptor(bDesc, CNNL_LAYOUT_NCHW,
|
||||
CNNL_DTYPE_FLOAT, 4, dim_array));
|
||||
|
||||
// get outputs
|
||||
checkCnnlError(cnnlCreateTensorDescriptor(&cDesc));
|
||||
checkCnnlError(cnnlSetTensorDescriptor(cDesc, CNNL_LAYOUT_NCHW,
|
||||
CNNL_DTYPE_FLOAT, 4, dim_array));
|
||||
|
||||
size_t wsSize;
|
||||
cnnlGetSquaredDifferenceWorkspaceSize(context->cnnlHandle(), aDesc,
|
||||
bDesc, cDesc, &wsSize);
|
||||
|
||||
BangPtr wsData = context->getWorkspace(wsSize);
|
||||
|
||||
cnnlStatus_t stat =
|
||||
cnnlSquaredDifference(context->cnnlHandle(), aDesc, aData, bDesc,
|
||||
bData, cDesc, cData, wsData, wsSize);
|
||||
if (stat != CNNL_STATUS_SUCCESS)
|
||||
return;
|
||||
|
||||
// Destories in BANG does not require sync. But cnnl does not state
|
||||
// whether sync is required before destories.
|
||||
checkCnnlError(cnnlDestroyTensorDescriptor(aDesc));
|
||||
checkCnnlError(cnnlDestroyTensorDescriptor(bDesc));
|
||||
checkCnnlError(cnnlDestroyTensorDescriptor(cDesc));
|
||||
}
|
||||
};
|
||||
|
||||
class AddCnnl : public ElementWiseCnnl {
|
||||
cnnlOpTensorDesc_t getOpType() const override { return CNNL_OP_TENSOR_ADD; }
|
||||
};
|
||||
|
@ -81,12 +588,57 @@ class MulCnnl : public ElementWiseCnnl {
|
|||
cnnlOpTensorDesc_t getOpType() const override { return CNNL_OP_TENSOR_MUL; }
|
||||
};
|
||||
|
||||
class ElementWiseBang : public BangKernelWithoutConfig {
|
||||
void compute(const Operator &_op,
|
||||
const RuntimeObj *_context) const override {
|
||||
element_wise_kernel(_context, _op);
|
||||
}
|
||||
class EqualCnnl : public LogicOpCnnl {
|
||||
cnnlLogicOp_t getOpType() const override { return CNNL_LOGIC_OP_EQ; }
|
||||
};
|
||||
class NotEqualCnnl : public LogicOpCnnl {
|
||||
cnnlLogicOp_t getOpType() const override { return CNNL_LOGIC_OP_NE; }
|
||||
};
|
||||
class GreaterThanCnnl : public LogicOpCnnl {
|
||||
cnnlLogicOp_t getOpType() const override { return CNNL_LOGIC_OP_GT; }
|
||||
};
|
||||
class GreaterEqualCnnl : public LogicOpCnnl {
|
||||
cnnlLogicOp_t getOpType() const override { return CNNL_LOGIC_OP_GE; }
|
||||
};
|
||||
class LessThanCnnl : public LogicOpCnnl {
|
||||
cnnlLogicOp_t getOpType() const override { return CNNL_LOGIC_OP_LT; }
|
||||
};
|
||||
class LessEqualCnnl : public LogicOpCnnl {
|
||||
cnnlLogicOp_t getOpType() const override { return CNNL_LOGIC_OP_LE; }
|
||||
};
|
||||
class AndCnnl : public LogicOpCnnl {
|
||||
cnnlLogicOp_t getOpType() const override { return CNNL_LOGIC_OP_AND; }
|
||||
};
|
||||
class OrCnnl : public LogicOpCnnl {
|
||||
cnnlLogicOp_t getOpType() const override { return CNNL_LOGIC_OP_OR; }
|
||||
};
|
||||
class XorCnnl : public LogicOpCnnl {
|
||||
cnnlLogicOp_t getOpType() const override { return CNNL_LOGIC_OP_XOR; }
|
||||
};
|
||||
class NotCnnl : public LogicOpCnnl {
|
||||
cnnlLogicOp_t getOpType() const override { return CNNL_LOGIC_OP_NOT; }
|
||||
};
|
||||
|
||||
class BitAndCnnl : public BitComputeCnnl {
|
||||
cnnlBitComputeOp_t getOpType() const override { return CNNL_CYCLE_BAND_OP; }
|
||||
};
|
||||
class BitOrCnnl : public BitComputeCnnl {
|
||||
cnnlBitComputeOp_t getOpType() const override { return CNNL_CYCLE_BOR_OP; }
|
||||
};
|
||||
class BitXorCnnl : public BitComputeCnnl {
|
||||
cnnlBitComputeOp_t getOpType() const override { return CNNL_CYCLE_BXOR_OP; }
|
||||
};
|
||||
class BitNotCnnl : public BitComputeCnnl {
|
||||
cnnlBitComputeOp_t getOpType() const override { return CNNL_BNOT_OP; }
|
||||
};
|
||||
// class BitLeftShiftCnnl : public BitComputeCnnl {
|
||||
// cnnlBitComputeOp_t getOpType() const override { return
|
||||
// CNNL_BLEFT_SHIFT_OP_V2; }
|
||||
// };
|
||||
// class BitRightShiftCnnl : public BitComputeCnnl {
|
||||
// cnnlBitComputeOp_t getOpType() const override { return
|
||||
// CNNL_BLEFT_SHIFT_OP_V2; }
|
||||
// };
|
||||
|
||||
REGISTER_KERNEL(Device::BANG, OpType::Add, DataType::Float32, AddCnnl,
|
||||
"Add_cnnl_BANG_Float32");
|
||||
|
@ -95,8 +647,56 @@ REGISTER_KERNEL(Device::BANG, OpType::Sub, DataType::Float32, SubCnnl,
|
|||
REGISTER_KERNEL(Device::BANG, OpType::Mul, DataType::Float32, MulCnnl,
|
||||
"Mul_cnnl_BANG_Float32");
|
||||
|
||||
REGISTER_KERNEL(Device::BANG, OpType::Div, DataType::Float32, ElementWiseBang,
|
||||
"Div_Bang_Float32");
|
||||
REGISTER_KERNEL(Device::BANG, OpType::Div, DataType::Float32, DivCnnl,
|
||||
"Div_cnnl_Float32");
|
||||
REGISTER_KERNEL(Device::BANG, OpType::Maximum, DataType::Float32, MaximumCnnl,
|
||||
"Maximum_cnnl_BANG_Float32");
|
||||
REGISTER_KERNEL(Device::BANG, OpType::Minimum, DataType::Float32, MinimumCnnl,
|
||||
"Minimum_cnnl_BANG_Float32");
|
||||
REGISTER_KERNEL(Device::BANG, OpType::MSELoss, DataType::Float32, MSELossCnnl,
|
||||
"MSELoss_cnnl_BANG_Float32");
|
||||
REGISTER_KERNEL(Device::BANG, OpType::Power, DataType::Float32, PowerCnnl,
|
||||
"Power_cnnl_BANG_Float32");
|
||||
REGISTER_KERNEL(Device::BANG, OpType::FloorDiv, DataType::Float32, FloorDivCnnl,
|
||||
"FloorDiv_cnnl_BANG_Float32");
|
||||
REGISTER_KERNEL(Device::BANG, OpType::FloorMod, DataType::Float32, FloorModCnnl,
|
||||
"FloorMod_cnnl_BANG_Float32");
|
||||
REGISTER_KERNEL(Device::BANG, OpType::SquaredDifference, DataType::Float32,
|
||||
SquaredDifferenceCnnl, "SquaredDifference_cnnl_BANG_Float32");
|
||||
REGISTER_KERNEL(Device::BANG, OpType::Equal, DataType::Float32, EqualCnnl,
|
||||
"Equal_cnnl_BANG_Float32");
|
||||
REGISTER_KERNEL(Device::BANG, OpType::NotEqual, DataType::Float32, NotEqualCnnl,
|
||||
"NotEqual_cnnl_BANG_Float32");
|
||||
REGISTER_KERNEL(Device::BANG, OpType::GreaterThan, DataType::Float32,
|
||||
GreaterThanCnnl, "GreaterThan_cnnl_BANG_Float32");
|
||||
REGISTER_KERNEL(Device::BANG, OpType::GreaterEqual, DataType::Float32,
|
||||
GreaterEqualCnnl, "GreaterEqual_cnnl_BANG_Float32");
|
||||
REGISTER_KERNEL(Device::BANG, OpType::LessThan, DataType::Float32, LessThanCnnl,
|
||||
"LessThan_cnnl_BANG_Float32");
|
||||
REGISTER_KERNEL(Device::BANG, OpType::LessEqual, DataType::Float32,
|
||||
LessEqualCnnl, "LessEqual_cnnl_BANG_Float32");
|
||||
REGISTER_KERNEL(Device::BANG, OpType::And, DataType::Float32, AndCnnl,
|
||||
"And_cnnl_BANG_Float32");
|
||||
REGISTER_KERNEL(Device::BANG, OpType::Or, DataType::Float32, OrCnnl,
|
||||
"Or_cnnl_BANG_Float32");
|
||||
REGISTER_KERNEL(Device::BANG, OpType::Xor, DataType::Float32, XorCnnl,
|
||||
"Xor_cnnl_BANG_Float32");
|
||||
REGISTER_KERNEL(Device::BANG, OpType::Not, DataType::Float32, NotCnnl,
|
||||
"Not_cnnl_BANG_Float32");
|
||||
REGISTER_KERNEL(Device::BANG, OpType::BitAnd, DataType::Float32, BitAndCnnl,
|
||||
"BitAnd_cnnl_BANG_Float32");
|
||||
REGISTER_KERNEL(Device::BANG, OpType::BitOr, DataType::Float32, BitOrCnnl,
|
||||
"BitOr_cnnl_BANG_Float32");
|
||||
REGISTER_KERNEL(Device::BANG, OpType::BitXor, DataType::Float32, BitXorCnnl,
|
||||
"BitXor_cnnl_BANG_Float32");
|
||||
REGISTER_KERNEL(Device::BANG, OpType::BitNot, DataType::Float32, BitNotCnnl,
|
||||
"BitNot_cnnl_BANG_Float32");
|
||||
// REGISTER_KERNEL(Device::BANG, OpType::BitLeftShift, DataType::Float32,
|
||||
// BitLeftShiftCnnl,
|
||||
// "BitLeftShift_cnnl_BANG_Float32");
|
||||
// REGISTER_KERNEL(Device::BANG, OpType::BitRightShift, DataType::Float32,
|
||||
// BitRightShiftCnnl,
|
||||
// "BitRightShift_cnnl_BANG_Float32");
|
||||
// REGISTER_KERNEL(Device::BANG, OpType::Pow, DataType::Float32,
|
||||
// ElementWiseBang,
|
||||
// "Pow_Bang_Float32");
|
||||
|
|
|
@ -0,0 +1,47 @@
|
|||
#include "bang/bang_kernel_without_config.h"
|
||||
#include "bang/bang_runtime.h"
|
||||
#include "operators/unary.h"
|
||||
|
||||
namespace infini {
|
||||
class ErfCnnl : public BangKernelWithoutConfig {
|
||||
void compute(const Operator &_op,
|
||||
const RuntimeObj *_context) const override {
|
||||
auto op = as<UnaryObj>(_op);
|
||||
auto context = dynamic_cast<const BangRuntimeObj *>(_context);
|
||||
|
||||
void *const aData = (op->getInputs(0)->getRawDataPtr<void *>());
|
||||
void *const cData = (op->getOutput()->getRawDataPtr<void *>());
|
||||
|
||||
cnnlTensorDescriptor_t aDesc, cDesc;
|
||||
auto dim = op->getInputs(0)->getDims();
|
||||
if (dim.size() != 4)
|
||||
IT_TODO_HALT();
|
||||
|
||||
int dim_array[4] = {dim[0], dim[1], dim[2], dim[3]};
|
||||
// get inputs
|
||||
checkCnnlError(cnnlCreateTensorDescriptor(&aDesc));
|
||||
checkCnnlError(cnnlSetTensorDescriptor(aDesc, CNNL_LAYOUT_NCHW,
|
||||
CNNL_DTYPE_FLOAT, 4, dim_array));
|
||||
|
||||
// get outputs
|
||||
checkCnnlError(cnnlCreateTensorDescriptor(&cDesc));
|
||||
checkCnnlError(cnnlSetTensorDescriptor(cDesc, CNNL_LAYOUT_NCHW,
|
||||
CNNL_DTYPE_FLOAT, 4, dim_array));
|
||||
|
||||
cnnlStatus_t stat =
|
||||
cnnlErf_v2(context->cnnlHandle(), CNNL_COMPUTATION_HIGH_PRECISION,
|
||||
aDesc, aData, cDesc, cData);
|
||||
if (stat != CNNL_STATUS_SUCCESS)
|
||||
return;
|
||||
|
||||
// Destories in BANG does not require sync. But cnnl does not state
|
||||
// whether sync is required before destories.
|
||||
checkCnnlError(cnnlDestroyTensorDescriptor(aDesc));
|
||||
checkCnnlError(cnnlDestroyTensorDescriptor(cDesc));
|
||||
}
|
||||
};
|
||||
|
||||
REGISTER_KERNEL(Device::BANG, OpType::Erf, DataType::Float32, ErfCnnl,
|
||||
"Erf_cnnl_BANG_Float32");
|
||||
|
||||
}; // namespace infini
|
|
@ -0,0 +1,47 @@
|
|||
#include "bang/bang_kernel_without_config.h"
|
||||
#include "bang/bang_runtime.h"
|
||||
#include "operators/unary.h"
|
||||
|
||||
namespace infini {
|
||||
class ExpCnnl : public BangKernelWithoutConfig {
|
||||
void compute(const Operator &_op,
|
||||
const RuntimeObj *_context) const override {
|
||||
auto op = as<UnaryObj>(_op);
|
||||
auto context = dynamic_cast<const BangRuntimeObj *>(_context);
|
||||
|
||||
void *const aData = (op->getInputs(0)->getRawDataPtr<void *>());
|
||||
void *const cData = (op->getOutput()->getRawDataPtr<void *>());
|
||||
|
||||
cnnlTensorDescriptor_t aDesc, cDesc;
|
||||
auto dim = op->getInputs(0)->getDims();
|
||||
if (dim.size() != 4)
|
||||
IT_TODO_HALT();
|
||||
|
||||
int dim_array[4] = {dim[0], dim[1], dim[2], dim[3]};
|
||||
// get inputs
|
||||
checkCnnlError(cnnlCreateTensorDescriptor(&aDesc));
|
||||
checkCnnlError(cnnlSetTensorDescriptor(aDesc, CNNL_LAYOUT_NCHW,
|
||||
CNNL_DTYPE_FLOAT, 4, dim_array));
|
||||
|
||||
// get outputs
|
||||
checkCnnlError(cnnlCreateTensorDescriptor(&cDesc));
|
||||
checkCnnlError(cnnlSetTensorDescriptor(cDesc, CNNL_LAYOUT_NCHW,
|
||||
CNNL_DTYPE_FLOAT, 4, dim_array));
|
||||
|
||||
cnnlStatus_t stat =
|
||||
cnnlExp_v2(context->cnnlHandle(), CNNL_COMPUTATION_HIGH_PRECISION,
|
||||
aDesc, aData, cDesc, cData);
|
||||
if (stat != CNNL_STATUS_SUCCESS)
|
||||
return;
|
||||
|
||||
// Destories in BANG does not require sync. But cnnl does not state
|
||||
// whether sync is required before destories.
|
||||
checkCnnlError(cnnlDestroyTensorDescriptor(aDesc));
|
||||
checkCnnlError(cnnlDestroyTensorDescriptor(cDesc));
|
||||
}
|
||||
};
|
||||
|
||||
REGISTER_KERNEL(Device::BANG, OpType::Exp, DataType::Float32, ExpCnnl,
|
||||
"Exp_cnnl_BANG_Float32");
|
||||
|
||||
}; // namespace infini
|
|
@ -0,0 +1,40 @@
|
|||
#include "bang/bang_kernel_without_config.h"
|
||||
#include "bang/bang_runtime.h"
|
||||
#include "operators/unary.h"
|
||||
|
||||
namespace infini {
|
||||
class FillCnnl : public BangKernelWithoutConfig {
|
||||
void compute(const Operator &_op,
|
||||
const RuntimeObj *_context) const override {
|
||||
auto op = as<FillObj>(_op);
|
||||
auto context = dynamic_cast<const BangRuntimeObj *>(_context);
|
||||
|
||||
void *const cData = (op->getOutput()->getRawDataPtr<void *>());
|
||||
float value = op->getValue();
|
||||
|
||||
cnnlTensorDescriptor_t cDesc;
|
||||
auto dim = op->getOutput()->getDims();
|
||||
if (dim.size() != 4)
|
||||
IT_TODO_HALT();
|
||||
|
||||
int dim_array[4] = {dim[0], dim[1], dim[2], dim[3]};
|
||||
// get outputs
|
||||
checkCnnlError(cnnlCreateTensorDescriptor(&cDesc));
|
||||
checkCnnlError(cnnlSetTensorDescriptor(cDesc, CNNL_LAYOUT_NCHW,
|
||||
CNNL_DTYPE_FLOAT, 4, dim_array));
|
||||
|
||||
cnnlStatus_t stat =
|
||||
cnnlFill(context->cnnlHandle(), value, cDesc, cData);
|
||||
if (stat != CNNL_STATUS_SUCCESS)
|
||||
return;
|
||||
|
||||
// Destories in BANG does not require sync. But cnnl does not state
|
||||
// whether sync is required before destories.
|
||||
checkCnnlError(cnnlDestroyTensorDescriptor(cDesc));
|
||||
}
|
||||
};
|
||||
|
||||
REGISTER_KERNEL(Device::BANG, OpType::Fill, DataType::Float32, FillCnnl,
|
||||
"Fill_cnnl_BANG_Float32");
|
||||
|
||||
}; // namespace infini
|
|
@ -0,0 +1,46 @@
|
|||
#include "bang/bang_kernel_without_config.h"
|
||||
#include "bang/bang_runtime.h"
|
||||
#include "operators/unary.h"
|
||||
|
||||
namespace infini {
|
||||
class FloorCnnl : public BangKernelWithoutConfig {
|
||||
void compute(const Operator &_op,
|
||||
const RuntimeObj *_context) const override {
|
||||
auto op = as<UnaryObj>(_op);
|
||||
auto context = dynamic_cast<const BangRuntimeObj *>(_context);
|
||||
|
||||
void *const aData = (op->getInputs(0)->getRawDataPtr<void *>());
|
||||
void *const cData = (op->getOutput()->getRawDataPtr<void *>());
|
||||
|
||||
cnnlTensorDescriptor_t aDesc, cDesc;
|
||||
auto dim = op->getInputs(0)->getDims();
|
||||
if (dim.size() != 4)
|
||||
IT_TODO_HALT();
|
||||
|
||||
int dim_array[4] = {dim[0], dim[1], dim[2], dim[3]};
|
||||
// get inputs
|
||||
checkCnnlError(cnnlCreateTensorDescriptor(&aDesc));
|
||||
checkCnnlError(cnnlSetTensorDescriptor(aDesc, CNNL_LAYOUT_NCHW,
|
||||
CNNL_DTYPE_FLOAT, 4, dim_array));
|
||||
|
||||
// get outputs
|
||||
checkCnnlError(cnnlCreateTensorDescriptor(&cDesc));
|
||||
checkCnnlError(cnnlSetTensorDescriptor(cDesc, CNNL_LAYOUT_NCHW,
|
||||
CNNL_DTYPE_FLOAT, 4, dim_array));
|
||||
|
||||
cnnlStatus_t stat =
|
||||
cnnlFloor(context->cnnlHandle(), aDesc, aData, cDesc, cData);
|
||||
if (stat != CNNL_STATUS_SUCCESS)
|
||||
return;
|
||||
|
||||
// Destories in BANG does not require sync. But cnnl does not state
|
||||
// whether sync is required before destories.
