add activation backward operation

This commit is contained in:
wanghailu 2022-12-05 08:45:39 +00:00
parent 468ed541af
commit db9069f1b7
4 changed files with 217 additions and 0 deletions

View File

@ -0,0 +1,29 @@
#pragma once
#include "core/operator.h"
namespace infini {
class ActivationBackwardObj : public OperatorObj {
public:
ActivationBackwardObj(OpType type, GraphObj *graph, Tensor y, Tensor diff_y, Tensor x, Tensor diff_x);
optional<vector<Shape>> inferShape(const TensorVec &inputs) const override;
std::string toString() const override;
int numInputs() const override { return 3; }
int numOutputs() const override { return 1; }
private:
vector<int> getWorkloadVector() const override;
vector<int> getOpAttrVector() const override;
};
#define DEFINE_ACTIVATION_BACKWARD_OBJ(prefix, type) \
class prefix##Obj : public ActivationBackwardObj { \
public: \
prefix##Obj(GraphObj *graph, Tensor y, Tensor diff_y, Tensor x, Tensor diff_x) \
: ActivationBackwardObj(type, graph, y, diff_y, x, diff_x) {} \
};
DEFINE_ACTIVATION_BACKWARD_OBJ(ReluBackward, OpType::ReluBackward)
DEFINE_ACTIVATION_BACKWARD_OBJ(SigmoidBackward, OpType::SigmoidBackward)
DEFINE_ACTIVATION_BACKWARD_OBJ(TanhBackward, OpType::TanhBackward)
}; // namespace infini

View File

@ -0,0 +1,96 @@
#include "bang/bang_kernel_without_config.h"
#include "bang/bang_runtime.h"
#include "operators/activation_backward.h"
namespace infini {
class ActivationBackwardCnnl : public BangKernelWithoutConfig {
virtual cnnlActivationMode_t getOpType() const = 0;
virtual float getCoef() const = 0;
virtual tuple<float, float> getAlphBeta() const { return {1.f, 0.f}; }
void compute(const Operator &_op,
const RuntimeObj *_context) const override {
auto op = as<ActivationBackwardObj>(_op);
auto context = dynamic_cast<const BangRuntimeObj *>(_context);
void *const yData = (op->getInputs(0)->getRawDataPtr<void *>());
void *const diffYData = (op->getInputs(1)->getRawDataPtr<void *>());
void *const xData = (op->getInputs(2)->getRawDataPtr<void *>());
void *const diffXData = (op->getOutput()->getRawDataPtr<void *>());
cnnlTensorDescriptor_t yDesc, diffYDesc, xDesc, diffXDesc;
auto dim = op->getInputs(0)->getDims();
if (dim.size() != 4)
IT_TODO_HALT();
int dim_array[4] = {dim[0], dim[1], dim[2], dim[3]};
// get inputs
checkCnnlError(cnnlCreateTensorDescriptor(&yDesc));
checkCnnlError(cnnlSetTensorDescriptor(yDesc, CNNL_LAYOUT_NCHW,
CNNL_DTYPE_FLOAT, 4, dim_array));
// get inputs
checkCnnlError(cnnlCreateTensorDescriptor(&diffYDesc));
checkCnnlError(cnnlSetTensorDescriptor(diffYDesc, CNNL_LAYOUT_NCHW,
CNNL_DTYPE_FLOAT, 4, dim_array));
// get inputs
checkCnnlError(cnnlCreateTensorDescriptor(&xDesc));
checkCnnlError(cnnlSetTensorDescriptor(xDesc, CNNL_LAYOUT_NCHW,
CNNL_DTYPE_FLOAT, 4, dim_array));
// get outputs
checkCnnlError(cnnlCreateTensorDescriptor(&diffXDesc));
checkCnnlError(cnnlSetTensorDescriptor(diffXDesc, CNNL_LAYOUT_NCHW,
CNNL_DTYPE_FLOAT, 4, dim_array));
// get op descriptor
cnnlActivationDescriptor_t opDesc;
checkCnnlError(cnnlCreateActivationDescriptor(&opDesc));
checkCnnlError(cnnlSetActivationDescriptor(
opDesc, getOpType(), CNNL_NOT_PROPAGATE_NAN, getCoef()));
auto [alpha, beta] = getAlphBeta();
cnnlStatus_t stat =
cnnlActivationBackward(context->cnnlHandle(), opDesc, &alpha, yDesc, yData,
diffYDesc, diffYData,
xDesc, xData,
&beta, diffXDesc, diffXData);
if (stat != CNNL_STATUS_SUCCESS)
return;
// Destories in BANG does not require sync. But cnnl does not state
// whether sync is required before destories.
checkCnnlError(cnnlDestroyTensorDescriptor(yDesc));
checkCnnlError(cnnlDestroyTensorDescriptor(diffYDesc));
checkCnnlError(cnnlDestroyTensorDescriptor(xDesc));
checkCnnlError(cnnlDestroyTensorDescriptor(diffXDesc));
checkCnnlError(cnnlDestroyActivationDescriptor(opDesc));
}
};
class ReluBackwardCnnl : public ActivationBackwardCnnl {
cnnlActivationMode_t getOpType() const override {
return CNNL_ACTIVATION_RELU;
}
float getCoef() const override { return 0.0; }
};
class SigmoidBackwardCnnl : public ActivationBackwardCnnl {
cnnlActivationMode_t getOpType() const override {
return CNNL_ACTIVATION_SIGMOID;
}
float getCoef() const override { return 0.0; }
};
class TanhBackwardCnnl : public ActivationBackwardCnnl {
cnnlActivationMode_t getOpType() const override {
return CNNL_ACTIVATION_TANH;
}
float getCoef() const override { return 0.0; }
};
REGISTER_KERNEL(Device::BANG, OpType::ReluBackward, DataType::Float32, ReluBackwardCnnl,
"ReluBackward_cnnl_BANG_Float32");
REGISTER_KERNEL(Device::BANG, OpType::SigmoidBackward, DataType::Float32, SigmoidBackwardCnnl,
"SigmoidBackward_cnnl_BANG_Float32");
REGISTER_KERNEL(Device::BANG, OpType::TanhBackward, DataType::Float32, TanhBackwardCnnl,
"TanhBackward_cnnl_BANG_Float32");
}; // namespace infini

