feat: 前端支持 concat 及单元测试

Signed-off-by: YdrMaster <ydrml@hotmail.com>
This commit is contained in:
YdrMaster 2023-02-14 13:42:35 +08:00
parent a7e58bd8d0
commit 45aa0237da
5 changed files with 37 additions and 5 deletions

View File

@ -58,6 +58,7 @@ class GraphHandlerObj {
Tensor identity(Tensor x, Tensor y); Tensor identity(Tensor x, Tensor y);
Tensor flatten(Tensor s, Tensor y); Tensor flatten(Tensor s, Tensor y);
Tensor reshape(Tensor data, Tensor reshaped, Shape shape); Tensor reshape(Tensor data, Tensor reshaped, Shape shape);
Tensor concat(TensorVec inputs, Tensor output, int dim);
}; };
} // namespace infini } // namespace infini

View File

@ -1,4 +1,5 @@
import onnx, backend import onnx, backend
from typing import Dict
runtime = backend.cpu_runtime() runtime = backend.cpu_runtime()
@ -6,8 +7,8 @@ runtime = backend.cpu_runtime()
def from_onnx(model: onnx.ModelProto): def from_onnx(model: onnx.ModelProto):
handler = backend.GraphHandlerObj(runtime) handler = backend.GraphHandlerObj(runtime)
tensors = dict() tensors: Dict[str, backend.TensorObj] = dict()
data = dict() data: Dict[str, onnx.TensorProto] = dict()
for input in model.graph.input: for input in model.graph.input:
dims = [d.dim_value for d in input.type.tensor_type.shape.dim] dims = [d.dim_value for d in input.type.tensor_type.shape.dim]
@ -121,6 +122,12 @@ def from_onnx(model: onnx.ModelProto):
tensors.get(node.output[0]), tensors.get(node.output[0]),
[int(i) for i in data[node.input[1]].int64_data], [int(i) for i in data[node.input[1]].int64_data],
) )
elif node.op_type == "Concat":
tensors[node.output[0]] = handler.concat(
[tensors[name] for name in node.input],
tensors.get(node.output[0]),
next((attr.i for attr in node.attribute if attr.name == "axis")),
)
else: else:
raise Exception('Unsupported operator "{}"'.format(node.op_type)) raise Exception('Unsupported operator "{}"'.format(node.op_type))

View File

@ -136,11 +136,11 @@ class TestStringMethods(unittest.TestCase):
make_and_import_model(make_graph([flatten], "flatten", [x], [y])) make_and_import_model(make_graph([flatten], "flatten", [x], [y]))
def test_reshape(self): def test_reshape(self):
data = make_tensor_value_info("data", TensorProto.FLOAT, [2, 3, 3, 4]) data = make_tensor_value_info("data", TensorProto.FLOAT, [2, 3, 4, 5])
# shape 对于后端来说并不是一个张量,然而转换中可能没有办法分辨 # shape 对于后端来说并不是一个张量,然而转换中可能没有办法分辨
# 不知道怎么把 ValueInfoProto 转换成 TensorProto # 不知道怎么把 ValueInfoProto 转换成 TensorProto
shape = make_tensor_value_info("shape", TensorProto.INT64, [4]) shape = make_tensor_value_info("shape", TensorProto.INT64, [3])
shape_data = make_tensor("shape", TensorProto.INT64, [4], [3, 2, 4, 3]) shape_data = make_tensor("shape", TensorProto.INT64, [3], [5, 3, 8])
reshaped = make_tensor_value_info( reshaped = make_tensor_value_info(
"reshaped", TensorProto.FLOAT, shape_data.int64_data "reshaped", TensorProto.FLOAT, shape_data.int64_data
) )
@ -151,6 +151,17 @@ class TestStringMethods(unittest.TestCase):
make_graph([reshape], "reshape", [data, shape], [reshaped], [shape_data]) make_graph([reshape], "reshape", [data, shape], [reshaped], [shape_data])
) )
def test_concat(self):
input1 = make_tensor_value_info("input1", TensorProto.FLOAT, [1, 3, 2, 4])
input2 = make_tensor_value_info("input2", TensorProto.FLOAT, [1, 3, 2, 5])
output = make_tensor_value_info("output", TensorProto.FLOAT, [1, 3, 2, 9])
concat = make_node(
"Concat", ["input1", "input2"], ["output"], axis=3, name="concat"
)
make_and_import_model(
make_graph([concat], "concat", [input1, input2], [output])
)
# see <https://onnx.ai/onnx/intro/python.html#a-simple-example-a-linear-regression> # see <https://onnx.ai/onnx/intro/python.html#a-simple-example-a-linear-regression>
def test_linear(self): def test_linear(self):
x = make_tensor_value_info("x", TensorProto.FLOAT, [1, 2, 3]) x = make_tensor_value_info("x", TensorProto.FLOAT, [1, 2, 3])

View File

@ -1,5 +1,6 @@
#include "core/graph_handler.h" #include "core/graph_handler.h"
#include "operators/batch_norm.h" #include "operators/batch_norm.h"
#include "operators/concat.h"
#include "operators/element_wise.h" #include "operators/element_wise.h"
#include "operators/matmul.h" #include "operators/matmul.h"
#include "operators/reshape.h" #include "operators/reshape.h"
@ -93,6 +94,15 @@ Tensor GraphHandlerObj::reshape(Tensor data, Tensor reshaped, Shape shape) {
} }
} }
Tensor GraphHandlerObj::concat(TensorVec inputs, Tensor output, int dim) {
if (output) {
g->addOpWithOutputs<ConcatObj>(std::move(inputs), output, dim);
return output;
} else {
return g->addOp<ConcatObj>(std::move(inputs), output, dim)->getOutput();
}
}
static DataType dtype_repr_convert(int dtype) { static DataType dtype_repr_convert(int dtype) {
switch ((OnnxDType)dtype) { switch ((OnnxDType)dtype) {
case OnnxDType::FLOAT: case OnnxDType::FLOAT:

View File

@ -76,6 +76,9 @@ void init_graph_builder(py::module &m) {
policy::move) policy::move)
.def("reshape", .def("reshape",
py::overload_cast<Tensor, Tensor, Shape>(&Handler::reshape), py::overload_cast<Tensor, Tensor, Shape>(&Handler::reshape),
policy::move)
.def("concat",
py::overload_cast<TensorVec, Tensor, int>(&Handler::concat),
policy::move); policy::move);
} }