Compare commits

..

1 Commits

24 changed files with 349 additions and 1024 deletions

3
.gitmodules vendored
View File

@ -13,6 +13,3 @@
[submodule "example"] [submodule "example"]
path = examples/NNmodel path = examples/NNmodel
url = git@github.com:wanghailu0717/NNmodel.git url = git@github.com:wanghailu0717/NNmodel.git
[submodule "examples/distributed/onnxsim_large_model"]
path = examples/distributed/onnxsim_large_model
url = git@github.com:luchangli03/onnxsim_large_model.git

View File

@ -1,7 +1,5 @@
# 分布式脚本 # 分布式脚本
## 英伟达平台运行方式
#### 1. 运行pytorch模型并生成输入和标准输出可选择导出onnx #### 1. 运行pytorch模型并生成输入和标准输出可选择导出onnx
使用 `--export_onnx` 设置导出onnx的目录默认为当前路径 `./`不使用这个flag则只进行计算和生成输入输出。 使用 `--export_onnx` 设置导出onnx的目录默认为当前路径 `./`不使用这个flag则只进行计算和生成输入输出。
@ -17,23 +15,3 @@ python run_pytorch.py --model gpt2 --batch_size 1 --length 1 --export_onnx ./
```bash ```bash
python cuda_launch.py --model "/XXX/XXX.onnx" --nproc_per_node 4 python cuda_launch.py --model "/XXX/XXX.onnx" --nproc_per_node 4
``` ```
## 寒武纪平台运行方式
**将上述运行脚本 `run_pytorch.py` 以及 `cuda_launch.py` 针对寒武纪平台做了相应的适配,具体见 `run_pytorch_mlu.py` 以及 `bang_launch.py`。**
#### 1. 运行pytorch模型并生成输入和标准输出可选择导出onnx
使用 `--export_onnx` 设置导出onnx的目录默认为当前路径 `./`不使用这个flag则只进行计算和生成输入输出。
```bash
python run_pytorch_mlu.py --model gpt2 --batch_size 1 --length 1 --export_onnx ./
```
会在当前目录下生成输入输出文件`test_inputs.npy` 和 `test_results.npy`,目前只支持单一输入输出。
#### 2. 运行InfiniTensor分布式脚本
```bash
python bang_launch.py --model "/XXX/XXX.onnx" --nproc_per_node 4
```

