Compare commits

..

103 Commits

Author SHA1 Message Date
zhangyue 5559536470
add kunlun squeeze kernel (#229)
Co-authored-by: Haojie Wang <haojie0429@gmail.com>
2024-04-28 11:28:28 +08:00
Bolun Zhang fac28c25f6
添加 MLU 平台分布式验收脚本 (#223)
* 添加 MLU 平台分布式验收脚本

* add fp16 test, fix cast

* fix

* add onnxsim for llama

* add matmul tf32 for mlu

* add submodule: onnxsim_large_model

* fix

* modified bang_launch.py, start_single

* add test for albert/opt

* change file path

---------

Co-authored-by: xgqdut2016 <kenan_gewei@163.com>
2024-04-28 11:24:09 +08:00
zhangyue 985d0dee5f
Kunlun dist op (#225)
* kunlun dist inference fix

* kunlun distributed

* 添加昆仑芯分布式脚本以及解决运行llama遇到的问题

* set -j8

* format

* move run_pytorch.py int o cuda/

* update notes

---------

Co-authored-by: weijie01 <weijie01@baidu.com>
Co-authored-by: wanghailu <wanghailu0717@163.com>
Co-authored-by: Haojie Wang <haojie0429@gmail.com>
2024-04-23 15:46:25 +08:00
PanZezhong1725 d1de3ab5c2
feat(dist):分布式脚本支持混合精度 (#226) 2024-04-07 16:57:07 +08:00
Hardy eafbff6cf9
Support kunlun new toolkit (#224)
Co-authored-by: wanghailu <wanghailu0717@163.com>
2024-04-03 09:56:52 +08:00
PanZezhong1725 7f6aec6c17
针对bert和gpt2模型分布式推理的优化 (#221)
* fix(dist): 改善分布式脚本,只打印绝对误差

* feat(dist): 增加可导出onnx的pytorch运行脚本

* feat(front): 增加对Y值为-inf的where算子的图优化

* feat(kernel): 对b为常数的pow和div算子进行特判优化

* fix(front): 消除前端对global output形状信息的依赖,分布式脚本删除不必要的shape infer

* feat(kernel): 针对matmul中bias为行向量时的expand操作的特化优化

* fix(kernel): 删除div pow const中不必要的同步

* Update expand.cu

* fix: fix comments

---------

Co-authored-by: Haojie Wang <haojie0429@gmail.com>
Co-authored-by: Derui Yang <ydrml@hotmail.com>
2024-04-01 14:04:28 +08:00
xiaonans a98573990b
Accelerate llama (#219)
* [feature] add cudagraph support

* modify code to pass the cuda_all_reduce test

* modify rope op

* support rmsnorm

* add fp16 support to silu cuda op

* fix bugs in rmsnorm op

* uncomment simplify in onnx.py

---------

Co-authored-by: Haojie Wang <haojie0429@gmail.com>
2024-04-01 08:46:05 +08:00
Chenjie Duan 54a35772fb
feature: add parameter to config matmul compute type (#218)
* feature: add parameter to config matmul compute type

* fix format
2024-03-26 09:00:45 +08:00
zhangyue 00e6cc2587
XCCL support (#171)
* add reduce_mean and gather

* fix format

* add kunlun allreduce and cmakefile

* add kunlun allreduce and cmakefile

* deltete cmake opt

* fix format

* fix makefile

* add DIST option in Makefile

* add xpu allgather

* delete xpu_wait()

* add xpu allgather

* delete specific compiler

* fix format

* fix gather

* add broadcast

* fix format

* fix

* fix xpu, add where operation, fix element-wise operation

* fix softmax

* fix softmax

* log internal input and output

* fix kunlun gather bugs

* update CMakeList.txt and Makefile

* fix some kunlun kernels

* fix Makefile

* fix Makefile

* set cmake version 3.12

* format

* fix where, gather and support gpt2

* "fix format"

* fix format

* copy onnx.py from master

* use KUNLUN_HOME instead of absolute path

* fix torchvision models

* support torchvison model-zoo

* fix format

* format fix, CMakeList fix

* fix review

* fix vecToString return value

* fix format

* delete  empty file

---------

Co-authored-by: wanghailu <wanghailu0717@163.com>
Co-authored-by: wanghailu <wanghailu@qiyuanlab.com>
Co-authored-by: Haojie Wang <haojie0429@gmail.com>
2024-02-29 11:48:35 +08:00
baominghelly b51ccae3b2
fix broken link in docs (#216)
Co-authored-by: Haojie Wang <haojie0429@gmail.com>
2024-02-21 14:03:20 +08:00
xiaonans 1c08ba200c
[feature] add cudagraph support (#215)
* [feature] add cudagraph support

* modify code to pass the cuda_all_reduce test
2024-02-21 14:00:25 +08:00
xiaonans 900d8e58e3
Rope and silu (#214)
添加silu和rotary embedding算子的支持。
2024-02-04 11:05:27 +08:00
xiaonans b0876a13ce
Merge branch 'master' into rope_and_silu 2024-02-04 10:57:36 +08:00
xiaonans ae9f61de5a add comment for rope operator 2024-02-04 10:57:01 +08:00
xiaonans 9a3c0f11f6 add test for rotary embedding cuda kernel 2024-02-04 10:24:20 +08:00
zhangyunze 67b2bcb7d5
fix mlu some kernel registration & gather op (#210)
* fix: fix bang build/kernel registration | test_onnx

* delete assert float

* fix gather

* fix CMakeLists and Reshape

* fix cncl ops

* add hardsigmoid/hardswish

* fix

* add invalid datatype exception

* fix gather

* fix gather indices type

* fix gather/prelu/hardsigmoid on mlu

* fix format

* fix

---------

Co-authored-by: Bolun Zhang <48948016+Chamberlain0w0@users.noreply.github.com>
Co-authored-by: Haojie Wang <haojie0429@gmail.com>
Co-authored-by: Zhang Bolun <Chamberlain0w0@gmail.com>
2024-02-01 15:02:02 +08:00
xiaonans 956ce37458 add unittest of silu kernel 2024-01-30 10:40:13 +08:00
zhangyunze 4813204a36
feat: add reshape/identity/squeeze/flatten/unsqueeze op cpu kernel (#213) 2024-01-30 10:29:59 +08:00
xiaonans 030e5ca9c1 Merge branch 'master' of github.com:InfiniTensor/InfiniTensor into rope_and_silu 2024-01-26 10:16:18 +08:00
xiaonans e8d111ef5d add rope and silu support 2024-01-26 10:01:27 +08:00
xiaonans d1a90ba3e2
[feature] support kvcache with static graph (#209)
* [feature] support kvcache with static graph

* use workspace to optimize kvcache attention

---------

Co-authored-by: Haojie Wang <haojie0429@gmail.com>
2024-01-25 14:20:43 +08:00
xiaonans afed5d3c3d use workspace to optimize kvcache attention 2024-01-25 10:33:01 +08:00
Haojie Wang a5062f3f89
Update README.md 2024-01-24 22:16:48 +08:00
Hardy 09b2ecf98a
support more data type on mlu (#211)
* support more data type

* clang format

* fix little bug

* fix cncl datatype

* fix format

---------

Co-authored-by: wanghailu <wanghailu0717@163.com>
Co-authored-by: Zhang Bolun <Chamberlain0w0@gmail.com>
2024-01-24 13:33:33 +08:00
xiaonans 6a1bfd6c45 [feature] support kvcache with static graph 2024-01-17 11:38:44 +08:00
Chenjie Duan 51086d2b8d
Modify kernel registration & support fp16 (#205)
* - Remove dataType from the kernel registration.

* - support fp16 for conv

* - cpu kernel: adapt the new registration mechanism

* modified all register kernel

* add where fp16

* add layernorm fp16

* add split_concat fp16

* - element_wise support fp16

* feat: support transpose fp16

* feat: support sliceOp fp16

* - unary support fp16

* - feat: support reduceOp fp16

* feat: support matmulOp/expandOp fp16

* feat: support powOp int8

* add cuda cast & support half-precision for gather

* style: fix style

* feat:support int8 for gather

* style:fix style

* modified test_cuda_conv_transposed

* fix: fix dist code to support fp16

* fix(graph.cc): fix topo_sort

* fix: fix recv and send kernel registration

* feat: add field tensors for stub

* refactor(frontend): 先排序后构图

Signed-off-by: YdrMaster <ydrml@hotmail.com>

* fix: 为中间结果提供tensor到node的mapping

* fix (slice): add guard for area out of range

* fix: fix matmul fp16

* fix: fix re-dataMalloc for weight tensor and use of naive allocator

* feat: add dataType filter for cuda kernel

* feat: bang kernel adapt the new registration mechanism

* fix: fix some error on mlu

* feat: intelcpu kernel adapt the new registration mechanism

* feat: modify kernel registration on kunlun

* fix intelcpu compiler bug

* feat: bang reshape support all dataType

* fix: fix bang reduce

* fix(all_reduce.cc): fix as reviewer suggessted

* fix: fix style and restore unary test codes

---------

Signed-off-by: YdrMaster <ydrml@hotmail.com>
Co-authored-by: xgqdut2016 <kenan_gewei@163.com>
Co-authored-by: xgqdut2016 <140036308+xgqdut2016@users.noreply.github.com>
Co-authored-by: zhangyunze <z13785159769@163.com>
Co-authored-by: OdinaryWord <sx-hz@163.com>
Co-authored-by: YdrMaster <ydrml@hotmail.com>
Co-authored-by: panzezhong <panzezhong@qiyuanlab.com>
2024-01-15 11:02:13 +08:00
zhangyunze 58993d4339
解除前端对onnx infershape功能的依赖 (#206)
* feat: SqueezeOp lift the dependency of onnx infershape.

* feat: UnsqueezeOp lift the dependency of onnx infershape.

* feat: lift the dependency of onnx infershape

* fix: fix Makefile off nccl
2024-01-12 14:54:27 +08:00
PanZezhong1725 46e61a5bd4
修正Slice内存越界问题 (#204)
fix (slice): add guard for area out of range

Co-authored-by: Haojie Wang <haojie0429@gmail.com>
2024-01-05 09:19:50 +08:00
zhangyunze b15c4979fa
fix Issue-189 question 1-15 (#195)
* fix: fix nativecpu elementwise only support 4d tensor

* fix format

---------

Co-authored-by: Haojie Wang <haojie0429@gmail.com>
2024-01-05 08:40:18 +08:00
Hardy 42032356fb
Bang cncl (#163)
* MLU CNCL base

* add FindCNCL.cmake, not find -lcncl

* bangPrintFloat not find

* docker:make sucessful, test error

* delete net file and onnxtest.py

* init

* fix cncl

* format

* fix

* format

* fix cncl

* run dist gpt2 on mlu

* format

* fix import error on mlu docker

* run llama single card

* run distributed llama2

* add test for slice/reduce on mlu

* fix cncl related test

* fix format

* format

* delete comments

* change GPU to MLU

* MLU CNCL base

* add FindCNCL.cmake, not find -lcncl

* bangPrintFloat not find

* docker:make sucessful, test error

* delete net file and onnxtest.py

* init

* fix cncl

* format

* fix

* format

* fix cncl

* run dist gpt2 on mlu

* format

* fix import error on mlu docker

* run llama single card

* run distributed llama2

* add test for slice/reduce on mlu

* fix cncl related test

* fix format

* format

* delete comments

* change GPU to MLU

* modify launch script

* fix name

* fix format

* fix gather

* format python script

---------

Co-authored-by: xgqdut2016 <kenan_gewei@163.com>
Co-authored-by: Bolun <chamberlain0w0@gmail.com>
Co-authored-by: Bolun Zhang <48948016+Chamberlain0w0@users.noreply.github.com>
2024-01-03 13:28:03 +08:00
Chenjie Duan 83f1de93d0
add frontend resize kernel (#194)
* - add frontend resize kernel

* - fix resize test

* - fix bug
- add onnx test for resize

* fix: modify codes as reviewer suggested

---------

Co-authored-by: Haojie Wang <haojie0429@gmail.com>
2023-12-29 13:32:56 +08:00
zhangyunze 3967b437c8
fix Issue 187 split infershape wrong (#197)
* fix: fix splitOp to support unequal portions

* fix: fix as review comment

---------

Co-authored-by: Haojie Wang <haojie0429@gmail.com>
2023-12-28 21:39:24 +08:00
Chenjie Duan 6e7bd6ca0c
fix(perf.py): change NNmodel commit to fix perf.py (#203) 2023-12-28 21:31:39 +08:00
Hardy 5ac0ab442f
Fix bang (#198)
* fix bang batchnorm

* fix pooling test bang

* add test batchnorm

* HIGH PRECISION ACTIVATION

* fix pooling

* fix matmul

* fix test

* add layernorm

* fix softmax

* fix

* better code

* fix

* fix worlflow

* fix workflow

* fix

* fix

* fxi matmul

* add LRN

* fix lrn

* fix lrn

---------

Co-authored-by: wanghailu <wanghailu0717@163.com>
Co-authored-by: Baoming Li <1508269885@qq.com>
Co-authored-by: Haojie Wang <haojie0429@gmail.com>
2023-12-28 13:44:10 +08:00
Chenjie Duan 3f34372012
- modify error info when kernel not found (#191)
* - modify error info when kernel not found

* - modify code as reviewer suggested

---------

Co-authored-by: Haojie Wang <haojie0429@gmail.com>
2023-12-27 09:43:57 +08:00
learner2468 9a9587556c
Add examples: inference of Paddle models (#192)
* Add paddle model and infer with InfiniTensor

* Remove unused import

---------

Co-authored-by: kilinchange <44265800+kilinchange@users.noreply.github.com>

【Hackathon No.106】Add paddle model and infer with InfiniTensor
2023-12-14 19:42:43 +08:00
xgqdut2016 a3929c25f8
Add send and recv operators based on NCCL (#182)
* baseline sendrecv, bug

* success sendrecv

* get rank from comm

* set output shape

* successful:set output shape equal to input shape

* shape as attribute

* success:shape as attribute

* success send recv, output 0

* add onnx test

* split send and recv

* success split send and recv

* test-onnx bug

* success test-onnx

* modified onnx.py

* solve review
2023-12-14 16:38:03 +08:00
Derui Yang c143eebdf7
不依赖 onnx models 的模型存储 (#196)
Signed-off-by: YdrMaster <ydrml@hotmail.com>
2023-12-11 10:44:06 +08:00
Hardy 67974aee8a
Fix https://github.com/InfiniTensor/InfiniTensor/pull/160 (#185)
Co-authored-by: wanghailu <wanghailu0717@163.com>
2023-11-27 14:18:12 +08:00
Hardy 3ead20a23a
Fix workspace & bang conv (#183)
* fix bang workspace

* fix convbpdata

* fix code

* add code

* fix

* fix

* fix conv

* fix test conv

---------

Co-authored-by: wanghailu <wanghailu0717@163.com>
Co-authored-by: Haojie Wang <haojie0429@gmail.com>
2023-11-24 15:16:25 +08:00
xgqdut2016 a7293c12ba
Add layer normalization (#181)
* - add layernorm kernel

* success:add layernorm kernel and test

* fix: remove unusalble comments

* fix: modify code as reviewer suggested

* debug,modified .cu and test

* optional bias support

* overloading function

* fix bug after merging; remove time constrain in conv test

---------

Co-authored-by: kilinchange <kilinchange@163.com>
Co-authored-by: Haojie Wang <haojie0429@gmail.com>
2023-11-24 15:15:14 +08:00
PanZezhong1725 6ece3f4a77
Add ReduceSum op and kernel (#160)
* Add reduceSum op and kernel

* fix merge and format

* Reduce: reuse cat macro, add doc string

---------

Co-authored-by: Haojie Wang <haojie0429@gmail.com>
2023-11-24 09:29:58 +08:00
xgqdut2016 595a9906d2
add infer index function (#175)
Co-authored-by: Haojie Wang <haojie0429@gmail.com>
2023-11-24 09:24:25 +08:00
zhangyunze 331f7ab2b8
support Dynamic tensor infer shape and fix memory pool (#176)
* feat: support dynamic tensor part1

* feat: support dynamic-tensor part2

* feat: support dynamic tensor part 3

* fix: fix some ..

* - add kvcache example

* feat: support concat to identity kernel

* add a simple mempory pool for allocator

* fix: rebase to master

* fix bug after merging

* - remove outdated script

* fix: fix as review

---------

Co-authored-by: kilinchange <kilinchange@163.com>
Co-authored-by: Haojie Wang <haojie0429@gmail.com>
2023-11-23 13:11:50 +08:00
xiaonans 965df4e294
[feature] add fused attention_kvcache operator support (#179)
* [feature] add fused attention_kvcache operator support

* add test to attention_kvcache op

* Add space line at EOF

---------

Co-authored-by: Haojie Wang <haojie0429@gmail.com>
2023-11-14 23:44:22 +08:00
Hardy f22fa2766e
add reduce_mean and gather on bang (#167)
* add code

* fix reduce_mean

* add softmax on BANG

* fix gather

* fix boradcast on ele kernel when dim size is zero

* add where kernel and fix softmax kernel

* fix convbpdata bug

* fix format

---------

Co-authored-by: wanghailu <wanghailu@qiyuanlab.com>
Co-authored-by: Haojie Wang <haojie0429@gmail.com>
2023-11-10 18:02:44 +08:00
Hardy 50862df765
[Kunlun & CUDA & BANG] add depth2space operator (#178)
* add depth2space operator

* fix format

* add depth2space on cambricon bang

* add depth2space on gpu

---------

Co-authored-by: wanghailu <wanghailu0717@163.com>
Co-authored-by: wanghailu <wanghailu@qiyuanlab.com>
Co-authored-by: Haojie Wang <haojie0429@gmail.com>
2023-11-10 17:58:26 +08:00
Hardy 1ea450882b
add reduce_mean and gather on kunlun (#169)
* add reduce_mean and gather

* fix format

* fix gather

* fix

* fix xpu, add where operation, fix element-wise operation

* fix format

---------

Co-authored-by: wanghailu <wanghailu0717@163.com>
Co-authored-by: wanghailu <wanghailu@qiyuanlab.com>
Co-authored-by: Haojie Wang <haojie0429@gmail.com>
2023-11-10 17:52:09 +08:00
xgqdut2016 d3e7543291
Cuda softmax (#129)
* "add softmax.cu,.cc,.h"

* Modify cuda softmax

* "modified the introduction of softmax.cu"

* "add format of cuda_softmax.h"

* "modified where.cc(.cu,.h) and softmax.cu"

* "modified format"

* Fix cpu softmax kernel

* "modified the // introduction of softmax.cu"

* "modified softmax.cu and use 1D block"

* "modified softmax.cu,format, and use 1D block"

* "introduce share mem to speed softmax"

* "reduce the input of function"

* modified the format

* remodify 2D block softmax

* remodify 1D block softmax

* modified the share memory

* add warp reduce

* conflict solve two

* remove extra space line

* solve comment

---------

Co-authored-by: Haojie Wang <haojie0429@gmail.com>
Co-authored-by: panzezhong <panzezhong@qiyuanlab.com>
2023-11-06 08:56:23 +08:00
Derui Yang 1a6fccccbe
test: 支持编译 einnet 单元测试,但不是所有测试都能通过 (#174)
* test: 支持编译 einnet 单元测试,但不是所有测试都能通过

Signed-off-by: YdrMaster <ydrml@hotmail.com>

* Fix: locating resource files and skip codegen

- Change the path parameters in `matchExprResult` and `checkExprLogSame` to paths relative to the project home
- Skip NNetMemboundOp tests as they require codegen

---------

Signed-off-by: YdrMaster <ydrml@hotmail.com>
Co-authored-by: Haojie Wang <haojie0429@gmail.com>
Co-authored-by: Liyan Zheng <liyan-zheng@outlook.com>
2023-11-03 13:21:49 +08:00
xgqdut2016 ec3adf6fa7
support 8D tensor, add test example (#170)
Co-authored-by: Haojie Wang <haojie0429@gmail.com>
2023-10-31 10:47:36 +08:00
Bolun Zhang 23b825efc4
Xpu task4 support: add softmax (#172)
* add softmax on kunlun

* format

---------

Co-authored-by: Bolun <bolunz@u.nus.edu>
Co-authored-by: Haojie Wang <haojie0429@gmail.com>
2023-10-30 16:01:05 +08:00
constroy Li feccd4f318
fix tensor parallel for llama (#159)
* fix Slice

* change default rounds of timeit to 10 to reduce time

* fix slice with large ends

* Reshape support Int64

* support position_ids as input

* skip last MatMul in Llama

* skip infer_shapes to parse large model

* update launch.py

* fix split_concat_kernel

* print more message in launch.py

* Reshape supports both Int32 and Int64

* try infer_shapes and warn about failure

* fix format

---------

Co-authored-by: whjthu <haojie0429@gmail.com>
2023-10-30 15:04:16 +08:00
Haojie Wang 7f5188bedd
remove dimension limit of elementwise operators on xpu (#168) 2023-10-25 14:38:47 +08:00
baominghelly 07ef587c65
Change onnx-simplifier to onnxsim to resolve build issue on xpu (#164) 2023-10-21 02:58:32 +08:00
Derui Yang d0f9792613
Fix: add building option for NNet (#162)
Signed-off-by: YdrMaster <ydrml@hotmail.com>
2023-10-16 19:53:28 +08:00
Hardy 1184fa131f
Xpu (#82)
* support kunlun xpu and add an operator named Add

* add sub, mul, div, pow, maximum, minimum

* add code

* add xpu code

* add code

* add matmul

* add transpose

* add unary operator

* add unary operator

* add some operator

* add code

* support run resnet18 on xpu

* add code

* add max pool2d

* fix xpu code, let it can run.

* 添加XPU算子 (#120)

* add floordiv for xpu

* add batchnorm for xpu

* add more cast types for xpu

* add conv_trans for xpu

* add pad for xpu

* add logical ops for xpu

* fix format for xpu src and include

* fix format for xpu test

* fix format for xpu src

---------

Co-authored-by: Bolun <bolunz@u.nus.edu>

* Xpu abs (#121)

* add: unary kernel for xpu

* formatting

* format

* format

* format

* fix: pointer jump

* fix optype comments

* fix bug introduced while resolving conflict

* change cmake option for kunlunxin xpu from 'xpu' to 'kunlun'; fix bug after merging distributed infrastructure

* Add doc support for xpu (#141)

* fix

* fix

* fix pooling test

* format

* format

* fix

* fix

* set cmake version requirement

* fix cmakelists

* rename xpu to kunlun

* fix

* fix format

* fix format

* fix format

* fix change name to kunlun

* format

* fix format

* clang format

* fix format

---------

Co-authored-by: root <root@localhost.localdomain>
Co-authored-by: wanghailu <wanghailu@qiyuanlab.com>
Co-authored-by: wanghailu <wanghailu0717@163.com>
Co-authored-by: Bolun Zhang <48948016+Chamberlain0w0@users.noreply.github.com>
Co-authored-by: Bolun <bolunz@u.nus.edu>
Co-authored-by: zhangyue207 <138768300+zhangyue207@users.noreply.github.com>
Co-authored-by: Haojie Wang <haojie0429@gmail.com>
Co-authored-by: baominghelly <41820386+baominghelly@users.noreply.github.com>
Co-authored-by: Bolun <chamberlain0w0@gmail.com>
2023-10-16 10:57:08 +08:00
Haojie Wang 8e4d88fb9f
add transpose, concat and split for native cpu (#158) 2023-10-12 10:14:28 +08:00
PanZezhong1725 36ae7b7fb6
Add GatherElements op and cuda kernel (#149)
* Add GatherElements op and cuda kernel

* fix format

* remove print

* remove unused var

* fix spacing

* fix format

---------

Co-authored-by: panzezhong@qiyuanlab.com <panzezhong@zezhongpan>
Co-authored-by: Haojie Wang <haojie0429@gmail.com>
2023-10-12 09:18:12 +08:00
PanZezhong1725 ed3034f878
Add HardSigmoid and HardSwish (#156)
* Add HardSigmoid and HardSwish

* fix format
2023-10-10 22:41:06 +08:00
kilinchange 1151101fb9
add naive allocator for debugging (#140)
* add naive allocator only for debugging

* merge redundant api

---------

Co-authored-by: whjthu <haojie0429@gmail.com>
2023-10-10 16:42:23 +08:00
Haojie Wang 90b9a80f72
add onnx simplify (#153)
* add onnx simplify

* fix test bug

* update ci policy

* fix onnx simpilfy bug

* update ci workflow
2023-10-10 15:45:27 +08:00
ChengXiang Qi 7f16fa353e
【Hackathon No.108】Add Gelu operator, ffi, kernel for cpu and gpu. (#148)
feat: Add Gelu kernel, operator, ffi.
2023-10-10 15:21:13 +08:00
PanZezhong1725 7600fe688c
Add Neg operator and kernel (#152)
* Add Neg operator and kernel

* handle neg in to_onnx

---------

Co-authored-by: Haojie Wang <haojie0429@gmail.com>
2023-10-10 10:54:56 +08:00
Haojie Wang 7a9fcd93b2
Pooling ceil mode (#155)
* add ceil mode for pooling

* do not print debug info for allocator by default

* fix test bugs after introducing pooling ceil mode

* fix onnx import bug
2023-10-09 20:51:39 +08:00
PanZezhong1725 785853b0a3
Add erf kernel for cpu and gpu (#147)
Co-authored-by: panzezhong@qiyuanlab.com <panzezhong@zezhongpan>
2023-10-09 09:36:55 +08:00
Haojie Wang c0ff584e04
add constant op; fix concat bug (#151) 2023-10-08 21:42:41 +08:00
Haojie Wang f25bcca076
add python examples (#143)
* add python examples

* use copy*_numpy instead of copy*_float
2023-09-28 10:40:45 +08:00
kilinchange 877db21021
Fix support kvcache (#142)
* - fix onnx.py

* - fix shard_concat
2023-09-27 11:08:44 +08:00
PanZezhong1725 62be816f53
修复split concat当dim=0结果出错的问题 (#138)
Fix split_concat kernel not supporting dim=0

Co-authored-by: Haojie Wang <haojie0429@gmail.com>
2023-09-25 10:25:54 +08:00
Haojie Wang 8f2597a508
fix bang runtime bug after merging distributed branch (#137) 2023-09-19 14:10:39 +08:00
kilinchange 48ec730579
Support kvcache (#134)
* add cmake bits about NCCL

* move example to examples/NNmodel

* impl NCCL communicator

* add comm related function to Runtime

* export runtime interface

* add launch.py

* use unique name to distingush the the NCCL ID file

* add timeout to communicator init

* expose communicator obj from runtime obj, add unit test for nccl communicator

* reformat files

* Add allReduce operator and cuda nccl allReduce kernel

* impl model parallel for resnet

* add allGather nccl kernel and operator

* Add allreduce allgather operator tests, change allgather kernel to output list of tensor, fix shape infer, handle nullptr output

* fix format of onnx.py

* use concat following AllGather

* get tensor parallel for resnet

* fix format of graph_handler.cc

* change BUILD_DIST default to OFF

* polish code of communicator

* update .gitignore

* export min/max to python

* fix MatMul

* modify launch.py to run opt

* hack to treat ReduceSum as AllReduceSum

* throw exception in cuda error

* fix parallel_opt.py

* improve the error prompt and cuda error check

* fix GatherObj::GatherObj member init

* fix size calculation for scalar (rank = 0) tensor

* MatMul supports bias

* fix add bias for row parallel gemm

* add --gen_std to launch.py

* fix AllReduceNCCL

* update launch.py

* less log

* update parallel_opt

* update launch.py

* add __eq__ for Placement sub-classes

* less benchmark run

* fix placement infer for matmul

* fix vacabuary size

* fix Exception

* Add shard tensor with group to support gpt2

* Add find successor function to find split op at different depth

* recover CommunicatorObj

* improve error mesasge

* optimize parallel_opt.py

* optimize launch.py

* recover docs for all_reduce and all_gather

* - support concat for kvcache

* - modify allocator

* - add tensorType
- modify allocator to support memory allocation based on tensorType

* - fix allocator init

* - support kvcache by running 2 stub distributively

* - fix name

* - remove unused flag

* - fix wrong pb name

* - fix as constroy suggessed

* - fix launch.py format

---------

Co-authored-by: constroy <constroy.li@gmail.com>
Co-authored-by: panzezhong <panzezhong@qiyuanlab.com>
2023-09-18 14:17:02 +08:00
PanZezhong1725 c6b82cfda0
Copyout numpy接口 (#135)
* Add copy out numpy interface, delete returning buffer directly, add api test

* Add dtype interface
2023-09-15 16:40:44 +08:00
constroy Li 4c321c8a91
tensor parallel for transformer (#125)
* add cmake bits about NCCL

* move example to examples/NNmodel

* impl NCCL communicator

* add comm related function to Runtime

* export runtime interface

* add launch.py

* use unique name to distingush the the NCCL ID file

* add timeout to communicator init

* expose communicator obj from runtime obj, add unit test for nccl communicator

* reformat files

* Add allReduce operator and cuda nccl allReduce kernel

* impl model parallel for resnet

* add allGather nccl kernel and operator

* Add allreduce allgather operator tests, change allgather kernel to output list of tensor, fix shape infer, handle nullptr output

* fix format of onnx.py

* use concat following AllGather

* get tensor parallel for resnet

* fix format of graph_handler.cc

* change BUILD_DIST default to OFF

* polish code of communicator

* update .gitignore

* export min/max to python

* fix MatMul

* modify launch.py to run opt

* hack to treat ReduceSum as AllReduceSum

* throw exception in cuda error

* fix parallel_opt.py

* improve the error prompt and cuda error check

* fix GatherObj::GatherObj member init

* fix size calculation for scalar (rank = 0) tensor

* MatMul supports bias

* fix add bias for row parallel gemm

* add --gen_std to launch.py

* fix AllReduceNCCL

* update launch.py

* less log

* update parallel_opt

* update launch.py

* add __eq__ for Placement sub-classes

* less benchmark run

* fix placement infer for matmul

* fix vacabuary size

* fix Exception

* Add shard tensor with group to support gpt2

* Add find successor function to find split op at different depth

* recover CommunicatorObj

* improve error mesasge

* optimize parallel_opt.py

* optimize launch.py

* recover docs for all_reduce and all_gather

* Fix API

* fix format

---------

Co-authored-by: panzezhong <panzezhong@qiyuanlab.com>
Co-authored-by: Haojie Wang <haojie0429@gmail.com>
2023-09-14 14:19:45 +08:00
xgqdut2016 dda668fd16
"modified where" (#131)
* "modified where"

* "adapt int or bool condition datatype"

* "add broadcast_shape.h,error"

* add broadcast.h

* "modified broadcast_shape.h and where.cc,.cu"
2023-09-14 10:45:57 +08:00
constroy Li f60767a770
impl distributed launch with NCCL (#106)
* add cmake bits about NCCL

* move example to examples/NNmodel

* impl NCCL communicator

* add comm related function to Runtime

* export runtime interface

* add launch.py

* use unique name to distingush the the NCCL ID file

* add timeout to communicator init

* expose communicator obj from runtime obj, add unit test for nccl communicator

* reformat files

* Add allReduce operator and cuda nccl allReduce kernel

* impl model parallel for resnet

* add allGather nccl kernel and operator

* Add allreduce allgather operator tests, change allgather kernel to output list of tensor, fix shape infer, handle nullptr output

* fix format of onnx.py

* use concat following AllGather

* get tensor parallel for resnet

* fix format of graph_handler.cc

* change BUILD_DIST default to OFF

* polish code of communicator

* update .gitignore

* Add broadcast operator and cuda kernel

* Add comments for operators

* remove const of class member

* move communicator to CudaRuntimeObj

* Add an empty line at EOF.

---------

Co-authored-by: panzezhong <panzezhong@qiyuanlab.com>
Co-authored-by: Haojie Wang <haojie0429@gmail.com>
2023-09-05 09:47:35 +08:00
Hardy b4eda85e67
Fix mlu (#87)
* fix some operator code

* fix some code of mlu operator

* fix some code of cast and elementwise

* clang format

* remove copy kernel

* fix cast

* fix clang-format

---------

Co-authored-by: wanghailu <wanghailu@qiyuanlab.com>
Co-authored-by: Haojie Wang <haojie0429@gmail.com>
2023-09-04 08:33:28 +08:00
PanZezhong1725 2412c25e67
Issue 107: Add copyin Numpy and covertion to Numpy (#126)
* Add copyin_numpy and to_numpy for pybind TensorObj

* fix copyin size assertion

* fix size calculation for scalar (rank = 0) tensor

* Use pybind buffer instead of returning array

* fix format
2023-09-01 11:20:26 +08:00
zhangyunze 3e6ef305f1
框架支持bert/gpt2模型构图 (#94)
* feat: support to sqrt op

* feat: support to erf op

* feat: support to expand op

* feat: support to where op

* fix: gather op index can be int64_t(hard coding)

* fix: some wrong use

* style: fix the format style

* test: add test for change op

* fix: rebase to master

* fix: fix matmul b compute wrong

* add expand and where kernel

* Add int64 support for cuda gather kernel

* add test_where.cc

* add "expand.(cu/cc,test,cuda),modified where.cu"

* Separate initialization of datatypes to avoid compile error

* modify where.(cu/cc/h,test), expand and clip

* Format fix

* Format fix

---------

Co-authored-by: xgqdut2016 <kenan_gewei@163.com>
Co-authored-by: panzezhong <panzezhong@qiyuanlab.com>
Co-authored-by: Haojie Wang <haojie0429@gmail.com>
2023-08-29 16:06:52 +08:00
ChengXiang Qi d8ffd8a4b7
feat(env): add docker support. (#122)
This PR adds Docker support for running this project, and it primarily
accomplishes the following tasks:
- Added the necessary `Dockerfile` for running the project on CPU
environment.
- Added commands to the `Makefile` for convenient Docker startup.
- Added documentation in `docs/INSTALL_GUIDE_CN.md` explaining how to
launch the Docker environment.
2023-08-28 18:34:36 +08:00
kuangjux a8a5c037ca feat(env): add docker support.
- Added the necessary `Dockerfile` for running the project on CPU and CUDA environment.
- Added commands to the `Makefile` for convenient Docker startup.
- Added documentation in `docs/INSTALL_GUIDE_CN.md` explaining how to launch the Docker environment.

Co-authored-by: Xiaonan Song <songxiaonan@qiyuanlab.com>
Co-authored-by: Haojie Wang <haojie0429@gmail.com>
2023-08-28 16:28:09 +08:00
PanZezhong1725 69fd251e5d
Fix kernel arguments, add debug mode (#119)
Add debug mode macro in cmakelist.
2023-08-28 08:58:38 +08:00
panzezhong 0ce7e7651f Fix kernel arguments, add debug mode 2023-08-24 13:39:22 +08:00
constroy Li 1e91979c76
add CUDNN impl for Min and Max (#118)
* add cudnn impl for Min and Max

* fix onnx _search_shape with output shape
2023-08-22 16:19:29 +08:00
zhangyunze 1438f14a25
fix: fix castType mlu (#117) 2023-08-22 14:54:32 +08:00
PanZezhong1725 9cf6c30e1c
Add cuda transpose kernel (#115)
* Add cuda transpose kernel

* Empty line cuda_transpose.h

* Empty line small_array.h

* empty line transpose.cc

* empty line transpose.cu

* empty line test_cuda_transpose.cc
2023-08-22 14:22:15 +08:00
constroy Li 384407421b
cudnn activations support ND-Tensor (#116)
* refine TensorObj::getStride

* ActivationCudnn supports ND-Tensor
2023-08-22 14:21:59 +08:00
constroy Li 48847958d0
impl sqrt on CUDA (#109)
* impl sqrt on CUDA
fix parser of Gather and ReduceMean

* fix test_gather

* fix test_cuda_gather

* impl sqrt cpu and add sqrt to test_cuda_unary

* cuda_unary supports arbitary shapes

* fix SplitOp with dim=-1

* fix SplitOp with dim=-1
2023-08-18 12:17:47 +08:00
zhangyunze ef672894d0
support mixed dtype (#102)
* feat: support mixed dtype

* feat: support cast op

* test: add test for cast op

* feat: support datatype BFloat16

* feat: support data convert fp32 <-> bfp16

* fix: fix all op's infershape func

* fix as review comment
2023-08-16 21:49:43 +08:00
kilinchange 0dc5347089
memory_allocator (#103)
* - add LazyAllocator class
- calculate memory consumption at present

* - basic function of lazy_allocator, remaining test

* - modify LazyAllocator

* - modify InfiniTensor to fit LazyAllocator

* - add setDataBlob
- modify alignment
- fix GraphObj::dataMalloc

* - modified alignment value(64bytes -> 8bytes)
- fix LazyAllocator::getPtr()
- some dubug codes and commonts
- do alignment by chaning size instead of tailAddr

* - fix some problem

* - translate chinese comments to english

* - format codes

* - fix test

* - code format

* - modify codes as YdrMaser and bitzyz suggested

* - code format

* - modify codes as constroy suggested

* - codes format

* - modify alignment on cuda

* - code format

* - add test_lazy_allocator
- fix tests where not add input tensor into graph.tensors
- fix tests where init tensor's data before calling graph->dataMallocate()

* - code format

* - remove gpu runtime in test_lazy_allocator

* - fix test_lazy_allocator: remove cuda include

* - add test

* - code format

* - add ifdef for test of allocator

* - code format

* - fix test: remove unused ifdef

* - fix bang test

* - code format

* Merge branch 'master' into dcj/memory_allocator

* fix: fix cuda conv_fp16 run fail

* fix bang_runtime.cc and cuda_runtime.cc

* - update mkl code

* - fix codes for mkl

* - code format

* - remove unused commented codes
- add an empty line at the end of the blob.cc

---------

Co-authored-by: zhangyunze <z13785159769@163.com>
2023-08-13 13:39:35 +08:00
zhangyunze bd9e1aeb3f
fix: fix cuda conv_fp16 run fail (#105) 2023-08-10 15:22:18 +08:00
Derui Yang 57ac94d893
refactor(core): 添加新的 `OpType` 定义 (#99)
* feat: 添加新的 OpType 定义

Signed-off-by: YdrMaster <ydrml@hotmail.com>

* refactor: 使用新的 OpType 替换原来的,修改整个项目

Signed-off-by: YdrMaster <ydrml@hotmail.com>

* fix: onnx 导入

Signed-off-by: YdrMaster <ydrml@hotmail.com>

* fix: 修正 cuda 和 bang kernel 的问题

Signed-off-by: YdrMaster <ydrml@hotmail.com>

* fix: 过滤 bang test

Signed-off-by: YdrMaster <ydrml@hotmail.com>

* fix: 过滤 bang test

Signed-off-by: YdrMaster <ydrml@hotmail.com>

* fix bang code.

