forked from jiuyuan/InfiniTensor
format
This commit is contained in:
parent
156a40806d
commit
2b8bca17e2
|
@ -7,7 +7,8 @@ class DataType {
|
|||
static const DataType Float32;
|
||||
static const DataType UInt32;
|
||||
static const DataType Int32;
|
||||
static constexpr size_t sizePerElement[]{sizeof(float), sizeof(uint32_t), sizeof(int32_t)};
|
||||
static constexpr size_t sizePerElement[]{sizeof(float), sizeof(uint32_t),
|
||||
sizeof(int32_t)};
|
||||
static constexpr std::string_view names[]{"Float32", "UInt32", "Int32"};
|
||||
|
||||
private:
|
||||
|
|
|
@ -250,7 +250,7 @@ class OperatorObj : public Object {
|
|||
public:
|
||||
OperatorObj(OpType opType, TensorVec inputs, TensorVec outputs);
|
||||
OperatorObj(OpType opType);
|
||||
void setInputs(TensorVec inputsTensor) {
|
||||
void setInputs(TensorVec inputsTensor) {
|
||||
inputs = inputsTensor;
|
||||
for (auto &t : inputs)
|
||||
IT_ASSERT(t != nullptr);
|
||||
|
|
|
@ -4,7 +4,8 @@
|
|||
namespace infini {
|
||||
class ActivationBackwardObj : public OperatorObj {
|
||||
public:
|
||||
ActivationBackwardObj(OpType type, GraphObj *graph, Tensor y, Tensor diff_y, Tensor x, Tensor diff_x);
|
||||
ActivationBackwardObj(OpType type, GraphObj *graph, Tensor y, Tensor diff_y,
|
||||
Tensor x, Tensor diff_x);
|
||||
optional<vector<Shape>> inferShape(const TensorVec &inputs) const override;
|
||||
|
||||
std::string toString() const override;
|
||||
|
@ -16,11 +17,12 @@ class ActivationBackwardObj : public OperatorObj {
|
|||
vector<int> getOpAttrVector() const override;
|
||||
};
|
||||
|
||||
#define DEFINE_ACTIVATION_BACKWARD_OBJ(prefix, type) \
|
||||
class prefix##Obj : public ActivationBackwardObj { \
|
||||
public: \
|
||||
prefix##Obj(GraphObj *graph, Tensor y, Tensor diff_y, Tensor x, Tensor diff_x) \
|
||||
: ActivationBackwardObj(type, graph, y, diff_y, x, diff_x) {} \
|
||||
#define DEFINE_ACTIVATION_BACKWARD_OBJ(prefix, type) \
|
||||
class prefix##Obj : public ActivationBackwardObj { \
|
||||
public: \
|
||||
prefix##Obj(GraphObj *graph, Tensor y, Tensor diff_y, Tensor x, \
|
||||
Tensor diff_x) \
|
||||
: ActivationBackwardObj(type, graph, y, diff_y, x, diff_x) {} \
|
||||
};
|
||||
|
||||
DEFINE_ACTIVATION_BACKWARD_OBJ(ReluBackward, OpType::ReluBackward)
|
||||
|
|
|
@ -91,14 +91,15 @@ class ConvBackwardFilterObj : public ConvBaseObj {
|
|||
ActType act;
|
||||
|
||||
public:
|
||||
ConvBackwardFilterObj(GraphObj *graph, Tensor inputX, Tensor diffY, Tensor diffW, int ph,
|
||||
int pw, int sh = 1, int sw = 1, int dh = 1, int dw = 1,
|
||||
Tensor bias = nullptr, ActType act = ActType::None);
|
||||
ConvBackwardFilterObj(GraphObj *graph, Tensor inputX, Tensor diffY,
|
||||
Tensor diffW, int ph, int pw, int sh = 1, int sw = 1,
|
||||
int dh = 1, int dw = 1, Tensor bias = nullptr,
|
||||
ActType act = ActType::None);
|
||||
// Constructors for setting padding mode
|
||||
ConvBackwardFilterObj(GraphObj *graph, Tensor inputX, Tensor diffY, Tensor diffW,
|
||||
PaddingMode mode = PaddingMode::Same, int sh = 1, int sw = 1,
|
||||
int dh = 1, int dw = 1, Tensor bias = nullptr,
|
||||
ActType act = ActType::None);
|
||||
ConvBackwardFilterObj(GraphObj *graph, Tensor inputX, Tensor diffY,
|
||||
Tensor diffW, PaddingMode mode = PaddingMode::Same,
|
||||
int sh = 1, int sw = 1, int dh = 1, int dw = 1,
|
||||
Tensor bias = nullptr, ActType act = ActType::None);
|
||||
|
||||
optional<vector<Shape>> inferShape(const TensorVec &inputs) const override;
|
||||
ActType getAct() const { return act; }
|
||||
|
|
|
@ -20,7 +20,8 @@ class ElementWiseObj : public OperatorObj {
|
|||
class MSELossObj : public OperatorObj {
|
||||
public:
|
||||
enum Reduction { None = 0, Sum, Mean };
|
||||
MSELossObj(GraphObj *graph, Tensor input0, Tensor input1, Reduction reduction, Tensor output);
|
||||
MSELossObj(GraphObj *graph, Tensor input0, Tensor input1,
|
||||
Reduction reduction, Tensor output);
|
||||
optional<vector<Shape>> inferShape(const TensorVec &inputs) const override;
|
||||
|
||||
Reduction getReduction() const { return reductionMode; }
|
||||
|
|
|
@ -28,7 +28,7 @@ class ClipObj : public OperatorObj {
|
|||
int numOutputs() const override { return 1; }
|
||||
|
||||
private:
|
||||
float minValue,maxValue;
|
||||
float minValue, maxValue;
|
||||
vector<int> getWorkloadVector() const override;
|
||||
vector<int> getOpAttrVector() const override;
|
||||
};
|
||||
|
@ -65,7 +65,8 @@ class L2LossObj : public OperatorObj {
|
|||
|
||||
class TransformObj : public OperatorObj {
|
||||
public:
|
||||
TransformObj(GraphObj *graph, Tensor input, Tensor output, float alpha, float beta);
|
||||
TransformObj(GraphObj *graph, Tensor input, Tensor output, float alpha,
|
||||
float beta);
|
||||
optional<vector<Shape>> inferShape(const TensorVec &inputs) const override;
|
||||
|
||||
std::string toString() const override;
|
||||
|
@ -82,18 +83,52 @@ class TransformObj : public OperatorObj {
|
|||
|
||||
class CastObj : public OperatorObj {
|
||||
public:
|
||||
enum CastType { Float2Half = 0, Float2HalfIEEE754, Float2Double, Float2Int64, Float2Int32, Float2Int16, Float2Int8, Float2Bool,
|
||||
Half2Float, Half2Int32, Half2Int64, Half2Int16, Half2Int8, Half2Uint8, Half2Bool, Half2FloatInf,
|
||||
Int322Float, Int322Half, Int322Int8, Int322Int16,
|
||||
Int162Float, Int162Half, Int162Int32,
|
||||
Int82Float, Int82Half, Int82Int16, Int82Int32,
|
||||
Uint82Float, Uint82Half, Uint82Int32, Uint82Int64,
|
||||
Bool2Float, Bool2Half, Bool2Int32,
|
||||
Int322Int64, Int322Bool,
|
||||
Int642Int32, Int642Uint32, Int642Float, Int642Half,
|
||||
Uint642Uint32,
|
||||
Uint322Int64, Uint322Uint64,
|
||||
Double2Float};
|
||||
enum CastType {
|
||||
Float2Half = 0,
|
||||
Float2HalfIEEE754,
|
||||
Float2Double,
|
||||
Float2Int64,
|
||||
Float2Int32,
|
||||
Float2Int16,
|
||||
Float2Int8,
|
||||
Float2Bool,
|
||||
Half2Float,
|
||||
Half2Int32,
|
||||
Half2Int64,
|
||||
Half2Int16,
|
||||
Half2Int8,
|
||||
Half2Uint8,
|
||||
Half2Bool,
|
||||
Half2FloatInf,
|
||||
Int322Float,
|
||||
Int322Half,
|
||||
Int322Int8,
|
||||
Int322Int16,
|
||||
Int162Float,
|
||||
Int162Half,
|
||||
Int162Int32,
|
||||
Int82Float,
|
||||
Int82Half,
|
||||
Int82Int16,
|
||||
Int82Int32,
|
||||
Uint82Float,
|
||||
Uint82Half,
|
||||
Uint82Int32,
|
||||
Uint82Int64,
|
||||
Bool2Float,
|
||||
Bool2Half,
|
||||
Bool2Int32,
|
||||
Int322Int64,
|
||||
Int322Bool,
|
||||
Int642Int32,
|
||||
Int642Uint32,
|
||||
Int642Float,
|
||||
Int642Half,
|
||||
Uint642Uint32,
|
||||
Uint322Int64,
|
||||
Uint322Uint64,
|
||||
Double2Float
|
||||
};
|
||||
CastObj(GraphObj *graph, Tensor input, Tensor output, CastType type);
|
||||
optional<vector<Shape>> inferShape(const TensorVec &inputs) const override;
|
||||
|
||||
|
@ -110,7 +145,8 @@ class CastObj : public OperatorObj {
|
|||
|
||||
class CumsumObj : public OperatorObj {
|
||||
public:
|
||||
CumsumObj(GraphObj *graph, Tensor input, Tensor output, int axis, bool exclusive, bool reverse);
|
||||
CumsumObj(GraphObj *graph, Tensor input, Tensor output, int axis,
|
||||
bool exclusive, bool reverse);
|
||||
optional<vector<Shape>> inferShape(const TensorVec &inputs) const override;
|
||||
|
||||
std::string toString() const override;
|
||||
|
@ -129,16 +165,17 @@ class CumsumObj : public OperatorObj {
|
|||
|
||||
// class CumprodObj : public OperatorObj {
|
||||
// public:
|
||||
// CumprodObj(GraphObj *graph, Tensor input, Tensor output, int axis, bool exclusive, bool reverse);
|
||||
// optional<vector<Shape>> inferShape(const TensorVec &inputs) const override;
|
||||
//
|
||||
// CumprodObj(GraphObj *graph, Tensor input, Tensor output, int axis, bool
|
||||
// exclusive, bool reverse); optional<vector<Shape>> inferShape(const
|
||||
// TensorVec &inputs) const override;
|
||||
//
|
||||
// std::string toString() const override;
|
||||
// int getAxis() const { return axisValue; }
|
||||
// float getExclusive() const { return exclusiveValue; }
|
||||
// float getReverse() const { return reverseValue; }
|
||||
// int numInputs() const override { return 1; }
|
||||
// int numOutputs() const override { return 1; }
|
||||
//
|
||||
//
|
||||
// private:
|
||||
// int axisValue;
|
||||
// bool exclusiveValue, reverseValue;
|
||||
|
|
|
@ -10,9 +10,7 @@ OperatorObj::OperatorObj(OpType opType, TensorVec inputs, TensorVec outputs)
|
|||
IT_ASSERT(t != nullptr);
|
||||
}
|
||||
|
||||
OperatorObj::OperatorObj(OpType opType)
|
||||
: type(opType){
|
||||
}
|
||||
OperatorObj::OperatorObj(OpType opType) : type(opType) {}
|
||||
|
||||
bool OperatorObj::isLinearOp() const {
|
||||
return enum_to_underlying(type) >= 100 && enum_to_underlying(type) < 200;
|
||||
|
@ -91,7 +89,8 @@ bool OperatorObj::checkValid(GraphObj *graph, DataType type) {
|
|||
if (shapes.size() != outputs.size())
|
||||
return false;
|
||||
if (graph) { // if graph != nullptr, outputs should be created
|
||||
auto dataTypes = vector(numOutputs(), type);;
|
||||
auto dataTypes = vector(numOutputs(), type);
|
||||
;
|
||||
for (size_t i = 0; i < outputs.size(); i++) {
|
||||
IT_ASSERT(!outputs[i]);
|
||||
outputs[i] = graph->addTensor(shapes[i], dataTypes[i]);
|
||||
|
|
|
@ -1,6 +1,6 @@
|
|||
#include "operators/activation_backward.h"
|
||||
#include "bang/bang_kernel_without_config.h"
|
||||
#include "bang/bang_runtime.h"
|
||||
#include "operators/activation_backward.h"
|
||||
|
||||
namespace infini {
|
||||
class ActivationBackwardCnnl : public BangKernelWithoutConfig {
|
||||
|
@ -47,11 +47,9 @@ class ActivationBackwardCnnl : public BangKernelWithoutConfig {
|
|||
opDesc, getOpType(), CNNL_NOT_PROPAGATE_NAN, getCoef()));
|
||||
|
||||
auto [alpha, beta] = getAlphBeta();
|
||||
cnnlStatus_t stat =
|
||||
cnnlActivationBackward(context->cnnlHandle(), opDesc, &alpha, yDesc, yData,
|
||||
diffYDesc, diffYData,
|
||||
xDesc, xData,
|
||||
&beta, diffXDesc, diffXData);
|
||||
cnnlStatus_t stat = cnnlActivationBackward(
|
||||
context->cnnlHandle(), opDesc, &alpha, yDesc, yData, diffYDesc,
|
||||
diffYData, xDesc, xData, &beta, diffXDesc, diffXData);
|
||||
if (stat != CNNL_STATUS_SUCCESS)
|
||||
return;
|
||||
|
||||
|
@ -86,11 +84,11 @@ class TanhBackwardCnnl : public ActivationBackwardCnnl {
|
|||
float getCoef() const override { return 0.0; }
|
||||
};
|
||||
|
||||
REGISTER_KERNEL(Device::BANG, OpType::ReluBackward, DataType::Float32, ReluBackwardCnnl,
|
||||
"ReluBackward_cnnl_BANG_Float32");
|
||||
REGISTER_KERNEL(Device::BANG, OpType::SigmoidBackward, DataType::Float32, SigmoidBackwardCnnl,
|
||||
"SigmoidBackward_cnnl_BANG_Float32");
|
||||
REGISTER_KERNEL(Device::BANG, OpType::TanhBackward, DataType::Float32, TanhBackwardCnnl,
|
||||
"TanhBackward_cnnl_BANG_Float32");
|
||||
REGISTER_KERNEL(Device::BANG, OpType::ReluBackward, DataType::Float32,
|
||||
ReluBackwardCnnl, "ReluBackward_cnnl_BANG_Float32");
|
||||
REGISTER_KERNEL(Device::BANG, OpType::SigmoidBackward, DataType::Float32,
|
||||
SigmoidBackwardCnnl, "SigmoidBackward_cnnl_BANG_Float32");
|
||||
REGISTER_KERNEL(Device::BANG, OpType::TanhBackward, DataType::Float32,
|
||||
TanhBackwardCnnl, "TanhBackward_cnnl_BANG_Float32");
|
||||
|
||||
}; // namespace infini
|
||||
|
|
|
@ -1,6 +1,6 @@
|
|||
#include "operators/element_wise.h"
|
||||
#include "bang/bang_kernel_without_config.h"
|
||||
#include "bang/bang_runtime.h"
|
||||
#include "operators/element_wise.h"
|
||||
|
||||
namespace infini {
|
||||
class AddNCnnl : public BangKernelWithoutConfig {
|
||||
|
@ -10,8 +10,8 @@ class AddNCnnl : public BangKernelWithoutConfig {
|
|||
auto context = dynamic_cast<const BangRuntimeObj *>(_context);
|
||||
int num = op->numInputs();
|
||||
void *argv[num];
|
||||
for(int i = 0; i < num; ++i) {
|
||||
argv[i] = op->getInputs(i)->getRawDataPtr<void *>();
|
||||
for (int i = 0; i < num; ++i) {
|
||||
argv[i] = op->getInputs(i)->getRawDataPtr<void *>();
|
||||
}
|
||||
void *const cData = (op->getOutput()->getRawDataPtr<void *>());
|
||||
|
||||
|
@ -24,20 +24,22 @@ class AddNCnnl : public BangKernelWithoutConfig {
|
|||
checkCnnlError(cnnlCreateTensorDescriptor(&desc));
|
||||
checkCnnlError(cnnlSetTensorDescriptor(desc, CNNL_LAYOUT_NCHW,
|
||||
CNNL_DTYPE_FLOAT, 4, dim_array));
|
||||
cnnlTensorDescriptor_t descArray[num];
|
||||
for(int i = 0; i < num; ++i) {
|
||||
checkCnnlError(cnnlCreateTensorDescriptor(&descArray[i]));
|
||||
checkCnnlError(cnnlSetTensorDescriptor(descArray[i], CNNL_LAYOUT_NCHW,
|
||||
CNNL_DTYPE_FLOAT, 4, dim_array));
|
||||
cnnlTensorDescriptor_t descArray[num];
|
||||
for (int i = 0; i < num; ++i) {
|
||||
checkCnnlError(cnnlCreateTensorDescriptor(&descArray[i]));
|
||||
checkCnnlError(
|
||||
cnnlSetTensorDescriptor(descArray[i], CNNL_LAYOUT_NCHW,
|
||||
CNNL_DTYPE_FLOAT, 4, dim_array));
|
||||
}
|
||||
|
||||
cnnlStatus_t stat = cnnlAddN(context->cnnlHandle(), descArray, argv, num, desc, cData);
|
||||
cnnlStatus_t stat =
|
||||
cnnlAddN(context->cnnlHandle(), descArray, argv, num, desc, cData);
|
||||
if (stat != CNNL_STATUS_SUCCESS)
|
||||
return;
|
||||
|
||||
// Destories in BANG does not require sync. But cnnl does not state
|
||||
// whether sync is required before destories.