View File

@ -1,249 +0,0 @@
import argparse
import torch
import torch_mlu
from transformers import BertModel, BertConfig
from transformers import GPT2Model, GPT2Config
from transformers import OPTModel, OPTConfig
from transformers import AlbertModel, AlbertConfig
from transformers import LlamaModel, LlamaConfig
import time
import numpy as np
import onnx
import sys
import os
from onnx.external_data_helper import convert_model_to_external_data
from onnxsim import simplify
def parse_args():
parser = argparse.ArgumentParser(description="Run pytorch gpt2/bert/opt and optionally export onnx.")
parser.add_argument(
"--model", type=str, choices=["gpt2", "bert", "opt", "llama", "albert"], required=True, help="model type"
)
parser.add_argument("--batch_size", type=int, default=1, help="batch size.")
parser.add_argument("--length", type=int, default=1, help="sequence length.")
parser.add_argument(
"--export_onnx",
type=str,
nargs="?",
default=None,
const="./",
help="whether and where to export onnx file",
)
parser.add_argument(
"--type", type=str, choices=["fp32", "fp16", "tf32"], required=True, help="model data type"
)
args = parser.parse_args()
print("arg setting: ", args)
return (
args.model,
args.batch_size,
args.length,
args.export_onnx,
args.type
)
def get_model(modelname):
match modelname:
case "albert":
model = AlbertModel.from_pretrained("albert/albert-base-v2")
voc_size = AlbertConfig().vocab_size
case "bert":
model = BertModel.from_pretrained("bert-base-uncased", add_pooling_layer=False, hidden_act="gelu_new") # erf is not impl by infini
voc_size = BertConfig().vocab_size
case "gpt2":
model = GPT2Model.from_pretrained("GPT2")
voc_size = GPT2Config().vocab_size
case "opt":
model = OPTModel.from_pretrained("facebook/opt-125m")
voc_size = OPTConfig().vocab_size
case "llama":
model = LlamaModel.from_pretrained("meta-llama/Llama-2-7b-hf")
voc_size = LlamaConfig().vocab_size
case _:
raise KeyError(modelname)
model = model.eval()
return model, voc_size
def run_pytorch(torch_model, voc_size, batchsize, len, dtype="fp32"):
data = np.random.randint(0, voc_size, (batchsize, len), dtype=np.int32)
os.makedirs(os.path.dirname("./data/"), exist_ok=True)
np.save("./data/input_0", data)
inputs = torch.from_numpy(data).to("mlu")
torch_model = torch_model.to("mlu")
if dtype == "fp16":
torch_model = torch_model.half()
n_iter = 20
with torch.no_grad():
for _ in range(10):
outputs = torch_model(inputs)
torch.mlu.synchronize()
begin = time.time()
with torch.no_grad():
for _ in range(n_iter):
torch.mlu.synchronize()
outputs = torch_model(inputs)
torch.mlu.synchronize()
torch.mlu.synchronize()
end = time.time()
avg_time = (end - begin) / n_iter
outputs = outputs.last_hidden_state.to("cpu")
print("outputs abs mean:", abs(np.array(outputs)).mean())
print(f"average time: {avg_time}")
# torch.mlu.memory.empty_cache()
np.save("./data/output", np.array(outputs))
print("Save input & output into ./data.")
def export_onnx(modelname, model, data, path, extern=False, dtype="fp32"):
data = data.to("mlu")
model = model.to("mlu")
if dtype == "fp16":
model = model.half()
torch.onnx.export(model, data, path, verbose=False, do_constant_folding=True)
if modelname != "llama":
# use onnxsim to simplify
onnx_model = onnx.load(path)
onnx_model, check = simplify(onnx_model, skipped_optimizers=['eliminate_duplicate_initializer'])
# onnx_model, check = simplify(onnx_model, skipped_optimizers=['fuse_qkv', 'eliminate_duplicate_initializer'])
assert check
add_value_info_for_constants(onnx_model)
onnx_model = onnx.shape_inference.infer_shapes(onnx_model)
if extern:
extern_path = path.replace('.onnx', '.pb')
if os.path.exists(extern_path):
os.remove(extern_path)
extern_path = extern_path.split("/")[-1]
convert_model_to_external_data(
onnx_model,
all_tensors_to_one_file=True,
location=extern_path,
size_threshold=1024,
convert_attribute=False,
)
onnx.save(onnx_model, path)
else:
# use third party tool to simplify llama
# reference: https://github.com/luchangli03/onnxsim_large_model/
sys.path.append("onnxsim_large_model")
from onnx_utils import set_onnx_input_shape
from compress_model import SIZE_1MB, compress_onnx_model, uncompress_onnx_model
in_model_path = path
out_model_path = path
if not out_model_path:
out_model_path = in_model_path[:-5] + ".sim.onnx"
if os.path.isdir(out_model_path):
out_model_path = os.path.join(out_model_path, os.path.basename(in_model_path))
onnx_model = onnx.load(in_model_path)
print(f"load model from {in_model_path} success")
size_th_bytes = 1024 * 1024
onnx_model, removed_inits = compress_onnx_model(onnx_model, size_th_bytes=size_th_bytes)
print(f"compress model success")
onnx_model = set_onnx_input_shape(onnx_model, "")
tensor_size_threshold = f"1024KB"
skipped_optimizers = []
skipped_optimizers.append("eliminate_duplicate_initializer")
onnx_model, check = simplify(onnx_model, skipped_optimizers=skipped_optimizers,
tensor_size_threshold=tensor_size_threshold)
if not check:
raise ValueError(f"simplify compressed model {in_model_path} failed")
print(f"simplify model success")
onnx_model = uncompress_onnx_model(onnx_model, removed_inits)
print(f"uncompress model success")
add_value_info_for_constants(onnx_model)
onnx.save(onnx_model, out_model_path, save_as_external_data=True)
def add_value_info_for_constants(model : onnx.ModelProto):
"""
Currently onnx.shape_inference doesn't use the shape of initializers, so add
that info explicitly as ValueInfoProtos.
Mutates the model.
Args:
model: The ModelProto to update.
"""
# All (top-level) constants will have ValueInfos before IRv4 as they are all inputs
if model.ir_version < 4:
return
def add_const_value_infos_to_graph(graph : onnx.GraphProto):
inputs = {i.name for i in graph.input}
existing_info = {vi.name: vi for vi in graph.value_info}
for init in graph.initializer:
# Check it really is a constant, not an input
if init.name in inputs:
continue
# The details we want to add
elem_type = init.data_type
shape = init.dims
# Get existing or create new value info for this constant
vi = existing_info.get(init.name)
if vi is None:
vi = graph.value_info.add()
vi.name = init.name
# Even though it would be weird, we will not overwrite info even if it doesn't match
tt = vi.type.tensor_type
if tt.elem_type == onnx.TensorProto.UNDEFINED:
tt.elem_type = elem_type
if not tt.HasField("shape"):
# Ensure we set an empty list if the const is scalar (zero dims)
tt.shape.dim.extend([])
for dim in shape:
tt.shape.dim.add().dim_value = dim
# Handle subgraphs
for node in graph.node:
for attr in node.attribute:
# Ref attrs refer to other attrs, so we don't need to do anything
if attr.ref_attr_name != "":
continue
if attr.type == onnx.AttributeProto.GRAPH:
add_const_value_infos_to_graph(attr.g)
if attr.type == onnx.AttributeProto.GRAPHS:
for g in attr.graphs:
add_const_value_infos_to_graph(g)
return add_const_value_infos_to_graph(model.graph)
def main():
torch.backends.mlu.matmul.allow_tf32 = False
torch.backends.cnnl.allow_tf32 = False
modelname, batchsize, seqlen, export_path, dtype = parse_args()
if dtype == "tf32":
torch.backends.mlu.matmul.allow_tf32 = True
else:
os.environ["CAMBRICON_TF32_OVERRIDE"] = "0"
model, voc_size = get_model(modelname)
if export_path is not None:
filename = "{}_{}_{}_{}.onnx".format(modelname, batchsize, seqlen, dtype)
path = os.path.join(export_path, filename)
if not os.path.exists(path):
param = torch.zeros((batchsize, seqlen), dtype=torch.int)
export_onnx(modelname, model, param, path, True, dtype)
else:
print("Onnx path exists, skipping export.")
run_pytorch(model, voc_size, batchsize, seqlen, dtype)
if __name__ == "__main__":
main()