* fix code on bang

* fmt

Signed-off-by: YdrMaster <ydrml@hotmail.com>

* fix: 删除指定文件

Signed-off-by: YdrMaster <ydrml@hotmail.com>

* fix: 删两个没用的文件,去掉一个不知道为什么的注释

Signed-off-by: YdrMaster <ydrml@hotmail.com>

---------

Signed-off-by: YdrMaster <ydrml@hotmail.com>
Co-authored-by: wanghailu <wanghailu@qiyuanlab.com>
2023-08-07 11:17:05 +08:00
zhangyunze 9b10a74788
支持fp16 dtype (#96)
* add conv_half kernel

* Conv Kernel FP16

* dcj:
replace "DataType::Float32" with "op->getDType()" to support more DataType

* feat: support Float16 dtype

* fix: set default clang-format to 14 version

* fix: 按照review意见修改

* fix: add data convert to convfp16 kernel test

* test: add conv_fp16 kernel test

---------

Co-authored-by: zhangyue207 <zhangyue@qiyuanlab.com>
Co-authored-by: kilinchange <kilinchange@163.com>
2023-08-02 16:38:16 +08:00
Derui Yang 1dc65e2788
build: 实现格式化 git added c/c++ 源码的脚本 (#98)
* build: 实现格式化 git added c/c++ 源码的脚本

Signed-off-by: YdrMaster <ydrml@hotmail.com>

* feat: 扩充 c 风格文件类型

Signed-off-by: YdrMaster <ydrml@hotmail.com>

* feat: format py files

Signed-off-by: YdrMaster <ydrml@hotmail.com>

* feat: 支持从任意 commit 开始格式化所有修改的文件

Signed-off-by: YdrMaster <ydrml@hotmail.com>

---------

Signed-off-by: YdrMaster <ydrml@hotmail.com>
2023-07-21 12:29:50 +08:00
YdrMaster f7de8113e0
fix: 修正 README.md (#93)
Signed-off-by: YdrMaster <ydrml@hotmail.com>
2023-07-11 10:03:38 +08:00
YdrMaster 7023454e32
Update docs (#92)
* docs: 规范化文档

Signed-off-by: YdrMaster <ydrml@hotmail.com>

* Update README.md

---------

Signed-off-by: YdrMaster <ydrml@hotmail.com>
Co-authored-by: zhengly123 <zhengly123@outlook.com>
2023-07-10 02:31:45 +08:00
Hardy ab74b6a321
Update doc 0627 (#89)
* update doc of mlu

* delete README_CN.md. because the file has been split into INSTALL_GUIDE_CN.md and USER_GUIDE_CN.md at 2023.06.23

* remove the build Dependencies of test-cpp, avoid twice build

* fix code

---------

Co-authored-by: wanghailu <wanghailu@qiyuanlab.com>
2023-07-06 16:57:10 +08:00
constroy 579cdbbb81
fix ReduceMean and element_wise (#90)
* feat: 导出 getPerfTime 到 python

Signed-off-by: YdrMaster <ydrml@hotmail.com>

* fix parsing of ReduceMean

* ReduceMean axes defaults to None

* fix ElementWiseCudnn with shape broadcasting

* fix format

---------

Signed-off-by: YdrMaster <ydrml@hotmail.com>
Co-authored-by: YdrMaster <ydrml@hotmail.com>
2023-06-29 07:15:07 +08:00
Hardy 19d7dc871d
update doc (#83)
* update doc

* update doc

* update doc

* update doc

* add code

* add code

* update doc

* update doc

* add env.sh and update install guide

* fix

* fix bug

* fix

* add code

* code format

* Update exception.cc

---------

Co-authored-by: wanghailu <wanghailu@qiyuanlab.com>
Co-authored-by: wanghailu <wanghailu0717@163.com>
2023-06-23 14:22:52 +08:00
YdrMaster 26f0d13c26
Dev for 202303ddl (#66)
* add activation operatiopn relu, tanh, sigmoid on mlu

* commit for format

* add activation backward operation

* add test for activation_backward

* add test

* add convbpfilter

* fix

* add transpsoe code and test

* add trigon function operation on mlu: sin,cos,tan,asin,sinh,asinh

* add copy operation on mlu

* add ceil operation and floor operation

* add operation clip

* add operation cnnl div, test and test for divdemo bangc kernel

* add divnonan operation and test

* add erf operation

* add exp operation

* add operation fill

* add log operation

* add log1p operation

* add l2loss operation

* add maximum and minimum operation

* add mseloss operation

* add negTensor operation

* add power operation

* add reciprocal operation

* add sqrt and rsqrt operation

* add transform operation

* add addn operation

* add muln operation

* cherrry pick some operation

* add floordiv operation and floordivtrunc operation

* add floormod operation

* add cumsum operation

* add det operation

* add pad operation

* format

* add concat operation

* format

* add split operation

* fix concat and split operation

* add round operation

* add pooling operation

* add square operation

* add squaredDifference operation

* code format fix

* add flip operation

* code format fix

* add hardtanh operation

* add logic operation

* add addcdiv and addcmul operation

* add arange operation

* add bitcompute operation

* add net test

* fmt

Signed-off-by: YdrMaster <ydrml@hotmail.com>

* style: rename

Signed-off-by: YdrMaster <ydrml@hotmail.com>

* fix: 用 NativeCpuRuntime 替换 CpuRuntime

Signed-off-by: YdrMaster <ydrml@hotmail.com>

* fix code

* fix code

* fix code by review suggestion

* remove operation which is not the onnx operation

* fix format

* clang format

* refactor: tensor 的 print 加一层模板的 dataToString

Signed-off-by: YdrMaster <ydrml@hotmail.com>

* fix: onnx 导出

Signed-off-by: YdrMaster <ydrml@hotmail.com>

* feat: 增加计算图优化接口

Signed-off-by: YdrMaster <ydrml@hotmail.com>

* add clip operation

* feat: 支持导入 clip

Signed-off-by: YdrMaster <ydrml@hotmail.com>

* test: 导入导出测试加入 ci

Signed-off-by: YdrMaster <ydrml@hotmail.com>

* fix batch norm

* feat: 增加 Shape 算子

Signed-off-by: YdrMaster <ydrml@hotmail.com>

* feat: 支持导入 unsqueeze

Signed-off-by: YdrMaster <ydrml@hotmail.com>

* fix: 修正 clip 接口

feat: 支持导入 transpose
Signed-off-by: YdrMaster <ydrml@hotmail.com>

* add broadcast operation

* fix elementwise-broadcast

* fix elementwise broadcast

* add broadcast for gpu elementsie

* feat: pad 支持 axes 负数

feat: 不支持的 padding 导出为独立的 pad 算子

feat: 支持导入 onnxsim 过的 inception
Signed-off-by: YdrMaster <ydrml@hotmail.com>

* fix: 修正池化的测试

Signed-off-by: YdrMaster <ydrml@hotmail.com>

* feat: 导出 pads,支持 inception 导入导出,已加入 ci

Signed-off-by: YdrMaster <ydrml@hotmail.com>

* feat: 支持 densenet 导入导出,并加入 ci

Signed-off-by: YdrMaster <ydrml@hotmail.com>

* feat: 导入 squeeze

Signed-off-by: YdrMaster <ydrml@hotmail.com>

* fix softmax

* feat: 导出 clip 和 transpose

Signed-off-by: YdrMaster <ydrml@hotmail.com>

* feat: 支持 Conv 的 bias

Signed-off-by: YdrMaster <ydrml@hotmail.com>

* fix: bias of conv

Signed-off-by: YdrMaster <ydrml@hotmail.com>

* fix: bias of conv

Signed-off-by: YdrMaster <ydrml@hotmail.com>

* feat: 导入 split

Signed-off-by: YdrMaster <ydrml@hotmail.com>

* feat: 导出 split

Signed-off-by: YdrMaster <ydrml@hotmail.com>

* fix: conv

Signed-off-by: YdrMaster <ydrml@hotmail.com>

* fix: conv group

Signed-off-by: YdrMaster <ydrml@hotmail.com>

* fix: matmul 的 bias 没有放在输入里,修正

Signed-off-by: YdrMaster <ydrml@hotmail.com>

* fix exmaple

* fix: 改正 reduce_mean 导出

Signed-off-by: YdrMaster <ydrml@hotmail.com>

* refactor: 修改 slice 实现与 onnx 一致

Signed-off-by: YdrMaster <ydrml@hotmail.com>

* style: 不导出两个 runtime 函数

Signed-off-by: YdrMaster <ydrml@hotmail.com>

* doc: 中文使用指南

Signed-off-by: YdrMaster <ydrml@hotmail.com>

* doc: 补全指南

Signed-off-by: YdrMaster <ydrml@hotmail.com>

* fix: 修复导入数据的问题

Signed-off-by: YdrMaster <ydrml@hotmail.com>

* fmt

Signed-off-by: YdrMaster <ydrml@hotmail.com>

* feat: 添加 Dropout 基本结构,但不支持两个输出是不同的类型

Signed-off-by: YdrMaster <ydrml@hotmail.com>

* feat: 重新导出优化接口

feat: dropout 导入
Signed-off-by: YdrMaster <ydrml@hotmail.com>

* build: BANG 选项加入 Makefile

Signed-off-by: YdrMaster <ydrml@hotmail.com>

* fxi code, change of test/kernels/bang/test* is use NativeCpuRuntime.
chaneg of include/bang/bang_runtime is for the cntoolkit upgrade.

* feat: 导出 bang runtime

Signed-off-by: YdrMaster <ydrml@hotmail.com>

* add USE_BANG=1

* fix matmul

* fix reshape

* fix

* fix activation

* fix transpose

* format

* format

* update Makefile

Signed-off-by: YdrMaster <ydrml@hotmail.com>

* feat: 支持导入导出 ConvTranspose

Signed-off-by: YdrMaster <ydrml@hotmail.com>

* add prelu on mlu

* fix: ConvTranspose

Signed-off-by: YdrMaster <ydrml@hotmail.com>

* feat: 支持导入导出 PRelu

Signed-off-by: YdrMaster <ydrml@hotmail.com>

* add convtrans on mlu

* fmt

Signed-off-by: YdrMaster <ydrml@hotmail.com>

* docs: 更新 README_CN.md

Signed-off-by: YdrMaster <ydrml@hotmail.com>

* fix code by review suggestions

* style

Signed-off-by: YdrMaster <ydrml@hotmail.com>

* fix: Softmax 的 axis 可以用默认值?感觉是 onnx 不标准

Signed-off-by: YdrMaster <ydrml@hotmail.com>

* fix cuda & intelcpu bugs after merging

---------

Signed-off-by: YdrMaster <ydrml@hotmail.com>
Co-authored-by: wanghailu <wanghailu0717@163.com>
Co-authored-by: wanghailu <wanghailu@qiyuanlab.com>
Co-authored-by: whjthu <haojie0429@gmail.com>
2023-04-18 15:10:33 +08:00
zhengly123 a1974aabcd
NNET supports TVM backend and kernels (#78)
* Add: mutator InfoGAN minimum test

* Add: cache and padding (bugs!!)

* Add: expression reader as a cmake target

* Fix: [Intermediate] NMutator::expressionToGraph

To be fix: matmul with implicit broadcast

* Add: matmul broadcast

* Fix: GraphObj ctor should use cloneTensor

* Fix: cuBLAS failure when codegen is enabled

* Add: Exception for checkCuError

* Fix: graph OpList ctor

* Add: expr simplication for TVM

* Add: TVM headers and CMake include paths

* Add: CMake config

* Add: PackedFunc (broken)

* Fix: remove cuCtxCreate which makes TVM fails

* Fix: membound_tvm

* Fix: test_memboundOp

* Add: PRelu Expr and AsTVMVisitor

* Add: Random generator

* Add: support TVM packed function

* Fix: specify runtime

* Add: CMake support of TVM

* Add: detailed output of Matmul

* Add: comments for Matmul

* Chore: format and comments

* Chore: GraphObj::selfCheck without assert control

* Fix: CMAKE_CXX_FLAGS in CMakeLists

* fix merge bug

* update api for mkl batchnorm test

* fix lotus env

* fig header bug

---------

Co-authored-by: Liyan Zheng <liyan-zheng@outlook.com>
Co-authored-by: huangshuhong <huangsh19@mails.tsinghua.edu.cn>
Co-authored-by: whjthu <haojie0429@gmail.com>
2023-04-18 00:26:36 +08:00
wendy12022 43d4798323
ADD: sub graph replacement. (#56)
reconfig: connections among op and tensor now is managered by GraphObj .

add some comments

merge from master

merge from master

ADD: sub graph replacement

reconfig inputs of op resize, due to the check of operator inputs.

ResizeObj::clone

clang format

fix some and add test for multi-output.

replacement support multi-inputs and multi-outputs.

add clone for all operators

add replaceSubGraph addSubGraph

remove extra code

add more test

remove extra print

Co-authored-by: Haojie Wang <haojie0429@gmail.com>
2023-04-17 13:09:07 +08:00
wendy12022 c8b2c8ed32
Cpu backend2 (#77)
fix review

change Device::MKL to Device::INTELCPU

fix mkl linkage

fix errors according to merge from master

now can call mkl backend

fix softmax/flatten with axis from onnx.

modify README.md

fix memory refree

add env_lotus_intelcpu.sh

fix compile

merge from branch cpu_backend

fix something add gather

fix something

FIX: directory rename from "mkl" to "intelcpu"

ADD: use oneMKL dpcpp interface to implement matmul kernel.

ADD: add dpcpp as compiler for mkl, and fix warnings for clang compiling.
add dpcpp kernel for pow.

ADD: mkl kernel for pad.

ADD: slice mkl kernel.

ADD: reshape/flatten/identity mkl kernel.

ADD: split mkl kernel.

fix compile error

FIX: fix flattenObj with axis.

ADD reduce_mean mkl kernel.

Add concat mkl kernel.

bathNorm for mkl kernel.

sigmoid mkl kernel.

ADD:add mkl kernel for pooling

add more tests for softmax

Now softmax cuda kernel supports any axises.

mkl kernel for softmax

softmax

add axis to softmax operator

add mkl kernel for abs tanh

ADD: relu kernel for mkl

fix binary mkl primitives.

add mkl kernel for binary operators

fix compiler error

move stream to runtime

clang format

add MemoryFormat for tensorObj.

use post_ops for fused conv/deconv

Distinguish mkl  op_timer from cuda op timer.

add act optype to conv and deconv

add operator timer

add mkl kernel for convTransposed

minor fix for group conv

do not use cblas_sgemm_batch

CpuRuntimeObj->NativeCpuRuntimeObj

add  matmul op for mkl
2023-04-17 12:15:23 +08:00
542 changed files with 31774 additions and 4564 deletions

View File

@ -1,18 +1,23 @@
name: Build and test cpu
on:
push:
branch: 'master'
pull_request:
paths-ignore:
- '**.md'
- 'LICENSE'
pull_request:
paths:
- '**.md'
- 'LICENSE'
env:
protobuf-download: https://github.com/protocolbuffers/protobuf/releases/download/v21.12/protobuf-cpp-3.21.12.tar.gz
protobuf-version: "3.21.12"
python-version: "3.10"
resnet-download: https://github.com/onnx/models/raw/main/vision/classification/resnet/model/resnet18-v2-7.onnx
resnet-file: resnet18-v2-7.onnx
resnet-download: https://github.com/InfiniTensor/InfiniTensor/releases/download/test-models/resnet18-v2-7.onnx
inception-download: https://github.com/InfiniTensor/InfiniTensor/releases/download/test-models/inception-v2-9.onnx
densenet-download: https://github.com/InfiniTensor/InfiniTensor/releases/download/test-models/densenet-12.onnx
efficientnet-download: https://github.com/InfiniTensor/InfiniTensor/releases/download/test-models/efficientnet-lite4-11.onnx
jobs:
build:
@ -31,28 +36,28 @@ jobs:
- name: Install libdw
run: sudo apt-get update && sudo apt-get install libdw-dev
- name: Cache protobuf
id: cache-protobuf
uses: actions/cache@v3
with:
path: protobuf-${{ env.protobuf-version }}
key: protobuf-${{ env.protobuf-version }}
# - name: Cache protobuf
# id: cache-protobuf
# uses: actions/cache@v3
# with:
# path: protobuf-${{ env.protobuf-version }}
# key: protobuf-${{ env.protobuf-version }}
- name: Download and compile protobuf
if: steps.cache-protobuf.outputs.cache-hit != 'true'
run: |
wget ${{ env.protobuf-download }}
tar xf protobuf-cpp-${{ env.protobuf-version }}.tar.gz
cd protobuf-${{ env.protobuf-version }}
./autogen.sh
./configure CFLAGS="-fPIC" CXXFLAGS="-fPIC"
make -j8
# - name: Download and compile protobuf
# if: steps.cache-protobuf.outputs.cache-hit != 'true'
# run: |
# wget ${{ env.protobuf-download }}
# tar xf protobuf-cpp-${{ env.protobuf-version }}.tar.gz
# cd protobuf-${{ env.protobuf-version }}
# ./autogen.sh
# ./configure CFLAGS="-fPIC" CXXFLAGS="-fPIC"
# make -j8
- name: Install protobuf
run: |
cd protobuf-${{ env.protobuf-version }}
sudo make install
sudo ldconfig
# - name: Install protobuf
# run: |
# cd protobuf-${{ env.protobuf-version }}
# sudo make install
# sudo ldconfig
- name: Build
run: make
@ -65,8 +70,12 @@ jobs:
python -m pip install --upgrade pip
make install-python
- name: Download test model
run: wget ${{ env.resnet-download }}
- name: Download test models
run: |
wget ${{ env.resnet-download }}
wget ${{ env.inception-download }}
wget ${{ env.densenet-download }}
wget ${{ env.efficientnet-download }}
- name: Test onnx frontend
run: make test-onnx

View File

@ -1,11 +1,13 @@
name: clang-format Check
on:
push:
branch: 'master'
pull_request:
paths-ignore:
- '**.md'
- 'LICENSE'
pull_request:
paths:
- '**.md'
- 'LICENSE'
jobs:
formatting-check:

2
.gitignore vendored
View File

@ -42,3 +42,5 @@ build_debug/
# onnx model
*.onnx
*.pb
*.npy

6
.gitmodules vendored
View File

@ -10,3 +10,9 @@
[submodule "3rd-party/backward-cpp"]
path = 3rd-party/backward-cpp
url = git@github.com:bombela/backward-cpp.git
[submodule "example"]
path = examples/NNmodel
url = git@github.com:wanghailu0717/NNmodel.git
[submodule "examples/distributed/onnxsim_large_model"]
path = examples/distributed/onnxsim_large_model
url = git@github.com:luchangli03/onnxsim_large_model.git

13
CHANGELOG.md Normal file
View File

@ -0,0 +1,13 @@
# Changelog
All notable changes to this project will be documented in this file.
The format is based on [Keep a Changelog](https://keepachangelog.com/en/1.1.0/), and this project adheres to [Semantic Versioning](https://semver.org/spec/v2.0.0.html).
## Unreleased
### Added
### Modified
### Fixed

View File

@ -1,20 +1,45 @@
cmake_minimum_required(VERSION 3.17) # FindCUDAToolkit
include(CMakeDependentOption)
project(InfiniTensor C CXX)
# Do not change these options in this file. Use cmake.config, cmake -DOPTION=VALUE, or ccmake to specify them.
option(USE_CUDA "Support CUDA GPU" OFF)
option(USE_BANG "Support BANG MLU" OFF)
option(USE_MKL "Support MKL" OFF)
option(USE_KUNLUN "Support KUNLUN XPU" OFF)
option(USE_INTELCPU "Support INTELCPU" OFF)
option(USE_BACKTRACE "Print backtrace on exception and segmentation fault" ON)
option(USE_PROTOBUF "Serialize and deserialize tensors" ON)
option(BUILD_TEST "Build tests" ON)
option(USE_PROTOBUF "Serialize and deserialize tensors" OFF)
option(BUILD_NNET "Build nnet" OFF)
option(BUILD_DIST "Build project for distributed running" OFF)
option(BUILD_TEST "Build tests" OFF)
if(USE_CUDA)
message("CMake 3.18 or higher is required for setting CUDAToolkit")
cmake_minimum_required(VERSION 3.18) # FindCUDAToolkit
else()
cmake_minimum_required(VERSION 3.17)
endif()
include(CMakeDependentOption)
project(InfiniTensor C CXX)
cmake_dependent_option(BUILD_TEST_CORE "Build tests for core components" ON BUILD_TEST OFF)
cmake_dependent_option(BUILD_TEST_PET "Build tests for PET" OFF BUILD_TEST OFF)
cmake_dependent_option(BUILD_TEST_EINNET "Build tests for EINNET" OFF BUILD_TEST OFF)
set(DEFAULT_BUILD_TYPE "RelWithDebInfo")
# Build Type
if(CMAKE_BUILD_TYPE STREQUAL "Debug")
message("Configuring for Debug build.")
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -g -O0")
add_compile_definitions(DEBUG_MODE)
elseif(CMAKE_BUILD_TYPE STREQUAL "Release")
message("Configuring for Release build.")
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -O2")
add_compile_definitions(NDEBUG)
elseif(CMAKE_BUILD_TYPE STREQUAL "RelWithDebInfo")
message("Configuring for RelWithDebInfo build.")
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -g -O2")
else()
message("Build type not specified. Configuring for RelWithDebInfo build.")
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -g -O2")
endif()
if(EXISTS ${CMAKE_CURRENT_BINARY_DIR}/config.cmake)
message(STATUS "Using config.cmake in CMAKE_CURRENT_BINARY_DIR directory")
@ -28,15 +53,13 @@ endif()
set(CMAKE_CXX_STANDARD 17)
set(CMAKE_CXX_EXTENSIONS OFF) # -std=gnu++11 when on, -std=c++11 when off
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -g -Wall -Werror -Wno-error=deprecated-declarations")
set(CMAKE_CXX_FLAGS_RELEASE "${CMAKE_CXX_FLAGS_RELEASE} -UNDEBUG") # Enable assertion
set(CMAKE_CXX_FLAGS_RELWITHDEBINFO "${CMAKE_CXX_FLAGS_RELWITHDEBINFO} -UNDEBUG") # Enable assertion
add_compile_options(-Wno-error=unused-variable)
find_package(
Python
COMPONENTS Interpreter Development
REQUIRED)
# OpenMP
find_package(OpenMP)
if(OpenMP_C_FOUND)
@ -45,6 +68,7 @@ endif()
if(OpenMP_CXX_FOUND)
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} ${OpenMP_CXX_FLAGS}")
endif()
#Protobuf
if(USE_PROTOBUF)
add_definitions(-D TENSOR_PROTOBUF)
@ -57,14 +81,12 @@ if(USE_PROTOBUF)
set(PROTO_PATH "${CMAKE_CURRENT_SOURCE_DIR}/proto")
file(GLOB PROTO_FILES "${PROTO_PATH}/data.proto")
protobuf_generate_cpp(PROTO_SRCS PROTO_HDRS ${PROTO_FILES})
message(${PROTO_SRCS} "-----------" ${PROTO_FILES})
message(${PROTO_HDRS} "-----------" ${PROTO_FILES})
set_source_files_properties (${PROTO_SRCS} PROPERTIES COMPILE_FLAGS -Wno-unused-variable)
add_library(tensor_proto SHARED ${PROTO_SRCS} ${PROTO_HDRS})
target_link_libraries(tensor_proto PUBLIC ${PROTOBUF_LIBRARIES})
endif()
include_directories(include)
# Pybind11
add_subdirectory(3rd-party/pybind11)
include_directories(3rd-party/pybind11/include)
@ -74,16 +96,17 @@ add_subdirectory(3rd-party/nlohmann_json_cmake_fetchcontent)
include_directories(3rd-party/nlohmann_json_cmake_fetchcontent/single_include)
# TVM backend
if(BUILD_TEST_EINNET)
if (NOT TVM_INCLUDE_DIR OR NOT DMLC_INCLUDE_DIR OR NOT DLPACK_INCLUDE_DIR OR NOT DLPACK_INCLUDE_DIR)
message(FATAL_ERROR "TVM_INCLUDE_DIR, DMLC_INCLUDE_DIR, and DLPACK_INCLUDE_DIR must be set when BUILD_TEST_EINNET is ON")
endif()
if(BUILD_NNET AND BUILD_TEST)
# TVM and DMLC for invoking TVM packed functions
include_directories(${TVM_INCLUDE_DIR})
include_directories(${DMLC_INCLUDE_DIR})
include_directories(${DLPACK_INCLUDE_DIR})
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -DDMLC_USE_LOGGING_LIBRARY=\\\<${TVM_INCLUDE_DIR}/tvm/runtime/logging.h\\\> ")
set(CMAKE_CXX_FLAGS "-DINFINI_USE_TVM=1") # Enable TVM codegen kernels
if (TVM_INCLUDE_DIR AND DMLC_INCLUDE_DIR AND DLPACK_INCLUDE_DIR AND DLPACK_INCLUDE_DIR)
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -DDMLC_USE_LOGGING_LIBRARY=\\\<${TVM_INCLUDE_DIR}/tvm/runtime/logging.h\\\> ")
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -DINFINI_USE_TVM=1") # Enable TVM codegen kernels
else()
# message(FATAL_ERROR "TVM_INCLUDE_DIR, DMLC_INCLUDE_DIR, and DLPACK_INCLUDE_DIR must be set when BUILD_NNET AND BUILD_TEST is ON")
endif()
endif()
if(BUILD_TEST)
@ -97,8 +120,21 @@ if(BUILD_TEST)
include_directories(3rd-party/googletest/googletest/include)
endif()
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -g -Wall -Werror -Wno-error=deprecated-declarations -Wno-error=pointer-arith")
set(CMAKE_CXX_FLAGS_RELEASE "${CMAKE_CXX_FLAGS_RELEASE} -UNDEBUG") # Enable assertion
set(CMAKE_CXX_FLAGS_RELWITHDEBINFO "${CMAKE_CXX_FLAGS_RELWITHDEBINFO} -UNDEBUG") # Enable assertion
# Source files
file(GLOB_RECURSE SRC src/ffi/*.cc src/core/*.cc src/kernels/cpu/*.cc src/nnet/*.cc src/operators/*.cc src/utils/*.cc)
file(GLOB_RECURSE SRC src/ffi/*.cc src/core/*.cc src/kernels/cpu/*.cc src/operators/*.cc src/utils/*.cc)
if(BUILD_NNET)
add_compile_definitions(BUILD_NNET=1)
file(GLOB_RECURSE SRC_NNET src/nnet/*.cc)
list (APPEND SRC ${SRC_NNET})
# For locating resource files
set_source_files_properties(src/nnet/test.cc PROPERTIES COMPILE_OPTIONS "-DINFINI_PROJECT_HOME=${CMAKE_CURRENT_SOURCE_DIR}")
endif()
if(USE_CUDA)
file(GLOB_RECURSE SRC_CUDA src/cuda/*.cc src/cuda/*.cu src/kernels/cuda/*.cc src/kernels/cuda/*.cu)
@ -110,9 +146,14 @@ if(USE_BANG)
list (APPEND SRC ${SRC_BANG})
endif()
if(USE_MKL)
file(GLOB_RECURSE SRC_MKL src/mkl/*.cc src/kernels/mkl/*.cc )
list (APPEND SRC ${SRC_MKL})
if(USE_KUNLUN)
file(GLOB_RECURSE SRC_KUNLUN src/kunlun/*.cc src/kernels/kunlun/*.cc )
list (APPEND SRC ${SRC_KUNLUN})
endif()
if(USE_INTELCPU)
file(GLOB_RECURSE SRC_INTELCPU src/intelcpu/*.cc src/kernels/intelcpu/*.cc )
list (APPEND SRC ${SRC_INTELCPU})
endif()
# Libraries
@ -124,7 +165,7 @@ endif()
target_link_libraries(InfiniTensor pybind11::embed)
# TVM backend
if(BUILD_TEST_EINNET)
if(BUILD_NNET AND BUILD_TEST AND TVM_LIB_DIR)
target_link_libraries(InfiniTensor ${TVM_LIB_DIR}/libtvm.so)
endif()
@ -141,19 +182,29 @@ if(USE_BACKTRACE)
target_link_libraries(InfiniTensor dw)
endif()
if(USE_MKL)
if(USE_INTELCPU)
add_compile_definitions(USE_INTELCPU=1)
find_package(MKL CONFIG REQUIRED)
target_link_libraries(InfiniTensor $<LINK_ONLY:MKL::MKL>)
# Refer to https://www.intel.com/content/www/us/en/developer/tools/oneapi/onemkl-link-line-advisor.html
target_link_libraries(InfiniTensor sycl OpenCL)
set(DNNL_CONFIGURATION "cpu_gomp")
find_package(dnnl CONFIG REQUIRED)
if(dnnl_FOUND)
if(dnnl_FOUND)
add_compile_definitions(USE_MKL=1)
include_directories(BEFORE ${dnnl_DIR}/../../../cpu_gomp/include/)
link_directories(${dnnl_DIR}/../../../cpu_gomp/lib)
target_link_libraries(InfiniTensor dnnl)
link_directories(${dnnl_DIR}/../../../cpu_gomp/lib)
target_link_libraries(InfiniTensor dnnl)
else()
message(FATAL_ERROR ”dnnl library not found”)
message(FATAL_ERROR "dnnl library not found")
endif()
set(WNO_ERRORS "-Wno-error=unused-parameter -Wno-error=unused-function -Wno-error=unused-private-field -Wno-error=ignored-attributes -Wno-error=unused-const-variable -Wno-error=inconsistent-missing-override -Wno-error=unused-variable -Wno-error=tautological-constant-compare")
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -DMKL_ILP64 -qmkl=parallel -Werror ${WNO_ERRORS}")
set(CMAKE_CXX_FLAGS_RELEASE "${CMAKE_CXX_FLAGS_RELEASE} -DMKL_ILP64 -qmkl=parallel ${WNO_ERRORS}") # Enable assertion
set(CMAKE_CXX_FLAGS_RELWITHDEBINFO "${CMAKE_CXX_FLAGS_RELWITHDEBINFO} -DMKL_ILP64 -qmkl=parallel ${WNO_ERRORS}") # Enable assertion
find_package(IntelDPCPP REQUIRED)
endif()
if(USE_CUDA)
@ -167,9 +218,17 @@ if(USE_CUDA)
enable_language(CUDA)
find_package(CUDAToolkit) # For nvrtc and cuda driver
target_link_libraries(InfiniTensor cudnn CUDA::curand CUDA::cublas CUDA::nvrtc CUDA::cudart CUDA::cuda_driver)
if (BUILD_DIST)
message(STATUS "Add BUILD_DIST, use NCCL with CUDA")
list(APPEND CMAKE_MODULE_PATH ${PROJECT_SOURCE_DIR}/cmake)
find_package(NCCL REQUIRED)
add_compile_definitions(INFINI_USE_NCCL=1)
target_link_libraries(InfiniTensor nccl)
endif()
endif()
if(USE_BANG)
add_compile_definitions(USE_BANG=1)
include_directories(src/kernels/mlu/include)
################################################################################
# Neuware Evironment
@ -203,10 +262,51 @@ if(USE_BANG)
################################################################################
# BangC Kernels
################################################################################
add_subdirectory(src/kernels/mlu)
target_link_libraries(InfiniTensor ${CAMBRICON_CNNL} ${CAMBRICON_CNRT} ${CAMBRICON_CNDRV} stdc++)
target_link_libraries(InfiniTensor bangops)
if (BUILD_DIST)
find_library(CAMBRICON_CNCL libcncl.so "${NEUWARE_HOME}/lib64")
target_link_libraries(InfiniTensor ${CAMBRICON_CNCL} ${CAMBRICON_CNNL} ${CAMBRICON_CNRT} ${CAMBRICON_CNDRV} stdc++)
message(STATUS "Add BUILD_DIST, use CNCL with BANG")
add_compile_definitions(INFINI_USE_CNCL=1)
else()
target_link_libraries(InfiniTensor ${CAMBRICON_CNNL} ${CAMBRICON_CNRT} ${CAMBRICON_CNDRV} stdc++)
endif()
endif()
if(USE_KUNLUN)
add_compile_definitions(USE_KUNLUN=1)
if ((NOT DEFINED KUNLUN_HOME) AND (NOT DEFINED ENV{KUNLUN_HOME}))
message(FATAL_ERROR "KUNLUN_HOME is not defined from cmake or env")
elseif (DEFINED KUNLUN_HOME)
set(KUNLUN_HOME ${KUNLUN_HOME} CACHE STRING "KUNLUN_HOME directory for Kunlun development")
else()
set(KUNLUN_HOME $ENV{KUNLUN_HOME} CACHE STRING "KUNLUN_HOME directory for Kunlun development")
endif()
message(STATUS "KUNLUN_HOME: ${KUNLUN_HOME}")
include_directories("${KUNLUN_HOME}/include/")
find_library(KUNLUN_RT libxpurt.so "${KUNLUN_HOME}/lib64/")
find_library(KUNLUN_DNN libxpuapi.so "${KUNLUN_HOME}/lib64/")
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -lstdc++ -Wall -Werror")
if ((NOT DEFINED TARGET_CPU_ARCH) AND (NOT DEFINED ENV{TARGET_CPU_ARCH}))
execute_process(COMMAND uname -m OUTPUT_VARIABLE _uname_m OUTPUT_STRIP_TRAILING_WHITESPACE)
set(TARGET_CPU_ARCH "${_uname_m}" CACHE STRING "Target CPU ARCH")
elseif(DEFINED TARGET_CPU_ARCH)
set(TARGET_CPU_ARCH ${TARGET_CPU_ARCH} CACHE STRING "Target CPU ARCH")
else()
set(TARGET_CPU_ARCH $ENV{TARGET_CPU_ARCH} CACHE STRING "Target CPU ARCH")
endif()
message(STATUS "TARGET_CPU_ARCH: ${TARGET_CPU_ARCH}")
if (BUILD_DIST)
message(STATUS "Add BUILD_DIST, use XCCL with KUNLUN XPU")
list(APPEND CMAKE_MODULE_PATH ${PROJECT_SOURCE_DIR}/cmake)
find_package(XCCL REQUIRED)
add_compile_definitions(INFINI_USE_XCCL=1)
target_link_libraries(InfiniTensor ${XCCL_LIBRARIES})
endif()
target_link_libraries(InfiniTensor ${KUNLUN_RT} ${KUNLUN_DNN} stdc++)
endif()
# # Python bindings
@ -225,6 +325,7 @@ function(build_test files)
endfunction()
if(BUILD_TEST)
add_compile_definitions(BUILD_TEST=1)
enable_testing()
if(USE_TRACE)
build_test(test/trace/*.cc)
@ -232,20 +333,27 @@ if(BUILD_TEST)
if(BUILD_TEST_CORE)
build_test(test/core/*.cc)
build_test(test/operators/*.cc)
build_test(test/kernels/nativecpu/*.cc)
if (USE_CUDA)
build_test(test/kernels/cuda/*.cc)
build_test(test/cuda/*.cc)
endif()
if (USE_BANG)
build_test(test/kernels/bang/*.cc)
build_test(test/bang/*.cc)
endif()
if (USE_MKL)
build_test(test/kernels/mkl/*.cc)
if (USE_KUNLUN)
build_test(test/kernels/kunlun/*.cc)
build_test(test/kunlun/*.cc)
endif()
if (USE_INTELCPU)
build_test(test/kernels/intelcpu/*.cc)
endif()
endif()
if(BUILD_TEST_PET)
build_test(test/pet/*.cc)
endif()
if(BUILD_TEST_EINNET)
if(BUILD_NNET AND BUILD_TEST)
build_test(test/nnet/test_*.cc)
# Build expression reader