|
||||
for(int i = 0; i < num; ++i) {
|
||||
for (int i = 0; i < num; ++i) {
|
||||
checkCnnlError(cnnlDestroyTensorDescriptor(descArray[i]));
|
||||
}
|
||||
checkCnnlError(cnnlDestroyTensorDescriptor(desc));
|
||||
|
|
|
@ -23,83 +23,87 @@ class CastCnnl : public BangKernelWithoutConfig {
|
|||
checkCnnlError(cnnlCreateTensorDescriptor(&cDesc));
|
||||
cnnlCastDataType_t NlCastType;
|
||||
CastObj::CastType type = op->getType();
|
||||
switch(type){
|
||||
case CastObj::Float2Half:
|
||||
checkCnnlError(cnnlSetTensorDescriptor(aDesc, CNNL_LAYOUT_NCHW, CNNL_DTYPE_FLOAT, 4, dim_array));
|
||||
checkCnnlError(cnnlSetTensorDescriptor(cDesc, CNNL_LAYOUT_NCHW, CNNL_DTYPE_HALF, 4, dim_array));
|
||||
NlCastType = CNNL_CAST_FLOAT_TO_HALF;
|
||||
break;
|
||||
case CastObj::Float2HalfIEEE754:
|
||||
case CastObj::Float2Double:
|
||||
case CastObj::Float2Int64:
|
||||
case CastObj::Float2Int32:
|
||||
checkCnnlError(cnnlSetTensorDescriptor(aDesc, CNNL_LAYOUT_NCHW, CNNL_DTYPE_FLOAT, 4, dim_array));
|
||||
checkCnnlError(cnnlSetTensorDescriptor(cDesc, CNNL_LAYOUT_NCHW, CNNL_DTYPE_INT32, 4, dim_array));
|
||||
NlCastType = CNNL_CAST_FLOAT_TO_INT32;
|
||||
case CastObj::Float2Int16:
|
||||
case CastObj::Float2Int8:
|
||||
case CastObj::Float2Bool:
|
||||
//Todo
|
||||
break;
|
||||
case CastObj::Half2Float:
|
||||
case CastObj::Half2Int32:
|
||||
case CastObj::Half2Int64:
|
||||
case CastObj::Half2Int16:
|
||||
case CastObj::Half2Int8:
|
||||
case CastObj::Half2Uint8:
|
||||
case CastObj::Half2Bool:
|
||||
case CastObj::Half2FloatInf:
|
||||
//todo
|
||||
break;
|
||||
case CastObj::Int322Float:
|
||||
case CastObj::Int322Half:
|
||||
case CastObj::Int322Int8:
|
||||
case CastObj::Int322Int16:
|
||||
//todo
|
||||
break;
|
||||
case CastObj::Int162Float:
|
||||
case CastObj::Int162Half:
|
||||
case CastObj::Int162Int32:
|
||||
//todo
|
||||
break;
|
||||
case CastObj::Int82Float:
|
||||
case CastObj::Int82Half:
|
||||
case CastObj::Int82Int16:
|
||||
case CastObj::Int82Int32:
|
||||
//todo
|
||||
break;
|
||||
case CastObj::Uint82Float:
|
||||
case CastObj::Uint82Half:
|
||||
case CastObj::Uint82Int32:
|
||||
case CastObj::Uint82Int64:
|
||||
//todo
|
||||
break;
|
||||
case CastObj::Bool2Float:
|
||||
case CastObj::Bool2Half:
|
||||
case CastObj::Bool2Int32:
|
||||
//todo
|
||||
break;
|
||||
case CastObj::Int322Int64:
|
||||
case CastObj::Int322Bool:
|
||||
//todo
|
||||
break;
|
||||
case CastObj::Int642Int32:
|
||||
case CastObj::Int642Uint32:
|
||||
case CastObj::Int642Float:
|
||||
case CastObj::Int642Half:
|
||||
//todo
|
||||
break;
|
||||
case CastObj::Uint642Uint32:
|
||||
case CastObj::Uint322Int64:
|
||||
case CastObj::Uint322Uint64:
|
||||
//todo
|
||||
break;
|
||||
case CastObj::Double2Float:
|
||||
//todo
|
||||
break;
|
||||
switch (type) {
|
||||
case CastObj::Float2Half:
|
||||
checkCnnlError(cnnlSetTensorDescriptor(
|
||||
aDesc, CNNL_LAYOUT_NCHW, CNNL_DTYPE_FLOAT, 4, dim_array));
|
||||
checkCnnlError(cnnlSetTensorDescriptor(
|
||||
cDesc, CNNL_LAYOUT_NCHW, CNNL_DTYPE_HALF, 4, dim_array));
|
||||
NlCastType = CNNL_CAST_FLOAT_TO_HALF;
|
||||
break;
|
||||
case CastObj::Float2HalfIEEE754:
|
||||
case CastObj::Float2Double:
|
||||
case CastObj::Float2Int64:
|
||||
case CastObj::Float2Int32:
|
||||
checkCnnlError(cnnlSetTensorDescriptor(
|
||||
aDesc, CNNL_LAYOUT_NCHW, CNNL_DTYPE_FLOAT, 4, dim_array));
|
||||
checkCnnlError(cnnlSetTensorDescriptor(
|
||||
cDesc, CNNL_LAYOUT_NCHW, CNNL_DTYPE_INT32, 4, dim_array));
|
||||
NlCastType = CNNL_CAST_FLOAT_TO_INT32;
|
||||
case CastObj::Float2Int16:
|
||||
case CastObj::Float2Int8:
|
||||
case CastObj::Float2Bool:
|
||||
// Todo
|
||||
break;
|
||||
case CastObj::Half2Float:
|
||||
case CastObj::Half2Int32:
|
||||
case CastObj::Half2Int64:
|
||||
case CastObj::Half2Int16:
|
||||
case CastObj::Half2Int8:
|
||||
case CastObj::Half2Uint8:
|
||||
case CastObj::Half2Bool:
|
||||
case CastObj::Half2FloatInf:
|
||||
// todo
|
||||
break;
|
||||
case CastObj::Int322Float:
|
||||
case CastObj::Int322Half:
|
||||
case CastObj::Int322Int8:
|
||||
case CastObj::Int322Int16:
|
||||
// todo
|
||||
break;
|
||||
case CastObj::Int162Float:
|
||||
case CastObj::Int162Half:
|
||||
case CastObj::Int162Int32:
|
||||
// todo
|
||||
break;
|
||||
case CastObj::Int82Float:
|
||||
case CastObj::Int82Half:
|
||||
case CastObj::Int82Int16:
|
||||
case CastObj::Int82Int32:
|
||||
// todo
|
||||
break;
|
||||
case CastObj::Uint82Float:
|
||||
case CastObj::Uint82Half:
|
||||
case CastObj::Uint82Int32:
|
||||
case CastObj::Uint82Int64:
|
||||
// todo
|
||||
break;
|
||||
case CastObj::Bool2Float:
|
||||
case CastObj::Bool2Half:
|
||||
case CastObj::Bool2Int32:
|
||||
// todo
|
||||
break;
|
||||
case CastObj::Int322Int64:
|
||||
case CastObj::Int322Bool:
|
||||
// todo
|
||||
break;
|
||||
case CastObj::Int642Int32:
|
||||
case CastObj::Int642Uint32:
|
||||
case CastObj::Int642Float:
|
||||
case CastObj::Int642Half:
|
||||
// todo
|
||||
break;
|
||||
case CastObj::Uint642Uint32:
|
||||
case CastObj::Uint322Int64:
|
||||
case CastObj::Uint322Uint64:
|
||||
// todo
|
||||
break;
|
||||
case CastObj::Double2Float:
|
||||
// todo
|
||||
break;
|
||||
}
|
||||
cnnlStatus_t stat =
|
||||
cnnlCastDataType(context->cnnlHandle(), aDesc, aData, NlCastType, cDesc, cData);
|
||||
cnnlStatus_t stat = cnnlCastDataType(context->cnnlHandle(), aDesc,
|
||||
aData, NlCastType, cDesc, cData);
|
||||
if (stat != CNNL_STATUS_SUCCESS)
|
||||
return;
|
||||
|
||||
|
|
|
@ -1,6 +1,6 @@
|
|||
#include "operators/conv.h"
|
||||
#include "bang/bang_kernel_without_config.h"
|
||||
#include "bang/bang_runtime.h"
|
||||
#include "operators/conv.h"
|
||||
|
||||
namespace infini {
|
||||
class ConvBackwardFilterCnnl : public BangKernelWithoutConfig {
|
||||
|
@ -27,7 +27,8 @@ class ConvBackwardFilterCnnl : public BangKernelWithoutConfig {
|
|||
void *const bData = (op->getInputs(1)->getRawDataPtr<void *>());
|
||||
void *const cData = (op->getOutput()->getRawDataPtr<void *>());
|
||||
|
||||
cnnlTensorDescriptor_t aDesc, bDesc, cDesc, aDescTrans, bDescTrans, cDescTrans;
|
||||
cnnlTensorDescriptor_t aDesc, bDesc, cDesc, aDescTrans, bDescTrans,
|
||||
cDescTrans;
|
||||
auto dimInputs0 = op->getInputs(0)->getDims();
|
||||
auto dimInputs1 = op->getInputs(1)->getDims();
|
||||
auto dimOutput = op->getOutput()->getDims();
|
||||
|
@ -47,17 +48,16 @@ class ConvBackwardFilterCnnl : public BangKernelWithoutConfig {
|
|||
dimOutput[3]};
|
||||
|
||||
int inputs0ArrayTrans[4] = {dimInputs0[0], dimInputs0[2], dimInputs0[3],
|
||||
dimInputs0[1]};
|
||||
dimInputs0[1]};
|
||||
int inputs1ArrayTrans[4] = {dimInputs1[0], dimInputs1[2], dimInputs1[3],
|
||||
dimInputs1[1]};
|
||||
dimInputs1[1]};
|
||||
int outputArrayTrans[4] = {dimOutput[0], dimOutput[2], dimOutput[3],
|
||||
dimOutput[1]};
|
||||
dimOutput[1]};
|
||||
|
||||
int transMode[4] = {0, 2, 3, 1};
|
||||
cnnlTransposeDescriptor_t transDesc;
|
||||
checkCnnlError(cnnlCreateTransposeDescriptor(&transDesc));
|
||||
checkCnnlError(cnnlSetTransposeDescriptor(
|
||||
transDesc, 4, transMode));
|
||||
checkCnnlError(cnnlSetTransposeDescriptor(transDesc, 4, transMode));
|
||||
|
||||
// get inputs
|
||||
checkCnnlError(cnnlCreateTensorDescriptor(&aDesc));
|
||||
|
@ -65,13 +65,17 @@ class ConvBackwardFilterCnnl : public BangKernelWithoutConfig {
|
|||
aDesc, CNNL_LAYOUT_NCHW, CNNL_DTYPE_FLOAT, 4, inputs0Array));
|
||||
|
||||
checkCnnlError(cnnlCreateTensorDescriptor(&aDescTrans));
|
||||
checkCnnlError(cnnlSetTensorDescriptor(
|
||||
aDescTrans, CNNL_LAYOUT_NHWC, CNNL_DTYPE_FLOAT, 4, inputs0ArrayTrans));
|
||||
checkCnnlError(cnnlSetTensorDescriptor(aDescTrans, CNNL_LAYOUT_NHWC,
|
||||
CNNL_DTYPE_FLOAT, 4,
|
||||
inputs0ArrayTrans));
|
||||
|
||||
size_t wsTrans1Size = dimInputs0[0] * dimInputs0[1] * dimInputs0[2] * dimInputs0[3] * sizeof(float);
|
||||
size_t wsTrans1Size = dimInputs0[0] * dimInputs0[1] * dimInputs0[2] *
|
||||
dimInputs0[3] * sizeof(float);
|
||||
BangPtr wsTrans1Data = context->getWorkspace(wsTrans1Size);