|
||||
checkCnnlError(cnnlDestroyTensorDescriptor(aDesc));
|
||||
checkCnnlError(cnnlDestroyTensorDescriptor(cDesc));
|
||||
}
|
||||
};
|
||||
|
||||
REGISTER_KERNEL(Device::BANG, OpType::Floor, DataType::Float32, FloorCnnl,
|
||||
"Floor_cnnl_BANG_Float32");
|
||||
|
||||
}; // namespace infini
|
|
@ -0,0 +1,42 @@
|
|||
#include "bang/bang_kernel_without_config.h"
|
||||
#include "bang/bang_runtime.h"
|
||||
#include "operators/unary.h"
|
||||
|
||||
namespace infini {
|
||||
class HardtanhCnnl : public BangKernelWithoutConfig {
|
||||
void compute(const Operator &_op,
|
||||
const RuntimeObj *_context) const override {
|
||||
auto op = as<HardtanhObj>(_op);
|
||||
auto context = dynamic_cast<const BangRuntimeObj *>(_context);
|
||||
|
||||
void *const aData = (op->getInputs(0)->getRawDataPtr<void *>());
|
||||
void *const cData = (op->getOutput()->getRawDataPtr<void *>());
|
||||
float min = op->getMin();
|
||||
float max = op->getMax();
|
||||
|
||||
cnnlTensorDescriptor_t aDesc;
|
||||
auto dim = op->getInputs(0)->getDims();
|
||||
if (dim.size() != 4)
|
||||
IT_TODO_HALT();
|
||||
|
||||
int dim_array[4] = {dim[0], dim[1], dim[2], dim[3]};
|
||||
// get inputs
|
||||
checkCnnlError(cnnlCreateTensorDescriptor(&aDesc));
|
||||
checkCnnlError(cnnlSetTensorDescriptor(aDesc, CNNL_LAYOUT_NCHW,
|
||||
CNNL_DTYPE_FLOAT, 4, dim_array));
|
||||
|
||||
cnnlStatus_t stat = cnnlHardtanh(context->cnnlHandle(), aDesc, aData,
|
||||
max, min, aDesc, cData);
|
||||
if (stat != CNNL_STATUS_SUCCESS)
|
||||
return;
|
||||
|
||||
// Destories in BANG does not require sync. But cnnl does not state
|
||||
// whether sync is required before destories.
|
||||
checkCnnlError(cnnlDestroyTensorDescriptor(aDesc));
|
||||
}
|
||||
};
|
||||
|
||||
REGISTER_KERNEL(Device::BANG, OpType::Hardtanh, DataType::Float32, HardtanhCnnl,
|
||||
"Hardtanh_cnnl_BANG_Float32");
|
||||
|
||||
}; // namespace infini
|
|
@ -0,0 +1,40 @@
|
|||
#include "bang/bang_kernel_without_config.h"
|
||||
#include "bang/bang_runtime.h"
|
||||
#include "operators/unary.h"
|
||||
|
||||
namespace infini {
|
||||
class L2LossCnnl : public BangKernelWithoutConfig {
|
||||
void compute(const Operator &_op,
|
||||
const RuntimeObj *_context) const override {
|
||||
auto op = as<L2LossObj>(_op);
|
||||
auto context = dynamic_cast<const BangRuntimeObj *>(_context);
|
||||
|
||||
void *const aData = (op->getInputs(0)->getRawDataPtr<void *>());
|
||||
void *const cData = (op->getOutput()->getRawDataPtr<void *>());
|
||||
|
||||
cnnlTensorDescriptor_t aDesc;
|
||||
auto dim = op->getInputs(0)->getDims();
|
||||
if (dim.size() != 4)
|
||||
IT_TODO_HALT();
|
||||
|
||||
int dim_array[4] = {dim[0], dim[1], dim[2], dim[3]};
|
||||
// get inputs
|
||||
checkCnnlError(cnnlCreateTensorDescriptor(&aDesc));
|
||||
checkCnnlError(cnnlSetTensorDescriptor(aDesc, CNNL_LAYOUT_NCHW,
|
||||
CNNL_DTYPE_FLOAT, 4, dim_array));
|
||||
|
||||
cnnlStatus_t stat =
|
||||
cnnlL2Loss(context->cnnlHandle(), aDesc, aData, cData);
|
||||
if (stat != CNNL_STATUS_SUCCESS)
|
||||
return;
|
||||
|
||||
// Destories in BANG does not require sync. But cnnl does not state
|
||||
// whether sync is required before destories.
|
||||
checkCnnlError(cnnlDestroyTensorDescriptor(aDesc));
|
||||
}
|
||||
};
|
||||
|
||||
REGISTER_KERNEL(Device::BANG, OpType::L2Loss, DataType::Float32, L2LossCnnl,
|
||||
"L2Loss_cnnl_BANG_Float32");
|
||||
|
||||
}; // namespace infini
|
|
@ -0,0 +1,62 @@
|
|||
#include "bang/bang_kernel_without_config.h"
|
||||
#include "bang/bang_runtime.h"
|
||||
#include "operators/unary.h"
|
||||
|
||||
namespace infini {
|
||||
class LogCnnl : public BangKernelWithoutConfig {
|
||||
void compute(const Operator &_op,
|
||||
const RuntimeObj *_context) const override {
|
||||
auto op = as<LogObj>(_op);
|
||||
auto context = dynamic_cast<const BangRuntimeObj *>(_context);
|
||||
|
||||
void *const aData = (op->getInputs(0)->getRawDataPtr<void *>());
|
||||
void *const cData = (op->getOutput()->getRawDataPtr<void *>());
|
||||
auto type = op->getType();
|
||||
cnnlLogBase_t base;
|
||||
switch (type) {
|
||||
case LogObj::Log2:
|
||||
base = CNNL_LOG_2;
|
||||
break;
|
||||
case LogObj::LogE:
|
||||
base = CNNL_LOG_E;
|
||||
break;
|
||||
case LogObj::Log10:
|
||||
base = CNNL_LOG_10;
|
||||
break;
|
||||
default:
|
||||
IT_TODO_HALT();
|
||||
}
|
||||
|
||||
cnnlTensorDescriptor_t aDesc, cDesc;
|
||||
auto dim = op->getInputs(0)->getDims();
|
||||
if (dim.size() != 4)
|
||||
IT_TODO_HALT();
|
||||
|
||||
int dim_array[4] = {dim[0], dim[1], dim[2], dim[3]};
|
||||
// get inputs
|
||||
checkCnnlError(cnnlCreateTensorDescriptor(&aDesc));
|
||||
checkCnnlError(cnnlSetTensorDescriptor(aDesc, CNNL_LAYOUT_NCHW,
|
||||
CNNL_DTYPE_FLOAT, 4, dim_array));
|
||||
|
||||
// get outputs
|
||||
checkCnnlError(cnnlCreateTensorDescriptor(&cDesc));
|
||||
checkCnnlError(cnnlSetTensorDescriptor(cDesc, CNNL_LAYOUT_NCHW,
|
||||
CNNL_DTYPE_FLOAT, 4, dim_array));
|
||||
|
||||
cnnlStatus_t stat =
|
||||
cnnlLog_v2(context->cnnlHandle(), CNNL_COMPUTATION_HIGH_PRECISION,
|
||||
base, aDesc, aData, cDesc, cData);
|
||||
if (stat != CNNL_STATUS_SUCCESS)
|
||||
return;
|
||||
|
||||
// Destories in BANG does not require sync. But cnnl does not state
|
||||
// whether sync is required before destories.
|
||||
checkCnnlError(cnnlDestroyTensorDescriptor(aDesc));
|
||||
checkCnnlError(cnnlDestroyTensorDescriptor(cDesc));
|
||||
}
|
||||
};
|
||||
|
||||
REGISTER_KERNEL(Device::BANG, OpType::Log, DataType::Float32, LogCnnl,
|
||||
"Log_cnnl_BANG_Float32");
|
||||
|
||||
}; // namespace infini
|
|
@ -18,19 +18,27 @@ class MatmulCnnl : public BangKernelWithoutConfig {
|
|||
auto dimInputs0 = op->getInputs(0)->getDims();
|
||||
auto dimInputs1 = op->getInputs(1)->getDims();
|
||||
auto dimOutput = op->getOutput()->getDims();
|
||||
if (dimInputs0.size() != 3)
|
||||
IT_TODO_HALT();
|
||||
if (dimInputs1.size() != 3)
|
||||
IT_TODO_HALT();
|
||||
if (dimOutput.size() != 3)
|
||||
IT_TODO_HALT();
|
||||
int input0_batch_size = 1;
|
||||
int input1_batch_size = 1;
|
||||
int output_batch_size = 1;
|
||||
for (size_t i = 0; i < dimInputs0.size() - 2; ++i) {
|
||||
input0_batch_size *= dimInputs0[i];
|
||||
input1_batch_size *= dimInputs1[i];
|
||||
output_batch_size *= dimOutput[i];
|
||||
}
|
||||
|
||||
bool transA = op->getTransA();
|
||||
bool transB = op->getTransB();
|
||||
|
||||
int inputs0Array[3] = {dimInputs0[0], dimInputs0[1], dimInputs0[2]};
|
||||
int inputs1Array[3] = {dimInputs1[0], dimInputs1[1], dimInputs1[2]};
|
||||
int outputArray[3] = {dimOutput[0], dimOutput[1], dimOutput[2]};
|
||||
int inputs0Array[3] = {input0_batch_size,
|
||||
dimInputs0[dimInputs0.size() - 2],
|
||||
dimInputs0[dimInputs0.size() - 1]};
|
||||
int inputs1Array[3] = {input1_batch_size,
|
||||
dimInputs1[dimInputs1.size() - 2],
|
||||
dimInputs1[dimInputs1.size() - 1]};
|
||||
int outputArray[3] = {output_batch_size,
|
||||
dimOutput[dimOutput.size() - 2],
|
||||
dimOutput[dimOutput.size() - 1]};
|
||||
|
||||
// get inputs
|
||||
checkCnnlError(cnnlCreateTensorDescriptor(&aDesc));
|
||||
|
|
|
@ -0,0 +1,46 @@
|
|||
#include "bang/bang_kernel_without_config.h"
|
||||
#include "bang/bang_runtime.h"
|
||||
#include "operators/unary.h"
|
||||
|
||||
namespace infini {
|
||||
class NegTensorCnnl : public BangKernelWithoutConfig {
|
||||
void compute(const Operator &_op,
|
||||
const RuntimeObj *_context) const override {
|
||||
auto op = as<UnaryObj>(_op);
|
||||
auto context = dynamic_cast<const BangRuntimeObj *>(_context);
|
||||
|
||||
void *const aData = (op->getInputs(0)->getRawDataPtr<void *>());
|
||||
void *const cData = (op->getOutput()->getRawDataPtr<void *>());
|
||||
|
||||
cnnlTensorDescriptor_t aDesc, cDesc;
|
||||
auto dim = op->getInputs(0)->getDims();
|
||||
if (dim.size() != 4)
|
||||
IT_TODO_HALT();
|
||||
|
||||
int dim_array[4] = {dim[0], dim[1], dim[2], dim[3]};
|
||||
// get inputs
|
||||
checkCnnlError(cnnlCreateTensorDescriptor(&aDesc));
|
||||
checkCnnlError(cnnlSetTensorDescriptor(aDesc, CNNL_LAYOUT_NCHW,
|
||||
CNNL_DTYPE_FLOAT, 4, dim_array));
|
||||
|
||||
// get outputs
|
||||
checkCnnlError(cnnlCreateTensorDescriptor(&cDesc));
|
||||
checkCnnlError(cnnlSetTensorDescriptor(cDesc, CNNL_LAYOUT_NCHW,
|
||||
CNNL_DTYPE_FLOAT, 4, dim_array));
|
||||
|
||||
cnnlStatus_t stat =
|
||||
cnnlNegTensor(context->cnnlHandle(), aDesc, aData, cDesc, cData);
|
||||
if (stat != CNNL_STATUS_SUCCESS)
|
||||
return;
|
||||
|
||||
// Destories in BANG does not require sync. But cnnl does not state
|
||||
// whether sync is required before destories.
|
||||
checkCnnlError(cnnlDestroyTensorDescriptor(aDesc));
|
||||
checkCnnlError(cnnlDestroyTensorDescriptor(cDesc));
|
||||
}
|
||||
};
|
||||
|
||||
REGISTER_KERNEL(Device::BANG, OpType::Neg, DataType::Float32, NegTensorCnnl,
|
||||
"Neg_cnnl_BANG_Float32");
|
||||
|
||||
}; // namespace infini
|
|
@ -0,0 +1,65 @@
|
|||
#include "operators/pad.h"
|
||||
#include "bang/bang_kernel_without_config.h"
|
||||
#include "bang/bang_runtime.h"
|
||||
|
||||
namespace infini {
|
||||
class PadCnnl : public BangKernelWithoutConfig {
|
||||
void compute(const Operator &_op,
|
||||
const RuntimeObj *_context) const override {
|
||||
auto op = as<PadObj>(_op);
|
||||
auto context = dynamic_cast<const BangRuntimeObj *>(_context);
|
||||
|
||||
void *const aData = (op->getInputs(0)->getRawDataPtr<void *>());
|
||||
void *const cData = (op->getOutput()->getRawDataPtr<void *>());
|
||||
|
||||
cnnlTensorDescriptor_t aDesc, cDesc;
|
||||
auto dim = op->getOutput()->getDims();
|
||||
int dim_size = dim.size();
|
||||
int dim_array[dim_size];
|
||||
for (int i = 0; i < dim_size; ++i) {
|
||||
dim_array[i] = dim[i];
|
||||
}
|
||||
int paddings[dim_size * 2];
|
||||
std::vector<int> pads = op->getPads();
|
||||
if (pads.size() == 2 && dim_size != 1) {
|
||||
for (int i = 0; i < dim_size * 2; i += 2) {
|
||||
paddings[i] = pads[0];
|
||||
paddings[i + 1] = pads[1];
|
||||
}
|
||||
} else {
|
||||
for (int i = 0; i < dim_size * 2; i += 2) {
|
||||
paddings[i] = pads[i / 2];
|
||||
paddings[i + 1] = pads[i / 2 + dim_size];
|
||||
}
|
||||
}
|
||||
int dimout_array[dim_size];
|
||||
for (int i = 0; i < dim_size; ++i) {
|
||||
dimout_array[i] = dim[i] + paddings[2 * i] + paddings[2 * i + 1];
|
||||
}
|
||||
float paddingValue = 0.0;
|
||||
// input
|
||||
checkCnnlError(cnnlCreateTensorDescriptor(&aDesc));
|
||||
checkCnnlError(cnnlSetTensorDescriptor(
|
||||
aDesc, CNNL_LAYOUT_ARRAY, CNNL_DTYPE_FLOAT, dim_size, dim_array));
|
||||
// output
|
||||
checkCnnlError(cnnlCreateTensorDescriptor(&cDesc));
|
||||
checkCnnlError(cnnlSetTensorDescriptor(cDesc, CNNL_LAYOUT_ARRAY,
|
||||
CNNL_DTYPE_FLOAT, dim_size,
|
||||
dimout_array));
|
||||
|
||||
cnnlStatus_t stat = cnnlPad(context->cnnlHandle(), aDesc, aData,
|
||||
paddings, &paddingValue, cDesc, cData);
|
||||
if (stat != CNNL_STATUS_SUCCESS)
|
||||
return;
|
||||
|
||||
// Destories in BANG does not require sync. But cnnl does not state
|
||||
// whether sync is required before destories.
|
||||
checkCnnlError(cnnlDestroyTensorDescriptor(aDesc));
|
||||
checkCnnlError(cnnlDestroyTensorDescriptor(cDesc));
|
||||
}
|
||||
};
|
||||
|
||||
REGISTER_KERNEL(Device::BANG, OpType::Pad, DataType::Float32, PadCnnl,
|
||||
"Pad_cnnl_BANG_Float32");
|
||||
|
||||
}; // namespace infini
|
|
@ -0,0 +1,73 @@
|
|||
#include "operators/pooling.h"
|
||||
#include "bang/bang_kernel_without_config.h"
|
||||
#include "bang/bang_runtime.h"
|
||||
|
||||
namespace infini {
|
||||
class PoolingCnnl : public BangKernelWithoutConfig {
|
||||
virtual cnnlPoolingMode_t getPoolingMode() const = 0;
|
||||
void compute(const Operator &_op,
|
||||
const RuntimeObj *_context) const override {
|
||||
auto op = as<PoolingObj>(_op);
|
||||
auto context = dynamic_cast<const BangRuntimeObj *>(_context);
|
||||
void *const inData = (op->getInputs(0)->getRawDataPtr<void *>());
|
||||
void *const outData = (op->getOutput()->getRawDataPtr<void *>());
|
||||
|
||||
const auto [n, c, h, w, kh, kw] = op->getNCHWRS();
|
||||
const auto [ph, pw, sh, sw, dh, dw] = op->getPadStrideDilation();
|
||||
|
||||
// get inputs
|
||||
int inArray[4] = {n, c, h, w};
|
||||
cnnlTensorDescriptor_t inDesc;
|
||||
checkCnnlError(cnnlCreateTensorDescriptor(&inDesc));
|
||||
checkCnnlError(cnnlSetTensorDescriptor(inDesc, CNNL_LAYOUT_NCHW,
|
||||
CNNL_DTYPE_FLOAT, 4, inArray));
|
||||
|
||||
// get maxpool descriptor
|
||||
cnnlPoolingDescriptor_t poolingDesc;
|
||||
checkCnnlError(cnnlCreatePoolingDescriptor(&poolingDesc));
|
||||
checkCnnlError(cnnlSetPooling2dDescriptor_v2(
|
||||
poolingDesc, getPoolingMode(), CNNL_NOT_PROPAGATE_NAN, kh, kw, ph,
|
||||
ph, pw, pw, sh, sw, dh, dw, false));
|
||||
|
||||
// get outputs
|
||||
auto outVec = op->getOutput()->getDims();
|
||||
int outArray[4] = {outVec[0], outVec[1], outVec[2], outVec[3]};
|
||||
cnnlTensorDescriptor_t outDesc;
|
||||
checkCnnlError(cnnlCreateTensorDescriptor(&outDesc));
|
||||
checkCnnlError(cnnlSetTensorDescriptor(outDesc, CNNL_LAYOUT_NCHW,
|
||||
CNNL_DTYPE_FLOAT, 4, outArray));
|
||||
size_t wsSize;
|
||||
cnnlGetPoolingWorkspaceSize(context->cnnlHandle(), getPoolingMode(),
|
||||
outVec[3], outVec[2], &wsSize);
|
||||
BangPtr wsData = context->getWorkspace(wsSize);
|
||||
|
||||
float alpha = 1.f, beta = 0.f;
|
||||
checkCnnlError(cnnlPoolingForward(context->cnnlHandle(), poolingDesc,
|
||||
&alpha, inDesc, inData, &beta,
|
||||
outDesc, outData, wsData, wsSize));
|
||||
|
||||
// Destories in BANG does not require sync. But cnnl does not state
|
||||
// whether sync is required before destories.
