CPM-9G-8B/quick_start_clean/readmes/README_DISTRIBUTED.md

124 lines
3.9 KiB
Markdown
Raw Normal View History

2024-05-11 17:53:12 +08:00
# 分布式多机训练
- 首先保证机器之间能够通信
- 每台机器上的训练环境、代码、数据等一致
## 简单模式
这种方式只适用于机器很少的提交方法比如说两台机器debug调试的时候可以如下操作
以sft_cpm9g_8b.sh举例
```shell
# 这儿指定主节点的IP值
export MASTER_ADDR=g3002
#中间省略各种参数配置
#--nnodes 指定用几台机器提交任务后主节点会一直等待通信满足4台机器直到time out
#--nproc_per_node 每张机器多少张卡
CMD="torchrun --nnodes=2 --nproc_per_node=8 --rdzv_id=1 --rdzv_backend=c10d --rdzv_endpoint=${MASTER_ADDR}:${MASTER_PORT} ${CPM_PATH}/apps/cpm9g/sft_cpm9g.py ${OPTS}"
```
接下来在这两个机器中都执行bash sft_cpm9g_8b.sh这样就完成一次最简单的多机训练
不过机器多了之后不推荐这种方式
2024-05-11 17:55:31 +08:00
## slurm 集群多机任务提交
2024-05-11 17:53:12 +08:00
算力平台使用Slurm调度常用Slurm命令包括
``` shell
Slurm命令 功能
sinfo 查看集群分区状态
squeue 查看作业队列
srun, salloc 交互式运行作业
sbatch 提交作业
scancel 取消作业
scontrol 查看和修改作业参数
sacct 查看已完成作业
```
### 单机任务
参考脚本
前面"#SBATCH"是Slurm配置参数解释如下
``` shell
●--partition: 使用的队列名称
●--nodes: 节点数量,用多少台机器
●--ntasks-per-node每个节点的进程数和每节点的GPU数量保持一致
●--gres=gpu:8每个节点分配的GPU数量
●--cpus-per-task每个任务分配的CPU数量建议不要修改该节点的cpu总数为任务数乘以每个任务的cpu数这个示例脚本中的cpu总数为8x8=64
```
#### 具体示例:
train.sh:
```
#!/bin/bash
#SBATCH --partition=gpu1
#SBATCH --nodelist=g1001
#SBATCH --nodes=1
#SBATCH --ntasks-per-node=8
#SBATCH --gres=gpu:8
#SBATCH --cpus-per-task=8
python main.py
```
提交任务
```
sbatch train.sh
```
### 多机任务
已测试通过torchrun的方式多机训练需要设置"MASTER_ADDR"和"MASTER_PORT"两个环境变量,先提交一个主节点的任务,获取"MASTER_ADDR"在提交从节点任务。一个4台机器的多机任务的操作示例如下
注意:#SBATCH的nodes参数设置为1slurm的多节点通信与bmtrain的环境变量有冲突且srun不稳定推荐采用slurm提交多个单节点任务用torchrun的方式实现多节点通信。
##### 第一步:启动主节点
train_master.sh:
```
#!/bin/bash
#SBATCH --partition=gpu1
#SBATCH --nodes=1
#SBATCH --ntasks-per-node=8
#SBATCH --gres=gpu:8
#SBATCH --cpus-per-task=8
MASTER_ADDR=`hostname`
MASTER_PORT=12345
echo $MASTER_ADDR
torchrun --nnodes=4 --nproc_per_node=8 --rdzv_id=1 --rdzv_backend=c10d --rdzv_endpoint=${MASTER_ADDR}:${MASTER_PORT} train.py
```
提交主节点:
```
sbatch train_master.sh
```
在输出的logslurm-xxx.log中查看主节点的名称例如此时查到主节点是"g1001"
##### 第二步:启动从节点
train_slave.sh:
```
#!/bin/bash
#SBATCH --partition=gpu1
#SBATCH --nodes=1
#SBATCH --ntasks-per-node=8
#SBATCH --gres=gpu:8
#SBATCH --cpus-per-task=8
MASTER_ADDR=g1001
MASTER_PORT=12345
echo $MASTER_ADDR
torchrun --nnodes=4 --nproc_per_node=8 --rdzv_id=1 --rdzv_backend=c10d --rdzv_endpoint=${MASTER_ADDR}:${MASTER_PORT} train.py
```
提交从节点示例是一个4台机器的任务因此再提交3个从节点程序
```
for i in {1..3};do
sbatch train_slave.sh
done
```
2024-05-14 17:57:58 +08:00
## dockers上的多机提交任务
dockers 容器上的多机任务和在主机上是相同的,只需要再其基础上满足两个要求
- 在每个机器上拉取同样的docker和激活同样的训练环境在docker共享的路径、数据、代码都一致
- 在docker启动的时候保障 --network=host和主机共享网络通信只要机器之间能通信在dockers中也可以通信和训练
2024-05-11 17:53:12 +08:00
#### TODOs
2024-05-14 17:57:58 +08:00
1 完善K8s集群的分布式多机任务训练