|
||||
|
||||
cnnlStatus_t stat = cnnlTranspose(context->cnnlHandle(), transDesc, aDesc, aData, aDescTrans, wsTrans1Data);
|
||||
cnnlStatus_t stat =
|
||||
cnnlTranspose(context->cnnlHandle(), transDesc, aDesc, aData,
|
||||
aDescTrans, wsTrans1Data);
|
||||
if (stat != CNNL_STATUS_SUCCESS)
|
||||
return;
|
||||
|
||||
|
@ -80,13 +84,16 @@ class ConvBackwardFilterCnnl : public BangKernelWithoutConfig {
|
|||
bDesc, CNNL_LAYOUT_NCHW, CNNL_DTYPE_FLOAT, 4, inputs1Array));
|
||||
|
||||
checkCnnlError(cnnlCreateTensorDescriptor(&bDescTrans));
|
||||
checkCnnlError(cnnlSetTensorDescriptor(
|
||||
bDescTrans, CNNL_LAYOUT_NHWC, CNNL_DTYPE_FLOAT, 4, inputs1ArrayTrans));
|
||||
checkCnnlError(cnnlSetTensorDescriptor(bDescTrans, CNNL_LAYOUT_NHWC,
|
||||
CNNL_DTYPE_FLOAT, 4,
|
||||
inputs1ArrayTrans));
|
||||
|
||||
size_t wsTrans2Size = dimInputs1[0] * dimInputs1[1] * dimInputs1[2] * dimInputs1[3] * sizeof(float);
|
||||
size_t wsTrans2Size = dimInputs1[0] * dimInputs1[1] * dimInputs1[2] *
|
||||
dimInputs1[3] * sizeof(float);
|
||||
BangPtr wsTrans2Data = context->getWorkspace(wsTrans2Size);
|
||||
|
||||
stat = cnnlTranspose(context->cnnlHandle(), transDesc, bDesc, bData, bDescTrans, wsTrans2Data);
|
||||
stat = cnnlTranspose(context->cnnlHandle(), transDesc, bDesc, bData,
|
||||
bDescTrans, wsTrans2Data);
|
||||
if (stat != CNNL_STATUS_SUCCESS)
|
||||
return;
|
||||
|
||||
|
@ -96,36 +103,40 @@ class ConvBackwardFilterCnnl : public BangKernelWithoutConfig {
|
|||
cDesc, CNNL_LAYOUT_NCHW, CNNL_DTYPE_FLOAT, 4, outputArray));
|
||||
|
||||
checkCnnlError(cnnlCreateTensorDescriptor(&cDescTrans));
|
||||
checkCnnlError(cnnlSetTensorDescriptor(
|
||||
cDescTrans, CNNL_LAYOUT_NHWC, CNNL_DTYPE_FLOAT, 4, outputArrayTrans));
|
||||
checkCnnlError(cnnlSetTensorDescriptor(cDescTrans, CNNL_LAYOUT_NHWC,
|
||||
CNNL_DTYPE_FLOAT, 4,
|
||||
outputArrayTrans));
|
||||
|
||||
size_t wsTrans3Size = dimOutput[0] * dimOutput[1] * dimOutput[2] * dimOutput[3] * sizeof(float);
|
||||
size_t wsTrans3Size = dimOutput[0] * dimOutput[1] * dimOutput[2] *
|
||||
dimOutput[3] * sizeof(float);
|
||||
BangPtr wsTrans3Data = context->getWorkspace(wsTrans3Size);
|
||||
|
||||
cnnlConvolutionBwdFilterAlgo_t algo;
|
||||
cnnlGetConvolutionBackwardFilterAlgorithm(context->cnnlHandle(), convDesc,
|
||||
aDescTrans, bDescTrans, cDescTrans,
|
||||
CNNL_CONVOLUTION_BWD_FILTER_FASTEST, &algo);
|
||||
cnnlGetConvolutionBackwardFilterAlgorithm(
|
||||
context->cnnlHandle(), convDesc, aDescTrans, bDescTrans, cDescTrans,
|
||||
CNNL_CONVOLUTION_BWD_FILTER_FASTEST, &algo);
|
||||
|
||||
size_t wsSize;
|
||||
cnnlGetConvolutionBackwardFilterWorkspaceSize(context->cnnlHandle(), aDescTrans,
|
||||
bDescTrans, cDescTrans, convDesc,
|
||||
algo, &wsSize);
|
||||
cnnlGetConvolutionBackwardFilterWorkspaceSize(
|
||||
context->cnnlHandle(), aDescTrans, bDescTrans, cDescTrans, convDesc,
|
||||
algo, &wsSize);
|
||||
BangPtr wsData = context->getWorkspace(wsSize);
|
||||
|
||||
stat = cnnlConvolutionBackwardFilter(
|
||||
context->cnnlHandle(), NULL, aDescTrans, wsTrans1Data, bDescTrans,
|
||||
wsTrans2Data, convDesc, algo, wsData, wsSize, NULL, cDescTrans, wsTrans3Data);
|
||||
wsTrans2Data, convDesc, algo, wsData, wsSize, NULL, cDescTrans,
|
||||
wsTrans3Data);
|
||||
if (stat != CNNL_STATUS_SUCCESS)
|
||||
return;
|
||||
|
||||
int transMode2[4] = {0, 3, 1, 2};
|
||||
cnnlTransposeDescriptor_t transOutputDesc;
|
||||
checkCnnlError(cnnlCreateTransposeDescriptor(&transOutputDesc));
|
||||
checkCnnlError(cnnlSetTransposeDescriptor(
|
||||
transOutputDesc, 4, transMode2));
|
||||
checkCnnlError(
|
||||
cnnlSetTransposeDescriptor(transOutputDesc, 4, transMode2));
|
||||
|
||||
stat = cnnlTranspose(context->cnnlHandle(), transOutputDesc, cDescTrans, wsTrans3Data, cDesc, cData);
|
||||
stat = cnnlTranspose(context->cnnlHandle(), transOutputDesc, cDescTrans,
|
||||
wsTrans3Data, cDesc, cData);
|
||||
if (stat != CNNL_STATUS_SUCCESS)
|
||||
return;
|
||||
|
||||
|
@ -143,6 +154,6 @@ class ConvBackwardFilterCnnl : public BangKernelWithoutConfig {
|
|||
}
|
||||
};
|
||||
|
||||
REGISTER_KERNEL(Device::BANG, OpType::ConvBackwardFilter, DataType::Float32, ConvBackwardFilterCnnl,
|
||||
"ConvBackwardFilter_cnnl_BANG_Float32");
|
||||
REGISTER_KERNEL(Device::BANG, OpType::ConvBackwardFilter, DataType::Float32,
|
||||
ConvBackwardFilterCnnl, "ConvBackwardFilter_cnnl_BANG_Float32");
|
||||
}; // namespace infini
|
||||
|
|
|
@ -32,7 +32,8 @@ class CumsumCnnl : public BangKernelWithoutConfig {
|
|||
CNNL_DTYPE_FLOAT, 4, dim_array));
|
||||
|
||||
cnnlStatus_t stat =
|
||||
cnnlCumsum(context->cnnlHandle(), aDesc, aData, axis, exclusive, reverse, CNNL_NOT_PROPAGATE_NAN, cDesc, cData);
|
||||
cnnlCumsum(context->cnnlHandle(), aDesc, aData, axis, exclusive,
|
||||
reverse, CNNL_NOT_PROPAGATE_NAN, cDesc, cData);
|
||||
if (stat != CNNL_STATUS_SUCCESS)
|
||||
return;
|
||||
|
||||
|
|
|
@ -1,6 +1,6 @@
|
|||
#include "operators/det.h"
|
||||
#include "bang/bang_kernel_without_config.h"
|
||||
#include "bang/bang_runtime.h"
|
||||
#include "operators/det.h"
|
||||
|
||||
namespace infini {
|
||||
class DetCnnl : public BangKernelWithoutConfig {
|
||||
|
@ -13,7 +13,7 @@ class DetCnnl : public BangKernelWithoutConfig {
|
|||
void *const cData = (op->getOutput()->getRawDataPtr<void *>());
|
||||
DetObj::Mode mode = op->getMode();
|
||||
cnnlDetMode_t nlMode;
|
||||
if(mode == DetObj::LogDet) {
|
||||
if (mode == DetObj::LogDet) {
|
||||
nlMode = CNNL_DET_MODE_LOGDET;
|
||||
} else {
|
||||
nlMode = CNNL_DET_MODE_DET;
|
||||
|
@ -28,15 +28,16 @@ class DetCnnl : public BangKernelWithoutConfig {
|
|||
int dimout_array[2] = {dimout[0], dimout[1]};
|
||||
// get inputs
|
||||
checkCnnlError(cnnlCreateTensorDescriptor(&aDesc));
|
||||
checkCnnlError(cnnlSetTensorDescriptor(aDesc, CNNL_LAYOUT_ARRAY,
|
||||
CNNL_DTYPE_FLOAT, 4, dimin_array));
|
||||
checkCnnlError(cnnlSetTensorDescriptor(
|
||||
aDesc, CNNL_LAYOUT_ARRAY, CNNL_DTYPE_FLOAT, 4, dimin_array));
|
||||
|
||||
// get outputs
|
||||
checkCnnlError(cnnlCreateTensorDescriptor(&cDesc));
|
||||
checkCnnlError(cnnlSetTensorDescriptor(cDesc, CNNL_LAYOUT_ARRAY,
|
||||
CNNL_DTYPE_FLOAT, 2, dimout_array));
|
||||
checkCnnlError(cnnlSetTensorDescriptor(
|
||||
cDesc, CNNL_LAYOUT_ARRAY, CNNL_DTYPE_FLOAT, 2, dimout_array));
|
||||
|
||||
cnnlStatus_t stat = cnnlDet(context->cnnlHandle(), nlMode, aDesc, aData, cDesc, cData);
|
||||
cnnlStatus_t stat =
|
||||
cnnlDet(context->cnnlHandle(), nlMode, aDesc, aData, cDesc, cData);
|
||||
if (stat != CNNL_STATUS_SUCCESS)
|
||||
return;
|
||||
|
||||
|
|
|
@ -98,13 +98,13 @@ class DivCnnl : public BangKernelWithoutConfig {
|
|||
|
||||
size_t wsSize;
|
||||
cnnlGetDivWorkspaceSize(context->cnnlHandle(), aDesc, bDesc, cDesc,
|
||||
&wsSize);
|
||||
&wsSize);
|
||||
|
||||
BangPtr wsData = context->getWorkspace(wsSize);
|
||||
|
||||
cnnlStatus_t stat = cnnlDiv_v2(context->cnnlHandle(),
|
||||
CNNL_COMPUTATION_HIGH_PRECISION,
|
||||
aDesc, aData, bDesc, bData, wsData, wsSize, cDesc, cData);
|
||||
cnnlStatus_t stat = cnnlDiv_v2(
|
||||
context->cnnlHandle(), CNNL_COMPUTATION_HIGH_PRECISION, aDesc,
|
||||
aData, bDesc, bData, wsData, wsSize, cDesc, cData);
|
||||
if (stat != CNNL_STATUS_SUCCESS)
|
||||
return;
|
||||
|
||||
|
@ -152,9 +152,9 @@ class DivNoNanCnnl : public BangKernelWithoutConfig {
|
|||
|
||||
BangPtr wsData = context->getWorkspace(wsSize);
|
||||
|
||||
cnnlStatus_t stat = cnnlDivNoNan_v2(context->cnnlHandle(),
|
||||
CNNL_COMPUTATION_HIGH_PRECISION,
|
||||
aDesc, aData, bDesc, bData, wsData, wsSize, cDesc, cData);
|
||||
cnnlStatus_t stat = cnnlDivNoNan_v2(
|
||||
context->cnnlHandle(), CNNL_COMPUTATION_HIGH_PRECISION, aDesc,
|
||||
aData, bDesc, bData, wsData, wsSize, cDesc, cData);
|
||||
if (stat != CNNL_STATUS_SUCCESS)
|
||||
return;
|
||||
|
||||
|
@ -201,8 +201,9 @@ class MaximumCnnl : public BangKernelWithoutConfig {
|
|||
cnnlGetMaximumWorkspaceSize(context->cnnlHandle(), cDesc, &wsSize);