|
||||
checkCnnlError(cnnlDestroyTensorDescriptor(inDesc));
|
||||
checkCnnlError(cnnlDestroyTensorDescriptor(outDesc));
|
||||
checkCnnlError(cnnlDestroyPoolingDescriptor(poolingDesc));
|
||||
}
|
||||
};
|
||||
|
||||
class maxPoolCnnl : public PoolingCnnl {
|
||||
cnnlPoolingMode_t getPoolingMode() const override {
|
||||
return CNNL_POOLING_MAX;
|
||||
}
|
||||
};
|
||||
|
||||
class avgPoolCnnl : public PoolingCnnl {
|
||||
cnnlPoolingMode_t getPoolingMode() const override {
|
||||
return CNNL_POOLING_AVERAGE_COUNT_INCLUDE_PADDING;
|
||||
}
|
||||
};
|
||||
|
||||
REGISTER_KERNEL(Device::BANG, OpType::MaxPool, DataType::Float32, maxPoolCnnl,
|
||||
"MaxPool_cnnl_BANG_Float32");
|
||||
REGISTER_KERNEL(Device::BANG, OpType::AvgPool, DataType::Float32, avgPoolCnnl,
|
||||
"AvgPool_cnnl_BANG_Float32");
|
||||
}; // namespace infini
|
|
@ -0,0 +1,46 @@
|
|||
#include "bang/bang_kernel_without_config.h"
|
||||
#include "bang/bang_runtime.h"
|
||||
#include "operators/unary.h"
|
||||
|
||||
namespace infini {
|
||||
class ReciprocalCnnl : public BangKernelWithoutConfig {
|
||||
void compute(const Operator &_op,
|
||||
const RuntimeObj *_context) const override {
|
||||
auto op = as<UnaryObj>(_op);
|
||||
auto context = dynamic_cast<const BangRuntimeObj *>(_context);
|
||||
|
||||
void *const aData = (op->getInputs(0)->getRawDataPtr<void *>());
|
||||
void *const cData = (op->getOutput()->getRawDataPtr<void *>());
|
||||
|
||||
cnnlTensorDescriptor_t aDesc, cDesc;
|
||||
auto dim = op->getInputs(0)->getDims();
|
||||
if (dim.size() != 4)
|
||||
IT_TODO_HALT();
|
||||
|
||||
int dim_array[4] = {dim[0], dim[1], dim[2], dim[3]};
|
||||
// get inputs
|
||||
checkCnnlError(cnnlCreateTensorDescriptor(&aDesc));
|
||||
checkCnnlError(cnnlSetTensorDescriptor(aDesc, CNNL_LAYOUT_NCHW,
|
||||
CNNL_DTYPE_FLOAT, 4, dim_array));
|
||||
|
||||
// get outputs
|
||||
checkCnnlError(cnnlCreateTensorDescriptor(&cDesc));
|
||||
checkCnnlError(cnnlSetTensorDescriptor(cDesc, CNNL_LAYOUT_NCHW,
|
||||
CNNL_DTYPE_FLOAT, 4, dim_array));
|
||||
|
||||
cnnlStatus_t stat =
|
||||
cnnlReciprocal(context->cnnlHandle(), aDesc, aData, cDesc, cData);
|
||||
if (stat != CNNL_STATUS_SUCCESS)
|
||||
return;
|
||||
|
||||
// Destories in BANG does not require sync. But cnnl does not state
|
||||
// whether sync is required before destories.
|
||||
checkCnnlError(cnnlDestroyTensorDescriptor(aDesc));
|
||||
checkCnnlError(cnnlDestroyTensorDescriptor(cDesc));
|
||||
}
|
||||
};
|
||||
|
||||
REGISTER_KERNEL(Device::BANG, OpType::Reciprocal, DataType::Float32,
|
||||
ReciprocalCnnl, "Reciprocal_cnnl_BANG_Float32");
|
||||
|
||||
}; // namespace infini
|
|
@ -0,0 +1,42 @@
|
|||
#include "operators/reshape.h"
|
||||
#include "bang/bang_kernel_without_config.h"
|
||||
#include "bang/bang_runtime.h"
|
||||
|
||||
namespace infini {
|
||||
class CopyBang : public BangKernelWithoutConfig {
|
||||
void compute(const Operator &_op,
|
||||
const RuntimeObj *_context) const override {
|
||||
auto op = as<ReshapeObj>(_op);
|
||||
auto context = dynamic_cast<const BangRuntimeObj *>(_context);
|
||||
auto inData = op->getInputs(0)->getRawDataPtr<void *>();
|
||||
auto outData = op->getOutputs()[0]->getRawDataPtr<void *>();
|
||||
cnnlTensorDescriptor_t aDesc;
|
||||
auto dim = op->getInputs(0)->getDims();
|
||||
int len = dim.size();
|
||||
int size = 1;
|
||||
for (int i = 0; i < len; ++i) {
|
||||
size *= dim[i];
|
||||
}
|
||||
|
||||
int dim_array[1] = {size};
|
||||
// get inputs
|
||||
checkCnnlError(cnnlCreateTensorDescriptor(&aDesc));
|
||||
checkCnnlError(cnnlSetTensorDescriptor(aDesc, CNNL_LAYOUT_ARRAY,
|
||||
CNNL_DTYPE_FLOAT, 1, dim_array));
|
||||
cnnlStatus_t stat =
|
||||
cnnlCopy(context->cnnlHandle(), aDesc, inData, aDesc, outData);
|
||||
if (stat != CNNL_STATUS_SUCCESS)
|
||||
return;
|
||||
|
||||
checkCnnlError(cnnlDestroyTensorDescriptor(aDesc));
|
||||
}
|
||||
};
|
||||
// reshape/flatten/identity all act as copying from input to output.
|
||||
REGISTER_KERNEL(Device::BANG, OpType::Reshape, DataType::Float32, CopyBang,
|
||||
"Reshape_BANG_Float32");
|
||||
REGISTER_KERNEL(Device::BANG, OpType::Flatten, DataType::Float32, CopyBang,
|
||||
"Flatten_BANG_Float32");
|
||||
REGISTER_KERNEL(Device::BANG, OpType::Identity, DataType::Float32, CopyBang,
|
||||
"Identity_BANG_Float32");
|
||||
|
||||
} // namespace infini
|
|
@ -0,0 +1,47 @@
|
|||
#include "bang/bang_kernel_without_config.h"
|
||||
#include "bang/bang_runtime.h"
|
||||
#include "operators/unary.h"
|
||||
|
||||
namespace infini {
|
||||
class RsqrtCnnl : public BangKernelWithoutConfig {
|
||||
void compute(const Operator &_op,
|
||||
const RuntimeObj *_context) const override {
|
||||
auto op = as<UnaryObj>(_op);
|
||||
auto context = dynamic_cast<const BangRuntimeObj *>(_context);
|
||||
|
||||
void *const aData = (op->getInputs(0)->getRawDataPtr<void *>());
|
||||
void *const cData = (op->getOutput()->getRawDataPtr<void *>());
|
||||
|
||||
cnnlTensorDescriptor_t aDesc, cDesc;
|
||||
auto dim = op->getInputs(0)->getDims();
|
||||
if (dim.size() != 4)
|
||||
IT_TODO_HALT();
|
||||
|
||||
int dim_array[4] = {dim[0], dim[1], dim[2], dim[3]};
|
||||
// get inputs
|
||||
checkCnnlError(cnnlCreateTensorDescriptor(&aDesc));
|
||||
checkCnnlError(cnnlSetTensorDescriptor(aDesc, CNNL_LAYOUT_NCHW,
|
||||
CNNL_DTYPE_FLOAT, 4, dim_array));
|
||||
|
||||
// get outputs
|
||||
checkCnnlError(cnnlCreateTensorDescriptor(&cDesc));
|
||||
checkCnnlError(cnnlSetTensorDescriptor(cDesc, CNNL_LAYOUT_NCHW,
|
||||
CNNL_DTYPE_FLOAT, 4, dim_array));
|
||||
|
||||
cnnlStatus_t stat =
|
||||
cnnlRsqrt_v2(context->cnnlHandle(), CNNL_COMPUTATION_HIGH_PRECISION,
|
||||
aDesc, aData, cDesc, cData);
|
||||
if (stat != CNNL_STATUS_SUCCESS)
|
||||
return;
|
||||
|
||||
// Destories in BANG does not require sync. But cnnl does not state
|
||||
// whether sync is required before destories.
|
||||
checkCnnlError(cnnlDestroyTensorDescriptor(aDesc));
|
||||
checkCnnlError(cnnlDestroyTensorDescriptor(cDesc));
|
||||
}
|
||||
};
|
||||
|
||||
REGISTER_KERNEL(Device::BANG, OpType::Rsqrt, DataType::Float32, RsqrtCnnl,
|
||||
"Rsqrt_cnnl_BANG_Float32");
|
||||
|
||||
}; // namespace infini
|
|
@ -0,0 +1,69 @@
|
|||
#include "operators/split.h"
|
||||
#include "bang/bang_kernel_without_config.h"
|
||||
#include "bang/bang_runtime.h"
|
||||
|
||||
namespace infini {
|
||||
class SplitCnnl : public BangKernelWithoutConfig {
|
||||
void compute(const Operator &_op,
|
||||
const RuntimeObj *_context) const override {
|
||||
auto op = as<SplitObj>(_op);
|
||||
auto context = dynamic_cast<const BangRuntimeObj *>(_context);
|
||||
int num = op->numOutputs();
|
||||
int axis = op->getDim();
|
||||
void *argv[num];
|
||||
for (int i = 0; i < num; ++i) {
|
||||
argv[i] = op->getOutput(i)->getRawDataPtr<void *>();
|
||||
}
|
||||
void *const inputData = (op->getInputs(0)->getRawDataPtr<void *>());
|
||||
|
||||
cnnlTensorDescriptor_t desc;
|
||||
|
||||
int dimout_array[num][4];
|
||||
for (int i = 0; i < num; ++i) {
|
||||
auto dim = op->getOutput(i)->getDims();
|
||||
if (dim.size() != 4) {
|
||||
IT_TODO_HALT();
|
||||
}
|
||||
dimout_array[i][0] = dim[0];
|
||||
dimout_array[i][1] = dim[1];
|
||||
dimout_array[i][2] = dim[2];
|
||||
dimout_array[i][3] = dim[3];
|
||||
}
|
||||
auto dim = op->getInputs(0)->getDims();
|
||||
if (dim.size() != 4) {
|
||||
IT_TODO_HALT();
|
||||
}
|
||||
int dim_array[4] = {dim[0], dim[1], dim[2], dim[3]};
|
||||
checkCnnlError(cnnlCreateTensorDescriptor(&desc));
|
||||
checkCnnlError(cnnlSetTensorDescriptor(desc, CNNL_LAYOUT_NCHW,
|
||||
CNNL_DTYPE_FLOAT, 4, dim_array));
|
||||
cnnlTensorDescriptor_t descArray[num];
|
||||
for (int i = 0; i < num; ++i) {
|
||||
checkCnnlError(cnnlCreateTensorDescriptor(&descArray[i]));
|
||||
checkCnnlError(
|
||||
cnnlSetTensorDescriptor(descArray[i], CNNL_LAYOUT_NCHW,
|
||||
CNNL_DTYPE_FLOAT, 4, dimout_array[i]));
|
||||
}
|
||||
|
||||
size_t wsSize;
|
||||
cnnlGetSplitWorkspaceSize(context->cnnlHandle(), num, &wsSize);
|
||||
BangPtr wsData = context->getWorkspace(wsSize);
|
||||
|
||||
cnnlStatus_t stat =
|
||||
cnnlSplit(context->cnnlHandle(), num, axis, desc, inputData, wsData,
|
||||
wsSize, descArray, argv);
|
||||
if (stat != CNNL_STATUS_SUCCESS)
|
||||
return;
|
||||
|
||||
// Destories in BANG does not require sync. But cnnl does not state
|
||||
// whether sync is required before destories.
|
||||
for (int i = 0; i < num; ++i) {
|
||||
checkCnnlError(cnnlDestroyTensorDescriptor(descArray[i]));
|
||||
}
|
||||
checkCnnlError(cnnlDestroyTensorDescriptor(desc));
|
||||
}
|
||||
};
|
||||
|
||||
REGISTER_KERNEL(Device::BANG, OpType::Split, DataType::Float32, SplitCnnl,
|
||||
"Split_cnnl_BANG_Float32");
|
||||
}; // namespace infini
|
|
@ -0,0 +1,47 @@
|
|||
#include "bang/bang_kernel_without_config.h"
|
||||
#include "bang/bang_runtime.h"
|
||||
#include "operators/unary.h"
|
||||
|
||||
namespace infini {
|
||||
class SqrtCnnl : public BangKernelWithoutConfig {
|
||||
void compute(const Operator &_op,
|
||||
const RuntimeObj *_context) const override {
|
||||
auto op = as<UnaryObj>(_op);
|
||||
auto context = dynamic_cast<const BangRuntimeObj *>(_context);
|
||||
|
||||
void *const aData = (op->getInputs(0)->getRawDataPtr<void *>());
|
||||
void *const cData = (op->getOutput()->getRawDataPtr<void *>());
|
||||
|
||||
cnnlTensorDescriptor_t aDesc, cDesc;
|
||||
auto dim = op->getInputs(0)->getDims();
|
||||
if (dim.size() != 4)
|
||||
IT_TODO_HALT();
|
||||
|
||||
int dim_array[4] = {dim[0], dim[1], dim[2], dim[3]};
|
||||
// get inputs
|
||||
checkCnnlError(cnnlCreateTensorDescriptor(&aDesc));
|
||||
checkCnnlError(cnnlSetTensorDescriptor(aDesc, CNNL_LAYOUT_NCHW,
|
||||
CNNL_DTYPE_FLOAT, 4, dim_array));
|
||||
|
||||
// get outputs
|
||||
checkCnnlError(cnnlCreateTensorDescriptor(&cDesc));
|
||||
checkCnnlError(cnnlSetTensorDescriptor(cDesc, CNNL_LAYOUT_NCHW,
|
||||
CNNL_DTYPE_FLOAT, 4, dim_array));
|
||||
|
||||
cnnlStatus_t stat =
|
||||
cnnlSqrt_v2(context->cnnlHandle(), CNNL_COMPUTATION_HIGH_PRECISION,
|
||||
aDesc, aData, cDesc, cData);
|
||||
if (stat != CNNL_STATUS_SUCCESS)
|
||||
return;
|
||||
|
||||
// Destories in BANG does not require sync. But cnnl does not state
|
||||
// whether sync is required before destories.
|
||||
checkCnnlError(cnnlDestroyTensorDescriptor(aDesc));
|
||||
checkCnnlError(cnnlDestroyTensorDescriptor(cDesc));
|
||||
}
|
||||
};
|
||||
|
||||
REGISTER_KERNEL(Device::BANG, OpType::Sqrt, DataType::Float32, SqrtCnnl,
|
||||
"Sqrt_cnnl_BANG_Float32");
|
||||
|
||||
}; // namespace infini
|
|
@ -0,0 +1,60 @@
|
|||
#include "operators/transpose.h"
|
||||
#include "bang/bang_kernel_without_config.h"
|
||||
#include "bang/bang_runtime.h"
|
||||
|
||||
namespace infini {
|
||||
class TransposeCnnl : public BangKernelWithoutConfig {
|
||||
void compute(const Operator &_op,
|
||||
const RuntimeObj *_context) const override {
|
||||
auto op = as<TransposeObj>(_op);
|
||||
auto context = dynamic_cast<const BangRuntimeObj *>(_context);
|
||||
|
||||
void *const aData = (op->getInputs(0)->getRawDataPtr<void *>());
|
||||
void *const cData = (op->getOutput()->getRawDataPtr<void *>());
|
||||
|
||||
cnnlTensorDescriptor_t aDesc, cDesc;
|
||||
auto dimin = op->getInputs(0)->getDims();
|
||||
auto dimout = op->getOutput()->getDims();
|
||||
if (dimin.size() != 4 || dimout.size() != 4)
|
||||
IT_TODO_HALT();
|
||||
|
||||
int dimin_array[4] = {dimin[0], dimin[1], dimin[2], dimin[3]};
|
||||
int dimout_array[4] = {dimout[0], dimout[1], dimout[2], dimout[3]};
|
||||
// get inputs
|
||||
checkCnnlError(cnnlCreateTensorDescriptor(&aDesc));
|
||||
checkCnnlError(cnnlSetTensorDescriptor(
|
||||
aDesc, CNNL_LAYOUT_ARRAY, CNNL_DTYPE_FLOAT, 4, dimin_array));
|
||||
|
||||
// get outputs
|
||||
checkCnnlError(cnnlCreateTensorDescriptor(&cDesc));
|
||||
checkCnnlError(cnnlSetTensorDescriptor(
|
||||
cDesc, CNNL_LAYOUT_ARRAY, CNNL_DTYPE_FLOAT, 4, dimout_array));
|
||||
|
||||
// get op descriptor
|
||||
auto permute = op->getPermute();
|
||||
cnnlTransposeDescriptor_t opDesc;
|
||||
checkCnnlError(cnnlCreateTransposeDescriptor(&opDesc));
|
||||
checkCnnlError(cnnlSetTransposeDescriptor(opDesc, 4, permute.data()));
|
||||
|
||||
size_t wsSize;
|
||||
cnnlGetTransposeWorkspaceSize(context->cnnlHandle(), aDesc, opDesc,
|
||||
&wsSize);
|
||||
BangPtr wsData = context->getWorkspace(wsSize);
|
||||
|
||||
cnnlStatus_t stat =
|
||||
cnnlTranspose_v2(context->cnnlHandle(), opDesc, aDesc, aData, cDesc,
|
||||
cData, wsData, wsSize);
|
||||
if (stat != CNNL_STATUS_SUCCESS)
|
||||
return;
|
||||
|
||||
// Destories in BANG does not require sync. But cnnl does not state
|
||||
// whether sync is required before destories.
|
||||
checkCnnlError(cnnlDestroyTensorDescriptor(aDesc));
|
||||
checkCnnlError(cnnlDestroyTensorDescriptor(cDesc));
|
||||
checkCnnlError(cnnlDestroyTransposeDescriptor(opDesc));
|
||||
}
|
||||
};
|
||||
|
||||
REGISTER_KERNEL(Device::BANG, OpType::Transpose, DataType::Float32,
|
||||
TransposeCnnl, "Transpose_cnnl_BANG_Float32");
|
||||
}; // namespace infini
|
|
@ -0,0 +1,184 @@
|
|||
#include "bang/bang_kernel_without_config.h"
|
||||
#include "bang/bang_runtime.h"
|
||||
#include "operators/unary.h"
|
||||
|
||||
namespace infini {
|
||||
class TrigonCnnl : public BangKernelWithoutConfig {
|
||||
virtual cnnlTrigonFunctionMode_t getOpType() const = 0;
|
||||
virtual cnnlComputationPreference_t getPrefer() const = 0;
|
||||
void compute(const Operator &_op,
|
||||
const RuntimeObj *_context) const override {
|
||||
auto op = as<UnaryObj>(_op);
|
||||
auto context = dynamic_cast<const BangRuntimeObj *>(_context);
|
||||
|
||||
void *const aData = (op->getInputs(0)->getRawDataPtr<void *>());
|
||||
void *const cData = (op->getOutput()->getRawDataPtr<void *>());
|
||||
|
||||
cnnlTensorDescriptor_t aDesc, cDesc;
|
||||
auto dim = op->getInputs(0)->getDims();
|
||||
if (dim.size() != 4)
|
||||
IT_TODO_HALT();
|
||||
|
||||
int dim_array[4] = {dim[0], dim[1], dim[2], dim[3]};
|
||||
// get inputs
|
||||
checkCnnlError(cnnlCreateTensorDescriptor(&aDesc));
|
||||
checkCnnlError(cnnlSetTensorDescriptor(aDesc, CNNL_LAYOUT_NCHW,
|
||||
CNNL_DTYPE_FLOAT, 4, dim_array));
|
||||
|
||||
// get outputs
|
||||
checkCnnlError(cnnlCreateTensorDescriptor(&cDesc));
|
||||
checkCnnlError(cnnlSetTensorDescriptor(cDesc, CNNL_LAYOUT_NCHW,
|
||||
CNNL_DTYPE_FLOAT, 4, dim_array));
|
||||
|
||||
// get op descriptor
|
||||
cnnlTrigonDescriptor_t opDesc;
|
||||
checkCnnlError(cnnlCreateTrigonDescriptor(&opDesc));
|
||||
checkCnnlError(cnnlSetTrigonDescriptor(opDesc, getOpType()));
|
||||
|
||||
cnnlStatus_t stat = cnnlTrigonForward(context->cnnlHandle(), opDesc,
|
||||
aDesc, aData, cDesc, cData);
|
||||
if (stat != CNNL_STATUS_SUCCESS)
|
||||
return;
|
||||
|
||||
// Destories in BANG does not require sync. But cnnl does not state
|
||||
// whether sync is required before destories.