View File

@ -1,12 +1,41 @@
.PHONY : build clean install-python test-cpp test-onnx
.PHONY : build clean format install-python test-cpp test-onnx
TYPE ?= release
CUDA ?= off
TYPE ?= Release
CUDA ?= OFF
BANG ?= OFF
KUNLUN ?= OFF
INTELCPU ?= off
BACKTRACE ?= ON
TEST ?= ON
DIST ?= OFF
NNET ?= OFF
DIST ?= OFF
FORMAT_ORIGIN ?=
# Docker build options
DOCKER_NAME ?= infinitensor
DOCKER_IMAGE_NAME ?= infinitensor
DOCKER_FILE ?= infinitensor_ubuntu_22.04.dockerfile
DOCKER_RUN_OPTION ?=
# CUDA option.
ifeq ($(CUDA), ON)
DOCKER_IMAGE_NAME = infinitensor_cuda
DOCKER_NAME = infinitensor_cuda
DOCKER_FILE = infinitensor_ubuntu_22.04_CUDA.dockerfile
DOCKER_RUN_OPTION += --gpus all -it --ipc=host --ulimit memlock=-1 --ulimit stack=67108864 -v `pwd`:`pwd` -w `pwd`
endif
CMAKE_OPT = -DCMAKE_BUILD_TYPE=$(TYPE)
CMAKE_OPT += -DUSE_CUDA=$(CUDA)
CMAKE_OPT += -DUSE_BANG=$(BANG)
CMAKE_OPT += -DUSE_KUNLUN=$(KUNLUN)
CMAKE_OPT += -DUSE_BACKTRACE=$(BACKTRACE)
CMAKE_OPT += -DBUILD_TEST=$(TEST)
CMAKE_OPT += -DBUILD_DIST=$(DIST)
CMAKE_OPT += -DBUILD_NNET=$(NNET)
ifeq ($(CUDA), ON)
CMAKE_OPT += -DUSE_CUDA=ON
ifeq ($(INTELCPU), ON)
CMAKE_OPT += -DUSE_INTELCPU=ON -DCMAKE_CXX_COMPILER=dpcpp
endif
build:
@ -16,14 +45,33 @@ build:
clean:
rm -rf build
format:
@python3 scripts/format.py $(FORMAT_ORIGIN)
install-python: build
cp build/$(TYPE)/backend*.so pyinfinitensor/src/pyinfinitensor
pip install pyinfinitensor/
pip install -e pyinfinitensor/
test-cpp: build
test-cpp:
@echo
cd build/$(TYPE) && make test
test-onnx:
@echo
python3 pyinfinitensor/tests/test_onnx.py
test-api:
@echo
python3 pyinfinitensor/tests/test_api.py
docker-build:
docker build -f scripts/dockerfile/$(DOCKER_FILE) -t $(DOCKER_NAME) .
docker-run:
docker run -t --name $(DOCKER_IMAGE_NAME) -d $(DOCKER_NAME) $(DOCKER_RUN_OPTION)
docker-start:
docker start $(DOCKER_IMAGE_NAME)
docker-exec:
docker exec -it $(DOCKER_IMAGE_NAME) bash

View File

@ -1,12 +1,14 @@
# InfiniTensor
## Compilation on Lotus
[中文项目简介](/README_CN.md) | Documentation | [中文文档](/docs/INDEX.md)
``` bash
# Enter the root of InfiniTensor
source test/script/env_lotus.sh
make CUDA=ON
```
[![Build](https://github.com/InfiniTensor/InfiniTensor/actions/workflows/build.yml/badge.svg?branch=master)](https://github.com/InfiniTensor/InfiniTensor/actions)
[![issue](https://img.shields.io/github/issues/InfiniTensor/InfiniTensor)](https://github.com/InfiniTensor/InfiniTensor/issues)
![license](https://img.shields.io/github/license/InfiniTensor/InfiniTensor)
InfiniTensor is a high-performance inference engine tailored for GPUs and AI accelerators. Its design focuses on effective deployment and swift academic validation.
## Get started
### Make Commands
@ -17,16 +19,29 @@ make CUDA=ON
---
> Sets env: `CUDA=ON` to enable cuda.
> - Sets env: `TEST=OFF` to accelerate compiling.
> - Sets env: `CUDA=ON` to enable cuda.
> - Sets env: `BANG=ON` to enable bang.
### CMake Options
There are several configurable CMake options, see the [CMakeLists.txt file](/CMakeLists.txt#L5).
There are several configurable CMake options, see the [CMakeLists.txt](/CMakeLists.txt#L5) file.
- If `USE_BACKTRACE` is `ON`, `libdw-dev` have to be installed. See the README of [backward-cpp](https://github.com/bombela/backward-cpp) for details.
- If `USE_PROTOBUF` is `ON`, `protobuf` have to be installed. See the README of [protobuf](https://github.com/protocolbuffers/protobuf) for details.
- If `USE_CUDA` is `ON`, `cuda` have to be installed.
## Roadmap
- [RefactorGraph](https://github.com/InfiniTensor/RefactorGraph) is a newly designed AI framework that is set to replace the current main branch.
- [EinNet](https://github.com/InfiniTensor/InfiniTensor/tree/NNET_e2e) is going to be merged into the main branch.
- Integration of [PET](https://github.com/thu-pacman/PET), a tensor program optimizer supporting partially equivalent transformations.
- Supported hardware
- ✔ NVIDIA GPU
- ✔ Cambricon MLU
- ✔ Kunlunxin XPU
- ⬜ Ascend NPU
## Contributor Guide
InfiniTensor development is based on the pull request on Github. Before requesting for merging, a PR should satisfy the following requirements
@ -37,9 +52,24 @@ InfiniTensor development is based on the pull request on Github. Before requesti
2. Receive at least one approval from reviewers.
3. PR title should be concise since it is going to be the commit message in the main branch after merging and squashing.
## Dependencies
## Reference
- [backward-cpp](https://github.com/bombela/backward-cpp): [v1.6](https://github.com/bombela/backward-cpp/releases/tag/v1.6)
- [googletest](https://github.com/google/googletest): [v1.13.0](https://github.com/google/googletest/releases/tag/v1.13.0)
- [nlohmann_json_cmake_fetchcontent](https://github.com/ArthurSonzogni/nlohmann_json_cmake_fetchcontent): [v3.10.5](https://github.com/ArthurSonzogni/nlohmann_json_cmake_fetchcontent/releases/tag/v3.10.5)
- [pybind11](https://github.com/pybind/pybind11): [v2.10.3](https://github.com/pybind/pybind11/releases/tag/v2.10.3)
Please cite EinNet or PET in your publications if it helps your research:
```plaintext
@article{zheng2023einnet,
title={EINNET: Optimizing Tensor Programs with Derivation-Based Transformations},
author={Zheng, Liyan and Wang, Haojie and Zhai, Jidong and Hu, Muyan and Ma, Zixuan and Wang, Tuowei and Huang, Shuhong and Miao, Xupeng and Tang, Shizhi and Huang, Kezhao and Jia, Zhihao},
booktitle={17th USENIX Symposium on Operating Systems Design and Implementation (OSDI 23)},
pages={739--755},
year={2023}
}
@inproceedings{wang2021pet,
title={PET: Optimizing tensor programs with partially equivalent transformations and automated corrections},
author={Wang, Haojie and Zhai, Jidong and Gao, Mingyu and Ma, Zixuan and Tang, Shizhi and Zheng, Liyan and Li, Yuanzhi and Rong, Kaiyuan and Chen, Yuanyong and Jia, Zhihao},
booktitle={15th USENIX Symposium on Operating Systems Design and Implementation (OSDI 21)},
pages={37--54},
year={2021}
}
```

13
README_CN.md Normal file
View File

@ -0,0 +1,13 @@
# Infinitensor
## 项目简介
本项目是深度学习领域的一个编译器集合,本项目旨在缩小深度学习应用与后端硬件之间的鸿沟。本项目通过使用编译器超优化技术,对神经网络模型进行优化,从而获得更好的性能。同时,本项目与深度学习框架相互配合,为不同的硬件后端提供端倒端的编译,方便用户迁移部署。
## 项目设计
本项目的设计是前后端解耦合的,主要有三个模块,分别为:
- Runtime 模块:该模式负责对不同的加速卡后端进行包装与支持,支撑后端运行。另外提供统一的向上接口,方便上层建设。
- Compiler 模块:该模式负责对神经网络模型进行优化变换,获得更加高效的等价模型。
- Interface 模块:该模式负责给用户提供编程与交互的接口,方便用户使用本系统。

76
cmake/FindCNCL.cmake Normal file
View File

@ -0,0 +1,76 @@
SET(CNCL_LIB_SEARCH_PATHS $ENV{NEUWARE_HOME}/lib64)
SET(CNCL_INCLUDE_SEARCH_PATHS $ENV{NEUWARE_HOME}/include)
set(CNCL_INCLUDE_DIR $ENV{NEUWARE_HOME}/include)
set(CNCL_LIB_DIR $ENV{NEUWARE_HOME}/lib64)
set(CNCL_VERSION $ENV{CNCL_VERSION} CACHE STRING "Version of CNCL to build with")
if ($ENV{CNCL_ROOT_DIR})
message(WARNING "CNCL_ROOT_DIR is deprecated. Please set CNCL_ROOT instead.")
endif()
list(APPEND CNCL_ROOT $ENV{CNCL_ROOT_DIR} ${MLU_TOOLKIT_ROOT_DIR})
# Compatible layer for CMake <3.12. CNCL_ROOT will be accounted in for searching paths and libraries for CMake >=3.12.
list(APPEND CMAKE_PREFIX_PATH ${CNCL_ROOT})
find_path(CNCL_INCLUDE_DIRS
NAMES cncl.h
HINTS ${CNCL_INCLUDE_DIR})
if (USE_STATIC_CNCL)
MESSAGE(STATUS "USE_STATIC_CNCL is set. Linking with static CNCL library.")
SET(CNCL_LIBNAME "CNCL_static")
if (CNCL_VERSION) # Prefer the versioned library if a specific CNCL version is specified
set(CMAKE_FIND_LIBRARY_SUFFIXES ".a.${CNCL_VERSION}" ${CMAKE_FIND_LIBRARY_SUFFIXES})
endif()
else()
SET(CNCL_LIBNAME "cncl")
if (CNCL_VERSION) # Prefer the versioned library if a specific CNCL version is specified
set(CMAKE_FIND_LIBRARY_SUFFIXES ".so.${CNCL_VERSION}" ${CMAKE_FIND_LIBRARY_SUFFIXES})
endif()
endif()
find_library(CNCL_LIBRARIES
NAMES ${CNCL_LIBNAME}
HINTS ${CNCL_LIB_DIR})
include(FindPackageHandleStandardArgs)
find_package_handle_standard_args(CNCL DEFAULT_MSG CNCL_INCLUDE_DIRS CNCL_LIBRARIES)
if(CNCL_FOUND) # obtaining CNCL version and some sanity checks
set (CNCL_HEADER_FILE "${CNCL_INCLUDE_DIRS}/cncl.h")
message (STATUS "Determining CNCL version from ${CNCL_HEADER_FILE}...")
set (OLD_CMAKE_REQUIRED_INCLUDES ${CMAKE_REQUIRED_INCLUDES})
list (APPEND CMAKE_REQUIRED_INCLUDES ${CNCL_INCLUDE_DIRS})
include(CheckCXXSymbolExists)
check_cxx_symbol_exists(CNCL_VERSION_CODE CNCL.h CNCL_VERSION_DEFINED)
if (CNCL_VERSION_DEFINED)
set(file "${PROJECT_BINARY_DIR}/detect_cncl_version.cc")
file(WRITE ${file} "
#include <iostream>
#include <cncl.h>
int main()
{
std::cout << CNCL_MAJOR << '.' << CNCL_MINOR << '.' << CNCL_PATCH << std::endl;
int x;
CNCLGetVersion(&x);
return x == CNCL_VERSION_CODE;
}
")
try_run(CNCL_VERSION_MATCHED compile_result ${PROJECT_BINARY_DIR} ${file}
RUN_OUTPUT_VARIABLE CNCL_VERSION_FROM_HEADER
CMAKE_FLAGS "-DINCLUDE_DIRECTORIES=${CNCL_INCLUDE_DIRS}"
LINK_LIBRARIES ${CNCL_LIBRARIES})
if (NOT CNCL_VERSION_MATCHED)
message(FATAL_ERROR "Found CNCL header version and library version do not match! \
(include: ${CNCL_INCLUDE_DIRS}, library: ${CNCL_LIBRARIES}) Please set CNCL_INCLUDE_DIR and CNCL_LIB_DIR manually.")
endif()
message(STATUS "CNCL version: ${CNCL_VERSION_FROM_HEADER}")
else()
# message(STATUS "CNCL version < 2.3.5-5")
endif ()
set (CMAKE_REQUIRED_INCLUDES ${OLD_CMAKE_REQUIRED_INCLUDES})
message(STATUS "Found CNCL (include: ${CNCL_INCLUDE_DIRS}, library: ${CNCL_LIBRARIES})")
mark_as_advanced(CNCL_ROOT_DIR CNCL_INCLUDE_DIRS CNCL_LIBRARIES)
endif()

165
cmake/FindNCCL.cmake Normal file
View File

@ -0,0 +1,165 @@
# Copyright (c) 2021-2022, NVIDIA CORPORATION. All rights reserved.
#
# From PyTorch:
#
# Copyright (c) 2016- Facebook, Inc (Adam Paszke)
# Copyright (c) 2014- Facebook, Inc (Soumith Chintala)
# Copyright (c) 2011-2014 Idiap Research Institute (Ronan Collobert)
# Copyright (c) 2012-2014 Deepmind Technologies (Koray Kavukcuoglu)
# Copyright (c) 2011-2012 NEC Laboratories America (Koray Kavukcuoglu)
# Copyright (c) 2011-2013 NYU (Clement Farabet)
# Copyright (c) 2006-2010 NEC Laboratories America (Ronan Collobert, Leon Bottou, Iain Melvin, Jason Weston)
# Copyright (c) 2006 Idiap Research Institute (Samy Bengio)
# Copyright (c) 2001-2004 Idiap Research Institute (Ronan Collobert, Samy Bengio, Johnny Mariethoz)
#
# From Caffe2:
#
# Copyright (c) 2016-present, Facebook Inc. All rights reserved.
#
# All contributions by Facebook:
# Copyright (c) 2016 Facebook Inc.
#
# All contributions by Google:
# Copyright (c) 2015 Google Inc.
# All rights reserved.
#
# All contributions by Yangqing Jia:
# Copyright (c) 2015 Yangqing Jia
# All rights reserved.
#
# All contributions by Kakao Brain:
# Copyright 2019-2020 Kakao Brain
#
# All contributions from Caffe:
# Copyright(c) 2013, 2014, 2015, the respective contributors
# All rights reserved.
#
# All other contributions:
# Copyright(c) 2015, 2016 the respective contributors
# All rights reserved.
#
# Caffe2 uses a copyright model similar to Caffe: each contributor holds
# copyright over their contributions to Caffe2. The project versioning records
# all such contribution and copyright details. If a contributor wants to further
# mark their specific copyright on a particular contribution, they should
# indicate their copyright solely in the commit message of the change when it is
# committed.
#
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in the
# documentation and/or other materials provided with the distribution.
#
# 3. Neither the names of Facebook, Deepmind Technologies, NYU, NEC Laboratories America
# and IDIAP Research Institute nor the names of its contributors may be
# used to endorse or promote products derived from this software without
# specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
# ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
# LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
# CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
# SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
# INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
# CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
# ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
# POSSIBILITY OF SUCH DAMAGE.
#
# Find the nccl libraries
#
# The following variables are optionally searched for defaults
# NCCL_ROOT: Base directory where all NCCL components are foundHong Xu, 1 year ago: Let CMake handle NCCL detection instead of ou
# NCCL_INCLUDE_DIR: Directory where NCCL header is foundPieter Noordhuis, 3 years ago: Bump gloo
# NCCL_LIB_DIR: Directory where NCCL library is found
#
# The following are set after configuration is done:
# NCCL_FOUND
# NCCL_INCLUDE_DIRS
# NCCL_LIBRARIES
#
# The path hints include CUDA_TOOLKIT_ROOT_DIR seeing as some folks
# install NCCL in the same location as the CUDA toolkit.
# See https://github.com/caffe2/caffe2/issues/1601
set(NCCL_INCLUDE_DIR $ENV{NCCL_INCLUDE_DIR} CACHE PATH "Folder contains NVIDIA NCCL headers")
set(NCCL_LIB_DIR $ENV{NCCL_LIB_DIR} CACHE PATH "Folder contains NVIDIA NCCL libraries")
set(NCCL_VERSION $ENV{NCCL_VERSION} CACHE STRING "Version of NCCL to build with")
if ($ENV{NCCL_ROOT_DIR})
message(WARNING "NCCL_ROOT_DIR is deprecated. Please set NCCL_ROOT instead.")
endif()
list(APPEND NCCL_ROOT $ENV{NCCL_ROOT_DIR} ${CUDA_TOOLKIT_ROOT_DIR})
# Compatible layer for CMake <3.12. NCCL_ROOT will be accounted in for searching paths and libraries for CMake >=3.12.
list(APPEND CMAKE_PREFIX_PATH ${NCCL_ROOT})
find_path(NCCL_INCLUDE_DIRS
NAMES nccl.h
HINTS ${NCCL_INCLUDE_DIR})
if (USE_STATIC_NCCL)
MESSAGE(STATUS "USE_STATIC_NCCL is set. Linking with static NCCL library.")
SET(NCCL_LIBNAME "nccl_static")
if (NCCL_VERSION) # Prefer the versioned library if a specific NCCL version is specified
set(CMAKE_FIND_LIBRARY_SUFFIXES ".a.${NCCL_VERSION}" ${CMAKE_FIND_LIBRARY_SUFFIXES})
endif()
else()
SET(NCCL_LIBNAME "nccl")
if (NCCL_VERSION) # Prefer the versioned library if a specific NCCL version is specified
set(CMAKE_FIND_LIBRARY_SUFFIXES ".so.${NCCL_VERSION}" ${CMAKE_FIND_LIBRARY_SUFFIXES})
endif()
endif()
find_library(NCCL_LIBRARIES
NAMES ${NCCL_LIBNAME}
HINTS ${NCCL_LIB_DIR})
include(FindPackageHandleStandardArgs)
find_package_handle_standard_args(NCCL DEFAULT_MSG NCCL_INCLUDE_DIRS NCCL_LIBRARIES)
if(NCCL_FOUND) # obtaining NCCL version and some sanity checks
set (NCCL_HEADER_FILE "${NCCL_INCLUDE_DIRS}/nccl.h")
message (STATUS "Determining NCCL version from ${NCCL_HEADER_FILE}...")
set (OLD_CMAKE_REQUIRED_INCLUDES ${CMAKE_REQUIRED_INCLUDES})
list (APPEND CMAKE_REQUIRED_INCLUDES ${NCCL_INCLUDE_DIRS})
include(CheckCXXSymbolExists)
check_cxx_symbol_exists(NCCL_VERSION_CODE nccl.h NCCL_VERSION_DEFINED)
if (NCCL_VERSION_DEFINED)
set(file "${PROJECT_BINARY_DIR}/detect_nccl_version.cc")
file(WRITE ${file} "
#include <iostream>
#include <nccl.h>
int main()
{
std::cout << NCCL_MAJOR << '.' << NCCL_MINOR << '.' << NCCL_PATCH << std::endl;
int x;
ncclGetVersion(&x);
return x == NCCL_VERSION_CODE;
}
")
try_run(NCCL_VERSION_MATCHED compile_result ${PROJECT_BINARY_DIR} ${file}
RUN_OUTPUT_VARIABLE NCCL_VERSION_FROM_HEADER
CMAKE_FLAGS "-DINCLUDE_DIRECTORIES=${NCCL_INCLUDE_DIRS}"
LINK_LIBRARIES ${NCCL_LIBRARIES})
if (NOT NCCL_VERSION_MATCHED)
message(FATAL_ERROR "Found NCCL header version and library version do not match! \
(include: ${NCCL_INCLUDE_DIRS}, library: ${NCCL_LIBRARIES}) Please set NCCL_INCLUDE_DIR and NCCL_LIB_DIR manually.")
endif()
message(STATUS "NCCL version: ${NCCL_VERSION_FROM_HEADER}")
else()
# message(STATUS "NCCL version < 2.3.5-5")
endif ()
set (CMAKE_REQUIRED_INCLUDES ${OLD_CMAKE_REQUIRED_INCLUDES})
message(STATUS "Found NCCL (include: ${NCCL_INCLUDE_DIRS}, library: ${NCCL_LIBRARIES})")
mark_as_advanced(NCCL_ROOT_DIR NCCL_INCLUDE_DIRS NCCL_LIBRARIES)
endif()

27
cmake/FindXCCL.cmake Normal file
View File

@ -0,0 +1,27 @@
# Find the xccl libraries
set(XCCL_INCLUDE_DIR $ENV{KUNLUN_HOME}/include CACHE PATH "Folder contains KUNLUN XCCL headers")
set(XCCL_LIB_DIR $ENV{KUNLUN_HOME} CACHE PATH "Folder contains KUNLUN XCCL libraries")
list(APPEND CMAKE_PREFIX_PATH $ENV{KUNLUN_HOME})
find_path(XCCL_INCLUDE_DIRS # ${XCCL_INCLUDE_DIR}
NAMES xpu/bkcl.h
HINTS XCCL_INCLUDE_DIR)
find_library(XCCL_LIBRARIES # ${XCCL_LIB_DIR}
NAMES lib64/libbkcl.so
HINTS XCCL_LIB_DIR)
message(STATUS "XCCL_INCLUDE_DIRS: ${XCCL_INCLUDE_DIRS}")
message(STATUS "XCCL_LIBRARIES: ${XCCL_LIBRARIES}")
include(FindPackageHandleStandardArgs)
find_package_handle_standard_args(XCCL DEFAULT_MSG XCCL_INCLUDE_DIRS XCCL_LIBRARIES)
if (XCCL_FOUND)
set (XCCL_HEADER_FILE "${XCCL_INCLUDE_DIRS}/xpu/bkcl.h")
message (STATUS "Determing XCCL version from ${XCCL_HEADER_FILE}...")
list (APPEND CMAKE_REQUIRED_INCLUDES ${XCCL_INCLUDE_DIRS})
message(STATUS "Found XCCL (include: ${XCCL_INCLUDE_DIRS}, library: ${XCCL_LIBRARIES})")
mark_as_advanced(XCCL_INCLUDE_DIRS XCCL_LIBRARIES)
endif()

5
docs/INDEX.md Normal file
View File

@ -0,0 +1,5 @@
# 项目文档
- [安装部署指南](INSTALL_GUIDE_CN.md)
- [硬件支持](SUPPORT_MATRIX_CN.md)
- [使用指南](USER_GUIDE_CN.md)

172
docs/INSTALL_GUIDE_CN.md Normal file
View File

@ -0,0 +1,172 @@
# 安装部署指南
## 目录
- [环境准备](#环境准备)
- [编译本项目](#编译本项目)
- [技术支持](#技术支持)
## 环境准备
目前的软硬件环境支持矩阵
| Host CPU | Device | OS | Support |
| -------- | ------------ | ----------- | ---------- |
| X86-64 | Nvidia GPU | Ubuntu-22.04 | Yes |
| X86-64 | Cambricon MLU | Ubuntu-22.04 | Yes |
推荐使用 X86-64 机器以及 Ubuntu-22.04,本文以此环境为例。
1. 确认 GCC 版本为 11.3 及以上的稳定版本,如若您的机器 GCC 版本不满足此条件,请自行编译安装,下述方式二选一:
- [GCC 官方文档](https://gcc.gnu.org/onlinedocs/gcc-11.3.0/gcc/)
- [网友安装分享](https://zhuanlan.zhihu.com/p/509695395)
2. 确认 CMake 版本为 3.17 及以上的稳定版本, 如若您的机器 CMake 版本不满足此条件,请自行编译安装,下述方式二选一:
- [CMake 官方文档](https://cmake.org/install/)
- [网友安装分享](https://zhuanlan.zhihu.com/p/110793004)
3. 第三方加速卡软件资源安装,目前本项目已经适配了如下的第三方加速卡:
- 如您的第三方加速卡为英伟达 GPU请参考英伟达官方文档进行
> [驱动安装](https://www.nvidia.cn/geforce/drivers/)
> [CUDA Toolkit 安装](https://developer.nvidia.com/cuda-toolkit)
> [Cudnn 安装](https://developer.nvidia.com/rdp/cudnn-download)
> [Cublas 安装](https://developer.nvidia.com/cublas)
> 安装完成后请进行相应的环境变量配置,将可执行文件目录与库目录添加到操作系统识别的路径中,例如
>
> ```bash
> # 将如下内容写入到你的 bashrc 文件并 source 该文件
> export CUDA_HOME="/PATH/TO/YOUR/CUDA_HOME"
> export CUDNN_HOME="/PATH/TO/YOUR/CUDNN_HOME"
> export PATH="${CUDA_HOME}/bin:${PATH}"
> export LD_LIBRARY_PATH="${CUDA_HOME}/lib64:${LD_LIBRARY_PATH}"
> # 如您不方便将上述环境变量配置到 bashrc 文件中进行长期使用,你也可以在我们提供的 env.sh 文件中进行正确配置并激活,作为临时使用
> source env.sh
> ```
我们强烈建议您规范安装,统一到一个目录下,以免不必要的麻烦。
- 如您的第三方加速卡为寒武纪 MLU请参考寒武纪官方文档进行
> [驱动安装](https://www.cambricon.com/docs/sdk_1.11.0/driver_5.10.6/user_guide_5.10.6/index.html)
> [CNToolkit 安装](https://www.cambricon.com/docs/sdk_1.11.0/cntoolkit_3.4.1/cntoolkit_install_3.4.1/index.html)
> [CNNL 安装](https://www.cambricon.com/docs/sdk_1.11.0/cambricon_cnnl_1.16.1/user_guide/index.html)
> 安装完成后请进行相应的环境变量配置,将可执行文件目录与库目录添加到操作系统识别的路径中,例如
>
> ```bash
> # 将如下内容写入到你的 bashrc 文件并 source 该文件
> export NEUWARE_HOME="/usr/local/neuware"
> export PATH="${NEUWARE_HOME}/bin:${PATH}"
> export LD_LIBRARY_PATH="${NEUWARE_HOME}/lib64:${LD_LIBRARY_PATH}"
> # 如您不方便将上述环境变量配置到 bashrc 文件中进行长期使用,你也可以在我们提供的 env.sh 文件中进行正确配置并激活,作为临时使用
> source env.sh
> ```
我们强烈建议您规范安装,统一到一个目录下,以免不必要的麻烦。另外请注意,由于 MLU 上层软件建设适配程度有限,如您在其覆盖的机器,操作系统之外运行,需要在安装驱动之后使用上层软件的 Docker。
4. 确认您安装了 makebuild-essential python-is-python3 python-dev-is-python3 python3-pip libdw-dev如您的机器没有上述基础依赖请自行按需安装。
- 在使用 apt-get 工具情况下,您可以这样执行
```bash
sudo apt-get install make cmake build-essential python-is-python3 python-dev-is-python3 python3-pip libdw-dev
```
5. 更新pip并切换到清华源
```bash
python -m pip install -i https://pypi.tuna.tsinghua.edu.cn/simple --upgrade pip
pip config set global.index-url https://pypi.tuna.tsinghua.edu.cn/simple
```
6. 安装一些不必要的项目(可选)
- 如您需要运行本项目下的 example 代码,您需要安装一些辅助项目。请注意这些项目不是必要的,若您不需要运行样例代码,这些项目无需安装。
> [Pytorch](https://pytorch.org/get-started/locally/):业界内流行的神经网络编程框架
> [ONNX](https://onnx.ai/get-started.html):业界内流行的神经网络模型存储文件与转换器
> [onnxsim](https://pypi.org/project/onnxsim/)一个简化onnx模型的小工具
> [onnx2torch](https://github.com/ENOT-AutoDL/onnx2torch)一个将onnx模型转换pytorch模型的小工具
> [tqdm](https://pypi.org/project/tqdm/):一个显示程序运行进度条的小工具
- 如您需要使用本项目下的 InfiniTest 测试工具,你还需要安装如下的项目:
> [protobuf](https://github.com/protocolbuffers/protobuf) 一种序列化文件的格式及其编译、序列化、解析工具
## 编译本项目
推荐使用 X86-64 机器以及 Ubuntu-22.04,本文以此环境为例。
1. 配置环境
打开 env.sh 文件进行环境变量配置,之后执行
```bash
source env.sh
```
2. 编译本项目并打包成 Python 库进行安装
我们提供了意见编译参数,您可以在项目根目录下执行下面的命令。第一次执行会同时安装 python 依赖库,耗时略长,请耐心等待。
仅编译 CPU 部分,不编译第三方计算卡:
```bash
make install-python
```
编译 CPU 部分,同时编译英伟达 GPU 部分:
```bash
export CUDA_HOME=/path/to/your/cuda_home
make install-python CUDA=ON
```
编译 CPU 部分,同时编译寒武纪 MLU 部分:
```bash
export NEUWARE_HOME=/path/to/your/neuware_home
make install-python BANG=ON
```
编译 CPU 部分,同时编译昆仑 XPU 部分:
```bash
export KUNLUN_HOME=/path/to/your/kunlun_home
make install-python KUNLUN=ON
```
3. 使用方法
安装成功后,您就可以使用本项目的 Python 接口进行编码并运行。具体使用方式可以参考项目样例代码 example/Resnet/resnet.py 以及用户使用手册
## Docker
本项目也提供了 Docker 的环境,您可以使用 `make docker-build``make docker-build CUDA=ON` 命令启动并编译 Dockerfile您可以通过添加编译选项或者修改 Makefile 变量修改 docker image 名称或者所选的 Dockerfile 文件。
由于在拉取 github repo 时需要将 ssh key 加入到 github profile 中,因此暂时注释掉拉取 repo 并编译项目的过程,由用户在进入 docker 后自己维护 ssh key将 host 中的 ssh key 复制到 docker 中可能会遇到环境不一致的问题)。
```shell
# Build docker container.
make docker-build
# Run docker image.
make docker-run
# Execute docker image.
make docker-exec
```
如果需要编译 CUDA 版,请使用如下命令:
```shell
# Build docker container.
make docker-build CUDA=ON
# Run docker image.
make docker-run CUDA=ON
```
## 技术支持
如遇到问题,请联系我们技术支持团队

30
docs/SUPPORT_MATRIX_CN.md Normal file
View File

@ -0,0 +1,30 @@
# 支持矩阵
## 目录
- [环境支持](#环境支持)
- [神经网络支持](#神经网络支持)
- [技术支持](#技术支持)
## 环境支持
目前的软硬件环境支持矩阵
| Host CPU | Device | OS | Support |
| -------- | ------------ | ----------- | ---------- |
| X86-64 | Nvidia GPU | Ubuntu-22.04 | Yes |
| X86-64 | Cambricon MLU | Ubuntu-22.04 | Yes |
## 神经网络支持
目前已经验证过的神经网络模型有
- [x] [ResNet18-v2](https://github.com/onnx/models/blob/main/validated/vision/classification/resnet/model/resnet18-v2-7.onnx)
- [x] [DenseNet-121-12](https://github.com/onnx/models/blob/main/validated/vision/classification/densenet-121/model/densenet-12.onnx)
- [x] [Inception-2](https://github.com/onnx/models/blob/main/validated/vision/classification/inception_and_googlenet/inception_v2/model/inception-v2-9.onnx)
- [x] [EfficientNet-Lite4](https://github.com/onnx/models/blob/main/validated/vision/classification/efficientnet-lite4/model/efficientnet-lite4-11.onnx)
## 技术支持
如若您遇到了本项目的问题,请联系我们的技术支持团队