|
||||
BangPtr wsData = context->getWorkspace(wsSize);
|
||||
|
||||
cnnlStatus_t stat = cnnlMaximum(context->cnnlHandle(), aDesc, aData, bDesc, bData,
|
||||
cDesc, cData, wsData, wsSize);
|
||||
cnnlStatus_t stat =
|
||||
cnnlMaximum(context->cnnlHandle(), aDesc, aData, bDesc, bData,
|
||||
cDesc, cData, wsData, wsSize);
|
||||
if (stat != CNNL_STATUS_SUCCESS)
|
||||
return;
|
||||
|
||||
|
@ -249,8 +250,9 @@ class MinimumCnnl : public BangKernelWithoutConfig {
|
|||
cnnlGetMinimumWorkspaceSize(context->cnnlHandle(), cDesc, &wsSize);
|
||||
BangPtr wsData = context->getWorkspace(wsSize);
|
||||
|
||||
cnnlStatus_t stat = cnnlMinimum(context->cnnlHandle(), aDesc, aData, bDesc, bData,
|
||||
cDesc, cData, wsData, wsSize);
|
||||
cnnlStatus_t stat =
|
||||
cnnlMinimum(context->cnnlHandle(), aDesc, aData, bDesc, bData,
|
||||
cDesc, cData, wsData, wsSize);
|
||||
if (stat != CNNL_STATUS_SUCCESS)
|
||||
return;
|
||||
|
||||
|
@ -278,7 +280,7 @@ class MSELossCnnl : public BangKernelWithoutConfig {
|
|||
IT_TODO_HALT();
|
||||
|
||||
int dim_array[4] = {dim[0], dim[1], dim[2], dim[3]};
|
||||
int dim_out[4] ={1,1,1,1};
|
||||
int dim_out[4] = {1, 1, 1, 1};
|
||||
// get inputs
|
||||
checkCnnlError(cnnlCreateTensorDescriptor(&aDesc));
|
||||
checkCnnlError(cnnlSetTensorDescriptor(aDesc, CNNL_LAYOUT_NCHW,
|
||||
|
@ -290,23 +292,23 @@ class MSELossCnnl : public BangKernelWithoutConfig {
|
|||
|
||||
// get outputs
|
||||
checkCnnlError(cnnlCreateTensorDescriptor(&cDesc));
|
||||
if ( reduction == MSELossObj::None ) {
|
||||
checkCnnlError(cnnlSetTensorDescriptor(cDesc, CNNL_LAYOUT_NCHW,
|
||||
CNNL_DTYPE_FLOAT, 4, dim_array));
|
||||
if (reduction == MSELossObj::None) {
|
||||
checkCnnlError(cnnlSetTensorDescriptor(
|
||||
cDesc, CNNL_LAYOUT_NCHW, CNNL_DTYPE_FLOAT, 4, dim_array));
|
||||
} else {
|
||||
checkCnnlError(cnnlSetTensorDescriptor(cDesc, CNNL_LAYOUT_NCHW,
|
||||
CNNL_DTYPE_FLOAT, 4, dim_out));
|
||||
checkCnnlError(cnnlSetTensorDescriptor(
|
||||
cDesc, CNNL_LAYOUT_NCHW, CNNL_DTYPE_FLOAT, 4, dim_out));
|
||||
}
|
||||
cnnlStatus_t stat;
|
||||
if( reduction == MSELossObj::None ) {
|
||||
stat = cnnlMSELoss(context->cnnlHandle(), CNNL_MSE_LOSS_NONE, aDesc, aData, bDesc, bData,
|
||||
cDesc, cData);
|
||||
if (reduction == MSELossObj::None) {
|
||||
stat = cnnlMSELoss(context->cnnlHandle(), CNNL_MSE_LOSS_NONE, aDesc,
|
||||
aData, bDesc, bData, cDesc, cData);
|
||||
} else if (reduction == MSELossObj::Sum) {
|
||||
stat = cnnlMSELoss(context->cnnlHandle(), CNNL_MSE_LOSS_SUM, aDesc, aData, bDesc, bData,
|
||||
cDesc, cData);
|
||||
stat = cnnlMSELoss(context->cnnlHandle(), CNNL_MSE_LOSS_SUM, aDesc,
|
||||
aData, bDesc, bData, cDesc, cData);
|
||||
} else {
|
||||
stat = cnnlMSELoss(context->cnnlHandle(), CNNL_MSE_LOSS_MEAN, aDesc, aData, bDesc, bData,
|
||||
cDesc, cData);
|
||||
stat = cnnlMSELoss(context->cnnlHandle(), CNNL_MSE_LOSS_MEAN, aDesc,
|
||||
aData, bDesc, bData, cDesc, cData);
|
||||
}
|
||||
|
||||
if (stat != CNNL_STATUS_SUCCESS)
|
||||
|
@ -352,11 +354,13 @@ class PowerCnnl : public BangKernelWithoutConfig {
|
|||
|
||||
// get op descriptor
|
||||
size_t wsSize;
|
||||
cnnlGetPowWorkspaceSize(context->cnnlHandle(), aDesc, bDesc, cDesc, &wsSize);
|
||||
cnnlGetPowWorkspaceSize(context->cnnlHandle(), aDesc, bDesc, cDesc,
|
||||
&wsSize);
|
||||
BangPtr wsData = context->getWorkspace(wsSize);
|
||||
|
||||
cnnlStatus_t stat = cnnlPow(context->cnnlHandle(), CNNL_COMPUTATION_HIGH_PRECISION,
|
||||
aDesc, aData, bDesc, bData, wsData, wsSize, cDesc, cData);
|
||||
cnnlStatus_t stat =
|
||||
cnnlPow(context->cnnlHandle(), CNNL_COMPUTATION_HIGH_PRECISION,
|
||||
aDesc, aData, bDesc, bData, wsData, wsSize, cDesc, cData);
|
||||
if (stat != CNNL_STATUS_SUCCESS)
|
||||
return;
|
||||
|
||||
|
@ -404,9 +408,9 @@ class FloorDivCnnl : public BangKernelWithoutConfig {
|
|||
|
||||
BangPtr wsData = context->getWorkspace(wsSize);
|
||||
|
||||
cnnlStatus_t stat = cnnlFloorDiv_v2(context->cnnlHandle(),
|
||||
CNNL_COMPUTATION_HIGH_PRECISION,
|
||||
aDesc, aData, bDesc, bData, cDesc, cData, wsData, wsSize);
|
||||
cnnlStatus_t stat = cnnlFloorDiv_v2(
|
||||
context->cnnlHandle(), CNNL_COMPUTATION_HIGH_PRECISION, aDesc,
|
||||
aData, bDesc, bData, cDesc, cData, wsData, wsSize);
|
||||
if (stat != CNNL_STATUS_SUCCESS)
|
||||
return;
|
||||
|
||||
|
@ -449,14 +453,14 @@ class FloorDivTruncCnnl : public BangKernelWithoutConfig {
|
|||
CNNL_DTYPE_FLOAT, 4, dim_array));
|
||||
|
||||
size_t wsSize;
|
||||
cnnlGetFloorDivTruncWorkspaceSize(context->cnnlHandle(), aDesc, bDesc, cDesc,
|
||||
&wsSize);
|
||||
cnnlGetFloorDivTruncWorkspaceSize(context->cnnlHandle(), aDesc, bDesc,
|
||||
cDesc, &wsSize);
|
||||
|
||||
BangPtr wsData = context->getWorkspace(wsSize);
|
||||
|
||||
cnnlStatus_t stat = cnnlFloorDivTrunc(context->cnnlHandle(),
|
||||
CNNL_COMPUTATION_HIGH_PRECISION,
|
||||
aDesc, aData, bDesc, bData, cDesc, cData, wsData, wsSize);
|
||||
cnnlStatus_t stat = cnnlFloorDivTrunc(
|
||||
context->cnnlHandle(), CNNL_COMPUTATION_HIGH_PRECISION, aDesc,
|
||||
aData, bDesc, bData, cDesc, cData, wsData, wsSize);
|
||||
if (stat != CNNL_STATUS_SUCCESS)
|
||||
return;
|
||||
|
||||
|
@ -504,8 +508,9 @@ class FloorModCnnl : public BangKernelWithoutConfig {
|
|||
|
||||
BangPtr wsData = context->getWorkspace(wsSize);
|
||||
|
||||
cnnlStatus_t stat = cnnlFloorMod(context->cnnlHandle(),
|
||||
aDesc, aData, bDesc, bData, cDesc, cData, wsData, wsSize);
|
||||
cnnlStatus_t stat =
|
||||
cnnlFloorMod(context->cnnlHandle(), aDesc, aData, bDesc, bData,
|
||||
cDesc, cData, wsData, wsSize);
|
||||
if (stat != CNNL_STATUS_SUCCESS)
|
||||
return;
|
||||
|
||||
|
@ -522,42 +527,47 @@ class FloorModCnnl : public BangKernelWithoutConfig {
|
|||
// const RuntimeObj *_context) const override {
|
||||
// auto op = as<ElementWiseObj>(_op);
|
||||
// auto context = dynamic_cast<const BangRuntimeObj *>(_context);
|
||||
//
|
||||
//
|
||||
// void *const aData = (op->getInputs(0)->getRawDataPtr<void *>());
|
||||
// void *const bData = (op->getInputs(1)->getRawDataPtr<void *>());
|
||||
// void *const cData = (op->getOutput()->getRawDataPtr<void *>());
|
||||
//
|
||||
//
|
||||
// cnnlTensorDescriptor_t aDesc, bDesc, cDesc;
|
||||
// auto dim = op->getInputs(0)->getDims();
|
||||
// if (dim.size() != 4)
|
||||
// IT_TODO_HALT();
|
||||
//
|
||||
//
|
||||
// int dim_array[4] = {dim[0], dim[1], dim[2], dim[3]};
|
||||
// // get inputs
|
||||
// checkCnnlError(cnnlCreateTensorDescriptor(&aDesc));
|
||||
// checkCnnlError(cnnlSetTensorDescriptor(aDesc, CNNL_LAYOUT_NCHW,
|
||||
// CNNL_DTYPE_FLOAT, 4, dim_array));
|
||||
//
|
||||
// CNNL_DTYPE_FLOAT, 4,
|
||||
// dim_array));
|
||||
//
|
||||
// checkCnnlError(cnnlCreateTensorDescriptor(&bDesc));
|
||||
// checkCnnlError(cnnlSetTensorDescriptor(bDesc, CNNL_LAYOUT_NCHW,
|
||||
// CNNL_DTYPE_FLOAT, 4, dim_array));
|
||||
//
|
||||
// CNNL_DTYPE_FLOAT, 4,
|
||||
// dim_array));
|
||||
//
|
||||
// // get outputs
|
||||
// checkCnnlError(cnnlCreateTensorDescriptor(&cDesc));
|
||||
// checkCnnlError(cnnlSetTensorDescriptor(cDesc, CNNL_LAYOUT_NCHW,
|
||||
// CNNL_DTYPE_FLOAT, 4, dim_array));
|
||||
//
|
||||
// CNNL_DTYPE_FLOAT, 4,
|
||||
// dim_array));
|
||||
//
|
||||
// size_t wsSize;
|
||||
// cnnlGetFloorModTruncWorkspaceSize(context->cnnlHandle(), aDesc, bDesc, cDesc,
|
||||
// cnnlGetFloorModTruncWorkspaceSize(context->cnnlHandle(), aDesc,
|
||||
// bDesc, cDesc,
|
||||
// &wsSize);
|
||||
//
|
||||
//
|
||||
// BangPtr wsData = context->getWorkspace(wsSize);
|
||||
//
|
||||
//
|
||||
// cnnlStatus_t stat = cnnlFloorModTrunc(context->cnnlHandle(),
|
||||
// aDesc, aData, bDesc, bData, cDesc, cData, wsData, wsSize);
|
||||
// aDesc, aData, bDesc, bData, cDesc,
|
||||
// cData, wsData, wsSize);
|
||||
// if (stat != CNNL_STATUS_SUCCESS)
|
||||
// return;
|
||||
//
|
||||
//
|
||||
// // Destories in BANG does not require sync. But cnnl does not state
|
||||
// // whether sync is required before destories.