|
||||
checkCnnlError(cnnlDestroyTensorDescriptor(aDesc));
|
||||
checkCnnlError(cnnlDestroyTensorDescriptor(cDesc));
|
||||
checkCnnlError(cnnlDestroyTrigonDescriptor(opDesc));
|
||||
}
|
||||
};
|
||||
|
||||
class SinCnnl : public TrigonCnnl {
|
||||
cnnlTrigonFunctionMode_t getOpType() const override {
|
||||
return CNNL_TRIGON_SIN;
|
||||
}
|
||||
cnnlComputationPreference_t getPrefer() const override {
|
||||
return CNNL_COMPUTATION_HIGH_PRECISION;
|
||||
}
|
||||
};
|
||||
|
||||
class CosCnnl : public TrigonCnnl {
|
||||
cnnlTrigonFunctionMode_t getOpType() const override {
|
||||
return CNNL_TRIGON_COS;
|
||||
}
|
||||
cnnlComputationPreference_t getPrefer() const override {
|
||||
return CNNL_COMPUTATION_HIGH_PRECISION;
|
||||
}
|
||||
};
|
||||
|
||||
class TanCnnl : public TrigonCnnl {
|
||||
cnnlTrigonFunctionMode_t getOpType() const override {
|
||||
return CNNL_TRIGON_TAN;
|
||||
}
|
||||
cnnlComputationPreference_t getPrefer() const override {
|
||||
return CNNL_COMPUTATION_HIGH_PRECISION;
|
||||
}
|
||||
};
|
||||
|
||||
class ASinCnnl : public TrigonCnnl {
|
||||
cnnlTrigonFunctionMode_t getOpType() const override {
|
||||
return CNNL_TRIGON_ASIN;
|
||||
}
|
||||
cnnlComputationPreference_t getPrefer() const override {
|
||||
return CNNL_COMPUTATION_HIGH_PRECISION;
|
||||
}
|
||||
};
|
||||
|
||||
class ACosCnnl : public TrigonCnnl {
|
||||
cnnlTrigonFunctionMode_t getOpType() const override {
|
||||
return CNNL_TRIGON_ACOS;
|
||||
}
|
||||
cnnlComputationPreference_t getPrefer() const override {
|
||||
return CNNL_COMPUTATION_HIGH_PRECISION;
|
||||
}
|
||||
};
|
||||
|
||||
class ATanCnnl : public TrigonCnnl {
|
||||
cnnlTrigonFunctionMode_t getOpType() const override {
|
||||
return CNNL_TRIGON_ATAN;
|
||||
}
|
||||
cnnlComputationPreference_t getPrefer() const override {
|
||||
return CNNL_COMPUTATION_HIGH_PRECISION;
|
||||
}
|
||||
};
|
||||
|
||||
class SinHCnnl : public TrigonCnnl {
|
||||
cnnlTrigonFunctionMode_t getOpType() const override {
|
||||
return CNNL_TRIGON_SINH;
|
||||
}
|
||||
cnnlComputationPreference_t getPrefer() const override {
|
||||
return CNNL_COMPUTATION_HIGH_PRECISION;
|
||||
}
|
||||
};
|
||||
|
||||
class CosHCnnl : public TrigonCnnl {
|
||||
cnnlTrigonFunctionMode_t getOpType() const override {
|
||||
return CNNL_TRIGON_COSH;
|
||||
}
|
||||
cnnlComputationPreference_t getPrefer() const override {
|
||||
return CNNL_COMPUTATION_HIGH_PRECISION;
|
||||
}
|
||||
};
|
||||
|
||||
class TanHCnnl : public TrigonCnnl {
|
||||
cnnlTrigonFunctionMode_t getOpType() const override {
|
||||
return CNNL_TRIGON_TANH;
|
||||
}
|
||||
cnnlComputationPreference_t getPrefer() const override {
|
||||
return CNNL_COMPUTATION_HIGH_PRECISION;
|
||||
}
|
||||
};
|
||||
|
||||
class ASinHCnnl : public TrigonCnnl {
|
||||
cnnlTrigonFunctionMode_t getOpType() const override {
|
||||
return CNNL_TRIGON_ASINH;
|
||||
}
|
||||
cnnlComputationPreference_t getPrefer() const override {
|
||||
return CNNL_COMPUTATION_HIGH_PRECISION;
|
||||
}
|
||||
};
|
||||
|
||||
class ACosHCnnl : public TrigonCnnl {
|
||||
cnnlTrigonFunctionMode_t getOpType() const override {
|
||||
return CNNL_TRIGON_ACOSH;
|
||||
}
|
||||
cnnlComputationPreference_t getPrefer() const override {
|
||||
return CNNL_COMPUTATION_HIGH_PRECISION;
|
||||
}
|
||||
};
|
||||
|
||||
class ATanHCnnl : public TrigonCnnl {
|
||||
cnnlTrigonFunctionMode_t getOpType() const override {
|
||||
return CNNL_TRIGON_ATANH;
|
||||
}
|
||||
cnnlComputationPreference_t getPrefer() const override {
|
||||
return CNNL_COMPUTATION_HIGH_PRECISION;
|
||||
}
|
||||
};
|
||||
|
||||
REGISTER_KERNEL(Device::BANG, OpType::Sin, DataType::Float32, SinCnnl,
|
||||
"Sin_cnnl_BANG_Float32");
|
||||
REGISTER_KERNEL(Device::BANG, OpType::Cos, DataType::Float32, CosCnnl,
|
||||
"Cos_cnnl_BANG_Float32");
|
||||
REGISTER_KERNEL(Device::BANG, OpType::Tan, DataType::Float32, TanCnnl,
|
||||
"Tan_cnnl_BANG_Float32");
|
||||
REGISTER_KERNEL(Device::BANG, OpType::ASin, DataType::Float32, ASinCnnl,
|
||||
"ASin_cnnl_BANG_Float32");
|
||||
REGISTER_KERNEL(Device::BANG, OpType::ACos, DataType::Float32, ACosCnnl,
|
||||
"ACos_cnnl_BANG_Float32");
|
||||
REGISTER_KERNEL(Device::BANG, OpType::ATan, DataType::Float32, ATanCnnl,
|
||||
"ATan_cnnl_BANG_Float32");
|
||||
REGISTER_KERNEL(Device::BANG, OpType::SinH, DataType::Float32, SinHCnnl,
|
||||
"SinH_cnnl_BANG_Float32");
|
||||
REGISTER_KERNEL(Device::BANG, OpType::CosH, DataType::Float32, CosHCnnl,
|
||||
"CosH_cnnl_BANG_Float32");
|
||||
REGISTER_KERNEL(Device::BANG, OpType::TanH, DataType::Float32, TanHCnnl,
|
||||
"TanH_cnnl_BANG_Float32");
|
||||
REGISTER_KERNEL(Device::BANG, OpType::ASinH, DataType::Float32, ASinHCnnl,
|
||||
"ASinH_cnnl_BANG_Float32");
|
||||
REGISTER_KERNEL(Device::BANG, OpType::ACosH, DataType::Float32, ACosHCnnl,
|
||||
"ACosH_cnnl_BANG_Float32");
|
||||
REGISTER_KERNEL(Device::BANG, OpType::ATanH, DataType::Float32, ATanHCnnl,
|
||||
"ATanH_cnnl_BANG_Float32");
|
||||
|
||||
}; // namespace infini
|
|
@ -11,17 +11,37 @@ template <typename T> class NativeElementWise : public CpuKernelWithoutConfig {
|
|||
T *inptr1 = op->getInputs(1)->getRawDataPtr<T *>();
|
||||
T *outptr = op->getOutput()->getRawDataPtr<T *>();
|
||||
|
||||
auto outDim = op->getOutput()->getDims();
|
||||
int a[4] = {1, 1, 1, 1};
|
||||
int b[4] = {1, 1, 1, 1};
|
||||
int c[4] = {1, 1, 1, 1};
|
||||
auto a_input = op->getInputs(0)->getDims();
|
||||
auto b_input = op->getInputs(1)->getDims();
|
||||
auto c_output = op->getOutput()->getDims();
|
||||
std::copy(a_input.begin(), a_input.end(), a + (4 - a_input.size()));
|
||||
std::copy(b_input.begin(), b_input.end(), b + (4 - b_input.size()));
|
||||
std::copy(c_output.begin(), c_output.end(), c + (4 - c_output.size()));
|
||||
|
||||
auto n = op->getOutput()->size();
|
||||
for (size_t offset = 0; offset < n; offset++) {
|
||||
// For now,we only process the same dims here, broardcast will be
|
||||
// considered in the opt layer.
|
||||
/*auto offset0 =
|
||||
op->getInputs(0)->getOffsetByBroadcastOffset(offset, outDim);
|
||||
auto offset1 =
|
||||
op->getInputs(1)->getOffsetByBroadcastOffset(offset, outDim);
|
||||
outptr[offset] = doCompute(inptr0[offset0], inptr1[offset1]);*/
|
||||
outptr[offset] = doCompute(inptr0[offset], inptr1[offset]);
|
||||
for (size_t i = 0; i < n; ++i) {
|
||||
int c0_index = i / (c[1] * c[2] * c[3]);
|
||||
int c1_index = (i % (c[1] * c[2] * c[3])) / (c[2] * c[3]);
|
||||
int c2_index = ((i % (c[1] * c[2] * c[3])) % (c[2] * c[3])) / c[3];
|
||||
int c3_index = ((i % (c[1] * c[2] * c[3])) % (c[2] * c[3])) % c[3];
|
||||
|
||||
int a0_index = c0_index % a[0];
|
||||
int a1_index = c1_index % a[1];
|
||||
int a2_index = c2_index % a[2];
|
||||
int a3_index = c3_index % a[3];
|
||||
|
||||
int b0_index = c0_index % b[0];
|
||||
int b1_index = c1_index % b[1];
|
||||
int b2_index = c2_index % b[2];
|
||||
int b3_index = c3_index % b[3];
|
||||
outptr[i] = doCompute(
|
||||
inptr0[a0_index * a[1] * a[2] * a[3] + a1_index * a[2] * a[3] +
|
||||
a2_index * a[3] + a3_index],
|
||||
inptr1[b0_index * b[1] * b[2] * b[3] + b1_index * b[2] * b[3] +
|
||||
b2_index * b[3] + b3_index]);
|
||||
}
|
||||
}
|
||||
};
|
||||
|
|
|
@ -56,6 +56,25 @@ template <typename T> class NaiveAbs : public NativeUnary<T> {
|
|||
T doCompute(T val) const override { return val < 0 ? -val : val; }
|
||||
};
|
||||
|
||||
template <typename T> class Clip : public CpuKernelWithoutConfig {
|
||||
void compute(const Operator &_op,
|
||||
const RuntimeObj *context) const override {
|
||||
auto op = as<ClipObj>(_op);
|
||||
T *inptr = op->getInputs(0)->getRawDataPtr<T *>();
|
||||
T *outptr = op->getOutput()->getRawDataPtr<T *>();
|
||||
auto minValue = op->getMin();
|
||||
auto maxValue = op->getMax();
|
||||
|
||||
auto n = op->getOutput()->size();
|
||||
for (size_t offset = 0; offset < n; offset++) {
|
||||
auto val = *inptr++;
|
||||
*outptr++ = (minValue && val < *minValue) ? *minValue
|
||||
: (maxValue && val > *maxValue) ? *maxValue
|
||||
: val;
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
REGISTER_KERNEL(Device::CPU, OpType::Relu, DataType::UInt32,
|
||||
NaiveRelu<uint32_t>, "reluNaive_CPU_uint32");
|
||||
REGISTER_KERNEL(Device::CPU, OpType::Relu, DataType::Float32, NaiveRelu<float>,
|
||||
|
@ -76,4 +95,6 @@ REGISTER_KERNEL(Device::CPU, OpType::Softmax, DataType::UInt32,
|
|||
NaiveSoftmax<uint32_t>, "softmaxNaive_CPU_uint32");
|
||||
REGISTER_KERNEL(Device::CPU, OpType::Softmax, DataType::Float32,
|
||||
NaiveSoftmax<float>, "softmaxNaive_CPU_float32");
|
||||
REGISTER_KERNEL(Device::CPU, OpType::Clip, DataType::Float32, Clip<float>,
|
||||
"Clip_CPU_float32");
|
||||
}; // namespace infini
|
||||
|
|
|
@ -20,18 +20,17 @@ class BatchNormCudnn : public CudaKernelWithoutConfig {
|
|||
auto dims = op->getInputs(0)->getDims();
|
||||
// Only 4D and 5D tensors are supported by
|
||||
// cudnnBatchNormalizationForwardInference
|
||||
IT_ASSERT(dims.size() == 4 || dims.size() == 5);
|
||||
IT_ASSERT(dims.size() == 4);
|
||||
|
||||
int dimArray[CUDNN_DIM_MAX], strideArray[CUDNN_DIM_MAX],
|
||||
dimPArray[CUDNN_DIM_MAX], stridePArray[CUDNN_DIM_MAX];
|
||||
int dimArray[4], strideArray[4], dimPArray[4], stridePArray[4];
|
||||
for (size_t i = 0; i < dims.size(); ++i) {
|
||||
dimArray[i] = dims[i];
|
||||
strideArray[i] = op->getInputs(0)->getStride()[i];
|
||||
dimPArray[i] = 1;
|
||||
stridePArray[i] = 1;
|
||||
}
|
||||
dimPArray[1] = op->getInputs(0)->getDims()[1];
|
||||
stridePArray[1] = op->getInputs(0)->getStride()[1];
|
||||
dimPArray[1] = op->getInputs(1)->getDims()[0];
|
||||
stridePArray[0] = op->getInputs(1)->getDims()[0];
|
||||
// get inputs
|
||||
cudnnTensorDescriptor_t inDesc;
|
||||
checkCudnnError(cudnnCreateTensorDescriptor(&inDesc));
|
||||
|
|
|
@ -0,0 +1,27 @@
|
|||
#include "cuda/cuda_clip.h"
|
||||
#include "cuda/cuda_kernel_wihtout_config.h"
|
||||
#include "cuda/cuda_runtime.h"
|
||||
#include "operators/unary.h"
|
||||
|
||||
namespace infini {
|
||||
|
||||
class ClipCuda : public CudaKernelWithoutConfig {
|
||||
void compute(const Operator &_op,
|
||||
const RuntimeObj *_context) const override {
|
||||
auto op = as<ClipObj>(_op);
|
||||
|
||||
void *const inputData = (op->getInputs(0)->getRawDataPtr<void *>());
|
||||
void *const outputData = (op->getOutput()->getRawDataPtr<void *>());
|
||||
auto min = op->getMin();
|
||||
auto max = op->getMax();
|
||||
auto dim = op->getInputs(0)->getDims();
|
||||
int num = dim[0] * dim[1] * dim[2] * dim[3];
|
||||
clip_kernel((float *)inputData, (float *)outputData, num,
|
||||
min ? *min : NAN, max ? *max : NAN);
|
||||
}
|
||||
};
|
||||
|
||||
REGISTER_KERNEL(Device::CUDA, OpType::Clip, DataType::Float32, ClipCuda,
|
||||
"Clip_CUDA_Float32");
|
||||
|
||||
}; // namespace infini
|
|
@ -0,0 +1,32 @@
|
|||
#include "core/common.h"
|
||||
#include "core/constants.h"
|
||||
#include "cuda/cuda_common.h"
|
||||
#include <math.h>
|
||||
|
||||
using infini::E_CONSTANT;
|
||||
constexpr unsigned int num_threads() { return 32 * 4; }
|
||||
constexpr int thread_work_size() { return 4; }
|
||||
constexpr int block_work_size() { return thread_work_size() * num_threads(); }
|
||||
|
||||
__global__ void _clip_kernel(float *input, float *output, int n, float minValue,
|
||||
float maxValue) {
|
||||
int index = threadIdx.x + blockIdx.x * blockDim.x;
|
||||
int stride = blockDim.x * gridDim.x;
|
||||
for (int i = index; i < n; i += stride) {
|
||||
output[i] = (!isnan(minValue) && input[i] < minValue)
|
||||
? minValue
|
||||
: (!isnan(maxValue) && input[i] > maxValue)
|
||||
? maxValue : input[i];
|
||||
}
|
||||
}
|
||||
|
||||
namespace infini {
|
||||
void clip_kernel(float *input, float *output, int num, float minValue,
|
||||
float maxValue) {
|
||||
int blocksize = block_work_size();
|
||||