1
docs/TODO.md Normal file
View File

@ -0,0 +1 @@


203
docs/USER_GUIDE_CN.md Normal file
View File

@ -0,0 +1,203 @@
# 使用指南
## 目录
- [使用方法](#使用方法)
- [python 前端应用指南](#python-前端应用指南)
- [导入 onnx 模型](#导入-onnx-模型)
- [优化](#优化)
- [导出 onnx 模型](#导出-onnx-模型)
- [执行推理](#执行推理)
- [样例代码](#样例代码)
- [技术支持](#技术支持)
- [测试](#测试)
## 使用方法
项目管理功能已写到 [Makefile](../Makefile),支持下列功能:
- 编译项目:`make`/`make build`
- 清理生成文件:`make clean`
- 安装 python 库:`make install-python`
- 测试 c++ 后端:`make test-cpp`
- 测试 python 前端:`make test-onnx`
并使用下列环境变量传递选项参数:
- `TYPE`:编译模式(`debug`/`release`),默认值为 `release`
- `CUDA`:是否编译 CUDA 后端,默认为 `OFF``ON` 打开
- `BANG`:是否编译寒武纪后端,默认为 `OFF``ON` 打开
- `KUNLUN`:是否编译昆仑后端,默认为 `OFF``ON` 打开
- `BACKTRACE`:是否启用栈回溯,默认为 `ON``OFF` 关闭,建议调试时打开
- `TEST`:是否编译 `googletest`,默认为 `ON``OFF` 关闭,只有 `test-cpp` 时必要
## python 前端应用指南
`make install-python` 会将项目的 python 前端以 `pyinfinitensor` 为名字安装到系统目录,可以直接 `import pyinfinitensor` 来使用。现阶段,项目的主要用法是从 onnx 导入模型进行优化,然后可以再导出优化后的模型到 onnx也可以直接运行推理。
### 导入 onnx 模型
支持的模型:
- [x] [ResNet18-v2](https://github.com/onnx/models/blob/main/validated/vision/classification/resnet/model/resnet18-v2-7.onnx)
- [x] [DenseNet-121-12](https://github.com/onnx/models/blob/main/validated/vision/classification/densenet-121/model/densenet-12.onnx)
- [x] [Inception-2](https://github.com/onnx/models/blob/main/validated/vision/classification/inception_and_googlenet/inception_v2/model/inception-v2-9.onnx)
- [x] [EfficientNet-Lite4](https://github.com/onnx/models/blob/main/validated/vision/classification/efficientnet-lite4/model/efficientnet-lite4-11.onnx)
```python
import onnx
from pyinfinitensor.onnx import OnnxStub
from pyinfinitensor import backend
stub = OnnxStub(onnx.load("model_file"), backend.cpu_runtime())
```
[`onnx.load`](https://onnx.ai/onnx/api/serialization.html#load-a-model) 是 onnx 提供的加载函数,将 onnx 文件读取为保存在内存中的 onnx 模型。
`OnnxStub` 是 onnx 模型在项目中的表示,通过构造这个对象,将 onnx 模型导入到项目中。其构造器的第一个参数是 onnx 模型文件;第二个参数是模型运行的后端运行时,可以是 `backend.cpu_runtime()`、`backend.cuda_runtime()` 或 `backend.bang_runtime()`
构造出的 stub 对象可以用于操作项目中的模型和运行时。
### 优化
TODO
### 导出 onnx 模型
优化后的模型可以导出成 onnx 文件提供给其他运行时。
```python
with open("optimized.onnx", "wb") as f:
f.write(stub.to_onnx("optimized").SerializeToString())
```
`stub.to_onnx(<name>)` 将模型转换为 onnx 模型对象,`<name>` 将填写到 onnx 模型的 `name` 字段。序列化到文件的代码见[官方示例](https://onnx.ai/onnx/intro/python.html#model-serialization)。
要可视化检查导出的模型文件,可以利用 [onnx 提供的功能](https://onnx.ai/onnx/api/shape_inference.html#infer-shapes)将所有的张量的形状推理出来再导出:
```python
from onnx.shape_inference import infer_shapes
with open("optimized.onnx", "wb") as f:
f.write(infer_shapes(stub.to_onnx("optimized")).SerializeToString())
```
然后用 [Netron](https://netron.app/) 绘制计算图。
### 执行推理
也可以使用项目的运行时执行推理。
第一步是将数据传入计算图。`OnnxStub.inputs` 是一个 `Dict[str, Tensor]`,保存着模型的所有输入的名字和对象。可以用 [`items()`](https://docs.python.org/zh-cn/3/library/stdtypes.html#dict.items) 来遍历。
这个代码片段显示了如何打印出模型所有输入张量的名字、形状和对象指针:
```python
for name, tensor in stub.inputs.items():
print(name, tensor.shape(), tensor)
```
对于 [resnet18-v2-7.onnx](https://github.com/onnx/models/blob/main/validated/vision/classification/resnet/model/resnet18-v2-7.onnx),会打印出:
```plaintext
data [1, 3, 224, 224] <backend.Tensor object at 0x7efeb828e3b0>
```
当然,地址是随机的。这个输出表明需要输入一个名为 “data”形为 1×3×224×224 的数据。通常来说,这表示一张 224×224 的 rgb 图片。而这个模型是一个 1000 分类的图像分类模型。
为了方便,这里我们向模型传入一个随机的数据。
```python
import numpy
stub.init()
for name, tensor in stub.inputs.items():
print(name, tensor.shape(), tensor)
input = numpy.random.random(tensor.shape()).astype(numpy.float32)
tensor.copyin_float(input.flatten().tolist())
```
`stub.init()` 为所有张量分配空间。空间是预分配的,所以不支持动态 size 的模型。
`tensor.copyin_float(<data>)` 向张量传入数据。其参数必须是一个 `List[float]`,即压平的数据。类似的函数还有 `copyin_int32(<data>)``copyin_int64(<data>)`
然后,调用 `stub.run()` 执行推理:
```python
stub.run()
```
最后,将结果拷贝出来,传入类似:
```python
stub.init()
for name, tensor in stub.outputs.items():
print(name, tensor.shape(), tensor)
print(tensor.copyout_float())
```
### 样例代码
您可以参照[resnet.py](https://github.com/wanghailu0717/NNmodel/blob/main/ResNet/resnet.py)的样例代码进行了解,并尝试运行。在这个文件中,我们使用了 Pytorch 构建了 resnet 网络。您可以查阅该脚本使用方式:
```python
python resnet.py -h
```
在样例代码中,我们对定义的网络进行了序列化操作,并存储为模型文件。之后加载该模型文件,并转换为本项目的模型进行优化操作,再进行推理。您可以关注一下代码中 242 行之后的代码。请注意,您可以按照您的需求来进行操作,通常来说,您所需要撰写的代码就是加载模型,转换为本项目的模型进行优化,推理运行。
## 技术支持
如若您遇到了本项目的问题,请联系我们的技术支持团队
## 测试
除了单元测试 `make test-cpp``make test-onnx` 之外,还可以用其他方式来测试单个模型导入导出和优化的正确性。
这个脚本利用 onnxruntime 来测试导出的模型是否与导入的模型等价:
```python
import onnx
import numpy
import sys
from onnx import ModelProto, ValueInfoProto
from pyinfinitensor.onnx import OnnxStub
from pyinfinitensor import backend
from onnxruntime import InferenceSession
def infer(model: ModelProto, input) -> dict:
collection = set()
for node in model.graph.node:
for output in node.output:
collection.add(output)
model.graph.output.extend([ValueInfoProto(name=x) for x in collection])
session = InferenceSession(model.SerializeToString())
i = session.get_inputs()[0].name
return dict(
zip(
[x.name for x in session.get_outputs()],
[x.flatten() for x in session.run(None, {i: input})],
)
)
model0 = onnx.load(sys.argv[1])
model1 = OnnxStub(model0, backend.cpu_runtime()).to_onnx("new")
input_shape = [x.dim_value for x in model1.graph.input[0].type.tensor_type.shape.dim]
input = numpy.random.random(input_shape).astype(numpy.float32)
output0 = infer(model0, input)[model0.graph.output[0].name]
output1 = infer(model1, input)[model1.graph.output[0].name]
print("error =", sum((output1 - output0) ** 2) / len(output0))
```
要运行脚本,先安装 onnxruntime
```bash
pip install onnxruntime
```
打印出的 `error = ...` 是两个模型输出张量的均方误差。对于不同的模型,这个误差最小为 0最大不超过 1e-9。

38
env.sh Normal file
View File

@ -0,0 +1,38 @@
# 配置英伟达 CUDA 的 HOME 路径,请注意安装 CUDA Toolkit, CUDNN 并将路径配置到下述环境变量。
export CUDA_HOME=/PATH/TO/YOUR/CUDA/HOME
export CUDNN_HOME=/PATH/TO/YOUR/CUDNN/HOME
export PATH="${CUDA_HOME}/bin:${PATH}"
export LD_LIBRARY_PATH="${CUDA_HOME}/lib64:${LD_LIBRARY_PATH}"
# 配置寒武纪 BANG 的 HOME 路径,请注意 /usr/local/neuware 是寒武纪软件栈建议的,同时也是默认的安装路径。
# 如若用户有其他的路径安装方式,请自行配置正确的路径。
# 这里是 neuware 目录下一个可能的结构图,请参考。
# .
# ├── bin
# ├── cmake
# ├── data
# ├── edge
# ├── include
# ├── lib
# ├── lib64
# ├── LICENSE
# ├── mlvm
# ├── README
# ├── samples
# ├── share
# └── version.txt
export NEUWARE_HOME=/usr/local/neuware
export PATH="${NEUWARE_HOME}/bin:${PATH}"
export LD_LIBRARY_PATH="${NEUWARE_HOME}/lib64:${LD_LIBRARY_PATH}"
# 配置昆仑芯 XPU 的 HOME 路径,请注意 /usr/local/xpu 是昆仑芯软件栈提供的软件包路径。
# 如若用户有其他的路径安装方式,请自行配置正确的路径。
# 这里是 xpu 目录下一个可能的结构图,请参考。
# .
# ├── bin
# ├── include
# ├── lib64
# ├── tools
# ├── version
# └── XTDK
export KUNLUN_HOME=/usr/local/xpu

1
examples/NNmodel Submodule

@ -0,0 +1 @@
Subproject commit 51d3105277f3774ed31c02ed4cd11fa92925af77

View File

@ -0,0 +1,39 @@
# 分布式脚本
## 英伟达平台运行方式
#### 1. 运行pytorch模型并生成输入和标准输出可选择导出onnx
使用 `--export_onnx` 设置导出onnx的目录默认为当前路径 `./`不使用这个flag则只进行计算和生成输入输出。
```bash
python run_pytorch.py --model gpt2 --batch_size 1 --length 1 --export_onnx ./
```
会在当前目录下生成输入输出文件`test_inputs.npy` 和 `test_results.npy`,目前只支持单一输入输出。
#### 2. 运行InfiniTensor分布式脚本
```bash
python cuda_launch.py --model "/XXX/XXX.onnx" --nproc_per_node 4
```
## 寒武纪平台运行方式
**将上述运行脚本 `run_pytorch.py` 以及 `cuda_launch.py` 针对寒武纪平台做了相应的适配,具体见 `run_pytorch_mlu.py` 以及 `bang_launch.py`。**
#### 1. 运行pytorch模型并生成输入和标准输出可选择导出onnx
使用 `--export_onnx` 设置导出onnx的目录默认为当前路径 `./`不使用这个flag则只进行计算和生成输入输出。
```bash
python run_pytorch_mlu.py --model gpt2 --batch_size 1 --length 1 --export_onnx ./
```
会在当前目录下生成输入输出文件`test_inputs.npy` 和 `test_results.npy`,目前只支持单一输入输出。
#### 2. 运行InfiniTensor分布式脚本
```bash
python bang_launch.py --model "/XXX/XXX.onnx" --nproc_per_node 4
```

View File

View File

@ -0,0 +1,187 @@
import sys
sys.path.append('../')
import argparse
import os
import time
import multiprocessing as mp
from pyinfinitensor.onnx import OnnxStub, backend
import onnx
from onnx.external_data_helper import convert_model_to_external_data
from onnx.shape_inference import infer_shapes_path
import numpy as np
from parallel_opt import parallel_model
def parse_args():
parser = argparse.ArgumentParser(description="launch distributed infinitensor")
parser.add_argument("--num_nodes", type=int, default=1, help="number of nodes")
parser.add_argument(
"--nproc_per_node", type=int, default=1, help="number of processes per node"
)
parser.add_argument(
"--name", type=str, default="test", help="name of this instance."
)
parser.add_argument(
"--model", type=str, required=True, help="path to the ONNX model file."
)
parser.add_argument("--batch_size", type=int, default=1, help="batch size.")
parser.add_argument("--length", type=int, default=1, help="sequence length.")
parser.add_argument(
"--gen_std",
action="store_true",
help="whether to generate the standard results.",
)
parser.add_argument(
"--type", type=str, choices=["fp32", "fp16", "tf32"], default="fp32", help="data type"
)
args = parser.parse_args()
print("arg setting: ", args)
return (
args.num_nodes,
args.nproc_per_node,
args.name,
args.model,
args.batch_size,
args.length,
args.gen_std,
args.type,
)
def run_model(model, runtime, world_size=1, rank=0, n=10, data_type="default"):
stub = OnnxStub(model, runtime, matmul_compute_type=data_type)
load_inputs(stub, world_size, rank)
# stub.tune()
stub.run()
# get outputs
outputs = next(stub.outputs.values().__iter__()).copyout_numpy()
# bench
for _ in range(n):
stub.run()
begin = time.time()
for _ in range(n * 2):
stub.run()
end = time.time()
avg_time = (end - begin) / (n * 2)
print(f"average time: {avg_time}")
return outputs
def load_inputs(stub, world_size=1, rank=0):
for i, (name, tensor) in enumerate(stub.inputs.items()):
input = np.load(f"./data/input_{i}.npy")
if all(x == y for x,y in zip(input.shape,tensor.shape())):
tensor.copyin_numpy(input)
else:
tensor.copyin_numpy(np.hsplit(input, world_size)[rank])
def run_and_compare(name, model, runtime, world_size=1, rank=0, data_type="default"):
results = np.load(f"./data/output.npy")
outputs = run_model(model, runtime, world_size, rank, data_type=data_type)
print("outputs abs mean:", abs(outputs).mean())
print("max abs diff:", abs(outputs - results).max())
def start_worker(
name: str, world_size: int, rank: int, local_rank: int, model: onnx.ModelProto, data_type: str
):
dist_name = name + "_dist"
model = parallel_model(model, world_size, rank)
extern_path = f"./{dist_name}_rank{rank}.pb"
if os.path.exists(extern_path):
os.remove(extern_path)
onnx.save_model(
model,
f"./{dist_name}_rank{rank}.onnx",
save_as_external_data=True,
location=extern_path,
)
#infer_shapes_path(f"./{dist_name}_rank{rank}.onnx")
runtime = backend.BangRuntime(local_rank)
# print("init comm")
runtime.init_comm(
dist_name,
world_size,
rank,
)
run_and_compare(name, model, runtime, world_size, rank, data_type)
def start_single(name, model, data_type):
runtime = backend.BangRuntime(0)
run_and_compare(name, model, runtime, data_type=data_type)
def generate_input_output(model):
os.makedirs(os.path.dirname("./data/"), exist_ok=True)
runtime = backend.BangRuntime(0)
stub = OnnxStub(model, runtime)
position_id = 0
for i, (name, tensor) in enumerate(stub.inputs.items()):
input = tensor.copyout_numpy()
if np.issubdtype(input.dtype, np.integer):
if input.size == 1:
# input = np.array([position_id])
input = np.random.randint(0,2,size=input.shape, dtype=input.dtype)
else:
input = np.random.randint(0,2,size=input.shape, dtype=input.dtype)
elif input.dtype == np.bool_:
input = np.random.randint(0,2,size=input.shape) > 0
else:
if i == 0:
input = np.ones(input.shape).astype(input.dtype)
position_id = input.shape[-1] - 1
else:
input = np.random.rand(*input.shape).astype(input.dtype)
tensor.copyin_numpy(input)
np.save(f"./data/input_{i}", input)
stub.run()
time.sleep(0.01)
output = next(stub.outputs.values().__iter__()).copyout_numpy()
if np.isnan(output).any():
print("Nan in output")
np.save(f"./data/output", output)
def main():
nnodes, nproc_per_node, name, model_path, bs, length, gen_std, data_type = parse_args()
data_type = "default" if data_type == "fp32" else data_type
model = onnx.load(model_path)
# generate standart output
if gen_std:
print(f"generate standard data for {name}.")
# a small vocabulary size to fit all LLM.
generate_input_output(model)
return
if nproc_per_node == 1:
# run single process.
# use standalone process to isolate bang.
print("run model by single MLU.")
# p = mp.Process(target=start_single, args=(name, model, data_type))
# p.start()
# p.join()
start_single(name, model, data_type)
return
# run distributed parallel.
world_size = nnodes * nproc_per_node
print(f"run model by {world_size} MLU in parallel.")
workers = [
mp.Process(
target=start_worker,
args=(name, world_size, rank, rank % nproc_per_node, model, data_type),
)
for rank in range(world_size)
]
for w in workers:
w.start()
for w in workers:
w.join()
if __name__ == "__main__":
main()

View File

@ -0,0 +1,249 @@
import argparse
import torch
import torch_mlu
from transformers import BertModel, BertConfig
from transformers import GPT2Model, GPT2Config
from transformers import OPTModel, OPTConfig
from transformers import AlbertModel, AlbertConfig
from transformers import LlamaModel, LlamaConfig
import time
import numpy as np
import onnx
import sys
import os
from onnx.external_data_helper import convert_model_to_external_data
from onnxsim import simplify
def parse_args():
parser = argparse.ArgumentParser(description="Run pytorch gpt2/bert/opt and optionally export onnx.")
parser.add_argument(
"--model", type=str, choices=["gpt2", "bert", "opt", "llama", "albert"], required=True, help="model type"
)
parser.add_argument("--batch_size", type=int, default=1, help="batch size.")
parser.add_argument("--length", type=int, default=1, help="sequence length.")
parser.add_argument(
"--export_onnx",
type=str,
nargs="?",
default=None,
const="./",
help="whether and where to export onnx file",
)
parser.add_argument(
"--type", type=str, choices=["fp32", "fp16", "tf32"], required=True, help="model data type"
)
args = parser.parse_args()
print("arg setting: ", args)
return (
args.model,
args.batch_size,
args.length,
args.export_onnx,
args.type
)
def get_model(modelname):
match modelname:
case "albert":
model = AlbertModel.from_pretrained("albert/albert-base-v2")
voc_size = AlbertConfig().vocab_size
case "bert":
model = BertModel.from_pretrained("bert-base-uncased", add_pooling_layer=False, hidden_act="gelu_new") # erf is not impl by infini
voc_size = BertConfig().vocab_size
case "gpt2":
model = GPT2Model.from_pretrained("GPT2")
voc_size = GPT2Config().vocab_size
case "opt":
model = OPTModel.from_pretrained("facebook/opt-125m")
voc_size = OPTConfig().vocab_size
case "llama":
model = LlamaModel.from_pretrained("meta-llama/Llama-2-7b-hf")
voc_size = LlamaConfig().vocab_size
case _:
raise KeyError(modelname)
model = model.eval()
return model, voc_size
def run_pytorch(torch_model, voc_size, batchsize, len, dtype="fp32"):
data = np.random.randint(0, voc_size, (batchsize, len), dtype=np.int32)
os.makedirs(os.path.dirname("./data/"), exist_ok=True)
np.save("./data/input_0", data)
inputs = torch.from_numpy(data).to("mlu")
torch_model = torch_model.to("mlu")
if dtype == "fp16":
torch_model = torch_model.half()
n_iter = 20
with torch.no_grad():
for _ in range(10):
outputs = torch_model(inputs)
torch.mlu.synchronize()
begin = time.time()
with torch.no_grad():
for _ in range(n_iter):
torch.mlu.synchronize()
outputs = torch_model(inputs)
torch.mlu.synchronize()
torch.mlu.synchronize()
end = time.time()
avg_time = (end - begin) / n_iter
outputs = outputs.last_hidden_state.to("cpu")
print("outputs abs mean:", abs(np.array(outputs)).mean())
print(f"average time: {avg_time}")
# torch.mlu.memory.empty_cache()
np.save("./data/output", np.array(outputs))
print("Save input & output into ./data.")
def export_onnx(modelname, model, data, path, extern=False, dtype="fp32"):
data = data.to("mlu")
model = model.to("mlu")
if dtype == "fp16":
model = model.half()
torch.onnx.export(model, data, path, verbose=False, do_constant_folding=True)
if modelname != "llama":
# use onnxsim to simplify
onnx_model = onnx.load(path)
onnx_model, check = simplify(onnx_model, skipped_optimizers=['eliminate_duplicate_initializer'])
# onnx_model, check = simplify(onnx_model, skipped_optimizers=['fuse_qkv', 'eliminate_duplicate_initializer'])
assert check
add_value_info_for_constants(onnx_model)
onnx_model = onnx.shape_inference.infer_shapes(onnx_model)
if extern:
extern_path = path.replace('.onnx', '.pb')
if os.path.exists(extern_path):
os.remove(extern_path)
extern_path = extern_path.split("/")[-1]
convert_model_to_external_data(
onnx_model,
all_tensors_to_one_file=True,
location=extern_path,
size_threshold=1024,
convert_attribute=False,
)
onnx.save(onnx_model, path)
else:
# use third party tool to simplify llama
# reference: https://github.com/luchangli03/onnxsim_large_model/
sys.path.append("onnxsim_large_model")
from onnx_utils import set_onnx_input_shape
from compress_model import SIZE_1MB, compress_onnx_model, uncompress_onnx_model
in_model_path = path
out_model_path = path
if not out_model_path:
out_model_path = in_model_path[:-5] + ".sim.onnx"
if os.path.isdir(out_model_path):
out_model_path = os.path.join(out_model_path, os.path.basename(in_model_path))
onnx_model = onnx.load(in_model_path)
print(f"load model from {in_model_path} success")
size_th_bytes = 1024 * 1024
onnx_model, removed_inits = compress_onnx_model(onnx_model, size_th_bytes=size_th_bytes)
print(f"compress model success")
onnx_model = set_onnx_input_shape(onnx_model, "")
tensor_size_threshold = f"1024KB"
skipped_optimizers = []
skipped_optimizers.append("eliminate_duplicate_initializer")
onnx_model, check = simplify(onnx_model, skipped_optimizers=skipped_optimizers,
tensor_size_threshold=tensor_size_threshold)
if not check:
raise ValueError(f"simplify compressed model {in_model_path} failed")
print(f"simplify model success")
onnx_model = uncompress_onnx_model(onnx_model, removed_inits)
print(f"uncompress model success")
add_value_info_for_constants(onnx_model)
onnx.save(onnx_model, out_model_path, save_as_external_data=True)
def add_value_info_for_constants(model : onnx.ModelProto):
"""
Currently onnx.shape_inference doesn't use the shape of initializers, so add
that info explicitly as ValueInfoProtos.
Mutates the model.
Args:
model: The ModelProto to update.
"""
# All (top-level) constants will have ValueInfos before IRv4 as they are all inputs
if model.ir_version < 4:
return
def add_const_value_infos_to_graph(graph : onnx.GraphProto):
inputs = {i.name for i in graph.input}
existing_info = {vi.name: vi for vi in graph.value_info}
for init in graph.initializer:
# Check it really is a constant, not an input
if init.name in inputs:
continue
# The details we want to add
elem_type = init.data_type
shape = init.dims
# Get existing or create new value info for this constant
vi = existing_info.get(init.name)
if vi is None:
vi = graph.value_info.add()
vi.name = init.name
# Even though it would be weird, we will not overwrite info even if it doesn't match
tt = vi.type.tensor_type
if tt.elem_type == onnx.TensorProto.UNDEFINED:
tt.elem_type = elem_type
if not tt.HasField("shape"):
# Ensure we set an empty list if the const is scalar (zero dims)
tt.shape.dim.extend([])
for dim in shape:
tt.shape.dim.add().dim_value = dim
# Handle subgraphs
for node in graph.node:
for attr in node.attribute:
# Ref attrs refer to other attrs, so we don't need to do anything
if attr.ref_attr_name != "":
continue
if attr.type == onnx.AttributeProto.GRAPH:
add_const_value_infos_to_graph(attr.g)
if attr.type == onnx.AttributeProto.GRAPHS:
for g in attr.graphs:
add_const_value_infos_to_graph(g)
return add_const_value_infos_to_graph(model.graph)
def main():
torch.backends.mlu.matmul.allow_tf32 = False
torch.backends.cnnl.allow_tf32 = False
modelname, batchsize, seqlen, export_path, dtype = parse_args()
if dtype == "tf32":
torch.backends.mlu.matmul.allow_tf32 = True
else:
os.environ["CAMBRICON_TF32_OVERRIDE"] = "0"
model, voc_size = get_model(modelname)
if export_path is not None:
filename = "{}_{}_{}_{}.onnx".format(modelname, batchsize, seqlen, dtype)
path = os.path.join(export_path, filename)
if not os.path.exists(path):
param = torch.zeros((batchsize, seqlen), dtype=torch.int)
export_onnx(modelname, model, param, path, True, dtype)
else:
print("Onnx path exists, skipping export.")
run_pytorch(model, voc_size, batchsize, seqlen, dtype)
if __name__ == "__main__":
main()

View File

@ -0,0 +1,161 @@
import argparse
import os
import time
import multiprocessing as mp
from pyinfinitensor.onnx import OnnxStub, backend
import onnx
from onnx.external_data_helper import convert_model_to_external_data
from onnx.shape_inference import infer_shapes_path
import numpy as np
from parallel_opt import parallel_model
def parse_args():
parser = argparse.ArgumentParser(description="launch distributed infinitensor")
parser.add_argument("--num_nodes", type=int, default=1, help="number of nodes")
parser.add_argument(
"--nproc_per_node", type=int, default=1, help="number of processes per node"
)
parser.add_argument(
"--name", type=str, default="test", help="name of this instance."
)
parser.add_argument(
"--model", type=str, required=True, help="path to the ONNX model file."
)
parser.add_argument("--batch_size", type=int, default=1, help="batch size.")
parser.add_argument("--length", type=int, default=1, help="sequence length.")
parser.add_argument(
"--gen_std",
action="store_true",
help="whether to generate the standard results.",
)
parser.add_argument(
"--type", type=str, choices=["fp32", "fp16", "tf32"], default="fp32", help="data type"
)
args = parser.parse_args()
print("arg setting: ", args)
return (
args.num_nodes,
args.nproc_per_node,
args.name,
args.model,
args.batch_size,
args.length,
args.gen_std,
args.type,
)
def run_model(model, runtime, inputs, n=10, data_type = "default"):
stub = OnnxStub(model, runtime, matmul_compute_type=data_type)
for tensor, input in zip(stub.inputs.values(), inputs, strict=False):
tensor.copyin_numpy(input)
# stub.tune()
stub.run()
# get outputs
outputs = next(stub.outputs.values().__iter__()).copyout_numpy()
# bench
for tensor, input in zip(stub.inputs.values(), inputs, strict=False):
tensor.copyin_numpy(input)
begin = time.time()
for _ in range(n):
stub.run()
end = time.time()
avg_time = (end - begin) / n
print(f"average time: {avg_time}")
return outputs
def run_and_compare(name, model, runtime, data_type):
input_ids = np.load(f"{name}_inputs.npy")
position_ids = np.arange(input_ids.shape[-1])
results = np.load(f"{name}_results.npy")
outputs = run_model(model, runtime, (input_ids, position_ids), data_type=data_type)
print("outputs abs mean:", abs(outputs).mean())
print("max abs diff:", abs(outputs - results).max())
def start_worker(
name: str, world_size: int, rank: int, local_rank: int, model: onnx.ModelProto, data_type: str
):
dist_name = name + "_dist"
model = parallel_model(model, world_size, rank)
extern_path = f"./{dist_name}_rank{rank}.pb"
if os.path.exists(extern_path):
os.remove(extern_path)
onnx.save_model(
model,
f"./{dist_name}_rank{rank}.onnx",
save_as_external_data=True,
location=extern_path,
)
#infer_shapes_path(f"./{dist_name}_rank{rank}.onnx")
runtime = backend.CudaRuntime(local_rank)
# print("init comm")
runtime.init_comm(
dist_name,
world_size,
rank,
)
run_and_compare(name, model, runtime, data_type)
def start_single(name, model, data_type):
runtime = backend.CudaRuntime(0)
run_and_compare(name, model, runtime, data_type)
def gen_standard(name, model, voc_size, bs, len):
# generate standard results
input_ids = np.random.randint(0, voc_size, (bs, len))
position_ids = np.arange(len)
np.save(f"{name}_inputs", input_ids)
runtime = backend.CudaRuntime(0)
outputs = run_model(model, runtime, (input_ids, position_ids), 1)
print("outputs abs mean:", abs(outputs).mean())
np.save(f"{name}_results", outputs)
def main():
nnodes, nproc_per_node, name, model_path, bs, length, gen_std, data_type = parse_args()
data_type = "default" if data_type == "fp32" else data_type
if data_type != "tf32":
os.environ["NVIDIA_TF32_OVERRIDE"] = "0"
model = onnx.load(model_path)
# generate standart output
if gen_std:
print(f"generate standard data for {name}.")
# a small vocabulary size to fit all LLM.
voc_size = 1000
gen_standard(name, model, voc_size, bs, length)
return
# run single process.
# use standalone process to isolate cuda.
print("run model by single GPU.")
p = mp.Process(target=start_single, args=(name, model, data_type))
p.start()
p.join()
# run distributed parallel.
world_size = nnodes * nproc_per_node
print(f"run model by {world_size} GPU in parallel.")
workers = [
mp.Process(
target=start_worker,
args=(name, world_size, rank, rank % nproc_per_node, model, data_type),
)
for rank in range(world_size)
]
for w in workers:
w.start()
for w in workers:
w.join()
if __name__ == "__main__":
main()

View File

@ -0,0 +1,245 @@
import argparse
import os
import time
import multiprocessing as mp
from pyinfinitensor.onnx import OnnxStub, backend
import onnx
from onnx.external_data_helper import convert_model_to_external_data
import numpy as np
from parallel_opt import parallel_model
os.environ["NVIDIA_TF32_OVERRIDE"] = "0"
def parse_args():
parser = argparse.ArgumentParser(description="launch distributed infinitensor")
parser.add_argument("--num_nodes", type=int, default=1, help="number of nodes")
parser.add_argument(
"--nproc_per_node", type=int, default=1, help="number of processes per node"
)
parser.add_argument(
"--name", type=str, default="test", help="name of this instance."
)
parser.add_argument(
"--model1", type=str, required=True, help="path to the ONNX model file."
)
parser.add_argument(
"--model2", type=str, required=True, help="path to the ONNX model file."
)
parser.add_argument("--batch_size", type=int, default=1, help="batch size.")
parser.add_argument("--length", type=int, default=1, help="sequence length.")
parser.add_argument(
"--gen_std",
action="store_true",
help="whether to generate the standard results.",
)
args = parser.parse_args()
print("arg setting: ", args)
return (
args.num_nodes,
args.nproc_per_node,
args.name,
args.model1,
args.model2,
args.batch_size,
args.length,
args.gen_std,
)
def run_model(model1, model2, runtime1, runtime2, inputs1: np.array, inputs2: np.array, n=20):
####################################
# run the first graph without kvcache
####################################
stub1 = OnnxStub(model1, runtime1)
stub1.inputs['onnx::Reshape_0'].copyin_int32(inputs1.reshape(-1).tolist())
stub1.tune()
stub1.run()
kvcache_it1 = []
count = 0
for output in stub1.outputs.items().__iter__():
if count == 0:
logits_it1 = np.array(output[1].copyout_float(), dtype=np.float32)
else:
kvcache_it1.append(np.array(output[1].copyout_float(), dtype=np.float32))
count = count + 1
# bench for stub1
next(stub1.inputs.items().__iter__())[1].copyin_int32(inputs1.reshape(-1).tolist())
begin = time.time()
for _ in range(n):
stub1.run()
end = time.time()
avg_time = (end - begin) / n
print(f"stub1 average time: {avg_time}")
####################################
# run the second graph with kvcache
####################################
i = 0
batchsize = 1
stub2 = OnnxStub(model2, runtime2)
past_kvcache_length = (i+2)*np.ones((batchsize, 1), dtype=np.int32)
# copyin input
stub2.inputs['onnx::Reshape_0'].copyin_int32(inputs2.reshape(-1).tolist())
stub2.inputs['input.3'].copyin_int32(past_kvcache_length.reshape(-1).tolist())
count = -1
for input in stub2.inputs.items().__iter__():
if count in range(24):
# print(count, input[0])
# print(np.dtype(kvcache_it1[count][0]), kvcache_it1[count].shape)
input[1].copyin_float(kvcache_it1[count].reshape(-1).tolist())
count = count + 1
stub2.tune()
stub2.run()
# copyout output
count = 0
kvcache_it2 = []
for output in stub2.outputs.items().__iter__():
if count == 0:
logits_it2 = np.array(output[1].copyout_float(), dtype=np.float32)
else:
kvcache_it2.append(np.array(output[1].copyout_float(), dtype=np.float32))
count = count + 1
# bench for stub2
# copyin input
stub2.inputs['onnx::Reshape_0'].copyin_int32(inputs2.reshape(-1).tolist())
stub2.inputs['input.3'].copyin_int32(past_kvcache_length.reshape(-1).tolist())
count = -1
for input in stub2.inputs.items().__iter__():
if count in range(24):
input[1].copyin_float(kvcache_it1[count].reshape(-1).tolist())
count = count + 1
begin = time.time()
for _ in range(n):
stub2.run()
end = time.time()
avg_time = (end - begin) / n
print(f"stub2 average time: {avg_time}")
return logits_it2
def run_and_compare(name, model1, model2, runtime1, runtime2):
data1 = np.load(f"{name}_inputs1.npy")
data2 = np.load(f"{name}_inputs2.npy")
results = np.load(f"{name}_results.npy")
outputs = run_model(model1, model2, runtime1, runtime2, data1, data2)
print("outputs sum:", outputs.sum())
print("max abs diff:", abs(outputs - results).max())
print("max rel diff:", abs((outputs - results) / results).max())
# assert np.allclose(outputs, results, rtol=1e-3, atol=1e-6)
def start_worker(
name: str, world_size: int, rank: int, local_rank: int, model1: onnx.ModelProto, model2: onnx.ModelProto
):
dist_name = name + "_dist"
####################################
# shard the first graph
####################################
model1 = parallel_model(model1, world_size, rank)
extern_path = f"./{dist_name}_stub1_rank{rank}.pb"
if os.path.exists(extern_path):
os.remove(extern_path)
convert_model_to_external_data(
model1,
all_tensors_to_one_file=True,
location=extern_path,
size_threshold=1024,
convert_attribute=False,
)
onnx.save(model1, f"./{dist_name}_stub1_rank{rank}.onnx")
runtime1 = backend.CudaRuntime(local_rank)
runtime1.init_comm(
dist_name,
world_size,
rank,
)
####################################
# shard the second graph
####################################
model2 = parallel_model(model2, world_size, rank)
extern_path = f"./{dist_name}_stub2_rank{rank}.pb"
if os.path.exists(extern_path):
os.remove(extern_path)
convert_model_to_external_data(
model2,
all_tensors_to_one_file=True,
location=extern_path,
size_threshold=1024,
convert_attribute=False,
)
onnx.save(model2, f"./{dist_name}_stub2_rank{rank}.onnx")
runtime2 = backend.CudaRuntime(local_rank)
# print("init comm")
runtime2.init_comm(
dist_name,
world_size,
rank,
)
# run the two graphs
run_and_compare(name, model1, model2, runtime1, runtime2)
def start_single(name, model1, model2):
runtime1 = backend.CudaRuntime(0)
runtime2 = backend.CudaRuntime(0)
run_and_compare(name, model1, model2, runtime1, runtime2)
def gen_standard(name, model1, model2, voc_size, bs, len):
# generate standard results
data1 = np.random.randint(0, voc_size, (bs, len), dtype=np.int32)
data2 = np.random.randint(0, voc_size, (bs, len), dtype=np.int32)
np.save(f"{name}_inputs1", data1)
np.save(f"{name}_inputs2", data2)
runtime1 = backend.CudaRuntime(0)
runtime2 = backend.CudaRuntime(0)
outputs = run_model(model1, model2, runtime1, runtime2, data1, data2, 1)
np.save(f"{name}_results", outputs)
def main():
nnodes, nproc_per_node, name, model1_path, model2_path, bs, length, gen_std = parse_args()
model1 = onnx.load(model1_path)
model2 = onnx.load(model2_path)
# generate standart output
if gen_std:
print(f"generate standard data for {name}.")
# a small vocabulary size to fit all LLM.
voc_size = 1000
gen_standard(name, model1, model2, voc_size, bs, length)
return
# run single process.
# use standalone process to isolate cuda.
p = mp.Process(target=start_single, args=(name, model1, model2))
p.start()
p.join()
# run distributed parallel.
world_size = nnodes * nproc_per_node
workers = [
mp.Process(
target=start_worker,
args=(name, world_size, rank, rank % nproc_per_node, model1, model2),
)
for rank in range(world_size)
]
for w in workers:
w.start()
for w in workers:
w.join()
if __name__ == "__main__":
main()