|
||||
// checkCnnlError(cnnlDestroyTensorDescriptor(aDesc));
|
||||
|
@ -595,8 +605,8 @@ REGISTER_KERNEL(Device::BANG, OpType::Sub, DataType::Float32, SubCnnl,
|
|||
REGISTER_KERNEL(Device::BANG, OpType::Mul, DataType::Float32, MulCnnl,
|
||||
"Mul_cnnl_BANG_Float32");
|
||||
|
||||
REGISTER_KERNEL(Device::BANG, OpType::DivDemo, DataType::Float32, ElementWiseBang,
|
||||
"DivDemo_Bang_Float32");
|
||||
REGISTER_KERNEL(Device::BANG, OpType::DivDemo, DataType::Float32,
|
||||
ElementWiseBang, "DivDemo_Bang_Float32");
|
||||
REGISTER_KERNEL(Device::BANG, OpType::Div, DataType::Float32, DivCnnl,
|
||||
"Div_cnnl_Float32");
|
||||
REGISTER_KERNEL(Device::BANG, OpType::DivNoNan, DataType::Float32, DivNoNanCnnl,
|
||||
|
@ -611,11 +621,12 @@ REGISTER_KERNEL(Device::BANG, OpType::Power, DataType::Float32, PowerCnnl,
|
|||
"Power_cnnl_BANG_Float32");
|
||||
REGISTER_KERNEL(Device::BANG, OpType::FloorDiv, DataType::Float32, FloorDivCnnl,
|
||||
"FloorDiv_cnnl_BANG_Float32");
|
||||
REGISTER_KERNEL(Device::BANG, OpType::FloorDivTrunc, DataType::Float32, FloorDivTruncCnnl,
|
||||
"FloorDivTrunc_cnnl_BANG_Float32");
|
||||
REGISTER_KERNEL(Device::BANG, OpType::FloorDivTrunc, DataType::Float32,
|
||||
FloorDivTruncCnnl, "FloorDivTrunc_cnnl_BANG_Float32");
|
||||
REGISTER_KERNEL(Device::BANG, OpType::FloorMod, DataType::Float32, FloorModCnnl,
|
||||
"FloorMod_cnnl_BANG_Float32");
|
||||
// REGISTER_KERNEL(Device::BANG, OpType::FloorModTrunc, DataType::Float32, FloorModTruncCnnl,
|
||||
// REGISTER_KERNEL(Device::BANG, OpType::FloorModTrunc, DataType::Float32,
|
||||
// FloorModTruncCnnl,
|
||||
// "FloorModTrunc_cnnl_BANG_Float32");
|
||||
// REGISTER_KERNEL(Device::BANG, OpType::Pow, DataType::Float32,
|
||||
// ElementWiseBang,
|
||||
|
|
|
@ -29,7 +29,8 @@ class ErfCnnl : public BangKernelWithoutConfig {
|
|||
CNNL_DTYPE_FLOAT, 4, dim_array));
|
||||
|
||||
cnnlStatus_t stat =
|
||||
cnnlErf_v2(context->cnnlHandle(), CNNL_COMPUTATION_HIGH_PRECISION, aDesc, aData, cDesc, cData);
|
||||
cnnlErf_v2(context->cnnlHandle(), CNNL_COMPUTATION_HIGH_PRECISION,
|
||||
aDesc, aData, cDesc, cData);
|
||||
if (stat != CNNL_STATUS_SUCCESS)
|
||||
return;
|
||||
|
||||
|
|
|
@ -29,7 +29,8 @@ class ExpCnnl : public BangKernelWithoutConfig {
|
|||
CNNL_DTYPE_FLOAT, 4, dim_array));
|
||||
|
||||
cnnlStatus_t stat =
|
||||
cnnlExp_v2(context->cnnlHandle(), CNNL_COMPUTATION_HIGH_PRECISION, aDesc, aData, cDesc, cData);
|
||||
cnnlExp_v2(context->cnnlHandle(), CNNL_COMPUTATION_HIGH_PRECISION,
|
||||
aDesc, aData, cDesc, cData);
|
||||
if (stat != CNNL_STATUS_SUCCESS)
|
||||
return;
|
||||
|
||||
|
|
|
@ -31,7 +31,7 @@ class LogCnnl : public BangKernelWithoutConfig {
|
|||
|
||||
cnnlStatus_t stat =
|
||||
cnnlLog_v2(context->cnnlHandle(), CNNL_COMPUTATION_HIGH_PRECISION,
|
||||
getOpType(), aDesc, aData, cDesc, cData);
|
||||
getOpType(), aDesc, aData, cDesc, cData);
|
||||
if (stat != CNNL_STATUS_SUCCESS)
|
||||
return;
|
||||
|
||||
|
@ -44,14 +44,14 @@ class LogCnnl : public BangKernelWithoutConfig {
|
|||
|
||||
class LogECnnl : public LogCnnl {
|
||||
cnnlLogBase_t getOpType() const override { return CNNL_LOG_E; }
|
||||
};
|
||||
};
|
||||
class Log2Cnnl : public LogCnnl {
|
||||
cnnlLogBase_t getOpType() const override { return CNNL_LOG_2; }
|
||||
};
|
||||
};
|
||||
class Log10Cnnl : public LogCnnl {
|
||||
cnnlLogBase_t getOpType() const override { return CNNL_LOG_10; }
|
||||
};
|
||||
|
||||
};
|
||||
|
||||
REGISTER_KERNEL(Device::BANG, OpType::Log_e, DataType::Float32, LogECnnl,
|
||||
"Loge_cnnl_BANG_Float32");
|
||||
REGISTER_KERNEL(Device::BANG, OpType::Log_2, DataType::Float32, Log2Cnnl,
|
||||
|
|
|
@ -40,7 +40,7 @@ class Log1pCnnl : public BangKernelWithoutConfig {
|
|||
checkCnnlError(cnnlDestroyTensorDescriptor(cDesc));
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
REGISTER_KERNEL(Device::BANG, OpType::Log1p, DataType::Float32, Log1pCnnl,
|
||||
"Log1p_cnnl_BANG_Float32");
|
||||
|
||||
|
|
|
@ -1,6 +1,6 @@
|
|||
#include "operators/element_wise.h"
|
||||
#include "bang/bang_kernel_without_config.h"
|
||||
#include "bang/bang_runtime.h"
|
||||
#include "operators/element_wise.h"
|
||||
|
||||
namespace infini {
|
||||
class MulNCnnl : public BangKernelWithoutConfig {
|
||||
|
@ -10,8 +10,8 @@ class MulNCnnl : public BangKernelWithoutConfig {
|
|||
auto context = dynamic_cast<const BangRuntimeObj *>(_context);
|
||||
int num = op->numInputs();
|
||||
void *argv[num];
|
||||
for(int i = 0; i < num; ++i) {
|
||||
argv[i] = op->getInputs(i)->getRawDataPtr<void *>();
|
||||
for (int i = 0; i < num; ++i) {
|
||||
argv[i] = op->getInputs(i)->getRawDataPtr<void *>();
|
||||
}
|
||||
void *const cData = (op->getOutput()->getRawDataPtr<void *>());
|
||||
|
||||
|
@ -24,20 +24,22 @@ class MulNCnnl : public BangKernelWithoutConfig {
|
|||
checkCnnlError(cnnlCreateTensorDescriptor(&desc));
|
||||
checkCnnlError(cnnlSetTensorDescriptor(desc, CNNL_LAYOUT_NCHW,
|
||||
CNNL_DTYPE_FLOAT, 4, dim_array));
|
||||
cnnlTensorDescriptor_t descArray[num];
|
||||
for(int i = 0; i < num; ++i) {
|
||||
checkCnnlError(cnnlCreateTensorDescriptor(&descArray[i]));
|
||||
checkCnnlError(cnnlSetTensorDescriptor(descArray[i], CNNL_LAYOUT_NCHW,
|
||||
CNNL_DTYPE_FLOAT, 4, dim_array));
|
||||
cnnlTensorDescriptor_t descArray[num];
|
||||
for (int i = 0; i < num; ++i) {
|
||||
checkCnnlError(cnnlCreateTensorDescriptor(&descArray[i]));
|
||||
checkCnnlError(
|
||||
cnnlSetTensorDescriptor(descArray[i], CNNL_LAYOUT_NCHW,
|
||||
CNNL_DTYPE_FLOAT, 4, dim_array));
|
||||
}
|
||||
|
||||
cnnlStatus_t stat = cnnlMulN(context->cnnlHandle(), descArray, argv, num, desc, cData);
|
||||
cnnlStatus_t stat =
|
||||
cnnlMulN(context->cnnlHandle(), descArray, argv, num, desc, cData);
|
||||
if (stat != CNNL_STATUS_SUCCESS)
|
||||
return;
|
||||
|
||||
// Destories in BANG does not require sync. But cnnl does not state
|
||||
// whether sync is required before destories.
|
||||
for(int i = 0; i < num; ++i) {
|
||||
for (int i = 0; i < num; ++i) {
|
||||
checkCnnlError(cnnlDestroyTensorDescriptor(descArray[i]));
|
||||
}
|
||||
checkCnnlError(cnnlDestroyTensorDescriptor(desc));
|
||||
|
|
|
@ -40,7 +40,7 @@ class NegTensorCnnl : public BangKernelWithoutConfig {
|
|||
}
|
||||
};
|
||||
|
||||
REGISTER_KERNEL(Device::BANG, OpType::NegTensor, DataType::Float32, NegTensorCnnl,
|
||||
"NegTensor_cnnl_BANG_Float32");
|
||||
REGISTER_KERNEL(Device::BANG, OpType::NegTensor, DataType::Float32,
|
||||
NegTensorCnnl, "NegTensor_cnnl_BANG_Float32");
|
||||
|
||||
}; // namespace infini
|
||||
|
|
|
@ -1,6 +1,6 @@
|
|||
#include "operators/pad.h"
|
||||
#include "bang/bang_kernel_without_config.h"
|
||||
#include "bang/bang_runtime.h"
|
||||
#include "operators/pad.h"
|
||||
|
||||
namespace infini {
|
||||
class PadCnnl : public BangKernelWithoutConfig {
|
||||
|
@ -24,30 +24,31 @@ class PadCnnl : public BangKernelWithoutConfig {
|
|||
if (pads.size() == 2 && dim_size != 1) {
|
||||
for (int i = 0; i < dim_size * 2; i += 2) {
|
||||
paddings[i] = pads[0];
|
||||
paddings[i+1] = pads[1];
|
||||
paddings[i + 1] = pads[1];
|
||||
}
|
||||
} else {
|
||||
for (int i = 0; i < dim_size * 2; i += 2) {
|
||||
paddings[i] = pads[i/2];
|
||||
paddings[i+1] = pads[i/2 + dim_size];
|
||||
paddings[i] = pads[i / 2];
|
||||
paddings[i + 1] = pads[i / 2 + dim_size];
|
||||
}
|
||||
}
|
||||
int dimout_array[dim_size];
|
||||
for (int i = 0; i < dim_size; ++i) {
|
||||
dimout_array[i] = dim[i] + paddings[2*i] + paddings[2*i+1];
|
||||
dimout_array[i] = dim[i] + paddings[2 * i] + paddings[2 * i + 1];
|
||||
}
|
||||
float paddingValue = 0.0;
|
||||
// input
|
||||
checkCnnlError(cnnlCreateTensorDescriptor(&aDesc));
|
||||
checkCnnlError(cnnlSetTensorDescriptor(aDesc, CNNL_LAYOUT_ARRAY,
|
||||
CNNL_DTYPE_FLOAT, dim_size, dim_array));
|
||||
checkCnnlError(cnnlSetTensorDescriptor(
|
||||
aDesc, CNNL_LAYOUT_ARRAY, CNNL_DTYPE_FLOAT, dim_size, dim_array));
|
||||
// output
|
||||
checkCnnlError(cnnlCreateTensorDescriptor(&cDesc));
|
||||
checkCnnlError(cnnlSetTensorDescriptor(cDesc, CNNL_LAYOUT_ARRAY,
|
||||
CNNL_DTYPE_FLOAT, dim_size, dimout_array));
|
||||
CNNL_DTYPE_FLOAT, dim_size,
|
||||
dimout_array));
|
||||
|
||||
cnnlStatus_t stat =
|
||||
cnnlPad(context->cnnlHandle(), aDesc, aData, paddings, &paddingValue, cDesc, cData);
|
||||
cnnlStatus_t stat = cnnlPad(context->cnnlHandle(), aDesc, aData,
|
||||
paddings, &paddingValue, cDesc, cData);
|
||||
if (stat != CNNL_STATUS_SUCCESS)
|
||||
return;
|
||||
|
||||
|
|
|
@ -40,7 +40,7 @@ class ReciprocalCnnl : public BangKernelWithoutConfig {
|
|||
}
|
||||
};
|
||||
|
||||
REGISTER_KERNEL(Device::BANG, OpType::Reciprocal, DataType::Float32, ReciprocalCnnl,
|
||||
"Reciprocal_cnnl_BANG_Float32");
|
||||
REGISTER_KERNEL(Device::BANG, OpType::Reciprocal, DataType::Float32,
|
||||
ReciprocalCnnl, "Reciprocal_cnnl_BANG_Float32");
|
||||
|
||||
}; // namespace infini
|
||||
|
|
|
@ -29,7 +29,8 @@ class RsqrtCnnl : public BangKernelWithoutConfig {
|
|||
CNNL_DTYPE_FLOAT, 4, dim_array));
|
||||
|
||||
cnnlStatus_t stat =
|
||||
cnnlRsqrt_v2(context->cnnlHandle(), CNNL_COMPUTATION_HIGH_PRECISION, aDesc, aData, cDesc, cData);
|
||||
cnnlRsqrt_v2(context->cnnlHandle(), CNNL_COMPUTATION_HIGH_PRECISION,
|
||||
aDesc, aData, cDesc, cData);
|
||||
if (stat != CNNL_STATUS_SUCCESS)
|
||||
return;
|
||||
|
||||
|
|
|
@ -29,7 +29,8 @@ class SqrtCnnl : public BangKernelWithoutConfig {
|
|||
CNNL_DTYPE_FLOAT, 4, dim_array));
|
||||
|
||||
cnnlStatus_t stat =
|
||||
cnnlSqrt_v2(context->cnnlHandle(), CNNL_COMPUTATION_HIGH_PRECISION, aDesc, aData, cDesc, cData);
|
||||
cnnlSqrt_v2(context->cnnlHandle(), CNNL_COMPUTATION_HIGH_PRECISION,
|
||||
aDesc, aData, cDesc, cData);
|
||||
if (stat != CNNL_STATUS_SUCCESS)
|
||||
return;
|
||||
|
||||
|
|
|
@ -25,8 +25,8 @@ class TransformCnnl : public BangKernelWithoutConfig {
|
|||
checkCnnlError(cnnlSetTensorDescriptor(cDesc, CNNL_LAYOUT_NCHW,
|
||||
CNNL_DTYPE_FLOAT, 4, dim_array));
|
||||
|
||||
cnnlStatus_t stat =
|
||||
cnnlTransform(context->cnnlHandle(), &alpha, cDesc, aData, &beta, cData);
|
||||
cnnlStatus_t stat = cnnlTransform(context->cnnlHandle(), &alpha, cDesc,
|
||||
aData, &beta, cData);
|
||||
if (stat != CNNL_STATUS_SUCCESS)
|
||||
return;
|
||||
|
||||
|
@ -36,7 +36,7 @@ class TransformCnnl : public BangKernelWithoutConfig {
|
|||
}
|
||||
};
|
||||
|
||||
REGISTER_KERNEL(Device::BANG, OpType::Transform, DataType::Float32, TransformCnnl,
|
||||
"Transform_cnnl_BANG_Float32");
|
||||
REGISTER_KERNEL(Device::BANG, OpType::Transform, DataType::Float32,
|
||||
TransformCnnl, "Transform_cnnl_BANG_Float32");
|
||||
|
||||
}; // namespace infini
|
||||
|
|
|
@ -1,6 +1,6 @@
|
|||
#include "operators/transpose.h"
|
||||
#include "bang/bang_kernel_without_config.h"
|
||||
#include "bang/bang_runtime.h"
|
||||
#include "operators/transpose.h"
|
||||
|
||||
namespace infini {
|
||||
class TransposeCnnl : public BangKernelWithoutConfig {
|
||||
|
@ -22,13 +22,13 @@ class TransposeCnnl : public BangKernelWithoutConfig {
|
|||
int dimout_array[4] = {dimout[0], dimout[1], dimout[2], dimout[3]};
|
||||
// get inputs
|
||||
checkCnnlError(cnnlCreateTensorDescriptor(&aDesc));
|
||||