int gridsize = (num + block_work_size() - 1) / block_work_size();
|
||||
_clip_kernel<<<blocksize, gridsize>>>(input, output, num, minValue,
|
||||
maxValue);
|
||||
}
|
||||
|
||||
}; // namespace infini
|
|
@ -19,24 +19,37 @@ class ElementWiseCudnn : public CudaKernelWithoutConfig {
|
|||
void *const cData = (op->getOutput()->getRawDataPtr<void *>());
|
||||
|
||||
cudnnTensorDescriptor_t aDesc, bDesc, cDesc;
|
||||
auto dim = op->getInputs(0)->getDims();
|
||||
if (dim.size() != 4)
|
||||
auto a_dim = op->getInputs(0)->getDims();
|
||||
auto b_dim = op->getInputs(1)->getDims();
|
||||
auto c_dim = op->getOutput()->getDims();
|
||||
|
||||
if (a_dim.size() > 4 || b_dim.size() > 4 || c_dim.size() > 4)
|
||||
IT_TODO_HALT();
|
||||
int n = dim[0], c = dim[1], h = dim[2], w = dim[3];
|
||||
|
||||
int a[4] = {1, 1, 1, 1};
|
||||
int b[4] = {1, 1, 1, 1};
|
||||
int c[4] = {1, 1, 1, 1};
|
||||
|
||||
std::copy(a_dim.begin(), a_dim.end(), a + (4 - a_dim.size()));
|
||||
std::copy(b_dim.begin(), b_dim.end(), b + (4 - b_dim.size()));
|
||||
std::copy(c_dim.begin(), c_dim.end(), c + (4 - c_dim.size()));
|
||||
|
||||
// get inputs
|
||||
checkCudnnError(cudnnCreateTensorDescriptor(&aDesc));
|
||||
checkCudnnError(cudnnSetTensor4dDescriptor(
|
||||
aDesc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, n, c, h, w));
|
||||
checkCudnnError(cudnnSetTensor4dDescriptor(aDesc, CUDNN_TENSOR_NCHW,
|
||||
CUDNN_DATA_FLOAT, a[0], a[1],
|
||||
a[2], a[3]));
|
||||
|
||||
checkCudnnError(cudnnCreateTensorDescriptor(&bDesc));
|
||||
checkCudnnError(cudnnSetTensor4dDescriptor(
|
||||
bDesc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, n, c, h, w));
|
||||
checkCudnnError(cudnnSetTensor4dDescriptor(bDesc, CUDNN_TENSOR_NCHW,
|
||||
CUDNN_DATA_FLOAT, b[0], b[1],
|
||||
b[2], b[3]));
|
||||
|
||||
// get outputs
|
||||
checkCudnnError(cudnnCreateTensorDescriptor(&cDesc));
|
||||
checkCudnnError(cudnnSetTensor4dDescriptor(
|
||||
cDesc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, n, c, h, w));
|
||||
checkCudnnError(cudnnSetTensor4dDescriptor(cDesc, CUDNN_TENSOR_NCHW,
|
||||
CUDNN_DATA_FLOAT, c[0], c[1],
|
||||
c[2], c[3]));
|
||||
|
||||
// get op descriptor
|
||||
cudnnOpTensorDescriptor_t opDesc;
|
||||
|
@ -81,13 +94,27 @@ class ElementWiseCuda : public CudaKernelWithoutConfig {
|
|||
float *const aData = (op->getInputs(0)->getRawDataPtr<float *>());
|
||||
float *const bData = (op->getInputs(1)->getRawDataPtr<float *>());
|
||||
float *const cData = (op->getOutput()->getRawDataPtr<float *>());
|
||||
auto a_dim = op->getInputs(0)->getDims();
|
||||
auto b_dim = op->getInputs(1)->getDims();
|
||||
auto c_dim = op->getOutput()->getDims();
|
||||
|
||||
if (a_dim.size() > 4 || b_dim.size() > 4 || c_dim.size() > 4)
|
||||
IT_TODO_HALT();
|
||||
|
||||
int a[4] = {1, 1, 1, 1};
|
||||
int b[4] = {1, 1, 1, 1};
|
||||
int c[4] = {1, 1, 1, 1};
|
||||
|
||||
std::copy(a_dim.begin(), a_dim.end(), a + (4 - a_dim.size()));
|
||||
std::copy(b_dim.begin(), b_dim.end(), b + (4 - b_dim.size()));
|
||||
std::copy(c_dim.begin(), c_dim.end(), c + (4 - c_dim.size()));
|
||||
|
||||
auto dim = op->getInputs(0)->getDims();
|
||||
int n = dim[0], c = dim[1], h = dim[2], w = dim[3];
|
||||
if (op->getOpType() == OpType::Div)
|
||||
div_kernel(aData, bData, cData, n * c * h * w);
|
||||
div_kernel(aData, bData, cData, a[0], a[1], a[2], a[3], b[0], b[1],
|
||||
b[2], b[3], c[0], c[1], c[2], c[3]);
|
||||
else if (op->getOpType() == OpType::Pow)
|
||||
pow_kernel(aData, bData, cData, n * c * h * w);
|
||||
pow_kernel(aData, bData, cData, a[0], a[1], a[2], a[3], b[0], b[1],
|
||||
b[2], b[3], c[0], c[1], c[2], c[3]);
|
||||
else
|
||||
IT_TODO_HALT();
|
||||
}
|
||||
|
|
|
@ -5,34 +5,75 @@ constexpr unsigned int num_threads() { return 32 * 4; }
|
|||
constexpr int thread_work_size() { return 4; }
|
||||
constexpr int block_work_size() { return thread_work_size() * num_threads(); }
|
||||
|
||||
__global__ void _div_kernel(float *x, float *y, float *z, int n) {
|
||||
__global__ void _div_kernel(float *x, float *y, float *z, int a0, int a1, int a2, int a3,
|
||||
int b0, int b1, int b2, int b3,
|
||||
int c0, int c1, int c2, int c3) {
|
||||
int index = threadIdx.x + blockIdx.x * blockDim.x;
|
||||
int stride = blockDim.x * gridDim.x;
|
||||
int n = c0 * c1 * c2 * c3;
|
||||
|
||||
for (int i = index; i < n; i += stride) {
|
||||
z[i] = x[i] / y[i];
|
||||
int c0_index = i/ (c1 * c2 * c3);
|
||||
int c1_index = (i % (c1 * c2 * c3)) / (c2 * c3);
|
||||
int c2_index = ((i % (c1 * c2 * c3)) % (c2 * c3)) / c3;
|
||||
int c3_index = ((i % (c1 * c2 * c3)) % (c2 * c3)) % c3;
|
||||
|
||||
int a0_index = c0_index % a0;
|
||||
int a1_index = c1_index % a1;
|
||||
int a2_index = c2_index % a2;
|
||||
int a3_index = c3_index % a3;
|
||||
|
||||
int b0_index = c0_index % b0;
|
||||
int b1_index = c1_index % b1;
|
||||
int b2_index = c2_index % b2;
|
||||
int b3_index = c3_index % b3;
|
||||
z[i] = x[a0_index*a1*a2*a3 + a1_index*a2*a3 + a2_index*a3 + a3_index] / y[b0_index*b1*b2*b3 + b1_index*b2*b3 + b2_index*b3 + b3_index];
|
||||
}
|
||||
}
|
||||
|
||||
__global__ void _pow_kernel(float *x, float *y, float *z, int n) {
|
||||
__global__ void _pow_kernel(float *x, float *y, float *z, int a0, int a1, int a2, int a3,
|
||||
int b0, int b1, int b2, int b3,
|
||||
int c0, int c1, int c2, int c3) {
|
||||
int index = threadIdx.x + blockIdx.x * blockDim.x;
|
||||
int stride = blockDim.x * gridDim.x;
|
||||
int n = c0 * c1 * c2 * c3;
|
||||
|
||||
for (int i = index; i < n; i += stride) {
|
||||
z[i] = pow(x[i], y[i]);
|
||||
int c0_index = i/ (c1 * c2 * c3);
|
||||
int c1_index = (i % (c1 * c2 * c3)) / (c2 * c3);
|
||||
int c2_index = ((i % (c1 * c2 * c3)) % (c2 * c3)) / c3;
|
||||
int c3_index = ((i % (c1 * c2 * c3)) % (c2 * c3)) % c3;
|
||||
|
||||
int a0_index = c0_index % a0;
|
||||
int a1_index = c1_index % a1;
|
||||
int a2_index = c2_index % a2;
|
||||
int a3_index = c3_index % a3;
|
||||
|
||||
int b0_index = c0_index % b0;
|
||||
int b1_index = c1_index % b1;
|
||||
int b2_index = c2_index % b2;
|
||||
int b3_index = c3_index % b3;
|
||||
z[i] = pow(x[a0_index*a1*a2*a3 + a1_index*a2*a3 + a2_index*a3 + a3_index], y[b0_index*b1*b2*b3 + b1_index*b2*b3 + b2_index*b3 + b3_index]);
|
||||
}
|
||||
}
|
||||
|
||||
namespace infini {
|
||||
void div_kernel(float *a, float *b, float *c, int num) {
|
||||
void div_kernel(float *a, float *b, float *c, int a0, int a1, int a2, int a3,
|
||||
int b0, int b1, int b2, int b3,
|
||||
int c0, int c1, int c2, int c3) {
|
||||
|
||||
int blocksize = block_work_size();
|
||||
int num = c0*c1*c2*c3;
|
||||
int gridsize = (num + block_work_size() - 1) / block_work_size();
|
||||
_div_kernel<<<blocksize, gridsize>>>(a, b, c, num);
|
||||
_div_kernel<<<blocksize, gridsize>>>(a, b, c, a0, a1, a2, a3, b0, b1, b2, b3, c0, c1, c2, c3);
|
||||
}
|
||||
void pow_kernel(float *a, float *b, float *c, int num) {
|
||||
|
||||
void pow_kernel(float *a, float *b, float *c, int a0, int a1, int a2, int a3,
|
||||
int b0, int b1, int b2, int b3,
|
||||
int c0, int c1, int c2, int c3) {
|
||||
int blocksize = block_work_size();
|
||||
int num = c0*c1*c2*c3;
|
||||
int gridsize = (num + block_work_size() - 1) / block_work_size();
|
||||
_pow_kernel<<<blocksize, gridsize>>>(a, b, c, num);
|
||||
_pow_kernel<<<blocksize, gridsize>>>(a, b, c, a0, a1, a2, a3, b0, b1, b2, b3, c0, c1, c2, c3);
|
||||
}
|
||||
|
||||
}; // namespace infini
|
||||
|
|
|
@ -34,7 +34,7 @@ class SliceCuda : private PadSliceCudaCompute, public CudaKernelWithoutConfig {
|
|||
void compute(const Operator &op,
|
||||
const RuntimeObj *_context) const override {
|
||||
do_compute(op->getOutput(), op->getInputs(0),
|
||||
as<SliceObj>(op)->getStart(), false);
|
||||
as<SliceObj>(op)->getStarts(), false);
|
||||
}
|
||||
};
|
||||
|
||||
|
|
|
@ -60,6 +60,52 @@ class ActivationCudnn : public CudaKernelWithoutConfig {
|
|||
}
|
||||
};
|
||||
|
||||
class SoftmaxCudnn : public CudaKernelWithoutConfig {
|
||||
virtual cudnnSoftmaxAlgorithm_t getAlgorithmType() const = 0;
|
||||
virtual cudnnSoftmaxMode_t getModeType() const = 0;
|
||||
virtual tuple<float, float> getAlphBeta() const { return {1.f, 0.f}; }
|
||||
void compute(const Operator &_op,
|
||||
const RuntimeObj *_context) const override {
|
||||
auto op = as<UnaryObj>(_op);
|
||||
auto context = dynamic_cast<const CudaRuntimeObj *>(_context);
|
||||
|
||||
void *const inputData = (op->getInputs(0)->getRawDataPtr<void *>());
|
||||
void *const outputData = (op->getOutput()->getRawDataPtr<void *>());
|
||||
|
||||
cudnnTensorDescriptor_t inputDesc, outputDesc;
|
||||
auto dim = op->getInputs(0)->getDims();
|
||||
if (dim.size() > 4)
|
||||
IT_TODO_HALT();
|
||||
int dim_array[4] = {1, 1, 1, 1};
|
||||
memcpy(dim_array + (4 - dim.size()), dim.data(),
|
||||
dim.size() * sizeof(int));
|
||||
|
||||
// get inputs
|
||||
checkCudnnError(cudnnCreateTensorDescriptor(&inputDesc));
|
||||
checkCudnnError(cudnnSetTensor4dDescriptor(
|
||||
inputDesc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, dim_array[0],
|
||||
dim_array[1], dim_array[2], dim_array[3]));
|
||||
|
||||
// get outputs
|
||||
checkCudnnError(cudnnCreateTensorDescriptor(&outputDesc));
|
||||
checkCudnnError(cudnnSetTensor4dDescriptor(
|
||||
outputDesc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, dim_array[0],
|
||||
dim_array[1], dim_array[2], dim_array[3]));
|
||||
|
||||
auto [alpha, beta] = getAlphBeta();
|
||||
cudnnStatus_t stat = cudnnSoftmaxForward(
|
||||
context->cudnnHandle(), getAlgorithmType(), getModeType(), &alpha,
|
||||
inputDesc, inputData, &beta, outputDesc, outputData);
|
||||
if (stat != CUDNN_STATUS_SUCCESS)
|
||||
return;
|
||||
|
||||
// Destories in CUDA does not require sync. But cuDNN does not state
|
||||
// whether sync is required before destories.
|
||||
checkCudnnError(cudnnDestroyTensorDescriptor(inputDesc));
|
||||
checkCudnnError(cudnnDestroyTensorDescriptor(outputDesc));
|
||||
}
|
||||
};
|
||||
|
||||
class ReluCudnn : public ActivationCudnn {
|
||||
cudnnActivationMode_t getOpType() const override {
|
||||
return CUDNN_ACTIVATION_RELU;
|
||||
|
|
|
@ -23,7 +23,7 @@ class MklSlice : public MklKernelWithoutConfig {
|
|||
std::vector<dnnl_dim_t> sDims, offsets;
|
||||
for (int i = 0; i < ndim; ++i) {
|
||||
sDims.push_back(oDims.at(i));
|
||||
offsets.push_back(op->getStart().at(i));
|
||||
offsets.push_back(op->getStarts().at(i));
|
||||
}
|
||||
auto sliceMd = srcMd.submemory_desc(sDims, offsets);
|
||||
auto sliceMemory =
|
||||
|
|
|
@ -1,46 +0,0 @@
|
|||
cmake_minimum_required(VERSION 3.3)
|
||||
project(bangops)
|
||||
include_directories("${CMAKE_CURRENT_SOURCE_DIR}/include")
|
||||
set(LIBRARY_OUTPUT_PATH "${CMAKE_BINARY_DIR}/lib")
|
||||
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -Werror -fPIC -std=c++11 -pthread -pipe")
|
||||
set(CMAKE_CXX_FLAGS_RELEASE "${CMAKE_CXX_FLAGS_RELEASE} ${CMAKE_CXX_FLAGS} -O3")
|
||||
set(CMAKE_EXE_LINKER_FLAGS_RELEASE "${CMAKE_EXE_LINKER_FLAGS_RELEASE} -Wl,--gc-sections -fPIC")
|
||||
|
||||
# check `NEUWARE_HOME` env
|
||||
message(${NEUWARE_HOME})
|
||||
if(EXISTS ${NEUWARE_HOME})
|
||||
include_directories("${NEUWARE_HOME}/include")
|
||||
link_directories("${NEUWARE_HOME}/lib64")
|
||||
link_directories("${NEUWARE_HOME}/lib")
|
||||
set(NEUWARE_ROOT_DIR "${NEUWARE_HOME}")
|
||||
else()
|
||||
message(FATAL_ERROR "NEUWARE directory cannot be found, refer README.md to prepare NEUWARE_HOME environment.")
|
||||
endif()
|
||||
|
||||
# setup cmake search path
|
||||
set(CMAKE_MODULE_PATH ${CMAKE_MODULE_PATH}
|
||||
"${CMAKE_SOURCE_DIR}/cmake"
|
||||
"${NEUWARE_HOME}/cmake"
|
||||
"${NEUWARE_HOME}/cmake/modules"
|
||||
)
|
||||
|
||||
# include FindBANG.cmake and check cncc
|
||||
find_package(BANG)
|
||||
if(NOT BANG_FOUND)
|
||||
message(FATAL_ERROR "BANG cannot be found.")
