support cuda transpose

This commit is contained in:
whjthu 2023-04-22 16:57:27 +08:00
parent 225a42f22d
commit 664f0dbe02
9 changed files with 154 additions and 13 deletions

View File

@ -0,0 +1,11 @@
#pragma once
#include "operators/transpose.h"
#include "utils/small_array.h"
namespace infini {
void transpose_kernel(float *input, float *output, int nDims, int size,
SmallArray strides, SmallArray outputShape);
}; // namespace infini

View File

@ -15,7 +15,7 @@ class TransposeObj : public OperatorObj {
std::vector<int> getPermute() const { return transposePermute; }
private:
vector<int> transposePermute = {1, 1, 1, 1};
vector<int> transposePermute;
vector<int> getWorkloadVector() const override;
vector<int> getOpAttrVector() const override;
};

View File

@ -0,0 +1,6 @@
namespace infini {
#define SMALL_ARRAY_SIZE 8
struct SmallArray {
int data[SMALL_ARRAY_SIZE];
};
} // namespace infini

View File

@ -24,4 +24,4 @@ class ClipCuda : public CudaKernelWithoutConfig {
REGISTER_KERNEL(Device::CUDA, OpType::Clip, DataType::Float32, ClipCuda,
"Clip_CUDA_Float32");
}; // namespace infini
} // namespace infini

View File

@ -1,9 +1,7 @@
#include "core/common.h"
#include "core/constants.h"
#include "cuda/cuda_common.h"
#include <math.h>
using infini::E_CONSTANT;
constexpr unsigned int num_threads() { return 32 * 4; }
constexpr int thread_work_size() { return 4; }
constexpr int block_work_size() { return thread_work_size() * num_threads(); }
@ -29,4 +27,4 @@ void clip_kernel(float *input, float *output, int num, float minValue,
maxValue);
}
}; // namespace infini
} // namespace infini

View File

@ -0,0 +1,49 @@
#include "operators/transpose.h"
#include "cuda/cuda_kernel_wihtout_config.h"
#include "cuda/cuda_runtime.h"
#include "cuda/cuda_transpose.h"
namespace infini {
class TransposeCuda : public CudaKernelWithoutConfig {
void compute(const Operator &_op,
const RuntimeObj *_context) const override {
auto op = as<TransposeObj>(_op);
auto input = op->getInputs(0);
auto output = op->getOutput();
void *const inputData = input->getRawDataPtr<void *>();
void *const outputData = output->getRawDataPtr<void *>();
const auto &inputShape = input->getDims();
const auto &outputShape = output->getDims();
const auto &perm = op->getPermute();
int size = input->size();
int nDims = input->getDims().size();
// Compute strides
SmallArray strides, buffer;
IT_ASSERT(nDims <= SMALL_ARRAY_SIZE);
int curStride = 1;
for (int i = nDims - 1; i >= 0; --i) {
buffer.data[i] = curStride;
curStride *= inputShape[i];
}
for (int i = 0; i < nDims; ++i) {
strides.data[i] = buffer.data[perm[i]];
}
SmallArray outputDims;
for (int i = 0; i < nDims; ++i) {
outputDims.data[i] = outputShape[i];
}
transpose_kernel((float *)inputData, (float *)outputData, nDims, size,
strides, outputDims);
}
};
REGISTER_KERNEL(Device::CUDA, OpType::Transpose, DataType::Float32,
TransposeCuda, "Transpose_CUDA_Float32");
} // namespace infini

View File

@ -0,0 +1,37 @@
#include "core/common.h"
#include "cuda/cuda_common.h"
#include "utils/small_array.h"
constexpr unsigned int num_threads() { return 32 * 4; }
constexpr int thread_work_size() { return 4; }
constexpr int block_work_size() { return thread_work_size() * num_threads(); }
__global__ void _transpose_kernel(float *input, float *output, int nDims,
int size, infini::SmallArray strides,
infini::SmallArray outputShape) {
int outputIdx = blockIdx.x * blockDim.x + threadIdx.x;
if (outputIdx < size) {
int inputIdx = 0;
int v = outputIdx;
for (int i = nDims - 1; i >= 0; --i) {
inputIdx += v % outputShape.data[i] * strides.data[i];
v /= outputShape.data[i];
}
#if __CUDA_ARCH__ >= 350 || defined(USE_ROCM)
output[outputIdx] = __ldg(input + inputIdx);
#else
output[outputIdx] = input[inputIdx];
#endif
}
}
namespace infini {
void transpose_kernel(float *input, float *output, int nDims, int size,
SmallArray strides, SmallArray outputShape) {
int blocksize = block_work_size();
int gridsize = (size + block_work_size() - 1) / block_work_size();
_transpose_kernel<<<blocksize, gridsize>>>(input, output, nDims, size,
strides, outputShape);
}
} // namespace infini

View File

@ -4,13 +4,7 @@ namespace infini {
TransposeObj::TransposeObj(GraphObj *graph, Tensor input, Tensor output,
vector<int> permute)
: OperatorObj(OpType::Transpose, {input}, {output}) {
if (permute.size() != 4) {
IT_TODO_HALT();
}
transposePermute[0] = permute[0];
transposePermute[1] = permute[1];
transposePermute[2] = permute[2];
transposePermute[3] = permute[3];
transposePermute = permute;
IT_ASSERT(checkValid(graph));
}
@ -20,7 +14,8 @@ TransposeObj::inferShape(const TensorVec &inputs) const {
auto input = A->getDims();
auto output = input;
for (int i = 0; i < 4; ++i) {
auto nDims = input.size();
for (size_t i = 0; i < nDims; ++i) {
output[i] = input[transposePermute[i]];
}
return {{output}};

View File

@ -0,0 +1,45 @@
#include "core/graph.h"
#include "core/kernel.h"
#include "core/runtime.h"
#include "cuda/cuda_runtime.h"
#include "operators/transpose.h"
#include "test.h"
namespace infini {
template <class T>
void testTranspose(
const std::function<void(void *, size_t, DataType)> &generator,
const Shape &shape) {
// Runtime
Runtime cpuRuntime = NativeCpuRuntimeObj::getInstance();
auto cudaRuntime = make_ref<CudaRuntimeObj>();
// Build input data on CPU
Tensor inputCpu = make_ref<TensorObj>(shape, DataType::Float32, cpuRuntime);
inputCpu->dataMalloc();
inputCpu->setData(generator);
// GPU
Graph cudaGraph = make_ref<GraphObj>(cudaRuntime);
auto inputGpu = cudaGraph->cloneTensor(inputCpu);
vector<int> permute = {0, 2, 1, 3};
auto gpuOp = cudaGraph->addOp<T>(inputGpu, nullptr, permute);
cudaGraph->dataMalloc();
cudaRuntime->run(cudaGraph);
auto outputGpu = gpuOp->getOutput();
auto oCpu = outputGpu->clone(cpuRuntime);
// Check
// inputCpu->printData();
// oCpu->printData();
EXPECT_TRUE(oCpu->equalData(vector<float>{0, 1, 2, 3, 12, 13, 14, 15,
4, 5, 6, 7, 16, 17, 18, 19,
8, 9, 10, 11, 20, 21, 22, 23}));
}
TEST(cuda_Transpose, run) {
testTranspose<TransposeObj>(IncrementalGenerator(), Shape{1, 2, 3, 4});
}
} // namespace infini