checkCnnlError(cnnlSetTensorDescriptor(aDesc, CNNL_LAYOUT_ARRAY,
|
||||
CNNL_DTYPE_FLOAT, 4, dimin_array));
|
||||
checkCnnlError(cnnlSetTensorDescriptor(
|
||||
aDesc, CNNL_LAYOUT_ARRAY, CNNL_DTYPE_FLOAT, 4, dimin_array));
|
||||
|
||||
// get outputs
|
||||
checkCnnlError(cnnlCreateTensorDescriptor(&cDesc));
|
||||
checkCnnlError(cnnlSetTensorDescriptor(cDesc, CNNL_LAYOUT_ARRAY,
|
||||
CNNL_DTYPE_FLOAT, 4, dimout_array));
|
||||
checkCnnlError(cnnlSetTensorDescriptor(
|
||||
cDesc, CNNL_LAYOUT_ARRAY, CNNL_DTYPE_FLOAT, 4, dimout_array));
|
||||
|
||||
// get op descriptor
|
||||
auto permute = op->getPermute();
|
||||
|
@ -37,12 +37,13 @@ class TransposeCnnl : public BangKernelWithoutConfig {
|
|||
checkCnnlError(cnnlSetTransposeDescriptor(opDesc, 4, permute));
|
||||
|
||||
size_t wsSize;
|
||||
cnnlGetTransposeWorkspaceSize(context->cnnlHandle(), aDesc, opDesc, &wsSize);
|
||||
cnnlGetTransposeWorkspaceSize(context->cnnlHandle(), aDesc, opDesc,
|
||||
&wsSize);
|
||||
BangPtr wsData = context->getWorkspace(wsSize);
|
||||
|
||||
cnnlStatus_t stat = cnnlTranspose_v2(context->cnnlHandle(), opDesc,
|
||||
aDesc, aData, cDesc, cData,
|
||||
wsData, wsSize);
|
||||
cnnlStatus_t stat =
|
||||
cnnlTranspose_v2(context->cnnlHandle(), opDesc, aDesc, aData, cDesc,
|
||||
cData, wsData, wsSize);
|
||||
if (stat != CNNL_STATUS_SUCCESS)
|
||||
return;
|
||||
|
||||
|
@ -54,6 +55,6 @@ class TransposeCnnl : public BangKernelWithoutConfig {
|
|||
}
|
||||
};
|
||||
|
||||
REGISTER_KERNEL(Device::BANG, OpType::Transpose, DataType::Float32, TransposeCnnl,
|
||||
"Transpose_cnnl_BANG_Float32");
|
||||
REGISTER_KERNEL(Device::BANG, OpType::Transpose, DataType::Float32,
|
||||
TransposeCnnl, "Transpose_cnnl_BANG_Float32");
|
||||
}; // namespace infini
|
||||
|
|
|
@ -33,12 +33,10 @@ class TrigonCnnl : public BangKernelWithoutConfig {
|
|||
// get op descriptor
|
||||
cnnlTrigonDescriptor_t opDesc;
|
||||
checkCnnlError(cnnlCreateTrigonDescriptor(&opDesc));
|
||||
checkCnnlError(cnnlSetTrigonDescriptor(
|
||||
opDesc, getOpType()));
|
||||
checkCnnlError(cnnlSetTrigonDescriptor(opDesc, getOpType()));
|
||||
|
||||
cnnlStatus_t stat =
|
||||
cnnlTrigonForward(context->cnnlHandle(), opDesc, aDesc,
|
||||
aData, cDesc, cData);
|
||||
cnnlStatus_t stat = cnnlTrigonForward(context->cnnlHandle(), opDesc,
|
||||
aDesc, aData, cDesc, cData);
|
||||
if (stat != CNNL_STATUS_SUCCESS)
|
||||
return;
|
||||
|
||||
|
@ -55,7 +53,7 @@ class SinCnnl : public TrigonCnnl {
|
|||
return CNNL_TRIGON_SIN;
|
||||
}
|
||||
cnnlComputationPreference_t getPrefer() const override {
|
||||
return CNNL_COMPUTATION_HIGH_PRECISION;
|
||||
return CNNL_COMPUTATION_HIGH_PRECISION;
|
||||
}
|
||||
};
|
||||
|
||||
|
@ -64,7 +62,7 @@ class CosCnnl : public TrigonCnnl {
|
|||
return CNNL_TRIGON_COS;
|
||||
}
|
||||
cnnlComputationPreference_t getPrefer() const override {
|
||||
return CNNL_COMPUTATION_HIGH_PRECISION;
|
||||
return CNNL_COMPUTATION_HIGH_PRECISION;
|
||||
}
|
||||
};
|
||||
|
||||
|
@ -73,7 +71,7 @@ class TanCnnl : public TrigonCnnl {
|
|||
return CNNL_TRIGON_TAN;
|
||||
}
|
||||
cnnlComputationPreference_t getPrefer() const override {
|
||||
return CNNL_COMPUTATION_HIGH_PRECISION;
|
||||
return CNNL_COMPUTATION_HIGH_PRECISION;
|
||||
}
|
||||
};
|
||||
|
||||
|
@ -82,7 +80,7 @@ class ASinCnnl : public TrigonCnnl {
|
|||
return CNNL_TRIGON_ASIN;
|
||||
}
|
||||
cnnlComputationPreference_t getPrefer() const override {
|
||||
return CNNL_COMPUTATION_HIGH_PRECISION;
|
||||
return CNNL_COMPUTATION_HIGH_PRECISION;
|
||||
}
|
||||
};
|
||||
|
||||
|
@ -91,7 +89,7 @@ class ACosCnnl : public TrigonCnnl {
|
|||
return CNNL_TRIGON_ACOS;
|
||||
}
|
||||
cnnlComputationPreference_t getPrefer() const override {
|
||||
return CNNL_COMPUTATION_HIGH_PRECISION;
|
||||
return CNNL_COMPUTATION_HIGH_PRECISION;
|
||||
}
|
||||
};
|
||||
|
||||
|
@ -100,7 +98,7 @@ class ATanCnnl : public TrigonCnnl {
|
|||
return CNNL_TRIGON_ATAN;
|
||||
}
|
||||
cnnlComputationPreference_t getPrefer() const override {
|
||||
return CNNL_COMPUTATION_HIGH_PRECISION;
|
||||
return CNNL_COMPUTATION_HIGH_PRECISION;
|
||||
}
|
||||
};
|
||||
|
||||
|
@ -109,7 +107,7 @@ class SinHCnnl : public TrigonCnnl {
|
|||
return CNNL_TRIGON_SINH;
|
||||
}
|
||||
cnnlComputationPreference_t getPrefer() const override {
|
||||
return CNNL_COMPUTATION_HIGH_PRECISION;
|
||||
return CNNL_COMPUTATION_HIGH_PRECISION;
|
||||
}
|
||||
};
|
||||
|
||||
|
@ -118,7 +116,7 @@ class CosHCnnl : public TrigonCnnl {
|
|||
return CNNL_TRIGON_COSH;
|
||||
}
|
||||
cnnlComputationPreference_t getPrefer() const override {
|
||||
return CNNL_COMPUTATION_HIGH_PRECISION;
|
||||
return CNNL_COMPUTATION_HIGH_PRECISION;
|
||||
}
|
||||
};
|
||||
|
||||
|
@ -127,7 +125,7 @@ class TanHCnnl : public TrigonCnnl {
|
|||
return CNNL_TRIGON_TANH;
|
||||
}
|
||||
cnnlComputationPreference_t getPrefer() const override {
|
||||
return CNNL_COMPUTATION_HIGH_PRECISION;
|
||||
return CNNL_COMPUTATION_HIGH_PRECISION;
|
||||
}
|
||||
};
|
||||
|
||||
|
@ -136,7 +134,7 @@ class ASinHCnnl : public TrigonCnnl {
|
|||
return CNNL_TRIGON_ASINH;
|
||||
}
|
||||
cnnlComputationPreference_t getPrefer() const override {
|
||||
return CNNL_COMPUTATION_HIGH_PRECISION;
|
||||
return CNNL_COMPUTATION_HIGH_PRECISION;
|
||||
}
|
||||
};
|
||||
|
||||
|
@ -145,7 +143,7 @@ class ACosHCnnl : public TrigonCnnl {
|
|||
return CNNL_TRIGON_ACOSH;
|
||||
}
|
||||
cnnlComputationPreference_t getPrefer() const override {
|
||||
return CNNL_COMPUTATION_HIGH_PRECISION;
|
||||
return CNNL_COMPUTATION_HIGH_PRECISION;
|
||||
}
|
||||
};
|
||||
|
||||
|
@ -154,7 +152,7 @@ class ATanHCnnl : public TrigonCnnl {
|
|||
return CNNL_TRIGON_ATANH;
|
||||
}
|
||||
cnnlComputationPreference_t getPrefer() const override {
|
||||
return CNNL_COMPUTATION_HIGH_PRECISION;
|
||||
return CNNL_COMPUTATION_HIGH_PRECISION;
|
||||
}
|
||||
};
|
||||
|
||||
|
|
|
@ -1,17 +1,15 @@
|
|||
#include "operators/activation_backward.h"
|
||||
|
||||
namespace infini {
|
||||
ActivationBackwardObj::ActivationBackwardObj(OpType type,
|
||||
GraphObj *graph,
|
||||
Tensor y,
|
||||
Tensor diff_y,
|
||||
Tensor x,
|
||||
ActivationBackwardObj::ActivationBackwardObj(OpType type, GraphObj *graph,
|
||||
Tensor y, Tensor diff_y, Tensor x,
|
||||
Tensor diff_x)
|
||||
: OperatorObj(type, {y, diff_y, x}, {diff_x}) {
|
||||
IT_ASSERT(checkValid(graph));
|
||||
}
|
||||
|
||||
optional<vector<Shape>> ActivationBackwardObj::inferShape(const TensorVec &inputs) const {
|
||||
optional<vector<Shape>>
|
||||
ActivationBackwardObj::inferShape(const TensorVec &inputs) const {
|
||||
const auto A = inputs[0];
|
||||
return {{A->getDims()}};
|
||||
}
|
||||
|
|
|
@ -183,9 +183,9 @@ void ConvTransposed2dObj::setAuxilaryAttributes(PaddingMode mode) {
|
|||
void ConvBackwardFilterObj::setAuxilaryAttributes(PaddingMode mode) {
|
||||
const Tensor &inputX = inputs[0];
|
||||
const Tensor &diffY = inputs[1];
|
||||
n = inputX->getDims()[0], c = inputX->getDims()[1], h = inputX->getDims()[2],
|
||||
w = inputX->getDims()[3], f = diffY->getDims()[0], r = diffY->getDims()[2],
|
||||
s = diffY->getDims()[3];
|
||||
n = inputX->getDims()[0], c = inputX->getDims()[1],
|
||||
h = inputX->getDims()[2], w = inputX->getDims()[3], f = diffY->getDims()[0],
|
||||
r = diffY->getDims()[2], s = diffY->getDims()[3];
|
||||
if (mode == PaddingMode::Same) {
|
||||
int oh = h / sh;
|
||||
int ow = w / sw;
|
||||
|
@ -196,9 +196,10 @@ void ConvBackwardFilterObj::setAuxilaryAttributes(PaddingMode mode) {
|
|||
}
|
||||
}
|
||||
|
||||
ConvBackwardFilterObj::ConvBackwardFilterObj(GraphObj *graph, Tensor inputX, Tensor diffY, Tensor diffW,
|
||||
int ph, int pw, int sh, int sw, int dh, int dw, Tensor bias,
|
||||
ActType act)
|
||||
ConvBackwardFilterObj::ConvBackwardFilterObj(GraphObj *graph, Tensor inputX,
|
||||
Tensor diffY, Tensor diffW, int ph,
|
||||
int pw, int sh, int sw, int dh,
|
||||
int dw, Tensor bias, ActType act)
|
||||
: ConvBaseObj(OpType::Conv, {inputX, diffY}, diffW, ph, pw, sh, sw, dh, dw,
|
||||
inputX, diffY),
|
||||
act(act) {
|
||||
|
@ -208,9 +209,11 @@ ConvBackwardFilterObj::ConvBackwardFilterObj(GraphObj *graph, Tensor inputX, Ten
|
|||
IT_ASSERT(checkValid(graph));
|
||||
}
|
||||
|
||||
ConvBackwardFilterObj::ConvBackwardFilterObj(GraphObj *graph, Tensor inputX, Tensor diffY, Tensor diffW,
|
||||
PaddingMode mode, int sh, int sw, int dh, int dw, Tensor bias,
|
||||
ActType act)
|
||||
ConvBackwardFilterObj::ConvBackwardFilterObj(GraphObj *graph, Tensor inputX,
|
||||
Tensor diffY, Tensor diffW,
|
||||
PaddingMode mode, int sh, int sw,
|
||||
int dh, int dw, Tensor bias,
|
||||
ActType act)
|
||||
: ConvBaseObj(OpType::Conv, {inputX, diffY}, diffW, mode, sh, sw, dh, dw,
|
||||
inputX, diffY),
|
||||
act(act) {
|
||||
|
@ -220,7 +223,8 @@ ConvBackwardFilterObj::ConvBackwardFilterObj(GraphObj *graph, Tensor inputX, Ten
|
|||
IT_ASSERT(checkValid(graph));
|
||||
}
|
||||
|
||||
optional<vector<Shape>> ConvBackwardFilterObj::inferShape(const TensorVec &inputs) const {
|
||||
optional<vector<Shape>>
|
||||
ConvBackwardFilterObj::inferShape(const TensorVec &inputs) const {
|
||||
const auto &inputX = inputs[0], &diffY = inputs[1];
|
||||
auto n = inputX->getDims()[0];
|
||||
auto h = inputX->getDims()[2];
|
||||
|
@ -251,5 +255,4 @@ optional<vector<Shape>> ConvBackwardFilterObj::inferShape(const TensorVec &input
|
|||
return {{{on, oc, oh, ow}}};
|
||||
}
|
||||
|
||||
|
||||
} // namespace infini
|
||||
|
|
|
@ -11,7 +11,7 @@ optional<vector<Shape>> DetObj::inferShape(const TensorVec &inputs) const {
|
|||
auto input = A->getDims();
|
||||
int length = input.size();
|
||||
if (length == 2) {
|
||||
std::vector<int> output ={1};
|
||||
std::vector<int> output = {1};
|
||||
return {{output}};
|
||||
} else {
|
||||
std::vector<int> output(input.begin(), input.end() - 2);
|
||||
|
|
|
@ -54,24 +54,24 @@ vector<int> ElementWiseObj::getOpAttrVector() const {
|
|||
return {enum_to_underlying(type)};
|
||||
}
|
||||
|
||||
|
||||
MSELossObj::MSELossObj(GraphObj *graph, Tensor input0, Tensor input1, Reduction reduction, Tensor output)
|
||||
: OperatorObj(OpType::MSELoss, {input0, input1}, {output}), reductionMode(reduction) {
|
||||
MSELossObj::MSELossObj(GraphObj *graph, Tensor input0, Tensor input1,
|
||||
Reduction reduction, Tensor output)
|
||||
: OperatorObj(OpType::MSELoss, {input0, input1}, {output}),
|
||||
reductionMode(reduction) {
|
||||
IT_ASSERT(checkValid(graph));
|
||||
}
|
||||
|
||||
optional<vector<Shape>>
|
||||
MSELossObj::inferShape(const TensorVec &inputs) const {
|
||||
optional<vector<Shape>> MSELossObj::inferShape(const TensorVec &inputs) const {
|
||||
const auto A = inputs[0], B = inputs[1];
|
||||
if (A->getDims().size() != B->getDims().size() ||
|
||||
A->getDims() != B->getDims())
|
||||
return {};
|
||||
|
||||
if (reductionMode == None) {
|
||||
return {{A->getDims()}};
|
||||
return {{A->getDims()}};
|
||||
} else {
|
||||
Shape temp = { 1 };
|
||||
return {{temp}};
|
||||
Shape temp = {1};
|
||||
return {{temp}};
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -100,20 +100,19 @@ vector<int> MSELossObj::getOpAttrVector() const {
|
|||
|
||||
AddNObj::AddNObj(GraphObj *graph, int tensorNum, Tensor output, ...)