|
||||
elseif (NOT BANG_CNCC_EXECUTABLE)
|
||||
message(FATAL_ERROR "cncc not found, please ensure cncc is in your PATH env or set variable BANG_CNCC_EXECUTABLE from cmake. Otherwise you should check path used by find_program(BANG_CNCC_EXECUTABLE) in FindBANG.cmake")
|
||||
endif()
|
||||
|
||||
# setup cncc flags
|
||||
set(BANG_CNCC_FLAGS "${BANG_CNCC_FLAGS} -fPIC -Wall -Werror -std=c++11 -pthread")
|
||||
set(BANG_CNCC_FLAGS "${BANG_CNCC_FLAGS} -O3")
|
||||
set(BANG_CNCC_FLAGS "${BANG_CNCC_FLAGS}" "--bang-mlu-arch=mtp_220"
|
||||
"--bang-mlu-arch=mtp_270"
|
||||
"--bang-mlu-arch=mtp_290"
|
||||
"--bang-mlu-arch=mtp_372"
|
||||
)
|
||||
|
||||
file(GLOB_RECURSE src_files ${src_files} "${CMAKE_CURRENT_SOURCE_DIR}/src/*.mlu")
|
||||
bang_add_library(bangops SHARED ${src_files})
|
||||
|
|
@ -1,7 +0,0 @@
|
|||
#pragma once
|
||||
#include "cnnl.h"
|
||||
namespace infini {
|
||||
void div_kernel(cnnlHandle_t handle, const float *input1, const float *input2,
|
||||
float *output, const uint32_t num);
|
||||
|
||||
}; // namespace infini
|
|
@ -1,7 +0,0 @@
|
|||
#ifndef BANG_KERNELS_DIVOPERATION_DIV_H_
|
||||
#define BANG_KERNELS_DIVOPERATION_DIV_H_
|
||||
|
||||
__mlu_global__ void MLUDivKernelUnion1(float *output, float *input1,
|
||||
float *input2, uint32_t num);
|
||||
|
||||
#endif // BANG_KERNELS_DIVOPERATION_DIV_H_
|
|
@ -1,24 +0,0 @@
|
|||
#include "bang_div.h"
|
||||
#include "div.h"
|
||||
namespace infini {
|
||||
void div_kernel(cnnlHandle_t handle,
|
||||
const float *input1,
|
||||
const float *input2,
|
||||
float *output,
|
||||
const uint32_t num) {
|
||||
// 任务类型和调度方法
|
||||
cnrtDim3_t k_dim;
|
||||
cnrtFunctionType_t k_type;
|
||||
cnrtQueue_t queue;
|
||||
cnnlGetQueue(handle, &queue);
|
||||
k_dim.x = 4;
|
||||
k_dim.y = 8;
|
||||
k_dim.z = 1;
|
||||
k_type = CNRT_FUNC_TYPE_UNION1;
|
||||
// launch 任务
|
||||
MLUDivKernelUnion1<<<k_dim, k_type, queue>>>((float*)output,
|
||||
(float*)input1,
|
||||
(float*)input2,
|
||||
num);
|
||||
}
|
||||
};
|
|
@ -1,50 +0,0 @@
|
|||
#include "div.h"
|
||||
|
||||
#define NRAM_USE_SIZE 102400
|
||||
|
||||
__nram__ char left[NRAM_USE_SIZE];
|
||||
__nram__ char right[NRAM_USE_SIZE];
|
||||
__nram__ char output[NRAM_USE_SIZE];
|
||||
|
||||
template<typename T>
|
||||
__mlu_device__ void DivFunction(T* output1, T* input1, T* input2, size_t num) {
|
||||
int use_nram_size = NRAM_USE_SIZE;
|
||||
int deal_align = use_nram_size / sizeof(T);
|
||||
int num_per_core = num / taskDim;
|
||||
int num_rem = num % taskDim;
|
||||
int easy = num_per_core;
|
||||
int hard = num_per_core + (num_rem != 0 ? 1 : 0);
|
||||
int my = taskId < num_rem ? hard : easy;
|
||||
int start = (taskId < num_rem) ? (hard * taskId) : (hard * num_rem + (taskId - num_rem) * easy);
|
||||
char* input1_start = (char*)input1 + start * sizeof(T);
|
||||
char* input2_start = (char*)input2 + start * sizeof(T);
|
||||
char* output_start = (char*)output1 + start * sizeof(T);
|
||||
|
||||
int my_repeat = my / deal_align;
|
||||
int my_rem = my % deal_align;
|
||||
for(int i = 0; i < my_repeat; ++i) {
|
||||
__memcpy(left, input1_start, use_nram_size, GDRAM2NRAM);
|
||||
__memcpy(right, input2_start, use_nram_size, GDRAM2NRAM);
|
||||
__bang_active_recip((T*)right, (T*)right, deal_align);
|
||||
__bang_mul((T*)output, (T*)left, (T*)right, deal_align);
|
||||
__memcpy(output_start, output, use_nram_size, NRAM2GDRAM);
|
||||
input1_start += use_nram_size;
|
||||
input2_start += use_nram_size;
|
||||
output_start += use_nram_size;
|
||||
}
|
||||
if(my_rem) {
|
||||
__memcpy(left, input1_start, my_rem * sizeof(T), GDRAM2NRAM);
|
||||
__memcpy(right, input2_start, my_rem * sizeof(T), GDRAM2NRAM);
|
||||
__bang_active_recip((T*)right, (T*)right, deal_align);
|
||||
__bang_mul((T*)output, (T*)left, (T*)right, deal_align);
|
||||
__memcpy(output_start, output, my_rem * sizeof(T), NRAM2GDRAM);
|
||||
}
|
||||
}
|
||||
|
||||
__mlu_global__ void MLUDivKernelUnion1(float *output,
|
||||
float *input1,
|
||||
float *input2,
|
||||
uint32_t num) {
|
||||
DivFunction((float*)output, (float*)input1, (float*)input2, num);
|
||||
}
|
||||
|
|
@ -0,0 +1,37 @@
|
|||
#include "operators/activation_backward.h"
|
||||
|
||||
namespace infini {
|
||||
ActivationBackwardObj::ActivationBackwardObj(OpType type, GraphObj *graph,
|
||||
Tensor y, Tensor diff_y, Tensor x,
|
||||
Tensor diff_x)
|
||||
: OperatorObj(type, {y, diff_y, x}, {diff_x}) {
|
||||
IT_ASSERT(checkValid(graph));
|
||||
}
|
||||
|
||||
optional<vector<Shape>>
|
||||
ActivationBackwardObj::inferShape(const TensorVec &inputs) const {
|
||||
return {{inputs[0]->getDims()}};
|
||||
}
|
||||
|
||||
std::string ActivationBackwardObj::toString() const {
|
||||
std::ostringstream os;
|
||||
os << OpRegistry::getOpName(type) << "[" << getGuid() << "]";
|
||||
os << "(";
|
||||
os << vecToString(inputs[0]->getDims()) << ",";
|
||||
os << "input=" << inputs[0]->getGuid() << ",";
|
||||
os << "output=" << outputs[0]->getGuid() << ")";
|
||||
return os.str();
|
||||
}
|
||||
|
||||
vector<int> ActivationBackwardObj::getWorkloadVector() const {
|
||||
vector<int> ret{enum_to_underlying(type)};
|
||||
const Shape shape = outputs[0]->getDims();
|
||||
ret.insert(ret.end(), shape.begin(), shape.end());
|
||||
return ret;
|
||||
}
|
||||
|
||||
vector<int> ActivationBackwardObj::getOpAttrVector() const {
|
||||
return {enum_to_underlying(type)};
|
||||
}
|
||||
|
||||
}; // namespace infini
|
|
@ -3,10 +3,10 @@
|
|||
namespace infini {
|
||||
BatchNormObj::BatchNormObj(GraphObj *graph, Tensor input, Tensor output,
|
||||
Tensor mean, Tensor var, Tensor scale, Tensor bias,
|
||||
float momentum, float eps, bool training)
|
||||
float momentum, float eps, bool trainingMode)
|
||||
: OperatorObj(OpType::BatchNorm, {input, mean, var, scale, bias}, {output}),
|
||||
momentum(momentum), eps(eps), training(training) {
|
||||
if (training)
|
||||
momentum(momentum), eps(eps), trainingMode(trainingMode) {
|
||||
if (trainingMode)
|
||||
IT_TODO_HALT();
|
||||
|
||||
IT_ASSERT(checkValid(graph));
|
||||
|
|
|
@ -178,6 +178,81 @@ void ConvTransposed2dObj::setAuxilaryAttributes(PaddingMode mode) {
|
|||
}
|
||||
}
|
||||
|
||||
void ConvBackwardFilterObj::setAuxilaryAttributes(PaddingMode mode) {
|
||||
const Tensor &inputX = inputs[0];
|
||||
const Tensor &diffY = inputs[1];
|
||||
n = inputX->getDims()[0], c = inputX->getDims()[1],
|
||||
h = inputX->getDims()[2], w = inputX->getDims()[3], f = diffY->getDims()[0],
|
||||
r = diffY->getDims()[2], s = diffY->getDims()[3];
|
||||
if (mode == PaddingMode::Same) {
|
||||
int oh = h / sh;
|
||||
int ow = w / sw;
|
||||
ph = (h - oh * sh + (r - sh) * dh) / 2;
|
||||
pw = (w - ow * sw + (s - sw) * dw) / 2;
|
||||
} else if (mode == PaddingMode::Valid) {
|
||||
ph = pw = 0;
|
||||
}
|
||||
}
|
||||
|
||||
ConvBackwardFilterObj::ConvBackwardFilterObj(GraphObj *graph, Tensor inputX,
|
||||
Tensor diffY, Tensor diffW, int ph,
|
||||
int pw, int sh, int sw, int dh,
|
||||
int dw, Tensor bias, ActType act)
|
||||
: ConvBaseObj(OpType::Conv, {inputX, diffY}, diffW, ph, pw, sh, sw, dh, dw,
|
||||
inputX, diffY),
|
||||
act(act) {
|
||||
if (bias)
|
||||
IT_TODO_HALT();
|
||||
setAuxilaryAttributes(PaddingMode::Other);
|
||||
IT_ASSERT(checkValid(graph));
|
||||
}
|
||||
|
||||
ConvBackwardFilterObj::ConvBackwardFilterObj(GraphObj *graph, Tensor inputX,
|
||||
Tensor diffY, Tensor diffW,
|
||||
PaddingMode mode, int sh, int sw,
|
||||
int dh, int dw, Tensor bias,
|
||||
ActType act)
|
||||
: ConvBaseObj(OpType::Conv, {inputX, diffY}, diffW, mode, sh, sw, dh, dw,
|
||||
inputX, diffY),
|
||||
act(act) {
|
||||
if (bias)
|
||||
IT_TODO_HALT();
|
||||
setAuxilaryAttributes(mode);
|
||||
IT_ASSERT(checkValid(graph));
|
||||
}
|
||||
|
||||
optional<vector<Shape>>
|
||||
ConvBackwardFilterObj::inferShape(const TensorVec &inputs) const {
|
||||
const auto &inputX = inputs[0], &diffY = inputs[1];
|
||||
auto n = inputX->getDims()[0];
|
||||
auto h = inputX->getDims()[2];
|
||||
auto w = inputX->getDims()[3];
|
||||
auto f = diffY->getDims()[0];
|
||||
auto r = diffY->getDims()[2];
|
||||
auto s = diffY->getDims()[3];
|
||||
int on = n, oc = f;
|
||||
int oh = 0, ow = 0;
|
||||
// For NCHW+FCRS layout, C of input is divisable by C of weight
|
||||
if (inputX->getDims()[1] % diffY->getDims()[1] != 0)
|
||||
return {};
|
||||
// Set padding size
|
||||
if (padding == PaddingMode::Other) {
|
||||
oh = (h - (r - sh) * dh + ph * 2) / sh;
|
||||
ow = (w - (s - sw) * dw + pw * 2) / sw;
|
||||
} else if (padding == PaddingMode::Same) {
|
||||
oh = h / sh;
|
||||
ow = w / sw;
|
||||
// ph = (h - oh * sh + (r - sh) * dh) / 2;
|
||||
// pw = (w - ow * sw + (s - sw) * dw) / 2;
|
||||
} else if (padding == PaddingMode::Valid) {
|
||||
int ph = 0;
|
||||
int pw = 0;
|
||||
oh = (h - (r - sh) * dh + ph * 2) / sh;
|
||||
ow = (w - (s - sw) * dw + pw * 2) / sw;
|
||||
}
|
||||
return {{{on, oc, oh, ow}}};
|
||||
}
|
||||
|
||||
ConvTransposed2dNHWCObj::ConvTransposed2dNHWCObj(GraphObj *graph, Tensor input,
|
||||
Tensor weight, Tensor output,
|
||||
int ph, int pw, int sh, int sw,
|
||||
|
|
|
@ -0,0 +1,43 @@
|
|||
#include "operators/det.h"
|
||||
|
||||
namespace infini {
|
||||
DetObj::DetObj(GraphObj *graph, Tensor input, Tensor output, Mode mode)
|
||||
: OperatorObj(OpType::Det, {input}, {output}), modeValue(mode) {
|
||||
IT_ASSERT(checkValid(graph));
|
||||
}
|
||||
|
||||
optional<vector<Shape>> DetObj::inferShape(const TensorVec &inputs) const {
|
||||
const auto A = inputs[0];
|
||||
auto input = A->getDims();
|
||||
int length = input.size();
|
||||
if (length == 2) {
|
||||
std::vector<int> output = {1};
|
||||
return {{output}};
|
||||
} else {
|
||||
std::vector<int> output(input.begin(), input.end() - 2);
|
||||
return {{output}};
|
||||
}
|
||||
}
|
||||
|
||||
std::string DetObj::toString() const {
|
||||
std::ostringstream os;
|
||||
os << OpRegistry::getOpName(type) << "[" << getGuid() << "]";
|
||||
os << "(";
|
||||
os << vecToString(inputs[0]->getDims()) << ",";
|
||||
os << "input=" << inputs[0]->getGuid() << ",";
|
||||
os << "output=" << outputs[0]->getGuid() << ")";
|
||||
return os.str();
|
||||
}
|
||||
|
||||
vector<int> DetObj::getWorkloadVector() const {
|
||||
vector<int> ret{enum_to_underlying(type)};
|
||||
const Shape shape = outputs[0]->getDims();
|
||||
ret.insert(ret.end(), shape.begin(), shape.end());
|
||||
return ret;
|
||||
}
|
||||
|
||||
vector<int> DetObj::getOpAttrVector() const {
|
||||
return {enum_to_underlying(type)};
|
||||
}
|
||||
|
||||
}; // namespace infini
|
|
@ -0,0 +1,40 @@
|
|||
#include "operators/dropout.h"
|
||||
|
||||
namespace infini {
|
||||
|
||||
DropoutObj::DropoutObj(GraphObj *graph, Tensor data, Tensor output, Tensor mask,
|
||||
float ratio, bool training_mode)
|
||||
: OperatorObj(OpType::Dropout, {data}, {output, mask}), ratio(ratio) {
|
||||
IT_ASSERT(0 <= ratio && ratio < 1);
|
||||
IT_ASSERT(!training_mode);
|
||||
IT_ASSERT(checkValid(graph));
|
||||
}
|
||||
|
||||
optional<vector<Shape>> DropoutObj::inferShape(const TensorVec &inputs) const {
|
||||
auto shape = inputs[0]->getDims();
|
||||
return {{shape, shape}};
|
||||
}
|
||||
std::string DropoutObj::toString() const {
|
||||
std::ostringstream os;
|
||||
os << "Dropout[" << getGuid() << "](" << vecToString(inputs[0]->getDims())
|
||||
<< ", "
|
||||
<< "ratio=" << ratio << ", "
|
||||
<< "training_mode=false, "
|
||||
<< "input=" << inputs[0]->getGuid() << ", "
|
||||
<< "outputs=" << outputs[0]->getGuid() << ", " << outputs[1]->getGuid()
|
||||
<< ")";
|
||||
return os.str();
|
||||
}
|
||||
|
||||
vector<int> DropoutObj::getWorkloadVector() const {
|
||||
vector<int> ret = inputs[0]->getDims();
|
||||
ret.emplace_back(static_cast<int>(ratio));
|
||||
ret.emplace(ret.begin(), enum_to_underlying(type));
|
||||
return ret;
|
||||
}
|
||||
|
||||
vector<int> DropoutObj::getOpAttrVector() const {
|
||||
return {enum_to_underlying(type), static_cast<int>(ratio), false};
|
||||
}
|
||||
|
||||
} // namespace infini
|
|
@ -12,23 +12,29 @@ ElementWiseObj::inferShape(const TensorVec &inputs) const {
|
|||
// For now,we only process the same dims here, broardcast will be considered
|
||||
// in the opt layer.
|
||||
const auto A = inputs[0], B = inputs[1];
|
||||
if (A->getDims().size() != B->getDims().size() ||
|
||||
A->getDims() != B->getDims())
|
||||
return {};
|
||||
int max_len = std::max(A->getDims().size(), B->getDims().size());
|
||||
std::vector<int> A_(max_len, 1);
|
||||
std::vector<int> B_(max_len, 1);
|
||||
std::vector<int> res(max_len, 1);
|
||||
memcpy(A_.data() + max_len - A->getDims().size(), A->getDims().data(),
|
||||
A->getDims().size() * sizeof(int));
|
||||
memcpy(B_.data() + max_len - B->getDims().size(), B->getDims().data(),
|
||||
B->getDims().size() * sizeof(int));
|
||||
// std::copy(A->getDims().begin(), A->getDims().end(), A_.begin() + (max_len
|
||||
// - A->getDims().size())); std::copy(B->getDims().begin(),
|
||||
// B->getDims().end(), B_.begin() + (max_len - B->getDims().size()));
|
||||
// std::copy(A->getDims().rbegin(), A->getDims().rend(), A_.rbegin());
|
||||
// std::copy(B->getDims().rbegin(), B->getDims().rend(), B_.rbegin());
|
||||
|
||||
return {{A->getDims()}};
|
||||
/*
|
||||
int n = A->getDims().size();
|
||||
Shape shape;
|
||||
for (int i = 0; i < n; i++) {
|
||||
auto dimA = A->getDims().at(i);
|
||||
auto dimB = B->getDims().at(i);
|
||||
if (!(dimA == dimB || dimA == 1 || dimB == 1))
|
||||
for (int i = 0; i < max_len; ++i) {
|
||||
if (A_[i] == B_[i] || (A_[i] == 1 || B_[i] == 1)) {
|
||||
res[i] = std::max(A_[i], B_[i]);
|
||||
} else {
|
||||
return {};
|
||||
auto dimI = dimA > dimB ? dimA : dimB;
|
||||
shape.emplace_back(dimI);
|
||||
}
|
||||
return {{shape}};*/
|
||||
}
|
||||
|
||||
return {{res}};
|
||||
}
|
||||
|
||||
std::string ElementWiseObj::toString() const {
|
||||
|
@ -54,4 +60,48 @@ vector<int> ElementWiseObj::getOpAttrVector() const {
|
|||
return {enum_to_underlying(type)};
|
||||
}
|
||||
|
||||
MSELossObj::MSELossObj(GraphObj *graph, Tensor input0, Tensor input1,
|
||||
Reduction reduction, Tensor output)
|
||||
: OperatorObj(OpType::MSELoss, {input0, input1}, {output}),
|
||||
reductionMode(reduction) {
|
||||
IT_ASSERT(checkValid(graph));
|
||||
}
|
||||
|
||||
optional<vector<Shape>> MSELossObj::inferShape(const TensorVec &inputs) const {
|
||||
const auto A = inputs[0], B = inputs[1];
|
||||
if (A->getDims().size() != B->getDims().size() ||
|
||||
A->getDims() != B->getDims())
|
||||
return {};
|
||||
|
||||
if (reductionMode == None) {
|
||||
return {{A->getDims()}};
|
||||
} else {
|
||||
Shape temp = {1};
|
||||
return {{temp}};
|
||||
}
|
||||
}
|
||||
|
||||
std::string MSELossObj::toString() const {
|
||||
std::ostringstream os;
|
||||
os << OpRegistry::getOpName(type) << "[" << getGuid() << "]";
|
||||
os << "(";
|
||||
os << vecToString(inputs[0]->getDims()) << ",";
|
||||
os << vecToString(inputs[1]->getDims()) << ",";
|
||||
os << "input0=" << inputs[0]->getGuid() << ",";
|
||||
os << "input1=" << inputs[1]->getGuid() << ",";
|
||||
os << "output=" << outputs[0]->getGuid() << ")";
|
||||
return os.str();
|
||||
}
|
||||
|
||||
// use output dim or inputs dim?
|
||||
vector<int> MSELossObj::getWorkloadVector() const {
|
||||
vector<int> ret = outputs[0]->getDims();
|
||||
ret.emplace(ret.begin(), enum_to_underlying(type));
|
||||
return ret;
|
||||
}
|
||||
|
||||
vector<int> MSELossObj::getOpAttrVector() const {
|
||||
return {enum_to_underlying(type)};
|
||||
}
|
||||
|
||||
}; // namespace infini
|
||||
|
|
|
@ -4,8 +4,9 @@ namespace infini {
|
|||
|
||||
MatmulObj::MatmulObj(GraphObj *graph, Tensor A, Tensor B, Tensor C, bool transA,
|
||||
bool transB, [[maybe_unused]] Tensor bias, ActType act)
|
||||
: OperatorObj(OpType::Matmul, {A, B}, {C}), transA(transA), transB(transB),
|
||||
act(act) {
|
||||
: OperatorObj(OpType::Matmul,
|
||||
bias ? TensorVec{A, B, bias} : TensorVec{A, B}, {C}),
|
||||
transA(transA), transB(transB), act(act), b(1) {
|
||||
auto shape_a = A->getDims();
|
||||
auto shape_b = B->getDims();
|
||||
int dimA = shape_a.size(), dimB = shape_b.size();
|
||||
|
|
|
@ -13,7 +13,8 @@ PadObj::PadObj(GraphObj *graph, Tensor input, Tensor output,
|
|||
pads = vector<int>(nDims * 2, 0);
|
||||
|
||||
for (size_t i = 0; i < nAxis; ++i) {
|
||||
auto j = (*axes)[i];
|
||||
auto k = (*axes)[i];
|
||||
auto j = k < 0 ? nDims + k : k;
|
||||
pads[j] = _pads[i];
|
||||
pads[j + nDims] = _pads[i + nAxis];
|
||||
}
|
||||
|
|
|
@ -37,8 +37,9 @@ ReduceMeanObj::inferShape(const TensorVec &inputs) const {
|
|||
if (!isReduced(i))
|
||||
ret.emplace_back(dims[i]);
|
||||
}
|
||||
if (ret.size() == (size_t)0)
|
||||
ret.emplace_back(1);
|
||||
if (ret.empty())
|
||||
return {{{1}}};
|
||||
else
|
||||
return {{ret}};
|
||||
}
|
||||
}
|
||||
|
|
|
@ -3,77 +3,103 @@
|
|||
namespace infini {
|
||||
SliceObj::SliceObj(GraphObj *graph, Tensor input, Tensor output,
|
||||
const vector<int> &starts, const vector<int> &ends,
|
||||
const optional<vector<int>> &axes,
|
||||
const optional<vector<int>> &steps)
|
||||
const optional<vector<int>> &_axes,
|
||||
const optional<vector<int>> &_steps)
|
||||
: OperatorObj(OpType::Slice, {input}, {output}) {
|
||||
if (steps)
|
||||
IT_TODO_HALT();
|
||||
IT_ASSERT(starts.size() == ends.size());
|
||||
auto shape = input->getDims(); // shape of input
|
||||
map<size_t, size_t> axes;
|
||||
vector<int> steps;
|
||||
{
|
||||
auto size = starts.size(); // size of starts
|
||||
IT_ASSERT(size == ends.size()); // size of ends
|
||||
|
||||
if (!axes) {
|
||||
this->starts = starts;
|
||||
this->ends = ends;
|
||||
} else {
|
||||
auto nAxis = (*axes).size();
|
||||
IT_ASSERT(starts.size() == nAxis);
|
||||
if (_axes) {
|
||||
IT_ASSERT(size == _axes->size());
|
||||
// onnx doc: "Behavior is undefined if an axis is repeated."