View File

@ -0,0 +1,188 @@
import argparse
import torch
from transformers import BertModel, BertConfig
from transformers import GPT2Model, GPT2Config
from transformers import OPTModel, OPTConfig
import time
import numpy as np
import onnx
import os
from onnx.external_data_helper import convert_model_to_external_data
from onnxsim import simplify
def parse_args():
parser = argparse.ArgumentParser(description="Run pytorch gpt2/bert/opt and optionally export onnx.")
parser.add_argument(
"--model", type=str, choices=["gpt2", "bert", "opt"], required=True, help="model type"
)
parser.add_argument("--batch_size", type=int, default=1, help="batch size.")
parser.add_argument("--length", type=int, default=1, help="sequence length.")
parser.add_argument(
"--export_onnx",
type=str,
nargs="?",
default=None,
const="./",
help="whether and where to export onnx file",
)
parser.add_argument(
"--type", type=str, choices=["fp32", "fp16", "tf32"], default="fp32", help="data type"
)
args = parser.parse_args()
print("arg setting: ", args)
return (
args.model,
args.batch_size,
args.length,
args.export_onnx,
args.type,
)
def get_model(modelname):
match modelname:
case "bert":
model = BertModel.from_pretrained("bert-base-uncased", add_pooling_layer=False, hidden_act="gelu_new") # erf is not impl by infini
voc_size = BertConfig().vocab_size
case "gpt2":
model = GPT2Model.from_pretrained("gpt2")
voc_size = GPT2Config().vocab_size
case "opt":
model = model = OPTModel.from_pretrained("./opt-125m")
voc_size = OPTConfig().vocab_size
case _:
raise KeyError(modelname)
model = model.eval()
return model, voc_size
def run_pytorch(torch_model, voc_size, batchsize, len):
data = np.random.randint(0, voc_size, (batchsize, len), dtype=np.int32)
np.save("test_inputs", data)
inputs = torch.from_numpy(data).to("cuda")
torch_model = torch_model.to("cuda")
n_iter = 20
with torch.no_grad():
for _ in range(10):
outputs = torch_model(inputs)
torch.cuda.synchronize()
begin = time.time()
with torch.no_grad():
for _ in range(n_iter):
torch.cuda.synchronize()
outputs = torch_model(inputs)
#
torch.cuda.synchronize()
torch.cuda.synchronize()
end = time.time()
avg_time = (end - begin) / n_iter
outputs = outputs.last_hidden_state.to("cpu")
print("outputs abs mean:", abs(np.array(outputs)).mean())
print(f"average time: {avg_time}")
torch.cuda.memory.empty_cache()
np.save("test_results", np.array(outputs, dtype=np.float32))
print("Save input & output as test_inputs.npy and test_results.npy")
def export_onnx(model, data, path, extern=False):
torch.onnx.export(model, data, path, verbose=False, do_constant_folding=True)
onnx_model = onnx.load(path)
onnx_model, check = simplify(onnx_model, skipped_optimizers=['eliminate_duplicate_initializer'])
#onnx_model, check = simplify(onnx_model, skipped_optimizers=['fuse_qkv', 'eliminate_duplicate_initializer'])
assert check
add_value_info_for_constants(onnx_model)
onnx_model = onnx.shape_inference.infer_shapes(onnx_model)
if extern:
extern_path = path.replace('.onnx', '.pb')
if os.path.exists(extern_path):
os.remove(extern_path)
convert_model_to_external_data(
onnx_model,
all_tensors_to_one_file=True,
location=extern_path,
size_threshold=1024,
convert_attribute=False,
)
onnx.save(onnx_model, path)
def add_value_info_for_constants(model : onnx.ModelProto):
"""
Currently onnx.shape_inference doesn't use the shape of initializers, so add
that info explicitly as ValueInfoProtos.
Mutates the model.
Args:
model: The ModelProto to update.
"""
# All (top-level) constants will have ValueInfos before IRv4 as they are all inputs
if model.ir_version < 4:
return
def add_const_value_infos_to_graph(graph : onnx.GraphProto):
inputs = {i.name for i in graph.input}
existing_info = {vi.name: vi for vi in graph.value_info}
for init in graph.initializer:
# Check it really is a constant, not an input
if init.name in inputs:
continue
# The details we want to add
elem_type = init.data_type
shape = init.dims
# Get existing or create new value info for this constant
vi = existing_info.get(init.name)
if vi is None:
vi = graph.value_info.add()
vi.name = init.name
# Even though it would be weird, we will not overwrite info even if it doesn't match
tt = vi.type.tensor_type
if tt.elem_type == onnx.TensorProto.UNDEFINED:
tt.elem_type = elem_type
if not tt.HasField("shape"):
# Ensure we set an empty list if the const is scalar (zero dims)
tt.shape.dim.extend([])
for dim in shape:
tt.shape.dim.add().dim_value = dim
# Handle subgraphs
for node in graph.node:
for attr in node.attribute:
# Ref attrs refer to other attrs, so we don't need to do anything
if attr.ref_attr_name != "":
continue
if attr.type == onnx.AttributeProto.GRAPH:
add_const_value_infos_to_graph(attr.g)
if attr.type == onnx.AttributeProto.GRAPHS:
for g in attr.graphs:
add_const_value_infos_to_graph(g)
return add_const_value_infos_to_graph(model.graph)
def main():
torch.backends.cuda.matmul.allow_tf32 = False
torch.backends.cudnn.allow_tf32 = False
modelname, batchsize, seqlen, export_path, data_type = parse_args()
if data_type == "tf32":
torch.backends.cuda.matmul.allow_tf32 = True
else:
os.environ["NVIDIA_TF32_OVERRIDE"] = "0"
model, voc_size = get_model(modelname)
if export_path is not None:
filename = "{}_{}_{}.onnx".format(modelname, batchsize, seqlen)
path = os.path.join(export_path, filename)
param = torch.zeros((batchsize, seqlen), dtype=torch.int)
export_onnx(model, param, path, True)
if data_type == "fp16":
model = model.half()
run_pytorch(model, voc_size, batchsize, seqlen)
if __name__ == "__main__":
main()

View File

@ -0,0 +1,14 @@
export HF_ENDPOINT=https://hf-mirror.com
models=("bert" "gpt2" "llama")
batch_size=(1 32)
seq_len=(100 500)
nproc=(1 2 4)
for model in "${models[@]}"; do
for bs in "${batch_size[@]}"; do
for len in "${seq_len[@]}"; do
python run_pytorch.py --model "$model" --batch_size "$bs" --length "$len" --export_onnx ../models/"$model" --export_only
done
done
done

View File

@ -0,0 +1,280 @@
import sys
sys.path.append('../')
import argparse
import os
import time
import multiprocessing as mp
from pyinfinitensor.onnx import OnnxStub, backend
import onnx
from onnx.external_data_helper import convert_model_to_external_data
from onnx.shape_inference import infer_shapes_path
import numpy as np
from parallel_opt import parallel_model
from functools import wraps
def parse_args():
parser = argparse.ArgumentParser(description="launch distributed infinitensor")
parser.add_argument("--num_nodes", type=int, default=1, help="number of nodes")
parser.add_argument(
"--nproc_per_node", type=int, default=2, help="number of processes per node"
)
parser.add_argument(
"--name", type=str, choices=["gpt2", "bert", "llama"], help="name of model."
)
parser.add_argument(
"--model", type=str, default="", help="path to the ONNX model file."
)
parser.add_argument(
"--gen_std",
default=False,
action="store_true",
help="whether to generate the standard results.",
)
parser.add_argument(
"--run_single",
default=False,
action="store_true",
help="whether run model with single process with standard inputs"
)
parser.add_argument(
"--input_dir",
default="./",
help="path to save model input data"
)
parser.add_argument(
"--result_dir",
default="./",
help="path to save model standard output"
)
parser.add_argument(
"--internal_model_dir",
default="./",
help="path to save internal onnx model for parallel run"
)
args = parser.parse_args()
# check path, mkdir if not exist
check_exists(args.input_dir)
check_exists(args.result_dir)
check_exists(args.internal_model_dir)
print("arg setting: ", args)
return (
args.num_nodes,
args.nproc_per_node,
args.name,
args.model,
args.gen_std,
args.run_single,
args.input_dir,
args.result_dir,
args.internal_model_dir
)
"""
utils function for this scripts
"""
def check_exists(path: str):
if not os.path.exists(path):
os.makedirs(path)
def np_assert(base, test, rtol=1e-2, atol=1e-1):
# np.testing.assert_allclose(test, base, rtol, atol)
print("max abs diff:", abs(base - test).max())
"""
Perf wrapper, run function n times
then average
"""
def perf_it(n):
def decorator(func):
@wraps(func)
def wrapper(*args, **kwargs):
# warmup
for _ in range(n):
func(*args, **kwargs)
t_total = 0
for _ in range(n):
t0 = time.time()
func(*args, **kwargs)
t1 = time.time()
t_total += t1 - t0
avg_time = (t_total) / n
print(f"Avg runtime of {n} time is {avg_time:.6f} seconds")
return avg_time
return wrapper
return decorator
"""
Run InfiniTensor model with Standard input
check=True: check with standard output gen by pytorch
perf=True: run n times to get avg time
"""
def run_model(task_name,
model,
runtime,
world_size=1,
rank=0,
n=10,
check=True,
perf=True):
stub = OnnxStub(model, runtime,
use_naive_allocator=True \
if task_name == "llama" else False)
# load in Onnx model inputs
def load_inputs(stub: OnnxStub):
# check exists
inputs = []
for i, (name, tensor) in enumerate(stub.inputs.items()):
input_path = os.path.join(input_dir, \
f"{task_name}_input_{i}.npy")
print(input_path)
if os.path.exists(input_path):
input = np.load(input_path)
else :
raise KeyError(f"{i} th input of model not exists")
# check shape
if all(x == y for x,y in zip(input.shape, tensor.shape())):
tensor.copyin_numpy(input)
else:
tensor.copyin_numpy(np.hsplit(input, world_size)[rank])
load_inputs(stub)
# stub.tune()
stub.run()
time.sleep(0.01)
output = next(stub.outputs.values().__iter__()).copyout_numpy()
# check output results with standard output
if check:
st_output_path = os.path.join(result_dir, \
f"{task_name}_output.npy")
assert os.path.exists(st_output_path) , \
"standard output not exists"
st_output = np.load(st_output_path)
if np.isnan(output).any():
print("Nan in output")
exit()
np_assert(st_output, output)
# perf
if perf:
@perf_it(n)
def perf_infinitensor(stub: OnnxStub):
stub.run()
perf_infinitensor(stub)
return output
"""
Start a worker in Parallel
"""
def start_worker(name: str,
world_size: int,
rank: int,
local_rank: int,
model: onnx.ModelProto):
dist_name = name + "_dist"
# partial a onnx model to world_size part
model = parallel_model(model, world_size, rank)
onnx.save(model, os.path.join(internal_model_dir, \
f"{dist_name}_rank{rank}.onnx"), save_as_external_data=True)
runtime = backend.KUNLUNRuntime(local_rank)
# print("init comm")
runtime.init_comm(
dist_name,
world_size,
rank,
)
run_model(name, model, runtime, world_size, rank)
"""
generate standard input/output with
sigle card run
"""
def gen_standard(task_name: str, model: onnx.ModelProto):
runtime = backend.KUNLUNRuntime(0)
stub = OnnxStub(model, runtime)
position_id = 0
# generate random input for model
for i, (name, tensor) in enumerate(stub.inputs.items()):
input = tensor.copyout_numpy()
if np.issubdtype(input.dtype, np.integer):
if input.size == 1:
input = np.random.randint(0,2,size=input.shape, dtype=input.dtype)
else:
input = np.random.randint(0,2,size=input.shape, dtype=input.dtype)
elif input.dtype == np.bool_:
input = np.random.randint(0,2,size=input.shape) > 0
else:
if i == 0:
input = np.ones(input.shape).astype(input.dtype)
position_id = input.shape[-1] - 1
else:
input = np.random.rand(*input.shape).astype(input.dtype)
tensor.copyin_numpy(input)
np.save(os.path.join(input_dir, \
f"{task_name}_input_{i}.npy"), input)
stub.run()
# print(stub.outputs)
output = next(stub.outputs.values().__iter__()).copyout_numpy()
if np.isnan(output).any():
print("Nan in output")
exit()
np.save(os.path.join(result_dir, f"{task_name}_output.npy"), output)
def main():
global input_dir, result_dir, internal_model_dir
nnodes, nproc_per_node, task_name, \
model_path, gen_std, run_single, \
input_dir, result_dir, internal_model_dir = parse_args()
# load input onnx model
model = onnx.load(model_path)
# generate standart output
if gen_std:
print("Generate inputs and outputs.")
gen_standard(task_name, model)
return
if run_single:
print("Run model by one GPU card.")
runtime = backend.KUNLUNRuntime(0)
run_model(task_name, model, runtime)
return
# run distributed parallel.
world_size = nnodes * nproc_per_node
print(f"Run model by {world_size} GPU in parallel.")
workers = [
mp.Process(
target=start_worker,
args=(task_name, world_size, rank, rank % nproc_per_node, model),
)
for rank in range(world_size)
]
for w in workers:
w.start()
for w in workers:
w.join()
if __name__ == "__main__":
main()

View File

@ -0,0 +1,36 @@
export HF_ENDPOINT=https://hf-mirror.com
# models=("bert" "gpt2" "llama")
models=("bert" "gpt2")
batch_size=(1 32)
seq_len=(100 500)
nproc=(1 2 4)
results_dir="results"
if [ -d "$results_dir" ]; then
echo "directory ./$results_dir exists"
else
mkdir -p "$results_dir"
echo "mkdir $results_dir, logs saved there"
fi
for model in "${models[@]}"; do
for bs in "${batch_size[@]}"; do
for len in "${seq_len[@]}"; do
# run pytorch model
echo "Run pytorch $model with batch_size=$bs length=$len ."
python run_pytorch.py --model "$model" --batch_size "$bs" --length "$len" #> results/"$model"_"$bs"_"$len"_pytorch
for n in "${nproc[@]}"; do
# run infinitensor
echo "Run $n parallel infinitensor "$model" with batch_size=$bs and length=$len ."
python kunlun_launch.py --name "$model" --model ../models/"$model"/"$model"_"$bs"_"$len".onnx --nproc_per_node=$n # >> results/"$model"_"$bs"_"$len"_infini
# delete internal files
find ./ -type f -name "*.onnx" -delete
find ./ -type f -name "*.pb" -delete
done
find ./ -type f -name "*.npy" -delete
done
done
done

View File

@ -0,0 +1,35 @@
export HF_ENDPOINT=https://hf-mirror.com
# models=("bert" "gpt2" "llama")
models=("llama")
batch_size=(1 )
seq_len=(100 500)
nproc=(1 2 4)
results_dir="results"
if [ -d "$results_dir" ]; then
echo "directory ./$results_dir exists"
else
mkdir -p "$results_dir"
echo "mkdir $results_dir, logs saved there"
fi
for model in "${models[@]}"; do
for bs in "${batch_size[@]}"; do
for len in "${seq_len[@]}"; do
echo "Run pytorch llama with batch_size="$bs" and length="$len""
python run_pytorch.py --model "$model" --batch_size "$bs" --length "$len"
for n in "${nproc[@]}"; do
# run pytorch model
echo "Run infinitensor llama with batch_size="$bs" and length="$len" and nproc="$n"."
python kunlun_launch.py --name llama --model ../models/llama/llama_"$bs"_"$len"_fp32.onnx --nproc_per_node=$n
# delete internal files
find ./ -type f -name "*.onnx" -delete
find ./ -type f -name "*0c" -delete
done
find ./ -type f -name "*.npy" -delete
done
done
done

View File

@ -0,0 +1,245 @@
import argparse
import torch
from transformers import BertModel, BertConfig
from transformers import GPT2Model, GPT2Config
from transformers import OPTModel, OPTConfig
from transformers import LlamaModel, LlamaConfig
import time
import numpy as np
import onnx
import os
import sys
from onnx.external_data_helper import convert_model_to_external_data
from onnxsim import simplify
torch.backends.cuda.matmul.allow_tf32 = False
torch.backends.cudnn.allow_tf32 = False
def parse_args():
parser = argparse.ArgumentParser(description="Run pytorch gpt2/bert/opt and optionally export onnx.")
parser.add_argument(
"--model", type=str, choices=["gpt2", "bert", "opt", "llama"], required=True, help="model type"
)
parser.add_argument("--batch_size", type=int, default=1, help="batch size.")
parser.add_argument("--length", type=int, default=1, help="sequence length.")
parser.add_argument(
"--export_onnx",
type=str,
nargs="?",
default=None,
const="./",
help="whether and where to export onnx file",
)
parser.add_argument(
"--input_dir",
type=str,
default="./",
help="path to save pytorch model input data"
)
parser.add_argument(
"--result_dir",
type=str,
default="./",
help="path to save pytorch model output data"
)
parser.add_argument(
"--export_only",
action="store_true"
)
args = parser.parse_args()
print("arg setting: ", args)
return (
args.model,
args.batch_size,
args.length,
args.export_onnx,
args.input_dir,
args.result_dir,
args.export_only
)
def get_model(modelname):
if modelname == "bert":
model = BertModel.from_pretrained("bert-base-uncased", add_pooling_layer=False, hidden_act="gelu_new") # erf is not impl by infini
voc_size = BertConfig().vocab_size
elif modelname == "gpt2":
model = GPT2Model.from_pretrained("gpt2")
voc_size = GPT2Config().vocab_size
elif modelname == "opt":
model = OPTModel.from_pretrained("./opt-125m")
voc_size = OPTConfig().vocab_size
elif modelname == "llama":
model = LlamaModel.from_pretrained("meta-llama/Llama-2-7b-hf")
voc_size = LlamaConfig().vocab_size
else :
raise KeyError(modelname)
model = model.eval()
return model, voc_size
def run_pytorch(torch_model, voc_size, batchsize, len, model_name):
data = np.random.randint(0, voc_size, (batchsize, len), dtype=np.int32)
np.save(os.path.join(input_dir, f"{model_name}_input_0.npy"), data)
inputs = torch.from_numpy(data).to("cuda")
torch_model = torch_model.to("cuda")
n_iter = 10
with torch.no_grad():
for _ in range(10):
outputs = torch_model(inputs)
torch.cuda.synchronize()
begin = time.time()
with torch.no_grad():
for _ in range(n_iter):
torch.cuda.synchronize()
outputs = torch_model(inputs)
#
torch.cuda.synchronize()
torch.cuda.synchronize()
end = time.time()
avg_time = (end - begin) / n_iter
outputs = outputs.last_hidden_state.to("cpu")
print("outputs abs mean:", abs(np.array(outputs)).mean())
print(f"average time: {avg_time}")
torch.cuda.memory.empty_cache()
np.save(os.path.join(result_dir, f"{model_name}_output.npy"), \
np.array(outputs))
print(f"Save input & output as {model_name}_input_0.npy and {model_name}_output.npy")
def export_onnx(model_name, model, data, path, extern=False):
# torch.onnx.export(model, data, path, verbose=False, do_constant_folding=True)
if model_name != "llama":
onnx_model = onnx.load(path)
onnx_model, check = simplify(onnx_model,
skipped_optimizers=['fuse_qkv', 'eliminate_duplicate_initializer'])
# skipped_optimizers=['fuse_qkv'])
assert check
add_value_info_for_constants(onnx_model)
onnx_model = onnx.shape_inference.infer_shapes(onnx_model)
if extern:
extern_path = path.replace('.onnx', '.pb')
if os.path.exists(extern_path):
os.remove(extern_path)
convert_model_to_external_data(
onnx_model,
all_tensors_to_one_file=True,
location=extern_path.split("/")[-1],
size_threshold=1024,
convert_attribute=False,
)
onnx.save(onnx_model, path)
else:
sys.path.append("onnxsim_large_model")
from onnx_utils import set_onnx_input_shape
from compress_model import SIZE_1MB, compress_onnx_model, uncompress_onnx_model
in_model_path = path
out_model_path = in_model_path[:-5] + ".sim.onnx"
onnx_model = onnx.load(in_model_path)
print(f"load model from {in_model_path} success")
size_th_bytes = 1024 * 1024
onnx_model, removed_inits = compress_onnx_model(onnx_model, size_th_bytes=size_th_bytes)
print("compress model success")
onnx_model = set_onnx_input_shape(onnx_model, "")
tensor_size_threshold = f"1024KB"
skipped_optimizers = []
skipped_optimizers.append("eliminate_duplicate_initializer")
onnx_model, check = simplify(onnx_model, skipped_optimizers=skipped_optimizers,
tensor_size_threshold=tensor_size_threshold)
if not check:
raise ValueError(f"simplify compressed model {in_model_path} failed")
print(f"simplify model success")
onnx_model = uncompress_onnx_model(onnx_model, removed_inits)
print(f"uncompress model success")
add_value_info_for_constants(onnx_model)
onnx.save(onnx_model, out_model_path, save_as_external_data=True)
def add_value_info_for_constants(model : onnx.ModelProto):
"""
Currently onnx.shape_inference doesn't use the shape of initializers, so add
that info explicitly as ValueInfoProtos.
Mutates the model.
Args:
model: The ModelProto to update.
"""
# All (top-level) constants will have ValueInfos before IRv4 as they are all inputs
if model.ir_version < 4:
return
def add_const_value_infos_to_graph(graph : onnx.GraphProto):
inputs = {i.name for i in graph.input}
existing_info = {vi.name: vi for vi in graph.value_info}
for init in graph.initializer:
# Check it really is a constant, not an input
if init.name in inputs:
continue
# The details we want to add
elem_type = init.data_type
shape = init.dims
# Get existing or create new value info for this constant
vi = existing_info.get(init.name)
if vi is None:
vi = graph.value_info.add()
vi.name = init.name
# Even though it would be weird, we will not overwrite info even if it doesn't match
tt = vi.type.tensor_type
if tt.elem_type == onnx.TensorProto.UNDEFINED:
tt.elem_type = elem_type
if not tt.HasField("shape"):
# Ensure we set an empty list if the const is scalar (zero dims)
tt.shape.dim.extend([])
for dim in shape:
tt.shape.dim.add().dim_value = dim
# Handle subgraphs
for node in graph.node:
for attr in node.attribute:
# Ref attrs refer to other attrs, so we don't need to do anything
if attr.ref_attr_name != "":
continue
if attr.type == onnx.AttributeProto.GRAPH:
add_const_value_infos_to_graph(attr.g)
if attr.type == onnx.AttributeProto.GRAPHS:
for g in attr.graphs:
add_const_value_infos_to_graph(g)
return add_const_value_infos_to_graph(model.graph)
def main():
global input_dir, result_dir
modelname, batchsize, seqlen, \
export_path, input_dir, result_dir, export_only = parse_args()
model, voc_size = get_model(modelname) # pytorch model
if export_path is not None:
os.makedirs(export_path, exist_ok=True)
filename = "{}_{}_{}.onnx".format(modelname, batchsize, seqlen)
path = os.path.join(export_path, filename)
param = torch.zeros((batchsize, seqlen), dtype=torch.int)
export_onnx(modelname, model, param, path, True) # export pytorch model to onnx model
if export_only:
return
run_pytorch(model, voc_size, batchsize, seqlen, modelname)
if __name__ == "__main__":
main()

@ -0,0 +1 @@
Subproject commit cbcf3fbf985a00494b0f136c92eaccd42031bf65

View File

@ -0,0 +1,103 @@
import onnx
from onnx import (
ModelProto,
TensorProto,
NodeProto,
AttributeProto,
)
from onnx import helper, numpy_helper
from typing import Dict, Any
def parse_attribute(node: NodeProto, attrs: Dict[str, Any] = dict()) -> Dict[str, Any]:
for attr in node.attribute:
if attr.name in attrs:
if attr.type == AttributeProto.INT:
attrs[attr.name] = attr.i
elif attr.type == AttributeProto.INTS:
attrs[attr.name] = attr.ints
elif attr.type == AttributeProto.FLOAT:
attrs[attr.name] = attr.f
elif attr.type == AttributeProto.STRING:
attrs[attr.name] = attr.s
elif attr.type == AttributeProto.TENSOR:
attrs[attr.name] = attr.t
else:
assert False, "Unsupported Attribute Type: {}".format(attr.type)
return attrs
def parallel_model(model: ModelProto, tp_world_size: int = 1, tp_rank: int = 0):
data = {init.name: init for init in model.graph.initializer}
nodes = list(model.graph.node)
def shard_tensor(tensor: TensorProto, dim: int):
array = numpy_helper.to_array(tensor)
if dim >= array.ndim:
dim = array.ndim - 1
assert array.shape[dim] % tp_world_size == 0
seg = array.shape[dim] // tp_world_size
array = array[tp_rank * seg : (tp_rank + 1) * seg]
return numpy_helper.from_array(array, name=tensor.name + f":sharded({dim})")
def shard_gemm(node: NodeProto):
attrs = parse_attribute(
node, {"alpha": 1.0, "beta": 1.0, "transA": 0, "transB": 0}
)
trans = [attrs["transA"], attrs["transB"]]
dim = 0
for i, (input, t) in enumerate(zip(node.input, trans)):
if input in data:
dim = i
sharded = shard_tensor(data[input], dim ^ t)
node.input[i] = sharded.name
data[input] = sharded
if len(node.input) > 2:
input = node.input[2]
sharded = shard_tensor(data[input], dim)
node.input[2] = sharded.name
data[input] = sharded
node.output[0] += f":sharded({dim})"
return dim
for i, node in enumerate(nodes):
if node.op_type == "Gemm":
output = node.output[0]
dim = shard_gemm(node)
gathered = [node.output[0] + f".{i}" for i in range(tp_world_size)]
# all_gather
nodes.insert(
i + 1,
helper.make_node(
op_type="AllGather",
inputs=[node.output[0]],
outputs=gathered,
name=node.name + "/allgather",
# domain="infini", # shape inference fails for custom domain
),
)
# concat
nodes.insert(
i + 2,
helper.make_node(
op_type="Concat",
inputs=gathered,
outputs=[output],
name=node.name + "/concat",
axis=dim,
),
)
graph = helper.make_graph(
nodes,
model.graph.name + f"_{tp_rank}",
model.graph.input,
model.graph.output,
data.values(),
doc_string=model.graph.doc_string,
value_info=model.graph.value_info,
)
model = helper.make_model(graph)
onnx.shape_inference.infer_shapes(model)
return model

View File

@ -0,0 +1,247 @@
import onnx
from onnx import ModelProto, NodeProto, TensorProto, ValueInfoProto
from onnx import helper, numpy_helper
from typing import Dict, List
from placement import Placement, Replicate, Shard, _Partial
import numpy as np
def parallel_model(model: ModelProto, tp_world_size: int = 1, tp_rank: int = 0):
data = {init.name: init for init in model.graph.initializer}
vinfo = {info.name: info for info in model.graph.value_info}
vinfo.update({info.name: info for info in model.graph.input})
vinfo.update({info.name: info for info in model.graph.output})
output = {info.name: info for info in model.graph.output}
place: Dict[str, Placement] = {}
nodes: List[NodeProto] = []
def is_sharded(name: str):
return place[name].is_shard()
def shard_tensor(tensor: TensorProto, plc: Shard, groups: int = 1):
# print(f"shard {tensor.name} at dim {dim}")
assert plc.is_shard(), plc
ndim = len(tensor.dims)
if plc.dim < 0:
plc.dim += ndim
if tensor.dims[plc.dim] == 1: # broadcast dim, no need to shard.
return tensor
array = numpy_helper.to_array(tensor)
assert array.shape[plc.dim] % tp_world_size == 0, array.shape[plc.dim]
dims = list(tensor.dims)
dims.insert(plc.dim, groups)
dims[plc.dim + 1] //= groups
array = array.reshape(dims)
seg = array.shape[plc.dim + 1] // tp_world_size
array = array.take(
indices=range(tp_rank * seg, (tp_rank + 1) * seg), axis=plc.dim + 1
)
dims = list(tensor.dims)
dims[plc.dim] //= tp_world_size
array = array.reshape(dims)
tensor = numpy_helper.from_array(array, name=tensor.name)
place[tensor.name] = plc
return tensor
def shard_gemm(node: NodeProto, groups: int = 1):
# print("gemm", node.name)
in_plc = place[node.input[0]]
w_plc = Shard(-1) if in_plc.is_replicate() else Shard(0)
transB = next((attr.i for attr in node.attribute if attr.name == "transB"), 0)
if transB:
w_plc.dim = ~w_plc.dim
input = node.input[1]
data[input] = shard_tensor(data[input], w_plc, groups)
output = node.output[0]
ndim = len(vinfo[output].type.tensor_type.shape.dim)
out_plc = Shard(ndim - 1) if in_plc.is_replicate() else _Partial()
place[node.output[0]] = out_plc
def shard_concat(node: NodeProto):
# hack for kvcache
in_plc = place[node.input[1]]
if in_plc.is_shard():
seq_len_dim = vinfo[node.input[0]].type.tensor_type.shape.dim.pop(1)
seq_len_dim.dim_value //= tp_world_size
vinfo[node.input[0]].type.tensor_type.shape.dim.insert(1, seq_len_dim)
place[node.input[0]] = in_plc
place[node.output[0]] = in_plc
def shard_binary(node: NodeProto, groups: int = 1):
# print("binary", node.name, node.input[0], place[node.input[0]])
a = node.input[0]
b = node.input[1]
if a in data:
a, b = b, a
place[node.output[0]] = place[a]
if is_sharded(a) and b in data and len(data[b].dims) == 1: # broadcast
data[b] = shard_tensor(data[b], Shard(0), groups)
def shard_reshape(node: NodeProto):
# print("reshape", node.name, node.input[0], place[node.input[0]])
if not is_sharded(node.input[0]):
return
in_plc = place[node.input[0]]
s_dim = -1
in_dims = [d.dim_value for d in vinfo[node.input[0]].type.tensor_type.shape.dim]
tensor = data[node.input[1]]
out_dims = numpy_helper.to_array(tensor).copy()
if len(in_dims) == 3 and len(out_dims) == 4:
if in_plc.dim == 0:
s_dim = 1
elif in_plc.dim == 2:
s_dim = 2
if len(in_dims) == 4 and len(out_dims) == 3:
if in_plc.dim == 1:
s_dim = 0
elif in_plc.dim == 2:
s_dim = 2
if len(in_dims) == 2 and len(out_dims) == 3:
if in_plc.dim == 1:
s_dim = 2
if len(in_dims) == 4 and len(out_dims) == 2:
if in_plc.dim == 1:
s_dim = 0
elif in_plc.dim == 2:
s_dim = 1
if len(in_dims) == 3 and len(out_dims) == 2:
if in_plc.dim == 1:
s_dim = 0
elif in_plc.dim == 2:
s_dim = 1
assert s_dim != -1
assert out_dims[s_dim] % tp_world_size == 0, out_dims
out_dims[s_dim] //= tp_world_size
# if ONNX uses the same tensor for multiple Reshape Nodes, then rename it to distingush from others.
node.input[1] = node.output[0] + "_shape"
data[node.input[1]] = numpy_helper.from_array(out_dims, name=node.input[1])
place[node.output[0]] = Shard(s_dim)
def shard_split(node: NodeProto):
if not is_sharded(node.input[0]):
return
in_plc = place[node.input[0]]
split_tensor = data[node.input[1]]
split = numpy_helper.to_array(split_tensor).copy()
split //= tp_world_size
data[node.input[1]] = numpy_helper.from_array(split, name=node.input[1])
for output in node.output:
place[output] = in_plc
def shard_transpose(node: NodeProto):
plc = place[node.input[0]]
if plc.is_shard():
perm = next(attr.ints for attr in node.attribute if attr.name == "perm")
place[node.output[0]] = Shard(list(perm).index(plc.dim))
def shard_node(node: NodeProto):
if node.op_type in ["Relu", "Tanh", "Softmax", "Cast"]:
place[node.output[0]] = place[node.input[0]]
elif node.op_type in ["Where"]:
place[node.output[0]] = place[node.input[1]]
if node.op_type in {"Add", "Mul", "Div", "Max"}:
shard_binary(node)
elif node.op_type == "Reshape":
shard_reshape(node)
elif node.op_type == "Transpose":
shard_transpose(node)
elif node.op_type == "Split":
shard_split(node)
elif node.op_type == "MatMul":
assert (
place[node.input[0]] == place[node.input[1]]
), f"{place[node.input[0]]} != {place[node.input[1]]}"
place[node.output[0]] = place[node.input[0]]
elif node.op_type == "Concat":
shard_concat(node)
def find_successor(op_type: str, idx: int, search_limit: int = 1):
for node in model.graph.node[idx + 1 : idx + 1 + search_limit]:
if node.op_type == op_type:
return node
return None
# all tensors are initially replicated.
for v in vinfo:
place[v] = Replicate()
for t in data:
place[t] = Replicate()
for index, node in enumerate(model.graph.node):
nodes.append(node)
# linear
if (node.op_type == "MatMul" or node.op_type == "Gemm") and any(
input in data for input in node.input
):
# FIXME(constroy): the last MatMul should not be sharded as TP.
if (
node.output[0] in output
or (
index + 1 < len(model.graph.node)
and model.graph.node[index + 1].output[0]
)
in output
):
continue
groups = 1
# If the Gemm or Matmul is followed by a split, then the inputs are concatinated by groups
split_node = find_successor("Split", index, search_limit=2)
if split_node is not None:
groups = len(split_node.output)
shard_gemm(node, groups)
plc = place[node.output[0]]
if plc.is_partial():
new_name = node.output[0] + f":{plc}"
place[new_name] = place[node.output[0]]
# insert all_reduce
nodes.append(
helper.make_node(
op_type="ReduceSum",
inputs=[new_name],
outputs=[node.output[0]],
name=node.name + "/all_reduce",
noop_with_empty_axes=1,
communicator=0, # hack to treat ReduceSum as AllReduceSum
)
)
place[node.output[0]] = Replicate()
node.output[0] = new_name
if len(node.input) > 2: # split bias to add
prev = nodes[-1]
new_name = prev.output[0] + "_no_bias"
place[new_name] = place[node.output[0]]
bias = helper.make_node(
op_type="Add",
inputs=[new_name, node.input[2]],
outputs=[prev.output[0]],
name=node.name + "/bias",
)
node.input.pop()
prev.output[0] = new_name
shard_binary(bias, groups)
nodes.append(bias)
continue
shard_node(node)
new_input = []
for info in model.graph.input:
new_input.append(vinfo[info.name])
graph = helper.make_graph(
nodes,
model.graph.name + f"_{tp_rank}",
new_input,
model.graph.output,
data.values(),
doc_string=model.graph.doc_string,
# value_info=vinfo.values(),
)
for output in graph.output:
tt = output.type.tensor_type
if tt.HasField("shape"):
tt.ClearField("shape")
model = helper.make_model(graph)
#model = onnx.shape_inference.infer_shapes(model)
return model

View File

@ -0,0 +1,64 @@
from typing import Optional
class Placement:
# base class Placement type
# convenient utils to check for placement types
def is_shard(self, dim: Optional[int] = None) -> bool:
if dim is not None and isinstance(self, Shard):
return self.dim == dim
else:
return isinstance(self, Shard)
def is_replicate(self) -> bool:
return isinstance(self, Replicate)
def is_partial(self) -> bool:
return isinstance(self, _Partial)
class Replicate(Placement):
def __eq__(self, other: object) -> bool:
if not isinstance(other, Replicate):
return False
return True
def __repr__(self) -> str:
"""
machine readable representation of the Replicate placement
"""
return "Replicate()"
class Shard(Placement):
# shard placement, shard on a dim
def __init__(self, dim):
self.dim = dim
def __eq__(self, other: object) -> bool:
if not isinstance(other, Shard):
return False
return self.dim == other.dim
def __repr__(self) -> str:
"""
machine readable representation of the Shard placement
"""
return f"Shard(dim={self.dim})"
class _Partial(Placement):
def __init__(self, reduce_op: str = "sum"):
self.reduce_op: str = reduce_op
def __eq__(self, other: object) -> bool:
if not isinstance(other, _Partial):
return False
return self.reduce_op == other.reduce_op
def __repr__(self) -> str:
"""
machine readable representation of the Partial placement
"""
return f"_Partial(reduce_op={self.reduce_op})"

View File

@ -0,0 +1,145 @@
import os
from pyinfinitensor.onnx import OnnxStub, backend
import numpy as np
import onnx
import torch
from transformers import LlamaModel, LlamaForCausalLM
from tqdm import tqdm
import onnx_graphsurgeon as gs
from onnxsim import simplify
import argparse
parser = argparse.ArgumentParser(description='')
parser.add_argument('--batchsize', dest='batchsize', type=int, default=1)
parser.add_argument('--layer', dest='n_layers', type=int, default=2)
parser.add_argument('--iter', dest='n_iter', type=int, default=1)
parser.add_argument('--n_max_length', dest='n_max_length', type=int, default=1024)
parser.add_argument('--pretrained_llama_path', dest='pretrained_llama_path', type=str,
default="/data0/shared/data/public/opensource_models/meta-llama/Llama-2-7b-hf/")
parser.add_argument('--onnx_model_path', dest='onnx_model_path', type=str,
default="/data1/shared/llama")
args = parser.parse_args()
ONNX_MODEL_PATH = "{}/llama_bs{}_layer{}.onnx".format(args.onnx_model_path, args.batchsize, args.n_layers)
ONNX_WEIGHT_PATH = "./llama_bs{}_layer{}.pb".format(args.batchsize, args.n_layers)
def export_onnx(model: LlamaModel, ONNX_MODEL_PATH):
param = torch.zeros(
(args.batchsize, 1024), dtype=torch.long)
logits = model(param, past_key_values=None)
param_kvcache = torch.zeros((args.batchsize, 1), dtype=torch.long)
torch.onnx.export(model, (param_kvcache, {"past_key_values": logits.past_key_values,
"position_ids": param_kvcache}), ONNX_MODEL_PATH, verbose=False,
do_constant_folding=True,)
onnx_model = onnx.load(ONNX_MODEL_PATH)
print("simplifing onnx model")
onnx_model, check = simplify(onnx_model, skipped_optimizers=[
'eliminate_duplicate_initializer'])
assert check
onnx.save(onnx_model, ONNX_MODEL_PATH, save_as_external_data=True, location=ONNX_WEIGHT_PATH)
print("simlifing finished.")
@gs.Graph.register()
def replace_with_attention(self, inputs, outputs, inputs_added, outputs_removed):
for inp in inputs:
inp.outputs.clear()
for out in outputs:
out.inputs.clear()
for inp in inputs_added:
inputs.append(inp)
for out in outputs_removed:
out.inputs.clear()
return self.layer(op="AttentionKVCache", inputs=inputs, outputs=outputs)
def replace_onnx_with_attention_op():
graph = gs.import_onnx(
onnx.load(ONNX_MODEL_PATH))
tmap = graph.tensors()
for i in range(args.n_layers):
inputs = [
tmap["onnx::Concat_" + str((i+1)*2)],
tmap["onnx::Concat_" + str((i+1)*2+1)],
tmap["/model/layers." + str(i) + "/self_attn/Add_output_0"],
tmap["/model/layers." + str(i) + "/self_attn/Add_1_output_0"],
tmap["/model/layers." + str(i) + "/self_attn/Transpose_2_output_0"]]
outputs = [
tmap["/model/layers." + str(i) + "/self_attn/MatMul_1_output_0"]]
inputs_added = [graph.inputs[1]]
outputs_removed = []
graph.replace_with_attention(
inputs, outputs, inputs_added, outputs_removed)
graph.outputs = [tmap[graph.outputs[0].name]]
graph.cleanup(True).toposort()
onnx.save(gs.export_onnx(graph), ONNX_MODEL_PATH, save_as_external_data=True)
if __name__ == "__main__":
kvcache_torch = None
torch_model = LlamaForCausalLM.from_pretrained(
args.pretrained_llama_path, num_hidden_layers=int(args.n_layers)).eval()
n_heads = torch_model.config.num_attention_heads
n_dims = torch_model.config.hidden_size // n_heads
if not os.path.exists(ONNX_MODEL_PATH):
print("exporting onnx graph")
export_onnx(torch_model, ONNX_MODEL_PATH)
replace_onnx_with_attention_op()
else:
print("will use exsiting onnx graph")
onnx_model = onnx.load(ONNX_MODEL_PATH)
stub = OnnxStub(onnx_model, backend.cuda_runtime())
count_wrong = 0
for i in tqdm(range(0, args.n_max_length)):
query = np.random.randint(
torch_model.config.vocab_size, size=(args.batchsize, 1), dtype=np.int32)
position_id = i*np.ones((args.batchsize, 1), dtype=np.int32)
####################################
# pytorch
####################################
outputs_torch = torch_model(
torch.tensor(query), past_key_values=kvcache_torch)
logit_torch = outputs_torch['logits']
kvcache_torch = outputs_torch['past_key_values']
####################################
# infinitensor
####################################
# copyin input
(list(stub.inputs.items()))[0][1].copyin_int64(
query.reshape(-1).tolist())
(list(stub.inputs.items()))[1][1].copyin_int64(
position_id.reshape(-1).tolist())
stub.run()
####################################
# validation
####################################
# copyout output
logits_it = np.array((list(stub.outputs.items()))
[0][1].copyout_float())
try:
np.testing.assert_allclose(
logit_torch[:, -1, :].detach().cpu().numpy().flatten(), logits_it, rtol=1e-3, atol=1e-3)
except Exception as e:
try:
np.testing.assert_allclose(
np.argmax(logit_torch[:, -1, :].detach().cpu().numpy().flatten()), np.argmax(logits_it), rtol=1e-3, atol=1e-3)
except:
count_wrong = count_wrong + 1
result = "{}/{} failed.".format(count_wrong, args.n_max_length)
print(result)
del stub