|
||||
: OperatorObj(OpType::AddN), num(tensorNum) {
|
||||
TensorVec temp;
|
||||
Tensor *start = &output;
|
||||
++start;
|
||||
for(int i = 0; i < num; ++i) {
|
||||
temp.push_back(*start);
|
||||
start++;
|
||||
}
|
||||
setOutputs({output});
|
||||
setInputs(temp);
|
||||
TensorVec temp;
|
||||
Tensor *start = &output;
|
||||
++start;
|
||||
for (int i = 0; i < num; ++i) {
|
||||
temp.push_back(*start);
|
||||
start++;
|
||||
}
|
||||
setOutputs({output});
|
||||
setInputs(temp);
|
||||
IT_ASSERT(checkValid(graph));
|
||||
}
|
||||
|
||||
optional<vector<Shape>>
|
||||
AddNObj::inferShape(const TensorVec &inputs) const {
|
||||
optional<vector<Shape>> AddNObj::inferShape(const TensorVec &inputs) const {
|
||||
// For now,we only process the same dims here, broardcast will be considered
|
||||
// in the opt layer.
|
||||
const auto A = inputs[0];
|
||||
|
@ -144,20 +143,19 @@ vector<int> AddNObj::getOpAttrVector() const {
|
|||
|
||||
MulNObj::MulNObj(GraphObj *graph, int tensorNum, Tensor output, ...)
|
||||
: OperatorObj(OpType::MulN), num(tensorNum) {
|
||||
TensorVec temp;
|
||||
Tensor *start = &output;
|
||||
++start;
|
||||
for(int i = 0; i < num; ++i) {
|
||||
temp.push_back(*start);
|
||||
start++;
|
||||
}
|
||||
setOutputs({output});
|
||||
setInputs(temp);
|
||||
TensorVec temp;
|
||||
Tensor *start = &output;
|
||||
++start;
|
||||
for (int i = 0; i < num; ++i) {
|
||||
temp.push_back(*start);
|
||||
start++;
|
||||
}
|
||||
setOutputs({output});
|
||||
setInputs(temp);
|
||||
IT_ASSERT(checkValid(graph));
|
||||
}
|
||||
|
||||
optional<vector<Shape>>
|
||||
MulNObj::inferShape(const TensorVec &inputs) const {
|
||||
optional<vector<Shape>> MulNObj::inferShape(const TensorVec &inputs) const {
|
||||
// For now,we only process the same dims here, broardcast will be considered
|
||||
// in the opt layer.
|
||||
const auto A = inputs[0];
|
||||
|
|
|
@ -1,21 +1,23 @@
|
|||
#include "operators/transpose.h"
|
||||
|
||||
namespace infini {
|
||||
TransposeObj::TransposeObj(GraphObj *graph, Tensor input, Tensor output, int permute[4])
|
||||
TransposeObj::TransposeObj(GraphObj *graph, Tensor input, Tensor output,
|
||||
int permute[4])
|
||||
: OperatorObj(OpType::Transpose, {input}, {output}) {
|
||||
transposePermute[0] = permute[0];
|
||||
transposePermute[1] = permute[1];
|
||||
transposePermute[2] = permute[2];
|
||||
transposePermute[3] = permute[3];
|
||||
transposePermute[0] = permute[0];
|
||||
transposePermute[1] = permute[1];
|
||||
transposePermute[2] = permute[2];
|
||||
transposePermute[3] = permute[3];
|
||||
IT_ASSERT(checkValid(graph));
|
||||
}
|
||||
|
||||
optional<vector<Shape>> TransposeObj::inferShape(const TensorVec &inputs) const {
|
||||
optional<vector<Shape>>
|
||||
TransposeObj::inferShape(const TensorVec &inputs) const {
|
||||
const auto A = inputs[0];
|
||||
auto input = A->getDims();
|
||||
auto output = input;
|
||||
|
||||
for(int i = 0; i < 4; ++i){
|
||||
|
||||
for (int i = 0; i < 4; ++i) {
|
||||
output[i] = input[transposePermute[i]];
|
||||
}
|
||||
return {{output}};
|
||||
|
|
|
@ -32,8 +32,10 @@ vector<int> UnaryObj::getOpAttrVector() const {
|
|||
return {enum_to_underlying(type)};
|
||||
}
|
||||
|
||||
ClipObj::ClipObj(GraphObj *graph, Tensor input, Tensor output, float min, float max)
|
||||
: OperatorObj(OpType::Clip, {input}, {output}), minValue(min), maxValue(max) {
|
||||
ClipObj::ClipObj(GraphObj *graph, Tensor input, Tensor output, float min,
|
||||
float max)
|
||||
: OperatorObj(OpType::Clip, {input}, {output}), minValue(min),
|
||||
maxValue(max) {
|
||||
IT_ASSERT(checkValid(graph));
|
||||
}
|
||||
|
||||
|
@ -64,7 +66,7 @@ vector<int> ClipObj::getOpAttrVector() const {
|
|||
}
|
||||
|
||||
FillObj::FillObj(GraphObj *graph, Tensor input, Tensor output, float value)
|
||||
: OperatorObj(OpType::Fill, {input}, {output}), setValue(value) {
|
||||
: OperatorObj(OpType::Fill, {input}, {output}), setValue(value) {
|
||||
IT_ASSERT(checkValid(graph));
|
||||
}
|
||||
|
||||
|
@ -98,7 +100,7 @@ L2LossObj::L2LossObj(GraphObj *graph, Tensor input, Tensor output)
|
|||
}
|
||||
|
||||
optional<vector<Shape>> L2LossObj::inferShape(const TensorVec &inputs) const {
|
||||
Shape temp = { 1 };
|
||||
Shape temp = {1};
|
||||
return {{temp}};
|
||||
}
|
||||
|
||||
|
@ -121,12 +123,15 @@ vector<int> L2LossObj::getOpAttrVector() const {
|
|||
return {enum_to_underlying(type)};
|
||||
}
|
||||
|
||||
TransformObj::TransformObj(GraphObj *graph, Tensor input, Tensor output, float alpha, float beta)
|
||||
: OperatorObj(OpType::Transform, {input}, {output}), alphaValue(alpha), betaValue(beta) {
|
||||
TransformObj::TransformObj(GraphObj *graph, Tensor input, Tensor output,
|
||||
float alpha, float beta)
|
||||
: OperatorObj(OpType::Transform, {input}, {output}), alphaValue(alpha),
|
||||
betaValue(beta) {
|
||||
IT_ASSERT(checkValid(graph));
|
||||
}
|
||||
|
||||
optional<vector<Shape>> TransformObj::inferShape(const TensorVec &inputs) const {
|
||||
optional<vector<Shape>>
|
||||
TransformObj::inferShape(const TensorVec &inputs) const {
|
||||
const auto A = inputs[0];
|
||||
return {{A->getDims()}};
|
||||
}
|
||||
|
@ -179,8 +184,10 @@ vector<int> CastObj::getOpAttrVector() const {
|
|||
return {enum_to_underlying(type)};
|
||||
}
|
||||
|
||||
CumsumObj::CumsumObj(GraphObj *graph, Tensor input, Tensor output, int axis, bool exclusive, bool reverse)
|
||||
: OperatorObj(OpType::Cumsum, {input}, {output}), axisValue(axis), exclusiveValue(exclusive), reverseValue(reverse) {
|
||||
CumsumObj::CumsumObj(GraphObj *graph, Tensor input, Tensor output, int axis,
|
||||
bool exclusive, bool reverse)
|
||||
: OperatorObj(OpType::Cumsum, {input}, {output}), axisValue(axis),
|
||||
exclusiveValue(exclusive), reverseValue(reverse) {
|
||||
IT_ASSERT(checkValid(graph));
|
||||
}
|
||||
|
||||
|
@ -208,16 +215,19 @@ vector<int> CumsumObj::getOpAttrVector() const {
|
|||
return {enum_to_underlying(type)};
|
||||
}
|
||||
|
||||
// CumprodObj::CumprodObj(GraphObj *graph, Tensor input, Tensor output, int axis, bool exclusive, bool reverse)
|
||||
// : OperatorObj(OpType::Cumprod, {input}, {output}), axisValue(axis), exclusiveValue(exclusive), reverseValue(reverse) {
|
||||
// CumprodObj::CumprodObj(GraphObj *graph, Tensor input, Tensor output, int
|
||||
// axis, bool exclusive, bool reverse)
|
||||
// : OperatorObj(OpType::Cumprod, {input}, {output}), axisValue(axis),
|
||||
// exclusiveValue(exclusive), reverseValue(reverse) {
|
||||
// IT_ASSERT(checkValid(graph));
|
||||
// }
|
||||
//
|
||||
// optional<vector<Shape>> CumprodObj::inferShape(const TensorVec &inputs) const {
|
||||
//
|
||||
// optional<vector<Shape>> CumprodObj::inferShape(const TensorVec &inputs) const
|
||||
// {
|
||||
// const auto A = inputs[0];
|
||||
// return {{A->getDims()}};
|
||||
// }
|
||||
//
|
||||
//
|
||||
// std::string CumprodObj::toString() const {
|
||||
// std::ostringstream os;
|
||||
// os << OpRegistry::getOpName(type) << "[" << getGuid() << "]";
|
||||
|
@ -225,14 +235,14 @@ vector<int> CumsumObj::getOpAttrVector() const {
|
|||
// os << "output=" << outputs[0]->getGuid() << ")";
|
||||
// return os.str();
|
||||
// }
|
||||
//
|
||||
//
|
||||
// vector<int> CumprodObj::getWorkloadVector() const {
|
||||
// vector<int> ret{enum_to_underlying(type)};
|
||||
// const Shape shape = outputs[0]->getDims();
|
||||
// ret.insert(ret.end(), shape.begin(), shape.end());
|
||||
// return ret;
|
||||
// }
|
||||
//
|
||||
//
|
||||
// vector<int> CumprodObj::getOpAttrVector() const {
|
||||
// return {enum_to_underlying(type)};
|
||||
// }
|
||||
|
|
|
@ -3,16 +3,17 @@
|
|||
#include "core/kernel.h"
|
||||
#include "core/runtime.h"
|
||||
#include "operators/activation_backward.h"
|
||||
#include "operators/unary.h"
|
||||
#include "operators/element_wise.h"
|
||||
#include "operators/unary.h"
|
||||
|
||||
#include "test.h"
|
||||
|
||||
namespace infini {
|
||||
|
||||
template <class T, class D>
|
||||
void testActivationBackward(const std::function<void(void *, size_t, DataType)> &generator,
|
||||
const Shape &shape) {
|
||||
void testActivationBackward(
|
||||
const std::function<void(void *, size_t, DataType)> &generator,
|
||||
const Shape &shape) {
|
||||
// Runtime
|
||||
Runtime cpuRuntime = CpuRuntimeObj::getInstance();
|
||||
auto bangRuntime = make_ref<BangRuntimeObj>();
|
||||
|
@ -39,14 +40,17 @@ void testActivationBackward(const std::function<void(void *, size_t, DataType)>
|
|||
bangGraph->dataMalloc();
|
||||
bangRuntime->run(bangGraph);
|
||||
auto diffXGpu = gpuOp->getOutput();
|
||||
|
||||
|
||||
EXPECT_TRUE(1);
|
||||
}
|
||||
|
||||
TEST(cnnl_ActivationBackward, run) {
|
||||
testActivationBackward<ReluBackwardObj, ReluObj>(IncrementalGenerator(), Shape{1, 2, 2, 3});
|
||||
testActivationBackward<SigmoidBackwardObj, SigmoidObj>(IncrementalGenerator(), Shape{1, 2, 2, 3});
|
||||
testActivationBackward<TanhBackwardObj, TanhObj>(IncrementalGenerator(), Shape{1, 2, 2, 3});
|
||||
testActivationBackward<ReluBackwardObj, ReluObj>(IncrementalGenerator(),
|
||||
Shape{1, 2, 2, 3});
|
||||
testActivationBackward<SigmoidBackwardObj, SigmoidObj>(
|
||||
IncrementalGenerator(), Shape{1, 2, 2, 3});
|
||||
testActivationBackward<TanhBackwardObj, TanhObj>(IncrementalGenerator(),
|
||||
Shape{1, 2, 2, 3});
|
||||
}
|
||||
|
||||
} // namespace infini
|
||||
|
|
|
@ -9,9 +9,8 @@
|
|||
namespace infini {
|
||||
|
||||
template <class T>
|
||||
void testaddN(
|
||||
const std::function<void(void *, size_t, DataType)> &generator,
|
||||
const Shape &shape) {
|
||||
void testaddN(const std::function<void(void *, size_t, DataType)> &generator,
|
||||
const Shape &shape) {
|
||||
// Runtime
|
||||
Runtime cpuRuntime = CpuRuntimeObj::getInstance();
|
||||
auto bangRuntime = make_ref<BangRuntimeObj>();
|
||||
|
|
|
@ -10,7 +10,7 @@ namespace infini {
|
|||
|
||||
template <class T>
|
||||
void testCast(const std::function<void(void *, size_t, DataType)> &generator,
|
||||
const Shape &shape) {
|
||||
const Shape &shape) {
|
||||
// Runtime
|
||||
Runtime cpuRuntime = CpuRuntimeObj::getInstance();
|
||||
auto bangRuntime = make_ref<BangRuntimeObj>();
|
||||
|
|
|
@ -10,7 +10,7 @@ namespace infini {
|
|||
|
||||
template <class T>
|
||||
void testCeil(const std::function<void(void *, size_t, DataType)> &generator,
|
||||
const Shape &shape) {
|
||||
const Shape &shape) {
|
||||
// Runtime
|
||||
Runtime cpuRuntime = CpuRuntimeObj::getInstance();
|
||||
auto bangRuntime = make_ref<BangRuntimeObj>();
|
||||
|
|
|
@ -10,7 +10,7 @@ namespace infini {
|
|||
|
||||
template <class T>
|
||||