|
||||
IT_ASSERT(size == std::set(_axes->begin(), _axes->end()).size());
|
||||
|
||||
auto dims = input->getDims();
|
||||
this->starts = vector<int>(dims.size(), 0);
|
||||
this->ends.resize(dims.size());
|
||||
std::transform(dims.begin(), dims.end(), this->ends.begin(),
|
||||
[](auto x) { return x - 1; });
|
||||
|
||||
for (size_t j = 0; j < nAxis; ++j) {
|
||||
auto i = (*axes)[j];
|
||||
if (i < 0)
|
||||
IT_TODO_HALT();
|
||||
this->starts[i] = starts[j];
|
||||
this->ends[i] = ends[j];
|
||||
for (size_t i = 0; i < size; ++i) {
|
||||
auto index = _axes->at(i);
|
||||
if (index < 0)
|
||||
index += shape.size();
|
||||
axes[index] = i;
|
||||
}
|
||||
} else
|
||||
for (size_t i = 0; i < size; ++i)
|
||||
axes[i] = i;
|
||||
|
||||
if (_steps) {
|
||||
IT_ASSERT(size == _steps->size());
|
||||
// onnx doc: "‘steps’ cannot be 0."
|
||||
IT_ASSERT(std::find(_steps->begin(), _steps->end(), 0) ==
|
||||
_steps->end());
|
||||
steps = *_steps;
|
||||
} else {
|
||||
steps.reserve(size);
|
||||
for (size_t i = 0; i < size; ++i)
|
||||
steps.push_back(1);
|
||||
}
|
||||
}
|
||||
|
||||
auto size = shape.size();
|
||||
this->axes.reserve(size);
|
||||
for (size_t i = 0; i < size; ++i)
|
||||
if (auto _i = axes.find(i); _i != axes.end()) {
|
||||
auto __i = _i->second;
|
||||
auto start = starts[__i];
|
||||
auto end = ends[__i];
|
||||
this->axes.push_back({start >= 0 ? start : start + shape[__i],
|
||||
end >= 0 ? end : end + shape[__i],
|
||||
steps[__i]});
|
||||
} else {
|
||||
this->axes.push_back({0, shape[i], 1});
|
||||
}
|
||||
IT_ASSERT(checkValid(graph));
|
||||
}
|
||||
|
||||
optional<vector<Shape>> SliceObj::inferShape(const TensorVec &inputs) const {
|
||||
auto dims = inputs[0]->getDims();
|
||||
int nDims = dims.size();
|
||||
if (nDims != (int)starts.size())
|
||||
return {};
|
||||
for (int i = 0; i < nDims; ++i) {
|
||||
if (starts[i] < 0 || ends[i] >= dims[i] || starts[i] > ends[i])
|
||||
return {};
|
||||
dims[i] = ends[i] - starts[i] + 1;
|
||||
Shape ans;
|
||||
ans.reserve(axes.size());
|
||||
for (const auto &range : axes) {
|
||||
auto step = std::abs(range.step);
|
||||
ans.push_back((range.end - range.start + step - 1) / step);
|
||||
}
|
||||
|
||||
return {{dims}};
|
||||
return {{ans}};
|
||||
}
|
||||
|
||||
std::string SliceObj::toString() const {
|
||||
std::ostringstream os;
|
||||
os << "Slice"
|
||||
<< "[" << getGuid() << "]";
|
||||
os << "(";
|
||||
os << vecToString(inputs[0]->getDims()) << ",";
|
||||
os << "starts=" << vecToString(starts) << ",";
|
||||
os << "ends=" << vecToString(ends) << ",";
|
||||
os << "input=" << inputs[0]->getGuid() << ",";
|
||||
os << "output=" << outputs[0]->getGuid() << ")";
|
||||
os << "Slice[" << getGuid() << "][";
|
||||
for (const auto &range : axes) {
|
||||
os << range.start << ':' << range.step << ':' << range.end << ", ";
|
||||
}
|
||||
os << "]("
|
||||
<< "input=" << inputs[0]->getGuid() << ", "
|
||||
<< "output=" << outputs[0]->getGuid() << ")";
|
||||
return os.str();
|
||||
}
|
||||
|
||||
vector<int> SliceObj::getWorkloadVector() const {
|
||||
vector<int> ret = inputs[0]->getDims();
|
||||
ret.insert(ret.end(), starts.begin(), starts.end());
|
||||
ret.insert(ret.end(), ends.begin(), ends.end());
|
||||
ret.emplace(ret.begin(), enum_to_underlying(type));
|
||||
return ret;
|
||||
auto ans = getOpAttrVector();
|
||||
{
|
||||
auto i = inputs[0]->getDims();
|
||||
ans.insert(ans.end(), i.begin(), i.end());
|
||||
}
|
||||
if (!outputs.empty()) {
|
||||
auto o = outputs[0]->getDims();
|
||||
ans.insert(ans.end(), o.begin(), o.end());
|
||||
}
|
||||
return ans;
|
||||
}
|
||||
|
||||
vector<int> SliceObj::getOpAttrVector() const {
|
||||
vector<int> ret = starts;
|
||||
ret.insert(ret.end(), ends.begin(), ends.end());
|
||||
ret.emplace(ret.begin(), enum_to_underlying(type));
|
||||
return ret;
|
||||
vector<int> ans{enum_to_underlying(type)};
|
||||
for (const auto &range : axes) {
|
||||
ans.push_back(range.start);
|
||||
ans.push_back(range.end);
|
||||
ans.push_back(range.step);
|
||||
}
|
||||
return ans;
|
||||
}
|
||||
|
||||
} // namespace infini
|
||||
|
|
|
@ -0,0 +1,50 @@
|
|||
#include "operators/transpose.h"
|
||||
|
||||
namespace infini {
|
||||
TransposeObj::TransposeObj(GraphObj *graph, Tensor input, Tensor output,
|
||||
vector<int> permute)
|
||||
: OperatorObj(OpType::Transpose, {input}, {output}) {
|
||||
if (permute.size() != 4) {
|
||||
IT_TODO_HALT();
|
||||
}
|
||||
transposePermute[0] = permute[0];
|
||||
transposePermute[1] = permute[1];
|
||||
transposePermute[2] = permute[2];
|
||||
transposePermute[3] = permute[3];
|
||||
IT_ASSERT(checkValid(graph));
|
||||
}
|
||||
|
||||
optional<vector<Shape>>
|
||||
TransposeObj::inferShape(const TensorVec &inputs) const {
|
||||
const auto A = inputs[0];
|
||||
auto input = A->getDims();
|
||||
auto output = input;
|
||||
|
||||
for (int i = 0; i < 4; ++i) {
|
||||
output[i] = input[transposePermute[i]];
|
||||
}
|
||||
return {{output}};
|
||||
}
|
||||
|
||||
std::string TransposeObj::toString() const {
|
||||
std::ostringstream os;
|
||||
os << OpRegistry::getOpName(type) << "[" << getGuid() << "]";
|
||||
os << "(";
|
||||
os << vecToString(inputs[0]->getDims()) << ",";
|
||||
os << "input=" << inputs[0]->getGuid() << ",";
|
||||
os << "output=" << outputs[0]->getGuid() << ")";
|
||||
return os.str();
|
||||
}
|
||||
|
||||
vector<int> TransposeObj::getWorkloadVector() const {
|
||||
vector<int> ret{enum_to_underlying(type)};
|
||||
const Shape shape = outputs[0]->getDims();
|
||||
ret.insert(ret.end(), shape.begin(), shape.end());
|
||||
return ret;
|
||||
}
|
||||
|
||||
vector<int> TransposeObj::getOpAttrVector() const {
|
||||
return {enum_to_underlying(type)};
|
||||
}
|
||||
|
||||
}; // namespace infini
|
|
@ -32,4 +32,288 @@ vector<int> UnaryObj::getOpAttrVector() const {
|
|||
return {enum_to_underlying(type)};
|
||||
}
|
||||
|
||||
ClipObj::ClipObj(GraphObj *graph, Tensor input, Tensor output,
|
||||
std::optional<float> min, std::optional<float> max)
|
||||
: OperatorObj(OpType::Clip, {input}, {output}), minValue(min),
|
||||
maxValue(max) {
|
||||
IT_ASSERT(checkValid(graph));
|
||||
}
|
||||
|
||||
optional<vector<Shape>> ClipObj::inferShape(const TensorVec &inputs) const {
|
||||
const auto A = inputs[0];
|
||||
return {{A->getDims()}};
|
||||
}
|
||||
|
||||
std::string ClipObj::toString() const {
|
||||
std::ostringstream os;
|
||||
os << OpRegistry::getOpName(type) << "[" << getGuid() << "]";
|
||||
os << "(";
|
||||
os << vecToString(inputs[0]->getDims()) << ",";
|
||||
os << "input=" << inputs[0]->getGuid() << ",";
|
||||
os << "output=" << outputs[0]->getGuid() << ")";
|
||||
return os.str();
|
||||
}
|
||||
|
||||
vector<int> ClipObj::getWorkloadVector() const {
|
||||
vector<int> ret{enum_to_underlying(type)};
|
||||
const Shape shape = outputs[0]->getDims();
|
||||
ret.insert(ret.end(), shape.begin(), shape.end());
|
||||
return ret;
|
||||
}
|
||||
|
||||
vector<int> ClipObj::getOpAttrVector() const {
|
||||
return {enum_to_underlying(type)};
|
||||
}
|
||||
|
||||
HardtanhObj::HardtanhObj(GraphObj *graph, Tensor input, Tensor output,
|
||||
float min, float max)
|
||||
: OperatorObj(OpType::Hardtanh, {input}, {output}), minValue(min),
|
||||
maxValue(max) {
|
||||
IT_ASSERT(checkValid(graph));
|
||||
}
|
||||
|
||||
optional<vector<Shape>> HardtanhObj::inferShape(const TensorVec &inputs) const {
|
||||
const auto A = inputs[0];
|
||||
return {{A->getDims()}};
|
||||
}
|
||||
|
||||
std::string HardtanhObj::toString() const {
|
||||
std::ostringstream os;
|
||||
os << OpRegistry::getOpName(type) << "[" << getGuid() << "]";
|
||||
os << "(";
|
||||
os << vecToString(inputs[0]->getDims()) << ",";
|
||||
os << "input=" << inputs[0]->getGuid() << ",";
|
||||
os << "output=" << outputs[0]->getGuid() << ")";
|
||||
return os.str();
|
||||
}
|
||||
|
||||
vector<int> HardtanhObj::getWorkloadVector() const {
|
||||
vector<int> ret{enum_to_underlying(type)};
|
||||
const Shape shape = outputs[0]->getDims();
|
||||
ret.insert(ret.end(), shape.begin(), shape.end());
|
||||
return ret;
|
||||
}
|
||||
|
||||
vector<int> HardtanhObj::getOpAttrVector() const {
|
||||
return {enum_to_underlying(type)};
|
||||
}
|
||||
|
||||
FillObj::FillObj(GraphObj *graph, Tensor input, Tensor output, float value)
|
||||
: OperatorObj(OpType::Fill, {input}, {output}), setValue(value) {
|
||||
IT_ASSERT(checkValid(graph));
|
||||
}
|
||||
|
||||
optional<vector<Shape>> FillObj::inferShape(const TensorVec &inputs) const {
|
||||
const auto A = inputs[0];
|
||||
return {{A->getDims()}};
|
||||
}
|
||||
|
||||
std::string FillObj::toString() const {
|
||||
std::ostringstream os;
|
||||
os << OpRegistry::getOpName(type) << "[" << getGuid() << "]";
|
||||
os << "(";
|
||||
os << "output=" << outputs[0]->getGuid() << ")";
|
||||
return os.str();
|
||||
}
|
||||
|
||||
vector<int> FillObj::getWorkloadVector() const {
|
||||
vector<int> ret{enum_to_underlying(type)};
|
||||
const Shape shape = outputs[0]->getDims();
|
||||
ret.insert(ret.end(), shape.begin(), shape.end());
|
||||
return ret;
|
||||
}
|
||||
|
||||
vector<int> FillObj::getOpAttrVector() const {
|
||||
return {enum_to_underlying(type)};
|
||||
}
|
||||
|
||||
L2LossObj::L2LossObj(GraphObj *graph, Tensor input, Tensor output)
|
||||
: OperatorObj(OpType::L2Loss, {input}, {output}) {
|
||||
IT_ASSERT(checkValid(graph));
|
||||
}
|
||||
|
||||
optional<vector<Shape>> L2LossObj::inferShape(const TensorVec &inputs) const {
|
||||
Shape temp = {1};
|
||||
return {{temp}};
|
||||
}
|
||||
|
||||
std::string L2LossObj::toString() const {
|
||||
std::ostringstream os;
|
||||
os << OpRegistry::getOpName(type) << "[" << getGuid() << "]";
|
||||
os << "(";
|
||||
os << "output=" << outputs[0]->getGuid() << ")";
|
||||
return os.str();
|
||||
}
|
||||
|
||||
vector<int> L2LossObj::getWorkloadVector() const {
|
||||
vector<int> ret{enum_to_underlying(type)};
|
||||
const Shape shape = outputs[0]->getDims();
|
||||
ret.insert(ret.end(), shape.begin(), shape.end());
|
||||
return ret;
|
||||
}
|
||||
|
||||
vector<int> L2LossObj::getOpAttrVector() const {
|
||||
return {enum_to_underlying(type)};
|
||||
}
|
||||
|
||||
CastObj::CastObj(GraphObj *graph, Tensor input, Tensor output, CastType type)
|
||||
: OperatorObj(OpType::Cast, {input}, {output}), castType(type) {
|
||||
IT_ASSERT(checkValid(graph));
|
||||
}
|
||||
|
||||
vector<DataType> CastObj::inferDataType(const TensorVec &inputs) const {
|
||||
auto input_dataType = inputs[0]->getDType();
|
||||
auto output_dataType = getOutputDataType();
|
||||
for (const auto &tensor : inputs)
|
||||
IT_ASSERT(input_dataType == tensor->getDType());
|
||||
return vector(numOutputs(), output_dataType);
|
||||
}
|
||||
|
||||
optional<vector<Shape>> CastObj::inferShape(const TensorVec &inputs) const {
|
||||
const auto A = inputs[0];
|
||||
return {{A->getDims()}};
|
||||
}
|
||||
|
||||
std::string CastObj::toString() const {
|
||||
std::ostringstream os;
|
||||
os << OpRegistry::getOpName(type) << "[" << getGuid() << "]";
|
||||
os << "(";
|
||||
os << "output=" << outputs[0]->getGuid() << ")";
|
||||
return os.str();
|
||||
}
|
||||
|
||||
vector<int> CastObj::getWorkloadVector() const {
|
||||
vector<int> ret{enum_to_underlying(type)};
|
||||
const Shape shape = outputs[0]->getDims();
|
||||
ret.insert(ret.end(), shape.begin(), shape.end());
|
||||
return ret;
|
||||
}
|
||||
|
||||
vector<int> CastObj::getOpAttrVector() const {
|
||||
return {enum_to_underlying(type)};
|
||||
}
|
||||
|
||||
DataType CastObj::getOutputDataType() const {
|
||||
switch (castType) {
|
||||
case CastObj::Float2Int64:
|
||||
return DataType::Int64;
|
||||
case CastObj::Float2Int32:
|
||||
return DataType::Int32;
|
||||
case CastObj::Float2Int16:
|
||||
return DataType::Int16;
|
||||
case CastObj::Float2Int8:
|
||||
return DataType::Int8;
|
||||
case CastObj::Int322Float:
|
||||
return DataType::Float32;
|
||||
case CastObj::Int322Int8:
|
||||
return DataType::Int8;
|
||||
case CastObj::Int322Int16:
|
||||
return DataType::Int16;
|
||||
case CastObj::Int162Float:
|
||||
return DataType::Float32;
|
||||
case CastObj::Int162Int32:
|
||||
return DataType::Int32;
|
||||
case CastObj::Int82Float:
|
||||
return DataType::Float32;
|
||||
case CastObj::Int82Int16:
|
||||
return DataType::Int16;
|
||||
case CastObj::Int82Int32:
|
||||
return DataType::Int32;
|
||||
case CastObj::Uint82Float:
|
||||
return DataType::Float32;
|
||||
case CastObj::Uint82Int32:
|
||||
return DataType::Int32;
|
||||
case CastObj::Uint82Int64:
|
||||
return DataType::Int64;
|
||||
case CastObj::Int322Int64:
|
||||
return DataType::Int64;
|
||||
case CastObj::Int642Int32:
|
||||
return DataType::Int32;
|
||||
case CastObj::Int642Uint32:
|
||||
return DataType::UInt32;
|
||||
case CastObj::Int642Float:
|
||||
return DataType::Float32;
|
||||
case CastObj::Uint322Int64:
|
||||
return DataType::Int64;
|
||||
default:
|
||||
IT_TODO_HALT();
|
||||
}
|
||||
}
|
||||
|
||||
ShapeObj::ShapeObj(GraphObj *graph, Tensor input, Tensor output)
|
||||
: OperatorObj(OpType::Shape, {input}, {output}) {
|
||||
IT_ASSERT(checkValid(graph));
|
||||
}
|
||||
|
||||
optional<vector<Shape>> ShapeObj::inferShape(const TensorVec &inputs) const {
|
||||
return {{{static_cast<int>(inputs[0]->getDims().size())}}};
|
||||
}
|
||||
|
||||
std::string ShapeObj::toString() const {
|
||||
std::ostringstream os;
|
||||
os << OpRegistry::getOpName(type) << "[" << getGuid() << "]("
|
||||
<< "output=" << outputs[0]->getGuid() << ")";
|
||||
return os.str();
|
||||
}
|
||||
|
||||
PReluObj::PReluObj(GraphObj *graph, Tensor input, Tensor alpha, Tensor output)
|
||||
: OperatorObj(OpType::PRelu, {input, alpha}, {output}) {
|
||||
IT_ASSERT(checkValid(graph));
|
||||
}
|
||||
|
||||
optional<vector<Shape>> PReluObj::inferShape(const TensorVec &inputs) const {
|
||||
const auto A = inputs[0];
|
||||
return {{A->getDims()}};
|
||||
}
|
||||
|
||||
std::string PReluObj::toString() const {
|
||||
std::ostringstream os;
|
||||
os << OpRegistry::getOpName(type) << "[" << getGuid() << "]";
|
||||
os << "(";
|
||||
os << vecToString(inputs[0]->getDims()) << ",";
|
||||
os << "input=" << inputs[0]->getGuid() << ",";
|
||||
os << "output=" << outputs[0]->getGuid() << ")";
|
||||
return os.str();
|
||||
}
|
||||
|
||||
vector<int> PReluObj::getWorkloadVector() const {
|
||||
vector<int> ret{enum_to_underlying(type)};