View File

@ -0,0 +1,29 @@
import sys
import onnx
import torch
import numpy as np
from pyinfinitensor.onnx import OnnxStub, backend
if __name__ == '__main__':
args = sys.argv
if len(sys.argv) != 2:
print("Usage: python onnx_inference.py model_name.onnx")
exit()
model_path = sys.argv[1]
# print(model_path)
onnx_model = onnx.load(model_path)
onnx_input = onnx_model.graph.input[0]
input_shape = [[d.dim_value for d in _input.type.tensor_type.shape.dim]
for _input in onnx_model.graph.input]
# Assume that there is only one input tensor
input_shape = input_shape[0]
# print(input_shape)
input_data = np.random.random(input_shape).astype(np.float32)
model = OnnxStub(onnx_model, backend.cuda_runtime())
next(iter(model.inputs.values())).copyin_numpy(input_data)
model.run()
outputs = next(iter(model.outputs.values())).copyout_numpy()
outputs = torch.tensor(outputs)
print(outputs.shape)

View File

@ -0,0 +1,80 @@
import paddle
import paddle.vision.transforms as T
from paddle.vision.datasets import Cifar10
from pyinfinitensor.onnx import OnnxStub, backend
import onnx
import itertools
def run_cifar_train_and_infer():
paddle.device.set_device("gpu")
transform = T.Compose(
[
T.Resize(224),
T.ToTensor(),
T.Normalize(
mean=[0.5, 0.5, 0.5],
std=[0.5, 0.5, 0.5],
to_rgb=True,
),
]
)
# 下载数据集并初始化 DataSet
train_dataset = paddle.vision.datasets.Cifar10(mode='train', transform=transform)
test_dataset = paddle.vision.datasets.Cifar10(mode='test', transform=transform)
# 模型组网并初始化网络
densenet = paddle.vision.models.DenseNet(num_classes=10)
model = paddle.Model(densenet)
# 模型训练的配置准备,准备损失函数,优化器和评价指标
model.prepare(paddle.optimizer.Adam(parameters=model.parameters()),
paddle.nn.CrossEntropyLoss(),
paddle.metric.Accuracy())
# 模型训练
model.fit(train_dataset, epochs=5, batch_size=64, verbose=1)
# 模型评估
model.evaluate(test_dataset, batch_size=64, verbose=1)
# export to ONNX
save_path = 'onnx.save/densenet' # 需要保存的路径
x_spec = paddle.static.InputSpec([1, 3, 224, 224], 'float32', 'x') # 为模型指定输入的形状和数据类型,支持持 Tensor 或 InputSpec InputSpec 支持动态的 shape。
paddle.onnx.export(densenet, save_path, input_spec=[x_spec], opset_version=11)
# 加载onnx模型并放到Infinitensor中
model_path = save_path + ".onnx"
onnx_model = onnx.load(model_path)
gofusion_model = OnnxStub(onnx_model, backend.cuda_runtime())
model = gofusion_model
model.init()
# 启动推理
cifar10_test = Cifar10(
mode="test",
transform=transform, # apply transform to every image
backend="cv2", # use OpenCV as image transform backend
)
batch_size = 1
total_size = 0
total_acc = 0.0
for data in itertools.islice(iter(cifar10_test), 10000):
images, labels = data
next(model.inputs.items().__iter__())[1].copyin_float(images.reshape([3*224*224]).tolist())
model.run()
outputs = next(model.outputs.items().__iter__())[1].copyout_float()
outputs = paddle.to_tensor(outputs)
outputs = paddle.reshape(outputs, (1, 10))
labels = paddle.to_tensor(labels)
labels = paddle.reshape(labels, (1,1))
acc = paddle.metric.accuracy(outputs, labels)
total_acc += acc
total_size += batch_size
print("test acc: {}".format(total_acc.numpy() / total_size))
if __name__ == "__main__":
run_cifar_train_and_infer()

View File

@ -0,0 +1,80 @@
import paddle
import paddle.vision.transforms as T
from paddle.vision.datasets import Cifar10
from pyinfinitensor.onnx import OnnxStub, backend
import onnx
import itertools
def run_cifar_train_and_infer():
paddle.device.set_device("gpu")
transform = T.Compose(
[
T.Resize(224),
T.ToTensor(),
T.Normalize(
mean=[0.5, 0.5, 0.5],
std=[0.5, 0.5, 0.5],
to_rgb=True,
),
]
)
# 下载数据集并初始化 DataSet
train_dataset = paddle.vision.datasets.Cifar10(mode='train', transform=transform)
test_dataset = paddle.vision.datasets.Cifar10(mode='test', transform=transform)
# 模型组网并初始化网络
inception = paddle.vision.models.InceptionV3(num_classes=10)
model = paddle.Model(inception)
# 模型训练的配置准备,准备损失函数,优化器和评价指标
model.prepare(paddle.optimizer.Adam(parameters=model.parameters()),
paddle.nn.CrossEntropyLoss(),
paddle.metric.Accuracy())
# 模型训练
model.fit(train_dataset, epochs=5, batch_size=64, verbose=1)
# 模型评估
model.evaluate(test_dataset, batch_size=64, verbose=1)
# export to ONNX
save_path = 'onnx.save/inception' # 需要保存的路径
x_spec = paddle.static.InputSpec([1, 3, 224, 224], 'float32', 'x') # 为模型指定输入的形状和数据类型,支持持 Tensor 或 InputSpec InputSpec 支持动态的 shape。
paddle.onnx.export(inception, save_path, input_spec=[x_spec], opset_version=11)
# 加载onnx模型并放到Infinitensor中
model_path = save_path + ".onnx"
onnx_model = onnx.load(model_path)
gofusion_model = OnnxStub(onnx_model, backend.cuda_runtime())
model = gofusion_model
model.init()
# 启动推理
cifar10_test = Cifar10(
mode="test",
transform=transform, # apply transform to every image
backend="cv2", # use OpenCV as image transform backend
)
batch_size = 1
total_size = 0
total_acc = 0.0
for data in itertools.islice(iter(cifar10_test), 10000):
images, labels = data
next(model.inputs.items().__iter__())[1].copyin_float(images.reshape([3*224*224]).tolist())
model.run()
outputs = next(model.outputs.items().__iter__())[1].copyout_float()
outputs = paddle.to_tensor(outputs)
outputs = paddle.reshape(outputs, (1, 10))
labels = paddle.to_tensor(labels)
labels = paddle.reshape(labels, (1,1))
acc = paddle.metric.accuracy(outputs, labels)
total_acc += acc
total_size += batch_size
print("test acc: {}".format(total_acc.numpy() / total_size))
if __name__ == "__main__":
run_cifar_train_and_infer()