View File

@ -0,0 +1,40 @@
#include "operators/activation_backward.h"
namespace infini {
ActivationBackwardObj::ActivationBackwardObj(OpType type,
GraphObj *graph,
Tensor y,
Tensor diff_y,
Tensor x,
Tensor diff_x)
: OperatorObj(type, {y, diff_y, x}, {diff_x}) {
IT_ASSERT(checkValid(graph));
}
optional<vector<Shape>> ActivationBackwardObj::inferShape(const TensorVec &inputs) const {
const auto A = inputs[0];
return {{A->getDims()}};
}
std::string ActivationBackwardObj::toString() const {
std::ostringstream os;
os << OpRegistry::getOpName(type) << "[" << getGuid() << "]";
os << "(";
os << vecToString(inputs[0]->getDims()) << ",";
os << "input=" << inputs[0]->getGuid() << ",";
os << "output=" << outputs[0]->getGuid() << ")";
return os.str();
}
vector<int> ActivationBackwardObj::getWorkloadVector() const {
vector<int> ret{enum_to_underlying(type)};
const Shape shape = outputs[0]->getDims();
ret.insert(ret.end(), shape.begin(), shape.end());
return ret;
}
vector<int> ActivationBackwardObj::getOpAttrVector() const {
return {enum_to_underlying(type)};
}
}; // namespace infini

View File

@ -0,0 +1,52 @@
#include "bang/bang_runtime.h"
#include "core/graph.h"
#include "core/kernel.h"
#include "core/runtime.h"
#include "operators/activation_backward.h"
#include "test.h"
namespace infini {
template <class T>
void testActivationBackward(const std::function<void(void *, size_t, DataType)> &generator,
const Shape &shape) {
// Runtime
Runtime cpuRuntime = CpuRuntimeObj::getInstance();
auto bangRuntime = make_ref<BangRuntimeObj>();
// Build input data on CPU
Tensor yCpu = make_ref<TensorObj>(shape, DataType::Float32, cpuRuntime);
Tensor diffYCpu = make_ref<TensorObj>(shape, DataType::Float32, cpuRuntime);
Tensor xCpu = make_ref<TensorObj>(shape, DataType::Float32, cpuRuntime);
yCpu->dataMalloc();
diffYCpu->dataMalloc();
xCpu->dataMalloc();
yCpu->setData(generator);
diffYCpu->setData(generator);
xCpu->setData(generator);
// GPU
Graph bangGraph = make_ref<GraphObj>(bangRuntime);
auto yGpu = bangGraph->cloneTensor(yCpu);
auto diffYGpu = bangGraph->cloneTensor(diffYCpu);
auto xGpu = bangGraph->cloneTensor(xCpu);
auto gpuOp = bangGraph->addOp<T>(yGpu, diffYGpu, xGpu, nullptr);
bangGraph->dataMalloc();
bangRuntime->run(bangGraph);
auto diffXGpu = gpuOp->getOutput();
auto diffXGpu2Cpu = diffXGpu->clone(cpuRuntime);
// Check
diffXGpu2Cpu->print();
EXPECT_TRUE(1);
}
TEST(cnnl_ActivationBackward, run) {
testActivationBackward<ReluBackwardObj>(IncrementalGenerator(), Shape{1, 2, 2, 3});
testActivationBackward<SigmoidBackwardObj>(IncrementalGenerator(), Shape{1, 2, 2, 3});
testActivationBackward<TanhBackwardObj>(IncrementalGenerator(), Shape{1, 2, 2, 3});
}
} // namespace infini