|
||||
const Shape shape = outputs[0]->getDims();
|
||||
ret.insert(ret.end(), shape.begin(), shape.end());
|
||||
return ret;
|
||||
}
|
||||
|
||||
vector<int> PReluObj::getOpAttrVector() const {
|
||||
return {enum_to_underlying(type)};
|
||||
}
|
||||
|
||||
LogObj::LogObj(GraphObj *graph, Tensor input, Tensor output, LogType type)
|
||||
: OperatorObj(OpType::Log, {input}, {output}), logType(type) {
|
||||
IT_ASSERT(checkValid(graph));
|
||||
}
|
||||
|
||||
optional<vector<Shape>> LogObj::inferShape(const TensorVec &inputs) const {
|
||||
const auto A = inputs[0];
|
||||
return {{A->getDims()}};
|
||||
}
|
||||
|
||||
std::string LogObj::toString() const {
|
||||
std::ostringstream os;
|
||||
os << OpRegistry::getOpName(type) << "[" << getGuid() << "]";
|
||||
os << "(";
|
||||
os << "output=" << outputs[0]->getGuid() << ")";
|
||||
return os.str();
|
||||
}
|
||||
|
||||
vector<int> LogObj::getWorkloadVector() const {
|
||||
vector<int> ret{enum_to_underlying(type)};
|
||||
const Shape shape = outputs[0]->getDims();
|
||||
ret.insert(ret.end(), shape.begin(), shape.end());
|
||||
return ret;
|
||||
}
|
||||
|
||||
vector<int> LogObj::getOpAttrVector() const {
|
||||
return {enum_to_underlying(type)};
|
||||
}
|
||||
|
||||
}; // namespace infini
|
||||
|
|
|
@ -281,7 +281,7 @@ TEST(MatchGraph, multi_input_output) {
|
|||
SubGraph subg0 = make_ref<SubGraphObj>(runtime, TensorVec{i0, i1});
|
||||
{
|
||||
auto slice = subg0->addOp<SliceObj>(i0, nullptr, vector<int>{0, 0},
|
||||
vector<int>{55, 55},
|
||||
vector<int>{56, 56},
|
||||
vector<int>{2, 3}, std::nullopt);
|
||||
auto relu0 = subg0->addOp<ReluObj>(slice->getOutput(0), nullptr);
|
||||
Tensor w0 = subg0->addTensor(Shape{256, 64, 1, 1}, DataType::UInt32);
|
||||
|
@ -303,7 +303,7 @@ TEST(MatchGraph, multi_input_output) {
|
|||
SubGraph subg1 = make_ref<SubGraphObj>(runtime, TensorVec{i1, i0});
|
||||
{
|
||||
auto slice = subg1->addOp<SliceObj>(i0, nullptr, vector<int>{0, 0},
|
||||
vector<int>{55, 55},
|
||||
vector<int>{56, 56},
|
||||
vector<int>{2, 3}, std::nullopt);
|
||||
auto relu0 = subg1->addOp<ReluObj>(slice->getOutput(0), nullptr);
|
||||
Tensor w0 = subg1->addTensor(Shape{256, 64, 1, 1}, DataType::UInt32);
|
||||
|
@ -328,7 +328,7 @@ TEST(MatchGraph, multi_input_output) {
|
|||
|
||||
auto slice = subg2->addOp<SliceObj>(
|
||||
extend->getOutput(0), nullptr, vector<int>{0, 0},
|
||||
vector<int>{55, 55}, vector<int>{2, 3}, std::nullopt);
|
||||
vector<int>{56, 56}, vector<int>{2, 3}, std::nullopt);
|
||||
|
||||
auto extend1 = subg2->addOp<ExtendObj>(i1, nullptr, 1, 3);
|
||||
auto add = subg2->addOp<AddObj>(extend1->getOutput(0),
|
||||
|
|
|
@ -7,6 +7,7 @@
|
|||
namespace infini {
|
||||
|
||||
TEST(Prtotbuf, save_and_load) {
|
||||
#ifdef TENSOR_PROTOBUF
|
||||
Runtime runtime = NativeCpuRuntimeObj::getInstance();
|
||||
Graph g = make_ref<GraphObj>(runtime);
|
||||
Tensor i0 = g->addTensor({1, 3, 4}, DataType::Float32);
|
||||
|
@ -28,6 +29,7 @@ TEST(Prtotbuf, save_and_load) {
|
|||
u1->load("u.pb");
|
||||
u1->printData();
|
||||
EXPECT_TRUE(u1->equalData(u0));
|
||||
#endif
|
||||
}
|
||||
|
||||
} // namespace infini
|
||||
|
|
|
@ -0,0 +1,56 @@
|
|||
#include "bang/bang_runtime.h"
|
||||
#include "core/graph.h"
|
||||
#include "core/kernel.h"
|
||||
#include "core/runtime.h"
|
||||
#include "operators/activation_backward.h"
|
||||
#include "operators/element_wise.h"
|
||||
#include "operators/unary.h"
|
||||
|
||||
#include "test.h"
|
||||
|
||||
namespace infini {
|
||||
|
||||
template <class T, class D>
|
||||
void testActivationBackward(
|
||||
const std::function<void(void *, size_t, DataType)> &generator,
|
||||
const Shape &shape) {
|
||||
// Runtime
|
||||
Runtime cpuRuntime = NativeCpuRuntimeObj::getInstance();
|
||||
auto bangRuntime = make_ref<BangRuntimeObj>();
|
||||
|
||||
// Build input data on CPU
|
||||
Tensor yCpu = make_ref<TensorObj>(shape, DataType::Float32, cpuRuntime);
|
||||
Tensor diffYCpu = make_ref<TensorObj>(shape, DataType::Float32, cpuRuntime);
|
||||
Tensor xCpu = make_ref<TensorObj>(shape, DataType::Float32, cpuRuntime);
|
||||
|
||||
yCpu->dataMalloc();
|
||||
diffYCpu->dataMalloc();
|
||||
xCpu->dataMalloc();
|
||||
|
||||
yCpu->setData(generator);
|
||||
diffYCpu->setData(generator);
|
||||
xCpu->setData(generator);
|
||||
|
||||
// GPU
|
||||
Graph bangGraph = make_ref<GraphObj>(bangRuntime);
|
||||
auto yGpu = bangGraph->cloneTensor(yCpu);
|
||||
auto diffYGpu = bangGraph->cloneTensor(diffYCpu);
|
||||
auto xGpu = bangGraph->cloneTensor(xCpu);
|
||||
auto gpuOp = bangGraph->addOp<T>(yGpu, diffYGpu, xGpu, nullptr);
|
||||
bangGraph->dataMalloc();
|
||||
bangRuntime->run(bangGraph);
|
||||
auto diffXGpu = gpuOp->getOutput();
|
||||
|
||||
EXPECT_TRUE(1);
|
||||
}
|
||||
|
||||
TEST(cnnl_ActivationBackward, run) {
|
||||
testActivationBackward<ReluBackwardObj, ReluObj>(IncrementalGenerator(),
|
||||
Shape{1, 2, 2, 3});
|
||||
testActivationBackward<SigmoidBackwardObj, SigmoidObj>(
|
||||
IncrementalGenerator(), Shape{1, 2, 2, 3});
|
||||
testActivationBackward<TanhBackwardObj, TanhObj>(IncrementalGenerator(),
|
||||
Shape{1, 2, 2, 3});
|
||||
}
|
||||
|
||||
} // namespace infini
|
|
@ -0,0 +1,51 @@
|
|||
#include "bang/bang_runtime.h"
|
||||
#include "core/graph.h"
|
||||
#include "core/kernel.h"
|
||||
#include "core/runtime.h"
|
||||
#include "operators/element_wise.h"
|
||||
|
||||
#include "test.h"
|
||||
|
||||
namespace infini {
|
||||
|
||||
template <class T>
|
||||
void testBitCompute(
|
||||
const std::function<void(void *, size_t, DataType)> &generator,
|
||||
const Shape &shape) {
|
||||
// Runtime
|
||||
Runtime cpuRuntime = NativeCpuRuntimeObj::getInstance();
|
||||
auto bangRuntime = make_ref<BangRuntimeObj>();
|
||||
|
||||
// Build input data on CPU
|
||||
Tensor inputCpu1 =
|
||||
make_ref<TensorObj>(shape, DataType::Float32, cpuRuntime);
|
||||
inputCpu1->dataMalloc();
|
||||
inputCpu1->setData(generator);
|
||||
Tensor inputCpu2 =
|
||||
make_ref<TensorObj>(shape, DataType::Float32, cpuRuntime);
|
||||
inputCpu2->dataMalloc();
|
||||
inputCpu2->setData(generator);
|
||||
|
||||
// GPU
|
||||
Graph bangGraph = make_ref<GraphObj>(bangRuntime);
|
||||
auto inputGpu1 = bangGraph->cloneTensor(inputCpu1);
|
||||
auto inputGpu2 = bangGraph->cloneTensor(inputCpu2);
|
||||
auto gpuOp = bangGraph->addOp<T>(inputGpu1, inputGpu2, nullptr);
|
||||
bangGraph->dataMalloc();
|
||||
bangRuntime->run(bangGraph);
|
||||
auto outputGpu = gpuOp->getOutput();
|
||||
auto outputGpu2Cpu = outputGpu->clone(cpuRuntime);
|
||||
inputCpu1->printData();
|
||||
inputCpu2->printData();
|
||||
outputGpu2Cpu->printData();
|
||||
EXPECT_TRUE(1);
|
||||
}
|
||||
|
||||
TEST(cnnl_BitCompute, run) {
|
||||
testBitCompute<BitAndObj>(IncrementalGenerator(), Shape{1, 2, 2, 3});
|
||||
testBitCompute<BitOrObj>(IncrementalGenerator(), Shape{1, 2, 2, 3});
|
||||
testBitCompute<BitXorObj>(IncrementalGenerator(), Shape{1, 2, 2, 3});
|
||||
testBitCompute<BitNotObj>(IncrementalGenerator(), Shape{1, 2, 2, 3});
|
||||
}
|
||||
|
||||
} // namespace infini
|
|
@ -0,0 +1,40 @@
|
|||
#include "bang/bang_runtime.h"
|
||||
#include "core/graph.h"
|
||||
#include "core/kernel.h"
|
||||
#include "core/runtime.h"
|
||||
#include "operators/unary.h"
|
||||
|
||||
#include "test.h"
|
||||
|
||||
namespace infini {
|
||||
|
||||
template <class T>
|
||||
void testCast(const std::function<void(void *, size_t, DataType)> &generator,
|
||||
const Shape &shape) {
|
||||
// Runtime
|
||||
Runtime cpuRuntime = NativeCpuRuntimeObj::getInstance();
|
||||
auto bangRuntime = make_ref<BangRuntimeObj>();
|
||||
|
||||
// Build input data on CPU
|
||||
Tensor inputCpu = make_ref<TensorObj>(shape, DataType::Float32, cpuRuntime);
|
||||
inputCpu->dataMalloc();
|
||||
inputCpu->setData(generator);
|
||||
|
||||
// GPU
|
||||
Graph bangGraph = make_ref<GraphObj>(bangRuntime);
|
||||
auto inputGpu = bangGraph->cloneTensor(inputCpu);
|
||||
auto gpuOp = bangGraph->addOp<T>(inputGpu, nullptr, CastObj::Float2Int32);
|
||||
auto outputGpu = gpuOp->getOutput();
|
||||
bangGraph->dataMalloc();
|
||||
bangRuntime->run(bangGraph);
|
||||
auto outputGpu2Cpu = outputGpu->clone(cpuRuntime);
|
||||
inputCpu->printData();
|
||||
outputGpu2Cpu->printData();
|
||||
EXPECT_TRUE(1);
|
||||
}
|
||||
|
||||
TEST(cnnl_Cast, run) {
|
||||
testCast<CastObj>(IncrementalGenerator(), Shape{1, 2, 2, 3});
|
||||
}
|
||||
|
||||
} // namespace infini
|
|
@ -0,0 +1,40 @@
|
|||
#include "bang/bang_runtime.h"
|
||||
#include "core/graph.h"
|
||||
#include "core/kernel.h"
|
||||
#include "core/runtime.h"
|
||||
#include "operators/unary.h"
|
||||
|
||||
#include "test.h"
|
||||
|
||||
namespace infini {
|
||||
|
||||
template <class T>
|
||||
void testCeil(const std::function<void(void *, size_t, DataType)> &generator,
|
||||
const Shape &shape) {
|
||||
// Runtime
|
||||
Runtime cpuRuntime = NativeCpuRuntimeObj::getInstance();
|
||||
auto bangRuntime = make_ref<BangRuntimeObj>();
|
||||
|
||||
// Build input data on CPU
|
||||
Tensor inputCpu = make_ref<TensorObj>(shape, DataType::Float32, cpuRuntime);
|
||||
inputCpu->dataMalloc();
|
||||
inputCpu->setData(generator);
|
||||
|
||||
// GPU
|
||||
Graph bangGraph = make_ref<GraphObj>(bangRuntime);
|
||||
auto inputGpu = bangGraph->cloneTensor(inputCpu);
|
||||
auto gpuOp = bangGraph->addOp<T>(inputGpu, nullptr);
|
||||
bangGraph->dataMalloc();
|
||||
bangRuntime->run(bangGraph);
|
||||
auto outputGpu = gpuOp->getOutput();
|
||||
auto outputGpu2Cpu = outputGpu->clone(cpuRuntime);
|
||||
inputCpu->printData();
|
||||
outputGpu2Cpu->printData();
|
||||
EXPECT_TRUE(1);
|
||||
}
|
||||
|
||||
TEST(cnnl_Ceil, run) {
|
||||
testCeil<CeilObj>(IncrementalGenerator(), Shape{1, 2, 2, 3});
|
||||
}
|
||||
|
||||
} // namespace infini
|
|
@ -0,0 +1,42 @@
|
|||
#include "bang/bang_runtime.h"
|
||||
#include "core/graph.h"
|
||||
#include "core/kernel.h"
|
||||
#include "core/runtime.h"
|
||||
#include "operators/unary.h"
|
||||
|
||||
#include "test.h"
|
||||
|
||||
namespace infini {
|
||||
|
||||
template <class T>
|
||||
void testClip(const std::function<void(void *, size_t, DataType)> &generator,
|
||||
const Shape &shape) {
|
||||
// Runtime
|
||||
Runtime cpuRuntime = NativeCpuRuntimeObj::getInstance();
|
||||
auto bangRuntime = make_ref<BangRuntimeObj>();
|
||||
|
||||
// Build input data on CPU
|
||||
Tensor inputCpu = make_ref<TensorObj>(shape, DataType::Float32, cpuRuntime);
|
||||
inputCpu->dataMalloc();
|
||||
inputCpu->setData(generator);
|
||||
|
||||
// GPU
|
||||
Graph bangGraph = make_ref<GraphObj>(bangRuntime);
|
||||
auto inputGpu = bangGraph->cloneTensor(inputCpu);
|
||||
float min = 1.0;
|
||||
float max = 4.0;
|
||||
auto gpuOp = bangGraph->addOp<T>(inputGpu, nullptr, min, max);
|
||||
bangGraph->dataMalloc();
|
||||
bangRuntime->run(bangGraph);
|
||||
auto outputGpu = gpuOp->getOutput();
|
||||
auto outputGpu2Cpu = outputGpu->clone(cpuRuntime);
|
||||
inputCpu->printData();
|
||||
outputGpu2Cpu->printData();
|
||||
EXPECT_TRUE(1);
|
||||
}
|
||||
|
||||
TEST(cnnl_Clip, run) {
|
||||
testClip<ClipObj>(IncrementalGenerator(), Shape{1, 2, 2, 3});
|
||||
}
|
||||
|
||||
} // namespace infini
|
|
@ -0,0 +1,52 @@
|
|||
#include "bang/bang_runtime.h"
|
||||
#include "core/graph.h"
|
||||
#include "core/kernel.h"
|
||||
#include "core/runtime.h"
|
||||
#include "operators/concat.h"
|
||||
|
||||
#include "test.h"
|
||||
|
||||
namespace infini {
|
||||
|
||||
template <class T>
|
||||
void testConcat(const std::function<void(void *, size_t, DataType)> &generator,
|
||||
const Shape &shape) {
|
||||
// Runtime
|
||||
Runtime cpuRuntime = NativeCpuRuntimeObj::getInstance();
|
||||
auto bangRuntime = make_ref<BangRuntimeObj>();
|
||||
|
||||
// Build input data on CPU
|
||||
Tensor inputCpu1 =
|
||||
make_ref<TensorObj>(shape, DataType::Float32, cpuRuntime);
|
||||
inputCpu1->dataMalloc();
|
||||
inputCpu1->setData(generator);
|
||||
Tensor inputCpu2 =
|
||||
make_ref<TensorObj>(shape, DataType::Float32, cpuRuntime);
|
||||
inputCpu2->dataMalloc();
|
||||
inputCpu2->setData(generator);
|
||||
|
||||
// GPU
|
||||
Graph bangGraph = make_ref<GraphObj>(bangRuntime);
|
||||
auto inputGpu1 = bangGraph->cloneTensor(inputCpu1);
|
||||
auto inputGpu2 = bangGraph->cloneTensor(inputCpu2);
|
||||
auto gpuOp =
|
||||
bangGraph->addOp<T>(TensorVec{inputGpu1, inputGpu2}, nullptr, 2);
|
||||
bangGraph->dataMalloc();
|
||||
bangRuntime->run(bangGraph);
|
||||
auto outputGpu = gpuOp->getOutput();
|
||||
auto outputGpu2Cpu = outputGpu->clone(cpuRuntime);
|
||||
// Check
|
||||
inputCpu1->print();
|
||||
inputCpu1->printData();
|
||||
inputCpu2->print();
|
||||
inputCpu2->printData();
|
||||
outputGpu2Cpu->print();
|
||||
outputGpu2Cpu->printData();
|
||||
EXPECT_TRUE(1);
|
||||
}
|
||||
|
||||
TEST(cnnl_Concat, run) {
|
||||
testConcat<ConcatObj>(IncrementalGenerator(), Shape{1, 2, 2, 3});
|
||||
}
|
||||
|
||||
} // namespace infini
|
|
@ -0,0 +1,40 @@
|
|||
#include "bang/bang_runtime.h"
|
||||
#include "core/graph.h"
|
||||
#include "core/kernel.h"
|
||||
#include "core/runtime.h"
|
||||
#include "operators/unary.h"
|
||||
|
||||
#include "test.h"
|
||||
|
||||
namespace infini {
|
||||
|
||||
template <class T>
|
||||
void testCopy(const std::function<void(void *, size_t, DataType)> &generator,
|
||||
const Shape &shape) {
|
||||
// Runtime
|
||||
Runtime cpuRuntime = NativeCpuRuntimeObj::getInstance();
|
||||
auto bangRuntime = make_ref<BangRuntimeObj>();
|
||||
|
||||
// Build input data on CPU
|
||||
Tensor inputCpu = make_ref<TensorObj>(shape, DataType::Float32, cpuRuntime);
|
||||
inputCpu->dataMalloc();
|
||||
inputCpu->setData(generator);
|
||||
|
||||
// GPU
|
||||
Graph bangGraph = make_ref<GraphObj>(bangRuntime);
|
||||
auto inputGpu = bangGraph->cloneTensor(inputCpu);
|
||||
auto gpuOp = bangGraph->addOp<T>(inputGpu, nullptr);
|
||||
bangGraph->dataMalloc();
|
||||
bangRuntime->run(bangGraph);
|
||||
auto outputGpu = gpuOp->getOutput();
|
||||
auto outputGpu2Cpu = outputGpu->clone(cpuRuntime);
|
||||
inputCpu->printData();
|
||||
outputGpu2Cpu->printData();
|
||||
EXPECT_TRUE(outputGpu2Cpu->equalData(inputCpu));
|
||||
}
|
||||
|
||||
TEST(cnnl_Copy, run) {
|
||||
testCopy<CopyObj>(IncrementalGenerator(), Shape{1, 2, 2, 3});
|
||||
}
|
||||
|
||||
} // namespace infini
|
Some files were not shown because too many files have changed in this diff Show More
Loading…
Reference in New Issue