View File

@ -0,0 +1,31 @@
## Description
This is a doc to tell you how to run paddle*.py in your machine. If your model run on other machines except Nvidia, you may need to make some change.
## What do we do in paddle*.py files?
1. Train model and evalute model with Cifar10 dataset
2. Export paddle model to onnx model
3. Load onnx model, infer with InfiniTensor and calculate the inference accuracy
## Command
1. Go to `/examples/python` folder
2. Run the following command
1. ```
python paddle_resnet.py
python paddle_densenet.py
python paddle_inception.py
```
## What should I do if I use other device(MLU, XPU, NPU)?
You need to change this code:
```
paddle.device.set_device("gpu") # Change gpu to mlu, xpu or npu
```

View File

@ -0,0 +1,81 @@
import paddle
import paddle.vision.transforms as T
from paddle.vision.datasets import Cifar10
from pyinfinitensor.onnx import OnnxStub, backend
import onnx
import itertools
from paddle.vision.models.resnet import BasicBlock
def run_cifar_train_and_infer():
paddle.device.set_device("gpu")
transform = T.Compose(
[
T.Resize(224),
T.ToTensor(),
T.Normalize(
mean=[0.5, 0.5, 0.5],
std=[0.5, 0.5, 0.5],
to_rgb=True,
),
]
)
# 下载数据集并初始化 DataSet
train_dataset = paddle.vision.datasets.Cifar10(mode='train', transform=transform)
test_dataset = paddle.vision.datasets.Cifar10(mode='test', transform=transform)
# 模型组网并初始化网络
resnet = paddle.vision.models.ResNet(BasicBlock, depth=18, num_classes=10)
model = paddle.Model(resnet)
# 模型训练的配置准备,准备损失函数,优化器和评价指标
model.prepare(paddle.optimizer.Adam(parameters=model.parameters()),
paddle.nn.CrossEntropyLoss(),
paddle.metric.Accuracy())
# 模型训练
model.fit(train_dataset, epochs=5, batch_size=64, verbose=1)
# 模型评估
model.evaluate(test_dataset, batch_size=64, verbose=1)
# export to ONNX
save_path = 'onnx.save/resnet' # 需要保存的路径
x_spec = paddle.static.InputSpec([1, 3, 224, 224], 'float32', 'x') # 为模型指定输入的形状和数据类型,支持持 Tensor 或 InputSpec InputSpec 支持动态的 shape。
paddle.onnx.export(resnet, save_path, input_spec=[x_spec], opset_version=11)
# 加载onnx模型并放到Infinitensor中
model_path = save_path + ".onnx"
onnx_model = onnx.load(model_path)
gofusion_model = OnnxStub(onnx_model, backend.cuda_runtime())
model = gofusion_model
model.init()
# 启动推理
cifar10_test = Cifar10(
mode="test",
transform=transform, # apply transform to every image
backend="cv2", # use OpenCV as image transform backend
)
batch_size = 1
total_size = 0
total_acc = 0.0
for data in itertools.islice(iter(cifar10_test), 10000):
images, labels = data
next(model.inputs.items().__iter__())[1].copyin_float(images.reshape([3*224*224]).tolist())
model.run()
outputs = next(model.outputs.items().__iter__())[1].copyout_float()
outputs = paddle.to_tensor(outputs)
outputs = paddle.reshape(outputs, (1, 10))
labels = paddle.to_tensor(labels)
labels = paddle.reshape(labels, (1,1))
acc = paddle.metric.accuracy(outputs, labels)
total_acc += acc
total_size += batch_size
print("test acc: {}".format(total_acc.numpy() / total_size))
if __name__ == "__main__":
run_cifar_train_and_infer()

View File

@ -0,0 +1,24 @@
import sys
import onnx
import torch
import numpy as np
from pyinfinitensor.onnx import OnnxStub, backend
import torchvision.models as models
if __name__ == '__main__':
model_path = './resnet18.onnx'
tv_model = models.resnet50(weights=None)
input_shape = (1, 3, 224, 224)
param = torch.rand(input_shape)
torch.onnx.export(tv_model, param, model_path, verbose=False)
onnx_model = onnx.load(model_path)
model = OnnxStub(onnx_model, backend.cuda_runtime())
images = np.random.random(input_shape).astype(np.float32)
next(iter(model.inputs.values())).copyin_numpy(images)
model.run()
outputs = next(iter(model.outputs.values())).copyout_numpy()
outputs = torch.tensor(outputs)
outputs = torch.reshape(outputs, (1, 1000))
_, predicted = torch.max(outputs, 1)
print(predicted)

View File

@ -2,6 +2,10 @@
#include "cnnl.h"
#include "cnrt.h"
#include "core/common.h"
#include "core/data_type.h"
#ifdef INFINI_USE_CNCL
#include "cncl.h"
#endif
#define checkBangError(call) \
{ \
@ -27,4 +31,70 @@ namespace infini {
using BangPtr = void *;
inline cnnlDataType_t cnnlDataTypeConvert(DataType dataType) {
if (dataType == DataType::Float32) {
return CNNL_DTYPE_FLOAT;
}
if (dataType == DataType::Float16) {
return CNNL_DTYPE_HALF;
}
if (dataType == DataType::Double) {
return CNNL_DTYPE_DOUBLE;
}
if (dataType == DataType::Int8) {
return CNNL_DTYPE_INT8;
}
if (dataType == DataType::Int32) {
return CNNL_DTYPE_INT32;
}
if (dataType == DataType::UInt8) {
return CNNL_DTYPE_UINT8;
}
if (dataType == DataType::BFloat16) {
return CNNL_DTYPE_BFLOAT16;
}
if (dataType == DataType::Int64) {
return CNNL_DTYPE_INT64;
}
if (dataType == DataType::Bool) {
return CNNL_DTYPE_BOOL;
}
IT_TODO_HALT_MSG("Data type " + dataType.toString() +
" not supported in CNNL.");
}
#ifdef INFINI_USE_CNCL
inline cnclDataType_t cnclDataTypeConvert(DataType dataType) {
if (dataType == DataType::Float32) {
return cnclFloat32;
}
if (dataType == DataType::Float16) {
return cnclHalf;
}
if (dataType == DataType::Int8) {
return cnclInt8;
}
if (dataType == DataType::Int16) {
return cnclInt16;
}
if (dataType == DataType::Int32) {
return cnclInt32;
}
if (dataType == DataType::UInt8) {
return cnclUint8;
}
if (dataType == DataType::UInt16) {
return cnclUint16;
}
if (dataType == DataType::UInt32) {
return cnclUint32;
}
if (dataType == DataType::BFloat16) {
return cnclBfloat16;
}
IT_TODO_HALT_MSG("Data type " + dataType.toString() +
" not supported in CNCL.");
}
#endif
} // namespace infini

View File

@ -1,22 +0,0 @@
#pragma once
#include "bang/bang_runtime.h"
#include "bang_div.h"
#include "operators/element_wise.h"
namespace infini {
void element_wise_kernel(const RuntimeObj *obj, const Operator &_op) {
auto op = as<ElementWiseObj>(_op);
float *const aData = (op->getInputs(0)->getRawDataPtr<float *>());
float *const bData = (op->getInputs(1)->getRawDataPtr<float *>());
float *const cData = (op->getOutput()->getRawDataPtr<float *>());
auto dim = op->getInputs(0)->getDims();
auto context = dynamic_cast<const BangRuntimeObj *>(obj);
int n = dim[0], c = dim[1], h = dim[2], w = dim[3];
if (op->getOpType() == OpType::Div)
div_kernel(context->cnnlHandle(), aData, bData, cData, n * c * h * w);
else
IT_TODO_HALT();
}
}; // namespace infini

View File

@ -7,16 +7,19 @@ namespace infini {
class BangRuntimeObj : public RuntimeObj {
private:
cnnlHandle_t cnnl;
cnrtQueue_t queue;
std::unique_ptr<CommunicatorObj> comm;
BangPtr workspace;
size_t workspaceSize;
mutable size_t cursor;
public:
BangRuntimeObj() : RuntimeObj(Device::BANG) {
explicit BangRuntimeObj(int deviceId = 0)
: RuntimeObj(Device::BANG, deviceId) {
cnInit(0);
CNdev dev;
cnDeviceGet(&dev, 0);
cnDeviceGet(&dev, deviceId);
checkBangError(cnrtSetDevice(dev));
cnrtQueue_t queue;
checkBangError(cnrtQueueCreate(&queue));
checkCnnlError(cnnlCreate(&cnnl));
@ -24,10 +27,12 @@ class BangRuntimeObj : public RuntimeObj {
// 10GB for Longformer
// size_t longformerNum = 3lu * (1 << 30);
workspaceSize = 7ll << 30; // 7 GB
cursor = 0;
workspace = alloc(workspaceSize);
}
virtual ~BangRuntimeObj() {
dealloc(workspace);
checkBangError(cnrtQueueDestroy(queue));
checkCnnlError(cnnlDestroy(cnnl));
}
string toString() const override;
@ -45,10 +50,15 @@ class BangRuntimeObj : public RuntimeObj {
void dealloc(void *ptr) override { checkBangError(cnrtFree(ptr)); }
cnnlHandle_t cnnlHandle() const { return cnnl; }
BangPtr getWorkspace(size_t size) const {
IT_ASSERT(size <= workspaceSize);
return workspace;
IT_ASSERT((cursor + size) <= workspaceSize);
cursor += size;
void *temp = workspace;
temp += (cursor - size);
return temp;
}
void resetWorkspace() const { cursor = 0; }
void copyBlobFromCPU(void *dst, const void *src,
size_t bytes) const override {
checkBangError(cnrtMemcpy(dst, const_cast<void *>(src), bytes,
@ -66,6 +76,9 @@ class BangRuntimeObj : public RuntimeObj {
checkBangError(cnrtMemcpy(dst, const_cast<void *>(src), bytes,
CNRT_MEM_TRANS_DIR_PEER2PEER));
}
void initComm(const string &name, int worldSize, int rank) final;
CommunicatorObj &getCommunicator() const override { return *comm; }
cnrtQueue_t getBangQueue() const { return queue; }
private:
void runWithoutSync(const Graph &graph, bool tune, bool profiling) const;

View File

@ -0,0 +1,79 @@
#pragma once
#include "bang_common.h"
#include "core/communicator.h"
#include <chrono>
#include <cncl.h>
#include <cnrt.h>
#include <cstdlib>
#include <filesystem>
#include <fstream>
#include <mutex>
#include <thread>
namespace infini {
class CnclCommunicatorObj final : public CommunicatorObj {
private:
cnclComm_t *comms;
public:
CnclCommunicatorObj(const string &name, int worldSize, int rank)
: CommunicatorObj(worldSize, rank) {
const std::string filePath("./" + name + "_cncl_id.bin");
cnclCliqueId clique_id;
if (rank == 0) {
CNCL_CHECK(cnclGetCliqueId(&clique_id));
std::ofstream ofs(filePath, std::ios::binary);
ofs.write((char *)&clique_id, sizeof(cnclCliqueId));
} else {
auto begin = std::chrono::steady_clock::now();
while (!std::filesystem::exists(filePath)) {
auto now = std::chrono::steady_clock::now();
_IT_ASSERT_2(now < begin + std::chrono::seconds(10),
"time limit (10s) exceeded.");
std::this_thread::sleep_for(std::chrono::milliseconds(100));
}
std::ifstream ifs(filePath, std::ios::binary);
ifs.read((char *)&clique_id, sizeof(cnclCliqueId));
}
int num_comms = 1;
int *dev_list = new int[num_comms];
int *rank_list = new int[num_comms];
comms = new cnclComm_t[num_comms];
uint32_t num_dev = 0;
checkBangError(cnrtGetDeviceCount(&num_dev));
for (int i = 0; i < num_comms; i++) {
rank_list[i] = rank;
dev_list[i] = rank_list[i] % num_dev;
}
CNCL_CHECK(cnclInitComms(comms, num_comms, dev_list, rank_list,
worldSize, &clique_id));
if (rank == 0) {
std::filesystem::remove(filePath);
}
delete[] dev_list;
delete[] rank_list;
}
~CnclCommunicatorObj() {
CNCL_CHECK(cnclDestroyComms(comms, 1));
delete[] comms;
}
// Get the actual cnclComm_t
cnclComm_t getCnclComm() { return comms[0]; }
virtual string toString() const final {
std::ostringstream oss;
oss << "CNCL communicator";
return oss.str();
}
};
} // namespace infini

View File

@ -40,12 +40,12 @@ using HashType = uint64_t; // compatible with std::hash
// Assert: conditions should have no side effect
#define _IT_ASSERT_2(condition, info) \
(static_cast<bool>(condition) \
? void(0) \
: throw ::infini::Exception( \
std::string("[") + __FILE__ + ":" + std::to_string(__LINE__) + \
"] Assertion failed (" + #condition + "): " + info))
#define _IT_ASSERT_1(condition) _IT_ASSERT_2(condition, "");
static_cast<bool>(condition) \
? void(0) \
: throw ::infini::Exception( \
std::string("[") + __FILE__ + ":" + std::to_string(__LINE__) + \
"] Assertion failed (" + #condition + "): " + info)
#define _IT_ASSERT_1(condition) _IT_ASSERT_2(condition, "")
#define IT_ASSERT(...) _VA_SELECT(_IT_ASSERT, __VA_ARGS__)
#define IT_TODO_HALT() _IT_ASSERT_2(false, "Unimplemented")
@ -61,21 +61,35 @@ template <typename T> auto enum_to_underlying(T e) {
}
template <typename T> std::string vecToString(const std::vector<T> &vec) {
std::string ret;
ret.append("[");
for (auto d : vec) {
ret.append(std::to_string(d));
ret.append(",");
std::stringstream ss;
ss << "[";
for (size_t i = 0; i < vec.size(); ++i) {
ss << vec.at(i);
if (i < vec.size() - 1) {
ss << ",";
}
}
if (!vec.empty())
ret.pop_back();
ret.append("]");
return ret;
ss << "]";
return ss.str();
}
template <typename T> std::string vecToString(const T *st, size_t length) {
std::stringstream ss;
ss << "[";
size_t i = 0;
for (i = 0; i < length; i++) {
ss << *(st + i);
if (i < length - 1) {
ss << ",";
}
}
ss << "]";
return ss.str();
}
double timeit(
const std::function<void()> &func,
const std::function<void(void)> &sync = []() {}, int warmupRounds = 200,
int timingRounds = 200);
const std::function<void(void)> &sync = []() {}, int warmupRounds = 10,
int timingRounds = 10);
} // namespace infini

View File

@ -0,0 +1,22 @@
#pragma once
#include "object.h"
#include "ref.h"
namespace infini {
// base class
class CommunicatorObj : public Object {
protected:
int worldSize;
int rank;
public:
CommunicatorObj(int worldSize, int rank)
: worldSize(worldSize), rank(rank) {}
virtual ~CommunicatorObj() = default;
virtual int getWorldSize() const { return worldSize; }
virtual int getRank() const { return rank; }
};
} // namespace infini

View File

@ -2,4 +2,4 @@
namespace infini {
constexpr double E_CONSTANT = 2.718281828459;
}
}

View File

@ -1,22 +1,54 @@
#pragma once
#include "core/common.h"
namespace infini {
class DataType {
public:
// legacy
static const DataType Float32;
static const DataType UInt32;
// These are just aligned with the type and index of onnx:
// <https://onnx.ai/onnx/intro/concepts.html#element-type>
static const DataType UInt8, Int8, UInt16, Int16, Int32, Int64;
static constexpr size_t sizePerElement[]{
sizeof(float), sizeof(uint32_t), sizeof(uint8_t), sizeof(int8_t),
sizeof(uint16_t), sizeof(int16_t), sizeof(int32_t), sizeof(int64_t)};
static const DataType Undefine;
static const DataType Float32;
static const DataType UInt8;
static const DataType Int8;
static const DataType UInt16;
static const DataType Int16;
static const DataType Int32;
static const DataType Int64;
static const DataType String;
static const DataType Bool;
static const DataType Float16;
static const DataType Double;
static const DataType UInt32;
static const DataType UInt64;
static const DataType BFloat16;
// "sizePerElement" show the DType to cpu_type
// DataType::Bool -> int8_t DataType::Float16 -> uint16_t
static constexpr size_t sizePerElement[]{0,
sizeof(float),
sizeof(uint8_t),
sizeof(int8_t),
sizeof(uint16_t),
sizeof(int16_t),
sizeof(int32_t),
sizeof(int64_t),
sizeof(std::string),
sizeof(int8_t),
sizeof(uint16_t),
sizeof(double),
sizeof(uint32_t),
sizeof(uint64_t),
0,
0,
sizeof(uint16_t)};
static constexpr std::string_view names[]{"Float32", "UInt32", "UInt8",
"Int8", "UInt16", "Int16",
"Int32", "Int64"};
static constexpr std::string_view names[]{
"Undefine", "Float32", "UInt8", "Int8", "UInt16",
"Int16", "Int32", "Int64", "String", "Bool",
"Float16", "Double", "UInt32", "UInt64", "PlaceHolder",
"PlaceHolder", "BFloat16"};
static constexpr int cpuType[]{-1, 0, 2, 3, 4, 5, 6, 7, -1,
3, 4, 9, 1, 8, -1, -1, 4};
private:
int index;
@ -29,27 +61,43 @@ class DataType {
bool operator==(const DataType &rhs) const { return index == rhs.index; }
bool operator<(const DataType &rhs) const { return index < rhs.index; }
template <typename T> static DataType get() {
template <typename T> static int get() {
IT_TODO_HALT_MSG("Unsupported data type");
}
size_t getSize() const { return sizePerElement[index]; }
string toString() const { return string(names[index]); }
int cpuTypeInt() const { return cpuType[index]; }
int getIndex() const { return index; }
};
inline const DataType DataType::Float32(0);
inline const DataType DataType::UInt32(1);
inline const DataType DataType::UInt8(2), DataType::Int8(3),
DataType::UInt16(4), DataType::Int16(5), DataType::Int32(6),
DataType::Int64(7);
// Method definitions are out of the declaration due to GCC bug:
// https://stackoverflow.com/questions/49707184/explicit-specialization-in-non-namespace-scope-does-not-compile-in-gcc
template <> inline DataType DataType::get<float>() { return Float32; }
template <> inline DataType DataType::get<uint32_t>() { return UInt32; }
template <> inline DataType DataType::get<uint8_t>() { return UInt8; }
template <> inline DataType DataType::get<int8_t>() { return Int8; }
template <> inline DataType DataType::get<uint16_t>() { return UInt16; }
template <> inline DataType DataType::get<int16_t>() { return Int16; }
template <> inline DataType DataType::get<int32_t>() { return Int32; }
template <> inline DataType DataType::get<int64_t>() { return Int64; }
template <> inline int DataType::get<float>() { return 0; }
template <> inline int DataType::get<uint32_t>() { return 1; }
template <> inline int DataType::get<uint8_t>() { return 2; }
template <> inline int DataType::get<int8_t>() { return 3; }
template <> inline int DataType::get<uint16_t>() { return 4; }
template <> inline int DataType::get<int16_t>() { return 5; }
template <> inline int DataType::get<int32_t>() { return 6; }
template <> inline int DataType::get<int64_t>() { return 7; }
template <> inline int DataType::get<uint64_t>() { return 8; }
template <> inline int DataType::get<double>() { return 9; }
template <int index> struct DT {};
template <> struct DT<0> { using t = bool; };
template <> struct DT<1> { using t = float; };
template <> struct DT<2> { using t = uint8_t; };
template <> struct DT<3> { using t = int8_t; };
template <> struct DT<4> { using t = uint16_t; };
template <> struct DT<5> { using t = int16_t; };
template <> struct DT<6> { using t = int32_t; };
template <> struct DT<7> { using t = int64_t; };
template <> struct DT<8> { using t = char; };
template <> struct DT<9> { using t = int8_t; };
template <> struct DT<10> { using t = uint16_t; };
template <> struct DT<11> { using t = double; };
template <> struct DT<12> { using t = uint32_t; };
template <> struct DT<13> { using t = uint64_t; };
template <> struct DT<16> { using t = uint16_t; };
} // namespace infini

View File

@ -1,4 +1,5 @@
#pragma once
#include "core/lazy_allocator.h"
#include "core/operator.h"
#include "core/tensor.h"
@ -9,15 +10,16 @@ class GraphObj : public Object {
Runtime runtime;
TensorVec tensors;
OpVec ops;
LazyAllocator allocator;
public:
explicit GraphObj(Runtime runtime) : runtime(runtime), sorted(false){};
explicit GraphObj(Runtime runtime)
: runtime(runtime), allocator(runtime), sorted(false){};
GraphObj(Runtime runtime, OpVec ops_in);
string toString() const override;
Runtime getRuntime() const { return runtime; }
Tensor addTensor(Shape dim, DataType dtype = DataType::Float32,
TensorType tensorType = TensorType::Other);
Tensor addTensor(Shape dim, DataType dtype = DataType::Float32);
Tensor addTensor(const Tensor &tensor);
TensorVec addTensor(const TensorVec &tensors);
/**
@ -26,10 +28,32 @@ class GraphObj : public Object {
Tensor cloneTensor(const Tensor &tensor) {
return addTensor(tensor->clone(runtime));
}
void removeOperator(Operator op) {
auto it = std::find(ops.begin(), ops.end(), op);
if (it != ops.end())
ops.erase(it);
}
void removeTensor(Tensor tensor) {
auto it = std::find(tensors.begin(), tensors.end(), tensor);
if (it != tensors.end())
tensors.erase(it);
}
void deleteConnection(Tensor tensor, Operator op);
void addConnection(Tensor tensor, Operator op);
void replaceConnection(Tensor oldInput, Tensor newInput, Operator op);
Operator cloneOperator(Operator op, TensorVec inputs, TensorVec outputs) {
auto opClone = op->clone(inputs, outputs);
addOperatorAndConnect(opClone);
return opClone;
}
const TensorVec &getTensors() const { return tensors; }
const OpVec &getOperators() const { return ops; }
OpVec getComputeOps() const;
Tensor getTensor(int) const;
/**
* Sort the nodes in topological order.
@ -39,7 +63,15 @@ class GraphObj : public Object {
*/
bool topo_sort();
void dataMalloc();
void optimize();
void shape_infer();
void dataMalloc(bool useNaiveAllocator = false, size_t memPoolSize = 0);
Tensor cloneKV(Tensor &tensor);
void freeHeap();
/**
* @brief Add an operator and create its outputs. Output tensor arguments
@ -83,7 +115,7 @@ class GraphObj : public Object {
return ret;
}
bool selfCheck(bool assert = false) const;
bool checkValid() const;
private:
/**
@ -95,6 +127,11 @@ class GraphObj : public Object {
* @brief If the nodes is sorted in topological order.
*/
bool sorted;
/**
* @brief If the weight tensors are allocated.
*/
bool weightAllocated = false;
};
} // namespace infini

View File

@ -5,31 +5,11 @@
#include <cstdint>
#include <iostream>
namespace infini {
#ifdef USE_CUDA
#include "cuda/cuda_runtime.h"
#endif
// Use the indices from onnx to reduce delivery overhead,
// which comes from onnx but may be not only used for onnx.
//
// see https://onnx.ai/onnx/intro/concepts.html#element-type
enum OnnxDType : int {
UNDEFINED = 0,
FLOAT,
UINT8,
INT8,
UINT16,
INT16,
INT32,
INT64,
STRING,
BOOL,
FLOAT16,
DOUBLE,
UINT32,
UINT64,
COMPLEX64,
COMPLEX128,
BFLOAT16,
};
namespace infini {
class GraphHandlerObj {
Graph g;
@ -46,50 +26,129 @@ class GraphHandlerObj {
Tensor conv(Tensor input, Tensor weight, Tensor output, int ph, int pw,
int sh, int sw, int dh, int dw);
Tensor convTransposed2d(Tensor input, Tensor weight, Tensor output, int ph,
int pw, int sh, int sw, int dh, int dw, int oph,
int opw);
Tensor matmul(Tensor a, Tensor b, Tensor y, bool transA, bool transB,
Tensor bias, ActType act);
Tensor batchNorm(Tensor input, Tensor output, Tensor mean, Tensor var,
Tensor scale, Tensor bias, float momentum, float eps,
bool training);
Tensor bias, ActType act,
std::string matmul_compute_type = "default");
Tensor batchNormalization(Tensor input, Tensor output, Tensor mean,
Tensor var, Tensor scale, Tensor bias,
float momentum, float eps, bool training);
Tensor layerNormalization(Tensor input, Tensor scale, Tensor output,
Tensor bias, float eps, int axis, int stash_type);
Tensor rmsNorm(Tensor input, Tensor weight, Tensor output);
Tensor maxPool(Tensor input, Tensor output, int kh, int kw, int dh, int dw,
int ph, int pw, int sh, int sw);
int ph, int pw, int sh, int sw, int ceilMode);
Tensor avgPool(Tensor input, Tensor output, int kh, int kw, int dh, int dw,
int ph, int pw, int sh, int sw);
int ph, int pw, int sh, int sw, int ceilMode);
Tensor add(Tensor a, Tensor b, Tensor c);
Tensor sub(Tensor a, Tensor b, Tensor c);
Tensor mul(Tensor a, Tensor b, Tensor c);
Tensor div(Tensor a, Tensor b, Tensor c);
Tensor pow(Tensor a, Tensor b, Tensor c);
Tensor min(Tensor a, Tensor b, Tensor c);
Tensor max(Tensor a, Tensor b, Tensor c);
Tensor relu(Tensor x, Tensor y);
Tensor silu(Tensor x, Tensor y);
Tensor gelu(Tensor x, Tensor y);
Tensor sigmoid(Tensor x, Tensor y);
Tensor hardSigmoid(Tensor x, Tensor y);
Tensor hardSwish(Tensor x, Tensor y);
Tensor tanh(Tensor x, Tensor y);
Tensor softmax(Tensor x, Tensor y);
Tensor erf(Tensor x, Tensor y);
Tensor softmax(Tensor x, Tensor y, int axis);
Tensor abs(Tensor x, Tensor y);
Tensor sqrt(Tensor x, Tensor y);
Tensor neg(Tensor x, Tensor y);
Tensor shape(Tensor x, Tensor y);
Tensor identity(Tensor x, Tensor y);
Tensor flatten(Tensor s, Tensor y);
Tensor flatten(Tensor s, Tensor y, int axis);
Tensor pRelu(Tensor x, Tensor slope, Tensor y);
Tensor clip(Tensor x, Tensor y, std::optional<float> min,
std::optional<float> max);
Tensor transpose(Tensor data, Tensor transposed, Shape perm);
Tensor reshape(Tensor data, Tensor reshaped, Shape shape);
Tensor resize(Tensor input, Tensor output,
const std::optional<vector<int>> &axes, Tensor sizes,
Tensor scales, Tensor roi, vector<uint32_t> sizes_,
vector<float> scales_, vector<float> roi_, string mode,
string ratioPolicy, string nearestMode,
string coordTransMode);
Tensor squeeze(Tensor input, Tensor output, Shape axes);
Tensor unsqueeze(Tensor input, Tensor output, Shape axes);
Tensor concat(TensorVec inputs, Tensor output, int dim);
Tensor attentionKVCache(Tensor input_k_cache, Tensor input_v_cache,
Tensor input_q, Tensor input_k, Tensor input_v,
Tensor position_id, Tensor output_matmul);
Tensor RoPE(Tensor pos, Tensor input, Tensor output);
TensorVec split(Tensor input, std::optional<TensorVec> outputs, int axis,
std::variant<int, vector<int>> numOrRatio);
Tensor gather(Tensor data, Tensor indices, Tensor output, int axis);
Tensor gatherElements(Tensor data, Tensor indices, Tensor output, int axis);
Tensor reduceMean(Tensor data, Tensor reduced,
const optional<vector<int>> &axes, bool keepdims);
Tensor reduceSum(Tensor data, Tensor reduced,
const optional<vector<int>> &axes, bool keepdims);
Tensor slice(Tensor input, Tensor output, const vector<int> &starts,
const vector<int> &ends, const optional<vector<int>> &axes,
const optional<vector<int>> &steps);
Tensor pad(Tensor input, Tensor output, const vector<int> &pads,
const optional<vector<int>> &axes);
Tensor cast(Tensor input, Tensor output, int to);
Tensor expand(Tensor input, Tensor output, Shape dims);
Tensor where(Tensor inputX, Tensor inputY, Tensor condition, Tensor output);
std::vector<int> getDims(Tensor x) { return x->getDims(); }
Tensor allReduceSum(Tensor input, Tensor output);
Tensor allReduceProd(Tensor input, Tensor output);
Tensor allReduceMin(Tensor input, Tensor output);
Tensor allReduceMax(Tensor input, Tensor output);
Tensor allReduceAvg(Tensor input, Tensor output);
TensorVec allGather(Tensor input, std::optional<TensorVec> outputs, int n);
Tensor broadcast(Tensor input, Tensor output, int root);
Tensor send(Tensor input, int source, int destination, Tensor output);
Tensor recv(Tensor output, int source, int destination, Shape dims,
int outputType, Tensor input);
Tensor depthToSpace(Tensor input, Tensor output, int blocksize,
std::string mode);
Tensor lrn(Tensor input, Tensor output, float alpha, float beta, float bias,
int size);
//------ modifiers
inline bool topo_sort() { return g->topo_sort(); }
inline void optimize() { g->optimize(); }
inline void shape_infer() { g->shape_infer(); }
void change_shape(const vector<int> &shape, int tensorId);
//------ runtime
inline void data_malloc() { g->dataMalloc(); }
inline void data_malloc(bool useNaiveAllocator = false,
size_t memPoolSize = 0) {
g->dataMalloc(useNaiveAllocator, memPoolSize);
}
inline Tensor clone_KV(Tensor &tensor) { return g->cloneKV(tensor); }
inline void free_heap() { g->freeHeap(); }
inline void tune() { g->getRuntime()->run(g, true); }
inline void run() { g->getRuntime()->run(g); }
inline double get_perf_time() { return g->getRuntime()->getPerfTime(g); }
#ifdef USE_CUDA
inline void run_with_cudagraph() {
(as<CudaRuntimeObj>(g->getRuntime()))->runWithCudaGraph(g);
}
#endif
};
} // namespace infini

108
include/core/graph_match.h Normal file
View File

@ -0,0 +1,108 @@
#pragma once
#include "core/graph.h"
namespace infini {
class SubGraphObj : public GraphObj {
TensorVec ins; // inputs from outer predecessors, orders are appointed.
TensorVec outs; // outputs to outer successors, orders are appointed.
public:
SubGraphObj(Runtime runtime, const TensorVec &inputs);
void setOutputs(const TensorVec &tensors) { outs = tensors; }
TensorVec getInputsFromOutside() const { return ins; }
TensorVec getOutputs2Outside() const { return outs; }
bool isInputFromOutside(Tensor t) const {
return std::find(ins.begin(), ins.end(), t) != ins.end();
}
bool isOutput2Outside(Tensor t) const {
return std::find(outs.begin(), outs.end(), t) != outs.end();
}
bool isHead(const Operator &op) const {
for (auto in : ins) {
auto ops = in->getTargets();
if (std::find(ops.begin(), ops.end(), op) != ops.end())
return true;
}
return false;
};
bool isTail(const Operator &op) const {
for (auto out : outs) {
if (op == out->getSource())
return true;
}
return false;
}
};
using SubGraph = Ref<SubGraphObj>;
// Describe a match for subgraph replacement.
class GraphMatchObj {
std::unordered_set<Operator> ops;
std::unordered_map<Operator, Operator> opMap; // anchor->pattern
std::unordered_map<Operator, Operator> opMapRevese; // pattern->anchor
std::unordered_map<Tensor, Tensor> tensorMap; // pattern->anchor
SubGraph pattern;
public:
GraphMatchObj(SubGraph pattern) : pattern(pattern) {}
Ref<GraphMatchObj> clone();
void addOp(const Operator &anchorOp, const Operator &patternOp);
bool hasContained(const Operator &op) const { return opMap.count(op) > 0; }
bool hasMatched(const Operator &op) const {
return opMapRevese.count(op) > 0;
}
Tensor getAnchorByPattern(const Tensor &t) {
IT_ASSERT(tensorMap.count(t) > 0);
return tensorMap.at(t);
}
Operator getAnchorByPattern(const Operator &op) {
IT_ASSERT(opMapRevese.count(op) > 0);
return opMapRevese.at(op);
}
TensorVec getInputs() const;
TensorVec getOutputs() const;
std::unordered_set<Operator> getOps() const { return ops; }
std::string toString() const;
private:
void recordOutsideTensorMap(const Operator &patternOp,
const Operator &anchorOp);
};
using MatchGraph = Ref<GraphMatchObj>;
class SubGraphRewriter {
SubGraph pattern;
Graph graph;
public:
SubGraphRewriter(Graph g) : graph(g) {}
vector<MatchGraph> findMatch(const SubGraph &pattern);
void replaceSubGraph(const SubGraph &pattern, const SubGraph &replacement);
TensorVec addSubGraph(const SubGraph &pattern, const TensorVec &inputs);
private:
void removeSubGraph(MatchGraph match);
bool MatchNode(const Operator &a, const Operator &b, bool isHead,
bool isTail) const;
OpLists matchInCandidates(const OpVec &ops, const Operator &opDst,
bool isHead, bool isTail);
bool findMatch(const MatchGraph &lastMatched, const Operator &opLastMatched,
const Operator &opDst, vector<MatchGraph> &matched);
bool findMatch2(const MatchGraph &lastMatched,
const Operator &opLastMatched, const Operator &opDst,
vector<MatchGraph> &matched);
void updateMatchedGraph(const MatchGraph &lastMatched, OpLists &opMatched,
vector<MatchGraph> &gMatched, Operator dst);
bool checkReplacement(const SubGraph &pattern, const SubGraph &other) const;
bool checkReplacement(const TensorVec &left, const TensorVec &right) const;
bool isReplacable(const Tensor &l, const Tensor &r) const;
bool checkOverlapsWithPreviousMatch(
const MatchGraph &match,
const std::unordered_set<Operator> &nodesToDelete) const;
bool checkMatchValid(const MatchGraph &match) const;
};
}; // namespace infini

View File

@ -15,4 +15,4 @@ template <typename T> inline HashType hashVector(const vector<T> &vec) {
return ret;
}
} // namespace infini
} // namespace infini

View File

@ -2,10 +2,11 @@
#include "core/common.h"
#include "core/operator.h"
#include "core/tensor.h"
#include "utils/operator_utils.h"
#include <functional>
#include <nlohmann/json.hpp>
using json = nlohmann::json;
namespace infini {
using json = nlohmann::json;
class RuntimeObj; // Forward declaration for Kernel::compute
@ -29,7 +30,6 @@ class Kernel {
public:
Kernel() {}
virtual ~Kernel() {}
/**
* @param op The operator to be executed.
* @param record The parameters for kernel execution. If extra parameters
@ -102,11 +102,9 @@ class KernelRegistry {
}
Kernel *getKernel(const KernelAttrs &kernelAttrs) const {
auto it = kernels.find(kernelAttrs);
IT_ASSERT(it != kernels.end(),
"Kernel not found for key {" +
to_string(enum_to_underlying(std::get<0>(kernelAttrs))) +
", " + OpRegistry::getOpName(std::get<1>(kernelAttrs)) +
", " + std::get<2>(kernelAttrs).toString() + "}");
IT_ASSERT(it != kernels.end(), "Kernel not found for key {" +
get_kernel_attrs_str(kernelAttrs) +
"}");
return std::get<0>(it->second);
}
const KernelRecord &getKernelItem(const KernelAttrs &kernelAttrs) const {
@ -131,15 +129,16 @@ class CpuKernelWithoutConfig : public Kernel {
} // namespace infini
#define _REGISTER_KERNEL_1(device, opType, dataType, kernel, name, cnt) \
#define _REGISTER_KERNEL_1(device, opType, kernel, name, cnt) \
namespace infini { \
static const bool _CAT(_register_kernel_, cnt) = \
KernelRegistry::getInstance().registerKernel( \
KernelAttrs{device, opType, dataType}, new kernel(), name); \
KernelRegistry::getInstance().registerKernel(KernelAttrs{device, \
opType}, \
new kernel(), name); \
}
#define REGISTER_KERNEL(device, opType, dataType, kernel, name) \
_REGISTER_KERNEL_1(device, opType, dataType, kernel, name, __COUNTER__)
#define REGISTER_KERNEL(device, opType, kernel, name) \
_REGISTER_KERNEL_1(device, opType, kernel, name, __COUNTER__)
#define _REGISTER_CONSTRUCTOR_1(type, constructor, cnt) \
namespace infini { \

View File

@ -0,0 +1,122 @@
#pragma once
#include "core/runtime.h"
#include "core/tensor.h"
#ifdef BUILD_TEST
#include "gtest/gtest.h"
#endif
#include <cstddef>
#include <map>
#include <unordered_set>
namespace infini {
class LazyAllocator {
private:
#ifdef BUILD_TEST
FRIEND_TEST(LazyAllocator, testMergeFreeBlocks);
FRIEND_TEST(LazyAllocator, testAllocWithEndFreeBlock);
#endif
Runtime runtime;
size_t used = 0;
size_t peak = 0;
size_t weightPeak = 0;
size_t heapPeak = 0;
size_t alignment;
bool hasMemPool = false;
size_t memPoolSize = 0;
// pointer to the memory actually allocated
void *ptr = nullptr;
// pointer to the weight memory space
void *weightPtr = nullptr;
// memory pool ptr
void *memPoolPtr = nullptr;
// // a cache designed for a batch size that has already occurred
// std::unordered_map<size_t, std::unordered_map<TensorObj *, size_t>>
// batchsizeToTensorOffset;
struct freeBlockInfo {
size_t addr;
size_t blockSize;
};
struct cmpFreeBlockInfo {
bool operator()(const freeBlockInfo &a, const freeBlockInfo &b) const {
return (a.blockSize != b.blockSize) ? (a.blockSize < b.blockSize)
: (a.addr < b.addr);
}
};
// free balanced tree, maintains all free memory blocks
std::set<freeBlockInfo, cmpFreeBlockInfo> freeBlocks;
// key: head address offset of the free memory block
// value: blockSize of the block
std::unordered_map<size_t, size_t> headAddrToBlockSize;
// key: tail address offset of the free memory block
// value: blockSize of the block
std::unordered_map<size_t, size_t> tailAddrToBlockSize;
public:
LazyAllocator(Runtime runtime);
virtual ~LazyAllocator();
void init();
void setMemPool(size_t memPoolSize);
bool getMemPoolStatus();
// function: simulate memory allocation
// arguments
// size: size of memory block to be allocated
// return: head address offset of the allocated memory block
size_t alloc(size_t size);
size_t allocWeight(size_t size);
size_t heapAlloc(size_t size);
void freeHeap();
// function: simulate memory free
// arguments:
// addr: head address offset of memory block to be free
// size: size of memory block to be freed
void free(size_t addr, size_t size);
// function: perform actual memory allocation
// return: pointer to the head address of the allocated memory
void *getPtr();
// void addCache(size_t batchsize, std::unordered_map<TensorObj *, size_t>);
// std::unordered_map<TensorObj *, size_t> getCache(size_t batchsize);
void *getWeightPtr();
void *getHeapPtr();
void info();
private:
// function: memory alignment, rouned up
// return: size of the aligned memory block
size_t getAlignedSize(size_t size);
};
} // namespace infini

View File

@ -30,7 +30,6 @@ class Mutator {
virtual bool isMultiBranchMergable(const Graph &in_graph) {
IT_TODO_HALT();
}
virtual Graph fuseVertically(const Graph &inputGraph) { IT_TODO_HALT(); }
};
} // namespace infini

View File

@ -68,4 +68,4 @@ inline std::ostream &operator<<(std::ostream &os, const Ref<T> &obj) {
return os;
}
} // namespace infini
} // namespace infini

269
include/core/op_type.h Normal file
View File

@ -0,0 +1,269 @@
#pragma once
#ifndef OP_TYPE_H
#define OP_TYPE_H
#include <string>
#include <unordered_set>
namespace infini {
struct OpType {
using underlying_t = uint16_t;
// Clang-format is ambiguous in formating of comment alignment.
// In order to disambiguate, it is necessary to comment all enum
// elements.
enum : underlying_t {
Unknown,
Abs, // Unary
Acos, // Unary
Acosh, // Unary
Add, // Binary
And, // Binary
ArgMax, //
Asin, // Unary
Asinh, // Unary
Atan, // Unary
Atanh, // Unary
AttentionKVCache, // Fusion
AveragePool, // Pool
BatchNormalization, //
Bernoulli, //
BitShift, // Binary
BitwiseAnd, // Binary
BitwiseNot, // Binary
BitwiseOr, // Binary
BitwiseXor, // Binary
BlackmanWindow, //
Cast, // Unary
CastLike, //
Ceil, // Unary
Celu, //
CenterCropPad, //
Clip, // Unary
Col2lm,
Compress,
Concat,
ConcatFromSequence,
ConstantOfShape,
Conv, // ComputationIntensive
ConvInteger, // ComputationIntensive
ConvTranspose, // ComputationIntensive
Cos, // Unary
Cosh, // Unary
CumSum,
DFT,
DeformConv, // ComputationIntensive
DepthToSpace,
DequantizeLinear,
Det,
Div, // Binary
Dropout,
DynamicQuantizeLinear,
Einsum,
Elu,
Equal, // Compair
Erf, // Unary
Exp, // Unary
Expand,
EyeLike,
Flatten,
Floor, // Unary
GRU,
Gather,
GatherElements,
GatherND,
Gemm,
Gelu, // Unary
GlobalAveragePool, // GlobalPool
GlobalLpPool, // GlobalPool
GlobalMaxPool, // GlobalPool
Greater, // Compair
GreaterOrEqual, // Compair
GridSample,
GroupNormalization,
HammingWindow,
HannWindow,
HardSigmoid,
HardSwish,
Hardmax,
Identity,
If,
InstanceNormalization,
IsInf,
IsNaN,
LRN,
LSTM,
LayerNormalization,
LeakyRelu,
Less, // Compair
LessOrEqual, // Compair
Log, // Unary
LogSoftmax,
Loop,
LpNormalization,
LpPool,
MatMul, // ComputationIntensive
MatMulInteger, // ComputationIntensive
Max,
MaxPool,
MaxRoiPool,
MaxUnpool,
Mean,
MeanVarianceNormalization,
MelWeightMatrix,
Min,
Mish,
Mod, // Binary
Mul, // Binary
Multinomial, //
Neg, // Unary
NegativeLogLikelihoodLoss,
NonMaxSuppression,
NonZero,
Not, // Unary
OneHot,
Optional,
OptionalGetElement,
OptionalHasElement,
Or, // Binary
PRelu, //
Pad, //
Pow, // Binary
QLinearConv, // ComputationIntensive
QLinearMatMul, // ComputationIntensive
QuantizeLinear,
RNN,
RandomNormal,
RandomNormalLike,
RandomUniform,
RandomUniformLike,
Range,
Reciprocal,
ReduceL1, // Reduce
ReduceL2, // Reduce
ReduceLogSum, // Reduce
ReduceLogSumExp, // Reduce
ReduceMax, // Reduce
ReduceMean, // Reduce
ReduceMin, // Reduce
ReduceProd, // Reduce
ReduceSum, // Reduce
ReduceSumSquare, // Reduce
Relu, // Unary
Silu, // Unary
Reshape,
Resize,
ReverseSequence,
RoiAlign,
RoPE, // Fusion
Round, // Unary
RMSNorm, // Fusion
STFT,
Scan,
Scatter,
ScatterElements,
ScatterND,
Selu,
SequenceAt,
SequenceConstruct,
SequenceEmpty,
SequenceErase,
SequenceInsert,
SequenceLength,
SequenceMap,
Shape,
Shrink,
Sigmoid,
Sign,
Sin, // Unary
Sinh, // Unary
Size,
Slice,
Softmax,
SoftmaxCrossEntropyLoss,
Softplus,
Softsign,
SpaceToDepth,
Split,
SplitToSequence,
Sqrt,
Squeeze,
StringNormalizer,
Sub, // Binary
Sum, //
Tan, // Unary
Tanh, // unary
TfIdfVectorizer,
ThresholdedRelu,
Tile,
TopK,
Transpose,
Trilu,
Unique,
Unsqueeze,
Upsample,
Where,
Xor, // Binary
// CUSTOM DEFINED
G2BMM,
GBMM,
MemBound,
// TODO
ConvTransNHWC,
ConvBackwardFilter,
ReluBackward,
SigmoidBackward,
TanhBackward,
Fill,
Extend,
MSELoss,
Hardtanh,
L2Loss,
Rsqrt,
FloorDiv,
FloorMod,
Square,
SquaredDifference,
// Communication Ops
AllReduceSum,
AllReduceProd,
AllReduceMin,
AllReduceMax,
AllReduceAvg,
AllGather,
Broadcast,
Send,
Recv,
} type;
constexpr OpType(decltype(type) t) : type(t) {}
constexpr explicit OpType(underlying_t val) : type((decltype(type))val) {}
constexpr underlying_t underlying() const { return type; }
bool operator==(OpType others) const { return type == others.type; }
bool operator!=(OpType others) const { return type != others.type; }
bool operator<(OpType others) const { return type < others.type; }
const char *toString() const;
bool isUnary() const;
bool isBinary() const;
bool isElementWise() const;
bool isCompair() const;
bool isPool() const;
bool isGlobalPool() const;
bool isMatMulOrConv() const;
};
enum class ActType {
None,
Relu,
Sigmoid,
Tanh,
};
} // namespace infini
#endif // OP_TYPE_H

View File

@ -1,112 +1,14 @@
#pragma once
#include "core/op_type.h"
#include "core/tensor.h"
namespace infini {
enum class OpType {
Unknown = 0,
// linear
Conv = 100,
Matmul,
ConvTrans,
ConvTransNHWC,
G2BMM,
GBMM,
Pad,
Slice,
Concat,
Split,
Transpose,
Extend,
MaxPool,
AvgPool,
Add,
Sub,
Mul,
Div,
Pow,
Gather,
ReduceMean,
Reshape,
Flatten,
Identity,
// element wise
BatchNorm = 200,
Softmax,
Activation,
Relu,
Sigmoid,
Tanh,
Abs,
Resize,
PRelu,
//
MemBound = 300,
};
using KernelAttrs = std::tuple<Device, OpType, DataType>;
class OpRegistry {
public:
static std::string getOpName(OpType opType) {
#define FOP(op) \
case OpType::op: \
return #op
switch (opType) {
FOP(Unknown);
// linear
FOP(Conv);
FOP(Matmul);
FOP(ConvTrans);
FOP(G2BMM);
FOP(GBMM);
FOP(Pad);
FOP(Slice);
FOP(Concat);
FOP(Split);
FOP(Transpose);
FOP(Extend);
FOP(MaxPool);
FOP(AvgPool);
FOP(Add);
FOP(Sub);
FOP(Mul);
FOP(Div);
FOP(Pow);
FOP(Gather);
FOP(ReduceMean);
FOP(Reshape);
FOP(Identity);
// element wise
FOP(BatchNorm);
FOP(Softmax);
FOP(Activation);
FOP(Relu);
FOP(Sigmoid);
FOP(Tanh);
FOP(Abs);
FOP(ConvTransNHWC);
//
FOP(MemBound);
default:
IT_ASSERT(false);
break;
}
#undef FOP
}
};
enum class ActType {
None,
Relu,
Sigmoid,
Tanh,
};
using KernelAttrs = std::tuple<Device, OpType::underlying_t>;
struct OpPerfKey {
HashType hash;
OpType opType;
OpType::underlying_t opType;
vector<int> attrs;
public:
@ -114,7 +16,7 @@ struct OpPerfKey {
// https://github.com/nlohmann/json#how-can-i-use-get-for-non-default-constructiblenon-copyable-types
OpPerfKey() = default;
OpPerfKey(HashType hash, OpType opType, vector<int> attrs = {})
: hash(hash), opType(opType), attrs(attrs) {}
: hash(hash), opType(opType.underlying()), attrs(attrs) {}
bool operator==(const OpPerfKey &rhs) const {
if (hash != rhs.hash)
return false;
@ -140,7 +42,10 @@ struct OpPerfKey {
}
};
class GraphObj;
class OperatorObj : public Object {
friend class GraphObj;
protected:
OpType type;
TensorVec inputs;
@ -150,8 +55,7 @@ class OperatorObj : public Object {
public:
OperatorObj(OpType opType, TensorVec inputs, TensorVec outputs);
virtual optional<vector<Shape>>
inferShape(const TensorVec &inputs) const = 0;
virtual optional<vector<Shape>> inferShape(const TensorVec &inputs) = 0;
virtual vector<DataType> inferDataType(const TensorVec &inputs) const;
/**
* @brief Constructs outputs (if requried) and check whether the operator is
@ -168,16 +72,7 @@ class OperatorObj : public Object {
*/
HashType hash() const;
public: // check Op type
bool isLinearOp() const;
bool isElementWiseOp() const;
bool isSplitOp() const;
bool isConcatOp() const;
bool isComputeOp() const;
bool isTransposeOp() const;
bool isReshapeOp() const;
bool isMemBoundOp() const;
public:
public: // getter and setter
const TensorVec &getInputs() const { return inputs; }
const TensorVec &getOutputs() const { return outputs; }
@ -190,13 +85,12 @@ class OperatorObj : public Object {
IT_ASSERT(i < outputs.size(), "Index exceeded");
return outputs.at(i);
}
void addPredecessors(const Operator &op) { predecessors.emplace_back(op); }
void addSuccessors(const Operator &op) { successors.emplace_back(op); }
OpVec getPredecessors() const { return wrefs_to_refs(predecessors); }
OpVec getSuccessors() const { return wrefs_to_refs(successors); }
OpType getOpType() const { return type; }
// HACK: set correct data type
DataType getDType() const { return getInputs(0)->getDType(); }
DataType getOutDType() const { return getOutput()->getDType(); }
virtual int numInputs() const = 0;
virtual int numOutputs() const = 0;
@ -211,7 +105,7 @@ class OperatorObj : public Object {
const TensorVec &newOutputs) const = 0;
protected:
optional<vector<Shape>> inferShape() const;
optional<vector<Shape>> inferShape();
vector<DataType> inferDataType() const;
private:
@ -226,6 +120,12 @@ class OperatorObj : public Object {
* and output shapes.
*/
virtual vector<int> getWorkloadVector() const { IT_TODO_HALT(); }
void addPredecessors(const Operator &op) { predecessors.emplace_back(op); }
void addSuccessors(const Operator &op) { successors.emplace_back(op); }
void removePredecessors(const Operator &op);
void removeSuccessors(const Operator &op);
void replaceInput(Tensor t1, Tensor t2);
};
#define OP_CLONE(OpObj) \

View File

@ -2,8 +2,8 @@
#include "core/graph.h"
#include "core/kernel.h"
#include <nlohmann/json_fwd.hpp>
using json = nlohmann::json;
namespace infini {
using json = nlohmann::json;
class PerfEngine {
public:
@ -49,4 +49,4 @@ class PerfEngine {
void to_json(json &j, const PerfEngine &p);
void from_json(const json &j, PerfEngine &p);
} // namespace infini
} // namespace infini

View File

@ -40,4 +40,4 @@ std::vector<Ref<T>> wrefs_to_refs(const std::vector<WRef<T>> &wrefs) {
return refs;
}
} // namespace infini
} // namespace infini

View File

@ -1,6 +1,7 @@
#pragma once
#include "core/common.h"
#include "core/object.h"
#include "core/communicator.h"
#include "core/op_type.h"
#include "core/ref.h"
#include <memory>
@ -14,6 +15,7 @@ class GraphObj;
class GraphHandlerObj;
class RuntimeObj;
class BlobObj;
template <typename T> class WorkspaceObj;
using TensorBase = Ref<TensorBaseObj>;
using Tensor = Ref<TensorObj>;
@ -22,22 +24,25 @@ using Graph = Ref<GraphObj>;
using GraphHandler = Ref<GraphHandlerObj>;
using Runtime = Ref<RuntimeObj>;
using Blob = Ref<BlobObj>;
enum class OpType;
template <typename T> using Workspace = Ref<WorkspaceObj<T>>;
using TensorVec = vector<Tensor>;
using OpVec = vector<Operator>;
using OpLists = list<Operator>;
using VType = uint32_t;
enum class Device { CPU = 1, CUDA, BANG, MKL };
enum class Device { CPU = 1, CUDA, BANG, INTELCPU, KUNLUN };
/***************** Forward declaration end *****************/
class RuntimeObj : public std::enable_shared_from_this<RuntimeObj> {
protected:
Device device;
int deviceId;
public:
RuntimeObj(Device device) : device(device) {}
explicit RuntimeObj(Device device, int deviceId = 0)
: device(device), deviceId(deviceId) {}
RuntimeObj(RuntimeObj &other) = delete;
RuntimeObj &operator=(RuntimeObj const &) = delete;
virtual ~RuntimeObj() {}
@ -54,23 +59,22 @@ class RuntimeObj : public std::enable_shared_from_this<RuntimeObj> {
bool profiling = false) const = 0;
virtual void *alloc(size_t size) = 0;
virtual void dealloc(void *ptr) = 0;
void prepareAndRun(Graph &graph, bool tune = false, bool profiling = false);
/**
* @brief Get the execution time of each operator in performance record. No
* execution happens.
*
* @param graph
* @param printProfiling Whether to print breakdown of time
* @param profiling Whether to print breakdown of time
* @return double Return the sum of perf time for each operator
*/
double getPerfTime(const Graph &graph, bool printProfiling = false,
bool allowEstimation = false) const;
double getPerfTime(const Graph &graph, bool profiling = false) const;
Blob allocBlob(size_t size);
bool isCpu() const {
return device == Device::CPU || device == Device::MKL;
return device == Device::CPU || device == Device::INTELCPU;
}
bool isCuda() const { return device == Device::CUDA; }
bool isBang() const { return device == Device::BANG; }
bool isKUNLUN() const { return device == Device::KUNLUN; }
void copyBlob(const TensorObj *dst, const TensorObj *src) const;
// TODO: unify these copy APIs
virtual void copyBlobFromCPU(void *dst, const void *src,
@ -79,10 +83,11 @@ class RuntimeObj : public std::enable_shared_from_this<RuntimeObj> {
size_t bytes) const = 0;
virtual string toString() const = 0;
map<UidBaseType, bool>
getCompileTimeComputableAttribute(const Graph &graph) const;
int getDeviceId() const { return deviceId; }
double timeNonCtcOperators(const Graph &graph) const;
virtual void initComm(const string &name, int worldSize, int rank) = 0;
virtual CommunicatorObj &getCommunicator() const = 0;
protected:
void printProfilingData(double totTime,
@ -104,6 +109,9 @@ class CpuRuntimeObj : public RuntimeObj {
void copyBlobToCPU(void *dst, const void *src, size_t bytes) const override;
void copyBlobInsideRuntime(void *dst, const void *src,
size_t bytes) const override;
void initComm(const string &, int, int) override { IT_TODO_HALT(); }
CommunicatorObj &getCommunicator() const override { IT_TODO_HALT(); }
};
class NativeCpuRuntimeObj : public CpuRuntimeObj {

View File

@ -4,15 +4,19 @@
#include "graph.h"
#include "mutator.h"
#include <unordered_map>
namespace infini {
class SearchEngine {
private:
Runtime runtimeExec;
Ref<Mutator> mutator;
std::function<bool(const Graph &, const Graph &)> graphTimeComparer;
public:
SearchEngine(Runtime runtime, Ref<Mutator> mutator);
SearchEngine(Runtime _runtime, Ref<Mutator> _mutator) {
runtimeExec = _runtime;
mutator = _mutator;
}
~SearchEngine() {}
private: // Configurations
@ -20,17 +24,24 @@ class SearchEngine {
3; // cut nodes whose #in + #out >= partitionThreshold
size_t GRAPH_SIZE = 16; // num of best graphs.
private: // Composed objects
std::shared_ptr<Mutator> mutationEngine;
public:
std::shared_ptr<Mutator> getMutationEngine() { return mutationEngine; };
struct GroupEdge {
int v, next;
GroupEdge() = delete;
};
// struct Candidate { // a graph with perf
// Graph graph;
// double perf = INFINITY;
// };
struct MetaGraphObj { // a graph of subgraphs, for searching.
struct Candidate { // a graph with perf
std::shared_ptr<Graph> graph;
double perf = INFINITY;
};
class MetaGraph { // a graph of subgraphs, for searching.
public:
MetaGraph() {}
~MetaGraph() {}
struct Node {
Graph graph;
std::vector<int> suc;
@ -39,33 +50,31 @@ class SearchEngine {
};
std::vector<Node> nodes;
};
using MetaGraph = Ref<MetaGraphObj>;
Graph run(const Graph graph); // entrance to search engine.
Graph run(const Graph graph); // entrance of search engine.
std::vector<Graph> search(const Graph &graph); // search for a partition.
private:
std::vector<Graph> partitionGraph(const Graph graph);
MetaGraph buildMetaGraphWithGraph(const Graph graph);
MetaGraph buildMetaGraphWithPlan(const MetaGraph metaGraph,
const std::vector<int> &plan);
std::shared_ptr<MetaGraph> buildMetaGraphWithGraph(const Graph graph);
std::shared_ptr<MetaGraph>
buildMetaGraphWithPlan(const std::shared_ptr<MetaGraph> metaGraph,
const std::vector<int> &plan);
// search horizontal merges
std::vector<MetaGraph> searchMerge(MetaGraph &metaGraph);
void searchMergeDfs(MetaGraph &metaGraph, std::vector<int> &plan,
std::vector<int> &frontier,
std::vector<std::shared_ptr<MetaGraph>>
searchMerge(std::shared_ptr<MetaGraph> &metaGraph);
void searchMergeDfs(std::shared_ptr<MetaGraph> &metaGraph,
std::vector<int> &plan, std::vector<int> &frontier,
std::vector<std::vector<int>> &plans,
std::unordered_set<uint64_t> &planSet);
std::vector<Graph> searchMutation(const MetaGraph &metaGraph);
std::vector<Graph>
searchMutation(const std::shared_ptr<MetaGraph> &metaGraph);
void printMetaGraph(MetaGraph metaGraph);
void printMetaGraph(Ref<SearchEngine::MetaGraph> metaGraph);
/**
* @brief Check whether a multi-brach graph can be merged into a single
* branch.
*/
bool isMultiBranchMergable(const Graph graph);
Graph fuseVertically(const Graph &graph);
double getEstimatedGraphPerf(Graph graph);
};
} // namespace infini

View File

@ -1,35 +1,32 @@
#pragma once
#include "core/tensor_base.h"
#include "core/tensor_type.h"
#include "utils/data_convert.h"
#include <cmath>
#include <cstring>
#include <fstream>
#if USE_CUDA
#include "cuda/cuda_runtime.h"
#endif
#if USE_BANG
#include "bang/bang_runtime.h"
#endif
namespace infini {
// TODO: how to deal with this
using ShapeElem = int;
using Shape = vector<ShapeElem>;
enum class TensorType { Error = 0, Input = 1, Initialized = 2, Other = 3 };
class TensorObj : public TensorBaseObj {
private:
Shape shape;
size_t _size; // Cache of Π(shape).
Fuid fuid; // Cloned tensors share the same id. Tensors constructed from
// scratch have a new id.
TensorType tensorType;
void copyin(const void *ptr, size_t size) {
runtime->copyBlobFromCPU(getRawDataPtr<void *>(), ptr, size);
}
void copyout(void *ptr, size_t size) const {
runtime->copyBlobToCPU(ptr, getRawDataPtr<void *>(), size);
}
TensorType tensorType = TensorType::others;
public:
TensorObj(Shape shape, DataType dtype, Runtime runtime,
TensorType tensorType = TensorType::Other);
TensorObj(Shape shape, DataType dtype, Runtime runtime);
virtual ~TensorObj() {}
string toString() const override;
@ -37,31 +34,74 @@ class TensorObj : public TensorBaseObj {
size_t getBytes() const { return _size * dtype.getSize(); }
Shape getDims() const { return shape; }
vector<size_t> getStride() const;
void setShape(Shape shape_);
size_t getRank() const { return shape.size(); }
Shape getStride() const;
size_t getOffset(const vector<int> &ds) const;
void dataMalloc();
UidBaseType getFuid() const { return fuid; }
TensorType getTensorType() const { return tensorType; }
bool isWeight() const { return tensorType == TensorType::weight; }
bool isInput() const { return tensorType == TensorType::input; }
bool isOutput() const { return tensorType == TensorType::output; }
bool isOthers() const { return tensorType == TensorType::others; }
void setWeight() { tensorType = TensorType::weight; }
void setInput() {
if (!this->isWeight()) {
tensorType = TensorType::input;
}
}
void setOutput() {
if (!this->isWeight()) {
tensorType = TensorType::output;
}
}
string tensorTypeToString() const {
switch (tensorType) {
case TensorType::weight:
return "weight";
break;
case TensorType::input:
return "input";
break;
case TensorType::output:
return "output";
break;
case TensorType::others:
return "others";
break;
default:
return "unknown tensor type";
break;
}
}
void load(std::string file_path);
void save(std::string file_path);
void copyin(const void *ptr, size_t size) {
runtime->copyBlobFromCPU(getRawDataPtr<void *>(), ptr, size);
}
void copyout(void *ptr, size_t size) const {
runtime->copyBlobToCPU(ptr, getRawDataPtr<void *>(), size);
}
// Copy elements from `data`.
template <typename T> void copyin(const vector<T> &data) {
IT_ASSERT(DataType::get<T>() == dtype);
IT_ASSERT(data.size() >= _size);
IT_ASSERT(DataType::get<T>() == dtype.cpuTypeInt());
IT_ASSERT(data.size() == _size);
copyin(data.data(), getBytes());
}
// Copy all the elements to a vector.
template <typename T> auto copyout() const {
IT_ASSERT(DataType::get<T>() == dtype);
IT_ASSERT(DataType::get<T>() == dtype.cpuTypeInt());
std::vector<T> ans(_size);
copyout(ans.data(), getBytes());
return ans;
}
// Copy the element at `pos`.
template <typename T> auto copyOne(const vector<int> &pos) const {
IT_ASSERT(DataType::get<T>() == dtype);
IT_ASSERT(DataType::get<T>() == dtype.cpuTypeInt());
auto offset = getOffset(pos);
auto bytes = dtype.getSize();
T ans;
@ -73,10 +113,16 @@ class TensorObj : public TensorBaseObj {
void copyData(const TensorObj *src);
void copyData(const Tensor &src) { copyData(src.get()); }
// TODO: Rename this function later, because it is confused that it will
// change the field data, but actually it generates data and maybe copy to
// device.
// FIXME: std::fucntion copies the generator instead of passing it by ref.
// Thus the internal state of generator cannot be updated.
void setData(
const std::function<void(void *, size_t, DataType)> &generator) const;
std::function<void(void *, size_t, DataType)> const &generator) const;
void setDataBlob(const Blob &blob);
Tensor clone() const {
auto obj = make_ref<TensorObj>(*this);
obj->freeData();
@ -98,36 +144,90 @@ class TensorObj : public TensorBaseObj {
}
void printData() const;
void dumpData(std::ofstream &ofs) const;
bool equalData(const Tensor &rhs, double relativeError = 1e-6) const;
template <typename T> bool equalData(const vector<T> &dataVector) {
IT_ASSERT(DataType::get<T>() == dtype);
IT_ASSERT(size() == dataVector.size());
return equalDataImpl(getRawDataPtr<T *>(), dataVector.data(), size(),
1e-6);
if (dtype == DataType::Float16) {
return equalDataImpl_fp16(getRawDataPtr<uint16_t *>(),
(float *)dataVector.data(), size());
}
IT_ASSERT(DataType::get<T>() == dtype.cpuTypeInt());
return equalDataImpl(getRawDataPtr<T *>(), dataVector.data(), size());
}
size_t getOffsetByBroadcastOffset(size_t bcOffset, Shape bcShape) const;
private:
void printDataFloat(float *ptr) const;
void printDataUint32_t(uint32_t *ptr) const;
template <class T> string dataToString() const {
std::stringstream builder;
builder << "Tensor: " << guid << std::endl;
auto numDims = shape.size();
auto dimSzVec = vector<int>(numDims, 1);
auto ptr = data->getPtr<T *>();
dimSzVec[numDims - 1] = shape[numDims - 1];
for (int i = numDims - 1; i != 0; --i)
dimSzVec[i - 1] = dimSzVec[i] * shape[i - 1];
for (size_t i = 0, iEnd = size(); i < iEnd; ++i) {
for (size_t j = 0; j < numDims; ++j)
if (i % dimSzVec[j] == 0)
builder << "[";
builder << ptr[i];
for (size_t j = 0; j < numDims; ++j)
if ((int)i % dimSzVec[j] == dimSzVec[j] - 1)
builder << "]";
if (i != size() - 1)
builder << ", ";
auto column = (size_t)dimSzVec[numDims - 1];
if (i % column == column - 1)
builder << std::endl;
}
return builder.str();
}
template <typename T>
bool equalDataImpl(const T *a, const T *b, size_t size,
double relativeError) const {
double relativeError = 1e-6) const {
for (size_t i = 0; i < size; ++i) {
if constexpr (std::is_integral_v<T>) {
if (a[i] != b[i])
return false;
} else if constexpr (std::is_floating_point_v<T>) {
if (fabs(a[i] - b[i]) / std::max(fabs(a[i]), fabs(b[i])) >
relativeError) {
if (std::min(fabs(a[i]), fabs(b[i])) == 0. &&
fabs(a[i] - b[i]) > relativeError) {
printf("Error on %lu: %f %f\n", i, a[i], b[i]);
return false;
} else if (std::min(fabs(a[i]), fabs(b[i])) != 0. &&
fabs(a[i] - b[i]) /
std::max(fabs(a[i]), fabs(b[i])) >
relativeError) {
printf("Error on %lu: %f %f\n", i, a[i], b[i]);
return false;
}
} else
} else {
static_assert(!sizeof(T), "Unsupported data type");
}
}
return true;
}
bool equalDataImpl_fp16(const uint16_t *a, const float *b,
size_t size) const {
for (size_t i = 0; i < size; ++i) {
auto a_fp32 = fp16_to_float(a[i]);
auto b_fp32 = b[i];
if (fabs(a_fp32 - b_fp32) / std::max(fabs(a_fp32), fabs(b_fp32)) >
1e-6) {
printf("Error on %lu: %f %f\n", i, a_fp32, b_fp32);
return false;
}
}
return true;
}
@ -148,8 +248,8 @@ class TensorObj : public TensorBaseObj {
// // std::cerr << "Init beginned " << std::endl;
// #pragma omp parallel for
// for (size_t i = 0; i < iEnd; ++i)
// data[i] = fastrand(random_seed[omp_get_thread_num() * 16]) %
// 10000;
// data[i] = fastrand(random_seed[omp_get_thread_num() *
// 16]) % 10000;
// // std::cerr << "Init finished" << std::endl;
// computed = ComputedFull;
// return true;
@ -194,8 +294,8 @@ class TensorObj : public TensorBaseObj {
// auto nDim = dims.size();
// auto nBroadcastDim = ds.size() - nDim;
// for (size_t i = 0; i < nDim; ++i)
// if (ds[nBroadcastDim + i] < 0 || ds[nBroadcastDim + i] >=
// dims[i])
// if (ds[nBroadcastDim + i] < 0 || ds[nBroadcastDim +
// i] >= dims[i])
// return (size_t)-1;
// size_t idx = 0;
// for (size_t i = 0; i < nDim; ++i)
@ -254,12 +354,14 @@ class TensorObj : public TensorBaseObj {
// return (g_seed >> 16) & 0x7FFF;
// }
// std::vector<std::vector<int>> const *getSplittingPoints() const {
// std::vector<std::vector<int>> const *getSplittingPoints()
// const {
// assert(!splittingPoints.empty());
// return &splittingPoints;
// }
// bool setSplittingPoints(std::vector<std::vector<int>> value) {
// bool setSplittingPoints(std::vector<std::vector<int>> value)
// {
// assert(!value.empty());
// splittingPoints = value;
// return true;
@ -281,7 +383,7 @@ class TensorObj : public TensorBaseObj {
// }
// void initSplittingPoints() {
// splittingPoints.resize(getDims().size()); }
// splittingPoints.resize(getRank()); }
// void printShape();
};

View File

@ -3,9 +3,11 @@
#include "core/data_type.h"
#include "core/object.h"
#include "core/runtime.h"
namespace infini {
class GraphObj;
class TensorBaseObj : public Object {
friend class GraphObj;
public:
// enum TensorType {
// Input,
@ -42,15 +44,27 @@ class TensorBaseObj : public Object {
}
DataType getDType() const { return dtype; }
int getDTypeIndex() const { return dtype.getIndex(); }
Runtime getRuntime() const { return runtime; }
void addTarget(const Operator &op) { targets.emplace_back(op); }
void setSource(const Operator &op) { source = op; }
// std::pair<Operator *, int> getOutputOfWithIndex();
bool hasTarget() const { return !targets.empty(); }
OpVec getTargets() const { return wrefs_to_refs(targets); }
Operator getSource() const { return source.lock(); }
private:
void addTarget(const Operator &op) { targets.emplace_back(op); }
void setSource(const Operator &op) { source = op; }
void removeTarget(const Operator &op) {
for (auto itr = targets.begin(); itr != targets.end();) {
if (itr->lock() == op)
itr = targets.erase(itr);
else
++itr;
}
}
// std::pair<Operator *, int> getSourceWithIndex();
// bool setScalar(VType val) {

View File

@ -0,0 +1,7 @@
#pragma once
namespace infini {
enum class TensorType { weight, input, output, others };
} // namespace infini

42
include/core/workspace.h Normal file
View File

@ -0,0 +1,42 @@
#pragma once
#include "core/runtime.h"
namespace infini {
template <class T> class WorkspaceObj {
private:
T workspace; // workspace pointer
size_t workspaceSize; // Size of workspace
size_t workspaceAlloc; // currently use workspace size
public:
WorkspaceObj(T workspace_, size_t workspaceSize_)
: workspace(workspace_), workspaceSize(workspaceSize_) {
workspaceAlloc = 0;
}
virtual ~WorkspaceObj() {
// Dealloc workspace in RuntimeObj
// Set workspace = nullptr here
workspace = nullptr;
}
size_t getWorkspaceSize() const { return workspaceSize; }
T getWorkspace(size_t size) {
// Get unused workspace
IT_ASSERT(size + workspaceAlloc <= workspaceSize);
auto ret = (T)(static_cast<uint8_t *>(workspace) + workspaceAlloc);
workspaceAlloc += size;
return ret;
}
T getWorkspace() {
// Override getWorkspace in order to dealloc in runtime
return workspace;
}
void resetWorkspace() {
// Reset workspaceAlloc every time end kernel
workspaceAlloc = 0;
}
size_t getWorkspaceAlloc() const { return workspaceAlloc; }
};
} // namespace infini

View File

@ -0,0 +1,17 @@
#pragma once
#include "core/common.h"
#include <cstdio>
struct AttentionKVCacheMetadata {
int dimSize[4];
int stride[4];
};
namespace infini {
void attention_kvcache_kernel(float *input_k_cache, float *input_v_cache,
float *input_q, float *input_k, float *input_v,
int *position_id, float *output_matmul,
const AttentionKVCacheMetadata &compMeta,
float *output_O_temp, float *output_sum_temp);
} // namespace infini

9
include/cuda/cuda_clip.h Normal file
View File

@ -0,0 +1,9 @@
#pragma once
#include "operators/unary.h"
namespace infini {
void clip_kernel(float *input, float *output, int num, float minValue,
float maxValue);
}; // namespace infini

View File

@ -5,17 +5,13 @@
#include <cuda_profiler_api.h>
#include <cudnn.h>
#include <curand.h>
#include <memory>
// TODO: replace with Exception (IT_ASSERT)
#define checkCudaError(call) \
{ \
auto err = call; \
if (cudaSuccess != err) { \
fprintf(stderr, "Cuda error in %s:%i : %s.\n", __FILE__, __LINE__, \
cudaGetErrorString(err)); \
exit(EXIT_FAILURE); \
} \
}
if (auto err = call; err != cudaSuccess) \
throw ::infini::Exception(std::string("[") + __FILE__ + ":" + \
std::to_string(__LINE__) + "] CUDA error (" + \
#call + "): " + cudaGetErrorString(err))
#define checkCUresult(call) \
{ \
@ -39,14 +35,10 @@
}
#define checkCudnnError(call) \
{ \
auto err = call; \
if (CUDNN_STATUS_SUCCESS != err) { \
fprintf(stderr, "cuDNN error in %s:%i : %s.\n", __FILE__, \
__LINE__, cudnnGetErrorString(err)); \
exit(EXIT_FAILURE); \
} \
}
if (auto err = call; err != CUDNN_STATUS_SUCCESS) \
throw ::infini::Exception(std::string("[") + __FILE__ + ":" + \
std::to_string(__LINE__) + "] cuDNN error (" + \
#call + "): " + cudnnGetErrorString(err))
#define checkCurandError(call) \
{ \
@ -120,4 +112,20 @@ inline const char *curandGetErrorString(curandStatus_t error) {
using CudaPtr = void *;
class CUDAStream {
public:
CUDAStream(const CUDAStream &) = delete;
CUDAStream(CUDAStream &&) = delete;
void operator=(const CUDAStream &) = delete;
void operator=(CUDAStream &&) = delete;
static cudaStream_t getCurrentStream() { return _stream; }
static void Init() { CUDAStream::_stream = 0; };
static void createStream() { checkCudaError(cudaStreamCreate(&_stream)); }
static void destroyStream() { checkCudaError(cudaStreamDestroy(_stream)); }
private:
CUDAStream(){};
static cudaStream_t _stream;
};
} // namespace infini

View File

@ -1,6 +1,20 @@
#pragma once
namespace infini {
void div_kernel(float *a, float *b, float *c, int num);
void pow_kernel(float *a, float *b, float *c, int num);
void div_kernel(int dtypeIndex, void *a, void *b, void *c, int a0, int a1,
int a2, int a3, int b0, int b1, int b2, int b3, int c0, int c1,
int c2, int c3);
void add_kernel(int dtypeIndex, void *a, void *b, void *c, int a0, int a1,
int a2, int a3, int b0, int b1, int b2, int b3, int c0, int c1,
int c2, int c3);
void pow_kernel(int dtypeIndex, void *a, void *b, void *c, int a0, int a1,
int a2, int a3, int b0, int b1, int b2, int b3, int c0, int c1,
int c2, int c3);
void less_kernel(int dtypeIndex, void *a, void *b, void *c, int a0, int a1,
int a2, int a3, int b0, int b1, int b2, int b3, int c0, int c1,
int c2, int c3);
void div_const_kernel(int dType, void *a, void *b, void *c, size_t n);
void pow_const_kernel(int dType, void *a, void *b, void *c, size_t n);
}; // namespace infini

View File

@ -0,0 +1,12 @@
#pragma once
#include "operators/unary.h"
#include "utils/small_array.h"
namespace infini {
void expandKernel(int dType, void *input, void *output, int nDims,
int outputsize, SmallArray inputShape,
SmallArray outputShape);
void expandRowKernel(int dType, void *input, void *output, int n_rows,
int row_len);
}; // namespace infini

View File

@ -0,0 +1,17 @@
#pragma once
#include "operators/unary.h"
namespace infini {
void LaynormKernel(const float *input, const float *scale, const float eps,
int size, int scaleSize, const int dimsize, const int stride,
float *output, const float *bias, int biasSize);
void LaynormKernel(const float *input, const float *scale, const float eps,
int size, int scaleSize, const int dimsize, const int stride,
float *output);
void LaynormKernel(const half *input, const half *scale, const half eps,
int size, int scaleSize, const int dimsize, const int stride,
half *output, const half *bias, int biasSize);
void LaynormKernel(const half *input, const half *scale, const half eps,
int size, int scaleSize, const int dimsize, const int stride,
half *output);
}; // namespace infini

View File

@ -10,10 +10,11 @@ typedef struct {
int wholeNDim[MAX_DIM]; // dim size after padding or before slicing
int partNDim[MAX_DIM]; // dim size before padding or after slicing
int partStride[MAX_DIM]; // stride before padding or after slicing
int DType;
} TransMetaData;
namespace infini {
void pad_slice_kernel(float *partData, float *wholeData,
void pad_slice_kernel(void *partData, void *wholeData,
const TransMetaData &metadata, int nDims, int num,
bool isPad);
} // namespace infini

View File

@ -0,0 +1,10 @@
#pragma once
#include "operators/rms_norm.h"
namespace infini {
void rmsnorm_kernel(int dType, void *input, void *weight, void *output,
int num_tokens, int hidden_size);
}; // namespace infini

12
include/cuda/cuda_rope.h Normal file
View File

@ -0,0 +1,12 @@
#pragma once
#include "operators/rope.h"
#include "utils/small_array.h"
namespace infini {
void rope_kernel(int dType, int *pos, void *input, void *output, int size,
int dim_model, int dim_head, int hidden_stride,
int pos_stride);
}; // namespace infini

View File

@ -1,6 +1,9 @@
#pragma once
#include "core/runtime.h"
#include "cuda/cuda_common.h"
#ifdef INFINI_USE_NCCL
#include "cuda/nccl_communicator.h"
#endif
namespace infini {
@ -8,21 +11,34 @@ class CudaRuntimeObj : public RuntimeObj {
private:
cudnnHandle_t cudnn;
cublasHandle_t cublas;
std::unique_ptr<CommunicatorObj> comm;
CudaPtr workspace;
size_t workspaceSize;
bool isCudaGraphCreated;
cudaGraph_t cudaGraph;
cudaGraphExec_t cudaGraphInstance;
public:
CudaRuntimeObj() : RuntimeObj(Device::CUDA) {
explicit CudaRuntimeObj(int deviceId = 0)
: RuntimeObj(Device::CUDA, deviceId) {
checkCudaError(cudaSetDevice(deviceId));
checkCudnnError(cudnnCreate(&cudnn));
checkCublasError(cublasCreate(&cublas));
// 10GB for Longformer
// size_t longformerNum = 3lu * (1 << 30);
workspaceSize = 7ll << 30; // 7 GB
workspace = alloc(workspaceSize);
isCudaGraphCreated = false;
CUDAStream::Init();
}
virtual ~CudaRuntimeObj() {
try {
if (isCudaGraphCreated) {
checkCudaError(cudaGraphExecDestroy(cudaGraphInstance));
checkCudaError(cudaGraphDestroy(cudaGraph));
CUDAStream::destroyStream();
}
dealloc(workspace);
checkCudnnError(cudnnDestroy(cudnn));
checkCublasError(cublasDestroy(cublas));
@ -69,6 +85,13 @@ class CudaRuntimeObj : public RuntimeObj {
void runWithoutSync(const Graph &graph) const;
void runWithCudaGraph(const Graph &graph);
// init communicator
void initComm(const string &name, int worldSize, int rank) final;
CommunicatorObj &getCommunicator() const final { return *comm; }
private:
void tune(const Graph &graph, bool profiling) const;
};

View File

@ -0,0 +1,8 @@
#pragma once
#include "utils/small_array.h"
namespace infini {
void softmax_kernel(int num_blocks, float *input, float *output, int size,
int dimsize, int stride);
void softmax_kernel(int num_blocks, half *input, half *output, int size,
int dimsize, int stride);
} // namespace infini

View File

@ -3,13 +3,13 @@
#include <cstdio>
const int BATCH_SIZE = 32; // parallel tensor number.
const int DIM_MAX_SIZE = 4;
const int DIM_MAX_SIZE = 8;
// Concat operator acts like element tensors composing to one big tensor,and
// split operator acts like one big tensor being composed by element
// tensors.
struct ElementTensorMetadata {
float *data[BATCH_SIZE];
template <typename T> struct ElementTensorMetadata {
T *data[BATCH_SIZE];
int dimBgNo[BATCH_SIZE]; // the dimention begin no of the element tensor in
// the composed tensor.
int dimSize[BATCH_SIZE]; // the dimention size of the element tensor.
@ -20,16 +20,17 @@ struct ElementTensorMetadata {
data[i], dimBgNo[i], dimSize[i], nElements[i]);
}
};
struct ComposedTensorMetadata {
template <typename T> struct ComposedTensorMetadata {
int dimSize[DIM_MAX_SIZE];
int stride[DIM_MAX_SIZE];
float *data;
T *data;
};
namespace infini {
void split_concat_kernel(const ElementTensorMetadata &eleMeta,
const ComposedTensorMetadata &compMeta, int dim,
void split_concat_kernel(const ElementTensorMetadata<float> &eleMeta,
const ComposedTensorMetadata<float> &compMeta, int dim,
int batchSize, int nDims, bool isSplit);
void split_concat_kernel(const ElementTensorMetadata<half> &eleMeta,
const ComposedTensorMetadata<half> &compMeta, int dim,
int batchSize, int nDims, bool isSplit);
} // namespace infini

View File

@ -0,0 +1,11 @@
#pragma once
#include "operators/transpose.h"
#include "utils/small_array.h"
namespace infini {
void transpose_kernel(int dType, void *input, void *output, int nDims, int size,
SmallArray strides, SmallArray outputShape);
}; // namespace infini

View File

@ -3,31 +3,22 @@
#include "operators/unary.h"
namespace infini {
void softmax_kernel(float *input, float *output, int num);
void relu_kernel(float *input, float *output, int num);
void sigmoid_kernel(float *input, float *output, int num);
void tanh_kernel(float *input, float *output, int num);
void abs_kernel(float *input, float *output, int num);
template <typename T> void softmax_kernel(T *input, T *output, size_t num);
template <typename T> void relu_kernel(T *input, T *output, size_t num);
template <typename T> void silu_kernel(T *input, T *output, size_t num);
template <typename T> void sigmoid_kernel(T *input, T *output, size_t num);
template <typename T> void tanh_kernel(T *input, T *output, size_t num);
template <typename T> void abs_kernel(T *input, T *output, size_t num);
template <typename T> void sqrt_kernel(T *input, T *output, size_t num);
template <typename T> void neg_kernel(T *input, T *output, size_t num);
template <typename T> void gelu_kernel(T *input, T *output, size_t num);
template <typename T> void erf_kernel(T *input, T *output, size_t num);
template <typename T> void hard_sigmoid_kernel(T *input, T *output, size_t num);
template <typename T> void hard_swish_kernel(T *input, T *output, size_t num);
void unary_kernel(const Operator &_op) {
auto op = as<UnaryObj>(_op);
float *const inputData = (op->getInputs(0)->getRawDataPtr<float *>());
float *const outputData = (op->getOutput()->getRawDataPtr<float *>());
template <typename INPUT, typename OUTPUT>
void cast_kernel(INPUT *input, OUTPUT *output, size_t num);
auto dim = op->getInputs(0)->getDims();
int n = dim[0], c = dim[1], h = dim[2], w = dim[3];
if (op->getOpType() == OpType::Softmax)
softmax_kernel(inputData, outputData, n * c * h * w);
else if (op->getOpType() == OpType::Relu)
relu_kernel(inputData, outputData, n * c * h * w);
else if (op->getOpType() == OpType::Sigmoid)
sigmoid_kernel(inputData, outputData, n * c * h * w);
else if (op->getOpType() == OpType::Tanh)
tanh_kernel(inputData, outputData, n * c * h * w);
else if (op->getOpType() == OpType::Abs)
abs_kernel(inputData, outputData, n * c * h * w);
else
IT_TODO_HALT();
}
void unary_kernel(const Operator &_op);
}; // namespace infini

View File

@ -1,11 +1,29 @@
#pragma once
#include "core/tensor.h"
#include "cuda/cuda_common.h"
namespace infini {
void cudaPrintFloat(float *x, int len);
void cudaPrintTensor(const Tensor &tensor) {
cudaPrintFloat(tensor->getRawDataPtr<float *>(), tensor->size());
}
void cudaPrintTensor(const Tensor &tensor);
} // namespace infini
cudnnDataType_t cudnnDataTypeConvert(DataType dataType);
cudaDataType cublasDataTypeConvert(DataType);
template <int index> struct DT_CUDA {};
template <> struct DT_CUDA<0> { using t = bool; };
template <> struct DT_CUDA<1> { using t = float; };
template <> struct DT_CUDA<2> { using t = unsigned char; };
template <> struct DT_CUDA<3> { using t = char; };
template <> struct DT_CUDA<4> { using t = unsigned short; };
template <> struct DT_CUDA<5> { using t = short; };
template <> struct DT_CUDA<6> { using t = int; };
template <> struct DT_CUDA<7> { using t = long long; };
template <> struct DT_CUDA<9> { using t = bool; };
template <> struct DT_CUDA<10> { using t = half; };
template <> struct DT_CUDA<11> { using t = double; };
template <> struct DT_CUDA<12> { using t = unsigned int; };
template <> struct DT_CUDA<13> { using t = unsigned long long; };
template <> struct DT_CUDA<16> { using t = nv_bfloat16; };
} // namespace infini

17
include/cuda/cuda_where.h Normal file
View File

@ -0,0 +1,17 @@
#pragma once
#include "operators/unary.h"
#include "utils/small_array.h"
namespace infini {
void whereKernel(const float *inputX, const float *inputY,
const uint8_t *condition, float *output, int nDims,
int outputsize, SmallArray inputXShape, SmallArray inputYShape,
SmallArray conditionShape, SmallArray outputShape, int xSize,
int ySize, int cSize);
void whereKernel(const half *inputX, const half *inputY,
const uint8_t *condition, half *output, int nDims,
int outputsize, SmallArray inputXShape, SmallArray inputYShape,
SmallArray conditionShape, SmallArray outputShape, int xSize,
int ySize, int cSize);
}; // namespace infini

View File

@ -1,17 +1,61 @@
#pragma once
typedef struct {
int *indexValue;
int axis;
int inNDim;
int outNDim;
int idxNDim;
int outDim[4];
int idxDim[4];
int idxStride[4];
int inStride[4];
} GatherMetaData;
#include "core/data_type.h"
#include "core/operator.h"
#include "operators/gather.h"
namespace infini {
void gather_kernel(float *in, float *out, GatherMetaData metaData, int num);
struct GatherMetaData {
// Pointer to indices
void *indexValue;
// Type of index values
DataType indexType;
// Type of input and output data
DataType dataType;
// Axis of the gather operation
int axis;
// Rank of input
int inNDim;
// Rank of output
int outNDim;
// Rank of indices
int idxNDim;
// Shape of output
int outDim[4];
// Shape of indices
int idxDim[4];
// Strides of indices
int idxStride[4];
// Strides of input
int inStride[4];
};
inline void initGatherMetaData(GatherMetaData &metaData,
const Ref<OperatorObj> &_op) {
memset(&metaData, 0, sizeof(metaData));
auto op = as<GatherBaseObj>(_op);
Ref<TensorObj> in = op->getInputs(0);
Ref<TensorObj> index = op->getInputs(1);
Ref<TensorObj> out = op->getOutput();
metaData.indexValue = index->getRawDataPtr<void *>();
metaData.indexType = index->getDType();
metaData.dataType = in->getDType();
metaData.axis = op->getAxis();
metaData.inNDim = in->getRank();
metaData.outNDim = out->getRank();
metaData.idxNDim = index->getRank();
for (int i = 0; i < metaData.outNDim; ++i)
metaData.outDim[i] = out->getDims()[i];
for (int i = 0; i < metaData.idxNDim; ++i) {
metaData.idxDim[i] = index->getDims()[i];
metaData.idxStride[i] = index->getStride()[i];
}
for (int i = 0; i < metaData.inNDim; ++i) {
metaData.inStride[i] = in->getStride()[i];
}
}
template <typename T>
void gather_kernel(T *in, T *out, GatherMetaData metaData, size_t num);
void gather_elements_kernel(void *in, void *out, GatherMetaData metaData,
size_t num);
} // namespace infini

View File

@ -0,0 +1,70 @@
#pragma once
#include "core/communicator.h"
#include <chrono>
#include <cstdlib>
#include <filesystem>
#include <fstream>
#include <nccl.h>
#include <thread>
#define checkNcclError(call) \
{ \
auto err = call; \
if (ncclSuccess != err) { \
fprintf(stderr, "NCCL error in %s:%i : %s.\n", __FILE__, __LINE__, \
ncclGetErrorString(err)); \
exit(EXIT_FAILURE); \
} \
}
namespace infini {
class NcclCommunicatorObj final : public CommunicatorObj {
private:
ncclComm_t comm;
public:
NcclCommunicatorObj(const string &name, int worldSize, int rank)
: CommunicatorObj(worldSize, rank) {
const std::string filePath("./" + name + "_nccl_id.bin");
ncclUniqueId commId;
if (rank == 0) {
checkNcclError(ncclGetUniqueId(&commId));
std::ofstream ofs(filePath, std::ios::binary);
ofs.write((char *)&commId, sizeof(ncclUniqueId));
} else {
auto begin = std::chrono::steady_clock::now();
while (!std::filesystem::exists(filePath)) {
auto now = std::chrono::steady_clock::now();
_IT_ASSERT_2(now < begin + std::chrono::seconds(10),
"time limit (10s) exceeded.");
std::this_thread::sleep_for(std::chrono::milliseconds(100));
}
std::ifstream ifs(filePath, std::ios::binary);
ifs.read((char *)&commId, sizeof(ncclUniqueId));
}
checkNcclError(ncclCommInitRank(&comm, worldSize, commId, rank));
if (rank == 0) {
std::filesystem::remove(filePath);
}
}
// Get the actual ncclComm_t
ncclComm_t getNcclComm() { return comm; }
void finalize() { checkNcclError(ncclCommFinalize(comm)); }
~NcclCommunicatorObj() final {
finalize();
checkNcclError(ncclCommDestroy(comm));
}
virtual string toString() const final {
std::ostringstream oss;
oss << "NCCL communicator";
return oss.str();
}
};
} // namespace infini

View File

@ -1,9 +0,0 @@
#include "core/graph_handler.h"
#include "core/mutator.h"
#include "core/search_engine.h"
namespace infini {
namespace callback {
void exportONNX(const Graph &graph, const string &path);
}
} // namespace infini

View File

@ -0,0 +1,40 @@
#pragma once
#include "core/kernel.h"
#include "intelcpu/mkl_runtime.h"
namespace infini {
class MklKernelWithoutConfig : public Kernel {
public:
virtual void compute(const Operator &op, const PerfRecord &record,
const RuntimeObj *_context) const override {
compute(op, _context);
auto context = dynamic_cast<const MklRuntimeObj *>(_context);
context->sync();
}
virtual void compute(const Operator &op,
const RuntimeObj *context) const = 0;
// Premise: op is idempotent since it is called multiple times.
virtual PerfRecord tune(const Operator &op,
const RuntimeObj *_context) const override {
auto context = dynamic_cast<const MklRuntimeObj *>(_context);
return make_ref<PerfRecordObj>(timeit([&]() { compute(op, _context); },
[&]() { context->sync(); }));
}
protected:
dnnl::memory::format_tag getUserFormatTag(int nDim) const {
if (nDim == 2)
return dnnl::memory::format_tag::nc;
else if (nDim == 3)
return dnnl::memory::format_tag::ncw;
else if (nDim == 4)
return dnnl::memory::format_tag::nchw;
else if (nDim == 5)
return dnnl::memory::format_tag::ncdhw;
else
IT_TODO_HALT();
}
};
} // namespace infini

View File

@ -7,9 +7,9 @@
#include <dnnl_debug.h>
#include <mkl.h>
namespace infini {
// TODO move utility function to alone file
class MklRuntimeObj : public CpuRuntimeObj {
dnnl_engine_t engine;
dnnl_stream_t stream;
public:
MklRuntimeObj();
@ -26,8 +26,10 @@ class MklRuntimeObj : public CpuRuntimeObj {
sizeof(uint64_t), 64);
};
string toString() const override { return "CPU MKL Runtime"; };
string toString() const override { return "INTELCPU Runtime"; };
dnnl::engine getEngine() const { return dnnl::engine(engine, true); }
dnnl::stream getStream() const { return dnnl::stream(stream, true); }
void sync() const;
};
} // namespace infini

View File

@ -0,0 +1,23 @@
#include "core/op_type.h"
#include "kunlun/kunlun_common.h"
namespace infini {
using KunlunActType = xdnn::Activation_t;
KunlunActType parseActType(ActType act) {
switch (act) {
case ActType::None:
return KunlunActType::LINEAR;
case ActType::Tanh:
return KunlunActType::TANH;
case ActType::Sigmoid:
return KunlunActType::SIGMOID;
case ActType::Relu:
return KunlunActType::RELU6;
default:
fprintf(stderr, "Activation Type not support yet!\n");
break;
}
return KunlunActType::LINEAR;
}
}; // namespace infini

View File

@ -0,0 +1,22 @@
#pragma once
#include "core/common.h"
#include "xpu/runtime_ex.h"
#include "xpu/xdnn.h"
namespace xdnn = baidu::xpu::api;
#define checkKUNLUNError(call) \
{ \
auto err = call; \
if (XPU_SUCCESS != err) { \
fprintf(stderr, "KUNLUN error in %s:%i : %s.\n", __FILE__, \
__LINE__, xpu_strerror(err)); \
exit(EXIT_FAILURE); \
} \
}
namespace infini {
using KUNLUNPtr = void *;
} // namespace infini

View File

@ -0,0 +1,24 @@
#pragma once
#include "core/kernel.h"
#include "kunlun/kunlun_runtime.h"
namespace infini {
class KUNLUNKernelWithoutConfig : public Kernel {
public:
virtual void compute(const Operator &op, const PerfRecord &record,
const RuntimeObj *context) const {
compute(op, context);
}
virtual void compute(const Operator &op,
const RuntimeObj *context) const = 0;
// Premise: op is idempotent since it is called multiple times.
virtual PerfRecord tune(const Operator &op,
const RuntimeObj *_context) const {
auto context = dynamic_cast<const KUNLUNRuntimeObj *>(_context);
return make_ref<PerfRecordObj>(timeit([&]() { compute(op, _context); },
[&]() { context->sync(); }));
}
};
} // namespace infini

View File

@ -0,0 +1,81 @@
#pragma once
#include "core/runtime.h"
#include "core/workspace.h"
#include "kunlun/kunlun_common.h"
#ifdef INFINI_USE_XCCL
#include "kunlun/xccl_communicator.h"
#endif
namespace infini {
class KUNLUNRuntimeObj : public RuntimeObj {
private:
xdnn::Context *ctx;
std::unique_ptr<CommunicatorObj> comm;
// KUNLUNPtr workspace;
// size_t workspaceSize;
Workspace<KUNLUNPtr> workspace;
public:
KUNLUNRuntimeObj(int deviceId = 0) : RuntimeObj(Device::KUNLUN) {
xpu_set_device(deviceId);
ctx = xdnn::create_context();
// 10GB for Longformer
// size_t longformerNum = 3lu * (1 << 30);
size_t workspaceSize = 2llu << 30; // 2 GB
KUNLUNPtr wkspacePtr = alloc(workspaceSize);
workspace =
make_ref<WorkspaceObj<KUNLUNPtr>>(wkspacePtr, workspaceSize);
}
virtual ~KUNLUNRuntimeObj() {
KUNLUNPtr wkspacePtr = workspace->getWorkspace();
dealloc(wkspacePtr);
xdnn::destroy_context(ctx);
}
string toString() const override;
void run(const Graph &graph, bool tune = false,
bool profiling = false) const;
// double runEvaluation(const Graph &graph, int nWarmups,
// int nEvaluations) const;
void sync() const;
KUNLUNPtr alloc(size_t size) override {
void *ptr;
checkKUNLUNError(
xpu_malloc((void **)&ptr, size, XPUMemoryKind::XPU_MEM_HBM));
return ptr;
}
void dealloc(void *ptr) override { xpu_free(ptr); }
xdnn::Context *KUNLUNHandle() const { return ctx; }
// Get $size workspace by bytes
KUNLUNPtr getWorkspace(size_t size) const {
auto ret = workspace->getWorkspace(size);
return ret;
}
Workspace<KUNLUNPtr> getWorkspaceObj() const { return workspace; }
void copyBlobFromCPU(void *dst, const void *src,
size_t bytes) const override {
xpu_memcpy(dst, const_cast<void *>(src), bytes,
XPUMemcpyKind::XPU_HOST_TO_DEVICE);
}
void copyBlobToCPU(void *dst, const void *src,
size_t bytes) const override {
xpu_memcpy(dst, const_cast<void *>(src), bytes,
XPUMemcpyKind::XPU_DEVICE_TO_HOST);
}
void copyBlobInsideRuntime(void *dst, const void *src,
size_t bytes) const override {
xpu_memcpy(dst, const_cast<void *>(src), bytes,
XPUMemcpyKind::XPU_DEVICE_TO_DEVICE);
}
void initComm(const string &name, int worldSize, int rank) final;
CommunicatorObj &getCommunicator() const final { return *comm; }
private:
void runWithoutSync(const Graph &graph, bool tune, bool profiling) const;
};
} // namespace infini

View File

@ -0,0 +1,10 @@
#pragma once
namespace infini {
namespace opTimer {
double getPerfConvXdnn(int n, int c, int h, int w, int f, int r, int s,
int padh, int padw, int strideh, int stridew,
int dilationh, int dilationw, int group,
const char *name);
double getPerfMatmulXdnn(int b, int m, int n, int k, const char *name);
} // namespace opTimer
} // namespace infini

View File

@ -0,0 +1,60 @@
#pragma once
#include "core/communicator.h"
#include "xpu/bkcl.h"
#include <chrono>
#include <filesystem>
#include <fstream>
#include <thread>
#define checkXcclError(call) \
{ \
auto err = call; \
if (BKCL_SUCCESS != err) { \
fprintf(stderr, "XCCL error in %s:%i.\n", __FILE__, __LINE__); \
exit(EXIT_FAILURE); \
} \
}
namespace infini {
class XcclCommunicatorObj final : public CommunicatorObj {
private:
BKCLContext_t comm;
public:
XcclCommunicatorObj(const string &name, int worldSize, int rank)
: CommunicatorObj(worldSize, rank) {
const std::string filePath("./" + name + "_xccl_id.bin");
BKCLUniqueId commId;
if (rank == 0) {
checkXcclError(bkcl_get_unique_id(&commId));
std::ofstream ofs(filePath, std::ios::binary);
ofs.write((char *)&commId, sizeof(BKCLUniqueId));
} else {
auto begin = std::chrono::steady_clock::now();
while (!std::filesystem::exists(filePath)) {
auto now = std::chrono::steady_clock::now();
_IT_ASSERT_2(now < begin + std::chrono::seconds(100),
"time limit (100s) exceeded.");
std::this_thread::sleep_for(std::chrono::milliseconds(100));
}
std::ifstream ifs(filePath, std::ios::binary);
ifs.read((char *)&commId, sizeof(BKCLUniqueId));
}
checkXcclError(bkcl_init_rank(&comm, rank, worldSize, &commId));
if (rank == 0) {
std::filesystem::remove(filePath);
}
}
BKCLContext_t getXcclComm() { return comm; }
~XcclCommunicatorObj() final { checkXcclError(bkcl_destroy_context(comm)); }
virtual string toString() const final {
std::ostringstream oss;
oss << "XCCL communicator";
return oss.str();
}
};
} // namespace infini

View File

@ -12,4 +12,4 @@ class MatchComputationKernel : public Pass {
virtual void transform(Formula &origin, int dfsDepth, Expr &rCur) override;
};
} // namespace nnet
} // namespace nnet

View File

@ -12,4 +12,4 @@ class MatchMemBoundKernel : public Pass {
virtual void transform(Formula &origin, int dfsDepth, Expr &rCur) override;
};
} // namespace nnet
} // namespace nnet

View File

@ -38,4 +38,4 @@ class Pass {
const VecExpr &getTransformations();
};
} // namespace nnet
} // namespace nnet

View File

@ -15,4 +15,4 @@ class Rule1VariableSplit : public Pass {
Expr replaceIters(Expr cur, const Replace &replace);
};
} // namespace nnet
} // namespace nnet

Some files were not shown because too many files have changed in this diff Show More