void testClip(const std::function<void(void *, size_t, DataType)> &generator,
|
||||
const Shape &shape) {
|
||||
const Shape &shape) {
|
||||
// Runtime
|
||||
Runtime cpuRuntime = CpuRuntimeObj::getInstance();
|
||||
auto bangRuntime = make_ref<BangRuntimeObj>();
|
||||
|
|
|
@ -10,7 +10,7 @@ namespace infini {
|
|||
|
||||
template <class T>
|
||||
void testCopy(const std::function<void(void *, size_t, DataType)> &generator,
|
||||
const Shape &shape) {
|
||||
const Shape &shape) {
|
||||
// Runtime
|
||||
Runtime cpuRuntime = CpuRuntimeObj::getInstance();
|
||||
auto bangRuntime = make_ref<BangRuntimeObj>();
|
||||
|
|
|
@ -9,8 +9,8 @@
|
|||
namespace infini {
|
||||
|
||||
template <class T>
|
||||
void testCumsum(const std::function<void(void *, size_t, DataType)> &generator, int axis,
|
||||
const Shape &shape) {
|
||||
void testCumsum(const std::function<void(void *, size_t, DataType)> &generator,
|
||||
int axis, const Shape &shape) {
|
||||
// Runtime
|
||||
Runtime cpuRuntime = CpuRuntimeObj::getInstance();
|
||||
auto bangRuntime = make_ref<BangRuntimeObj>();
|
||||
|
|
|
@ -10,7 +10,7 @@ namespace infini {
|
|||
|
||||
template <class T>
|
||||
void testDet(const std::function<void(void *, size_t, DataType)> &generator,
|
||||
const Shape &shape) {
|
||||
const Shape &shape) {
|
||||
// Runtime
|
||||
Runtime cpuRuntime = CpuRuntimeObj::getInstance();
|
||||
auto bangRuntime = make_ref<BangRuntimeObj>();
|
||||
|
|
|
@ -9,9 +9,8 @@
|
|||
namespace infini {
|
||||
|
||||
template <class T>
|
||||
void testDivDemo(
|
||||
const std::function<void(void *, size_t, DataType)> &generator,
|
||||
const Shape &shape) {
|
||||
void testDivDemo(const std::function<void(void *, size_t, DataType)> &generator,
|
||||
const Shape &shape) {
|
||||
// Runtime
|
||||
Runtime cpuRuntime = CpuRuntimeObj::getInstance();
|
||||
auto bangRuntime = make_ref<BangRuntimeObj>();
|
||||
|
|
|
@ -10,7 +10,7 @@ namespace infini {
|
|||
|
||||
template <class T>
|
||||
void testErf(const std::function<void(void *, size_t, DataType)> &generator,
|
||||
const Shape &shape) {
|
||||
const Shape &shape) {
|
||||
// Runtime
|
||||
Runtime cpuRuntime = CpuRuntimeObj::getInstance();
|
||||
auto bangRuntime = make_ref<BangRuntimeObj>();
|
||||
|
|
|
@ -10,7 +10,7 @@ namespace infini {
|
|||
|
||||
template <class T>
|
||||
void testExp(const std::function<void(void *, size_t, DataType)> &generator,
|
||||
const Shape &shape) {
|
||||
const Shape &shape) {
|
||||
// Runtime
|
||||
Runtime cpuRuntime = CpuRuntimeObj::getInstance();
|
||||
auto bangRuntime = make_ref<BangRuntimeObj>();
|
||||
|
|
|
@ -10,7 +10,7 @@ namespace infini {
|
|||
|
||||
template <class T>
|
||||
void testFill(const std::function<void(void *, size_t, DataType)> &generator,
|
||||
const Shape &shape) {
|
||||
const Shape &shape) {
|
||||
// Runtime
|
||||
Runtime cpuRuntime = CpuRuntimeObj::getInstance();
|
||||
auto bangRuntime = make_ref<BangRuntimeObj>();
|
||||
|
|
|
@ -43,7 +43,8 @@ void testFloorDivTrunc(
|
|||
}
|
||||
|
||||
TEST(cnnl_FloorDivTrunc, run) {
|
||||
testFloorDivTrunc<FloorDivTruncObj>(IncrementalGenerator(), Shape{1, 2, 2, 3});
|
||||
testFloorDivTrunc<FloorDivTruncObj>(IncrementalGenerator(),
|
||||
Shape{1, 2, 2, 3});
|
||||
}
|
||||
|
||||
} // namespace infini
|
||||
|
|
|
@ -10,7 +10,7 @@ namespace infini {
|
|||
|
||||
template <class T>
|
||||
void testL2Loss(const std::function<void(void *, size_t, DataType)> &generator,
|
||||
const Shape &shape) {
|
||||
const Shape &shape) {
|
||||
// Runtime
|
||||
Runtime cpuRuntime = CpuRuntimeObj::getInstance();
|
||||
auto bangRuntime = make_ref<BangRuntimeObj>();
|
||||
|
|
|
@ -10,7 +10,7 @@ namespace infini {
|
|||
|
||||
template <class T>
|
||||
void testLog(const std::function<void(void *, size_t, DataType)> &generator,
|
||||
const Shape &shape) {
|
||||
const Shape &shape) {
|
||||
// Runtime
|
||||
Runtime cpuRuntime = CpuRuntimeObj::getInstance();
|
||||
auto bangRuntime = make_ref<BangRuntimeObj>();
|
||||
|
|
|
@ -9,9 +9,8 @@
|
|||
namespace infini {
|
||||
|
||||
template <class T>
|
||||
void testMaximum(
|
||||
const std::function<void(void *, size_t, DataType)> &generator,
|
||||
const Shape &shape) {
|
||||
void testMaximum(const std::function<void(void *, size_t, DataType)> &generator,
|
||||
const Shape &shape) {
|
||||
// Runtime
|
||||
Runtime cpuRuntime = CpuRuntimeObj::getInstance();
|
||||
auto bangRuntime = make_ref<BangRuntimeObj>();
|
||||
|
|
|
@ -9,9 +9,8 @@
|
|||
namespace infini {
|
||||
|
||||
template <class T>
|
||||
void testMinimum(
|
||||
const std::function<void(void *, size_t, DataType)> &generator,
|
||||
const Shape &shape) {
|
||||
void testMinimum(const std::function<void(void *, size_t, DataType)> &generator,
|
||||
const Shape &shape) {
|
||||
// Runtime
|
||||
Runtime cpuRuntime = CpuRuntimeObj::getInstance();
|
||||
auto bangRuntime = make_ref<BangRuntimeObj>();
|
||||
|
|
|
@ -9,9 +9,8 @@
|
|||
namespace infini {
|
||||
|
||||
template <class T>
|
||||
void testMSELoss(
|
||||
const std::function<void(void *, size_t, DataType)> &generator,
|
||||
const Shape &shape) {
|
||||
void testMSELoss(const std::function<void(void *, size_t, DataType)> &generator,
|
||||
const Shape &shape) {
|
||||
// Runtime
|
||||
Runtime cpuRuntime = CpuRuntimeObj::getInstance();
|
||||
auto bangRuntime = make_ref<BangRuntimeObj>();
|
||||
|
@ -30,9 +29,12 @@ void testMSELoss(
|
|||
Graph bangGraph = make_ref<GraphObj>(bangRuntime);
|
||||
auto inputGpu1 = bangGraph->cloneTensor(inputCpu1);
|
||||
auto inputGpu2 = bangGraph->cloneTensor(inputCpu2);
|
||||
auto gpuOp1 = bangGraph->addOp<T>(inputGpu1, inputGpu2, MSELossObj::None, nullptr);
|
||||
auto gpuOp2 = bangGraph->addOp<T>(inputGpu1, inputGpu2, MSELossObj::Sum, nullptr);
|
||||
auto gpuOp3 = bangGraph->addOp<T>(inputGpu1, inputGpu2, MSELossObj::Mean, nullptr);
|
||||
auto gpuOp1 =
|
||||
bangGraph->addOp<T>(inputGpu1, inputGpu2, MSELossObj::None, nullptr);
|
||||
auto gpuOp2 =
|
||||
bangGraph->addOp<T>(inputGpu1, inputGpu2, MSELossObj::Sum, nullptr);
|
||||
auto gpuOp3 =
|
||||
bangGraph->addOp<T>(inputGpu1, inputGpu2, MSELossObj::Mean, nullptr);
|
||||
bangGraph->dataMalloc();
|
||||
bangRuntime->run(bangGraph);
|
||||
auto outputGpu1 = gpuOp1->getOutput();
|
||||
|
|
|
@ -9,9 +9,8 @@
|
|||
namespace infini {
|
||||
|
||||
template <class T>
|
||||
void testmulN(
|
||||
const std::function<void(void *, size_t, DataType)> &generator,
|
||||
const Shape &shape) {
|
||||
void testmulN(const std::function<void(void *, size_t, DataType)> &generator,
|
||||
const Shape &shape) {
|
||||
// Runtime
|
||||
Runtime cpuRuntime = CpuRuntimeObj::getInstance();
|
||||
auto bangRuntime = make_ref<BangRuntimeObj>();
|
||||
|
|
|
@ -9,8 +9,9 @@
|
|||
namespace infini {
|
||||
|
||||
template <class T>
|
||||
void testNegTensor(const std::function<void(void *, size_t, DataType)> &generator,
|
||||
const Shape &shape) {
|
||||
void testNegTensor(
|
||||
const std::function<void(void *, size_t, DataType)> &generator,
|
||||
const Shape &shape) {
|
||||
// Runtime
|
||||
Runtime cpuRuntime = CpuRuntimeObj::getInstance();
|
||||
auto bangRuntime = make_ref<BangRuntimeObj>();
|
||||
|
|
|
@ -10,7 +10,7 @@ namespace infini {
|
|||
|
||||
template <class T>
|
||||
void testPad(const std::function<void(void *, size_t, DataType)> &generator,
|
||||
const Shape &shape) {
|
||||
const Shape &shape) {
|
||||
// Runtime
|
||||
Runtime cpuRuntime = CpuRuntimeObj::getInstance();
|
||||
auto bangRuntime = make_ref<BangRuntimeObj>();
|
||||
|
@ -23,7 +23,8 @@ void testPad(const std::function<void(void *, size_t, DataType)> &generator,
|
|||
// GPU
|
||||
Graph bangGraph = make_ref<GraphObj>(bangRuntime);
|
||||
auto inputGpu = bangGraph->cloneTensor(inputCpu);
|
||||
auto gpuOp = bangGraph->addOp<T>(inputGpu, nullptr, vector<int>{1,1,1,1}, vector<int>{0,3});
|
||||
auto gpuOp = bangGraph->addOp<T>(inputGpu, nullptr, vector<int>{1, 1, 1, 1},
|
||||
vector<int>{0, 3});
|
||||
bangGraph->dataMalloc();
|
||||
bangRuntime->run(bangGraph);
|
||||
auto outputGpu = gpuOp->getOutput();
|
||||
|
|
|
@ -9,9 +9,8 @@
|
|||
namespace infini {
|
||||
|
||||
template <class T>
|
||||
void testPow(
|
||||
const std::function<void(void *, size_t, DataType)> &generator,
|
||||
const Shape &shape) {
|
||||
void testPow(const std::function<void(void *, size_t, DataType)> &generator,
|
||||
const Shape &shape) {
|
||||
// Runtime
|
||||
Runtime cpuRuntime = CpuRuntimeObj::getInstance();
|
||||
auto bangRuntime = make_ref<BangRuntimeObj>();
|
||||
|
|
|
@ -9,8 +9,9 @@
|
|||
namespace infini {
|
||||
|
||||
template <class T>
|
||||
void testReciprocal(const std::function<void(void *, size_t, DataType)> &generator,
|
||||
const Shape &shape) {
|
||||
void testReciprocal(
|
||||
const std::function<void(void *, size_t, DataType)> &generator,
|
||||
const Shape &shape) {
|
||||
// Runtime
|
||||
Runtime cpuRuntime = CpuRuntimeObj::getInstance();
|
||||
auto bangRuntime = make_ref<BangRuntimeObj>();
|
||||
|
|
|
@ -10,7 +10,7 @@ namespace infini {
|
|||
|
||||
template <class T>
|
||||
void testSqrt(const std::function<void(void *, size_t, DataType)> &generator,
|
||||
const Shape &shape) {
|
||||
const Shape &shape) {
|
||||
// Runtime
|
||||
Runtime cpuRuntime = CpuRuntimeObj::getInstance();
|
||||
auto bangRuntime = make_ref<BangRuntimeObj>();
|
||||
|
|
|
@ -9,8 +9,9 @@
|
|||
namespace infini {
|
||||
|
||||
template <class T>
|
||||
void testTransform(const std::function<void(void *, size_t, DataType)> &generator,
|
||||
const Shape &shape) {
|
||||
void testTransform(
|
||||
const std::function<void(void *, size_t, DataType)> &generator,
|
||||
const Shape &shape) {
|
||||
// Runtime
|
||||
Runtime cpuRuntime = CpuRuntimeObj::getInstance();
|
||||
auto bangRuntime = make_ref<BangRuntimeObj>();
|
||||
|
|
|
@ -9,8 +9,9 @@
|
|||
namespace infini {
|
||||
|
||||
template <class T>
|
||||
void testTranspose(const std::function<void(void *, size_t, DataType)> &generator,
|
||||
const Shape &shape) {
|
||||
void testTranspose(
|
||||
const std::function<void(void *, size_t, DataType)> &generator,
|
||||
const Shape &shape) {
|
||||
// Runtime
|
||||
Runtime cpuRuntime = CpuRuntimeObj::getInstance();
|
||||
auto bangRuntime = make_ref<BangRuntimeObj>();
|
||||
|
|
|
@ -10,7 +10,7 @@ namespace infini {
|
|||
|
||||
template <class T>
|
||||
void testTrigon(const std::function<void(void *, size_t, DataType)> &generator,
|
||||
const Shape &shape) {
|
||||
const Shape &shape) {
|
||||
// Runtime
|
||||
Runtime cpuRuntime = CpuRuntimeObj::getInstance();
|
||||
auto bangRuntime = make_ref<BangRuntimeObj>();
|
||||
|
|
Loading…
Reference in New Issue