forked from jiuyuan/InfiniTensor
add det operation
This commit is contained in:
parent
68f4630dac
commit
c19d6e6bb0
|
@ -88,6 +88,7 @@ enum class OpType {
|
|||
FloorModTrunc,
|
||||
Cumsum,
|
||||
Cumprod,
|
||||
Det,
|
||||
//
|
||||
MemBound = 300,
|
||||
};
|
||||
|
@ -184,6 +185,7 @@ class OpRegistry {
|
|||
FOP(FloorModTrunc);
|
||||
FOP(Cumsum);
|
||||
FOP(Cumprod);
|
||||
FOP(Det);
|
||||
//
|
||||
FOP(MemBound);
|
||||
default:
|
||||
|
|
|
@ -0,0 +1,21 @@
|
|||
#pragma once
|
||||
#include "core/operator.h"
|
||||
|
||||
namespace infini {
|
||||
class DetObj : public OperatorObj {
|
||||
public:
|
||||
enum Mode { NormalDet = 0, LogDet };
|
||||
DetObj(GraphObj *graph, Tensor input, Tensor output, Mode mode);
|
||||
optional<vector<Shape>> inferShape(const TensorVec &inputs) const override;
|
||||
|
||||
std::string toString() const override;
|
||||
int numInputs() const override { return 1; }
|
||||
int numOutputs() const override { return 1; }
|
||||
Mode getMode() const { return modeValue; }
|
||||
|
||||
private:
|
||||
Mode modeValue;
|
||||
vector<int> getWorkloadVector() const override;
|
||||
vector<int> getOpAttrVector() const override;
|
||||
};
|
||||
}; // namespace infini
|
|
@ -0,0 +1,52 @@
|
|||
#include "bang/bang_kernel_without_config.h"
|
||||
#include "bang/bang_runtime.h"
|
||||
#include "operators/det.h"
|
||||
|
||||
namespace infini {
|
||||
class DetCnnl : public BangKernelWithoutConfig {
|
||||
void compute(const Operator &_op,
|
||||
const RuntimeObj *_context) const override {
|
||||
auto op = as<DetObj>(_op);
|
||||
auto context = dynamic_cast<const BangRuntimeObj *>(_context);
|
||||
|
||||
void *const aData = (op->getInputs(0)->getRawDataPtr<void *>());
|
||||
void *const cData = (op->getOutput()->getRawDataPtr<void *>());
|
||||
DetObj::Mode mode = op->getMode();
|
||||
cnnlDetMode_t nlMode;
|
||||
if(mode == DetObj::LogDet) {
|
||||
nlMode = CNNL_DET_MODE_LOGDET;
|
||||
} else {
|
||||
nlMode = CNNL_DET_MODE_DET;
|
||||
}
|
||||
cnnlTensorDescriptor_t aDesc, cDesc;
|
||||
auto dimin = op->getInputs(0)->getDims();
|
||||
auto dimout = op->getOutput()->getDims();
|
||||
if (dimin.size() != 4 || dimout.size() != 2)
|
||||
IT_TODO_HALT();
|
||||
|
||||
int dimin_array[4] = {dimin[0], dimin[1], dimin[2], dimin[3]};
|
||||
int dimout_array[2] = {dimout[0], dimout[1]};
|
||||
// get inputs
|
||||
checkCnnlError(cnnlCreateTensorDescriptor(&aDesc));
|
||||
checkCnnlError(cnnlSetTensorDescriptor(aDesc, CNNL_LAYOUT_ARRAY,
|
||||
CNNL_DTYPE_FLOAT, 4, dimin_array));
|
||||
|
||||
// get outputs
|
||||
checkCnnlError(cnnlCreateTensorDescriptor(&cDesc));
|
||||
checkCnnlError(cnnlSetTensorDescriptor(cDesc, CNNL_LAYOUT_ARRAY,
|
||||
CNNL_DTYPE_FLOAT, 2, dimout_array));
|
||||
|
||||
cnnlStatus_t stat = cnnlDet(context->cnnlHandle(), nlMode, aDesc, aData, cDesc, cData);
|
||||
if (stat != CNNL_STATUS_SUCCESS)
|
||||
return;
|
||||
|
||||
// Destories in BANG does not require sync. But cnnl does not state
|
||||
// whether sync is required before destories.
|
||||
checkCnnlError(cnnlDestroyTensorDescriptor(aDesc));
|
||||
checkCnnlError(cnnlDestroyTensorDescriptor(cDesc));
|
||||
}
|
||||
};
|
||||
|
||||
REGISTER_KERNEL(Device::BANG, OpType::Det, DataType::Float32, DetCnnl,
|
||||
"Det_cnnl_BANG_Float32");
|
||||
}; // namespace infini
|
|
@ -0,0 +1,43 @@
|
|||
#include "operators/det.h"
|
||||
|
||||
namespace infini {
|
||||
DetObj::DetObj(GraphObj *graph, Tensor input, Tensor output, Mode mode)
|
||||
: OperatorObj(OpType::Det, {input}, {output}), modeValue(mode) {
|
||||
IT_ASSERT(checkValid(graph));
|
||||
}
|
||||
|
||||
optional<vector<Shape>> DetObj::inferShape(const TensorVec &inputs) const {
|
||||
const auto A = inputs[0];
|
||||
auto input = A->getDims();
|
||||
int length = input.size();
|
||||
if (length == 2) {
|
||||
std::vector<int> output ={1};
|
||||
return {{output}};
|
||||
} else {
|
||||
std::vector<int> output(input.begin(), input.end() - 2);
|
||||
return {{output}};
|
||||
}
|
||||
}
|
||||
|
||||
std::string DetObj::toString() const {
|
||||
std::ostringstream os;
|
||||
os << OpRegistry::getOpName(type) << "[" << getGuid() << "]";
|
||||
os << "(";
|
||||
os << vecToString(inputs[0]->getDims()) << ",";
|
||||
os << "input=" << inputs[0]->getGuid() << ",";
|
||||
os << "output=" << outputs[0]->getGuid() << ")";
|
||||
return os.str();
|
||||
}
|
||||
|
||||
vector<int> DetObj::getWorkloadVector() const {
|
||||
vector<int> ret{enum_to_underlying(type)};
|
||||
const Shape shape = outputs[0]->getDims();
|
||||
ret.insert(ret.end(), shape.begin(), shape.end());
|
||||
return ret;
|
||||
}
|
||||
|
||||
vector<int> DetObj::getOpAttrVector() const {
|
||||
return {enum_to_underlying(type)};
|
||||
}
|
||||
|
||||
}; // namespace infini
|
|
@ -0,0 +1,41 @@
|
|||
#include "bang/bang_runtime.h"
|
||||
#include "core/graph.h"
|
||||
#include "core/kernel.h"
|
||||
#include "core/runtime.h"
|
||||
#include "operators/det.h"
|
||||
|
||||
#include "test.h"
|
||||
|
||||
namespace infini {
|
||||
|
||||
template <class T>
|
||||
void testDet(const std::function<void(void *, size_t, DataType)> &generator,
|
||||
const Shape &shape) {
|
||||
// Runtime
|
||||
Runtime cpuRuntime = CpuRuntimeObj::getInstance();
|
||||
auto bangRuntime = make_ref<BangRuntimeObj>();
|
||||
|
||||
// Build input data on CPU
|
||||
Tensor inputCpu = make_ref<TensorObj>(shape, DataType::Float32, cpuRuntime);
|
||||
inputCpu->dataMalloc();
|
||||
inputCpu->setData(generator);
|
||||
|
||||
// GPU
|
||||
Graph bangGraph = make_ref<GraphObj>(bangRuntime);
|
||||
auto inputGpu = bangGraph->cloneTensor(inputCpu);
|
||||
auto gpuOp = bangGraph->addOp<T>(inputGpu, nullptr, DetObj::NormalDet);
|
||||
bangGraph->dataMalloc();
|
||||
bangRuntime->run(bangGraph);
|
||||
auto outputGpu = gpuOp->getOutput();
|
||||
auto outputGpu2Cpu = outputGpu->clone(cpuRuntime);
|
||||
// Check
|
||||
inputCpu->printData();
|
||||
outputGpu2Cpu->printData();
|
||||
EXPECT_TRUE(1);
|
||||
}
|
||||
|
||||
TEST(cnnl_Det, run) {
|
||||
testDet<DetObj>(IncrementalGenerator(), Shape{1, 1, 2, 2});
|
||||
}
|
||||
|
||||
} // namespace infini
|
Loading…
Reference in New Issue