View File

@ -1,39 +1,35 @@
import sys
sys.path.append('../')
import argparse import argparse
import os import os
import time import time
import multiprocessing as mp import multiprocessing as mp
from pyinfinitensor.onnx import OnnxStub, backend from pyinfinitensor.onnx import OnnxStub, backend
import onnx import onnx
from onnx.external_data_helper import convert_model_to_external_data
from onnx.shape_inference import infer_shapes_path from onnx.shape_inference import infer_shapes_path
import numpy as np import numpy as np
from parallel_opt import parallel_model from parallel_opt import parallel_model
def parse_args(): def parse_args():
parser = argparse.ArgumentParser(description="launch distributed infinitensor") parser = argparse.ArgumentParser(description="launch distributed infinitensor")
parser.add_argument("--num_nodes", type=int, default=1, help="number of nodes") parser.add_argument("--num_nodes", type=int, default=1, help="number of nodes")
parser.add_argument( parser.add_argument(
"--nproc_per_node", type=int, default=1, help="number of processes per node" "--nproc_per_node", type=int, default=2, help="number of processes per node"
) )
parser.add_argument( parser.add_argument(
"--name", type=str, default="test", help="name of this instance." "--name", type=str, default="test", help="name of this instance."
) )
parser.add_argument( parser.add_argument(
"--model", type=str, required=True, help="path to the ONNX model file." "--model", type=str, default="/data/onnx_models/llama2/llama_bs1_seq1024.onnx",
help="path to the ONNX model file."
) )
parser.add_argument("--batch_size", type=int, default=1, help="batch size.") parser.add_argument("--batch_size", type=int, default=1, help="batch size.")
parser.add_argument("--length", type=int, default=1, help="sequence length.") parser.add_argument("--length", type=int, default=1, help="sequence length.")
parser.add_argument( parser.add_argument(
"--gen_std", "--gen_std",
default=False,
action="store_true", action="store_true",
help="whether to generate the standard results.", help="whether to generate the standard results.",
) )
parser.add_argument(
"--type", type=str, choices=["fp32", "fp16", "tf32"], default="fp32", help="data type"
)
args = parser.parse_args() args = parser.parse_args()
print("arg setting: ", args) print("arg setting: ", args)
return ( return (
@ -44,46 +40,39 @@ def parse_args():
args.batch_size, args.batch_size,
args.length, args.length,
args.gen_std, args.gen_std,
args.type,
) )
def run_model(model, runtime, world_size=1, rank=0, n=10, data_type="default"): def run_model(model, runtime, world_size=1, rank=0, n=10):
stub = OnnxStub(model, runtime, matmul_compute_type=data_type) stub = OnnxStub(model, runtime)
load_inputs(stub, world_size, rank) load_inputs(stub, world_size, rank)
# stub.tune() # stub.tune()
stub.run() stub.run()
# get outputs # get outputs
time.sleep(0.01)
outputs = next(stub.outputs.values().__iter__()).copyout_numpy() outputs = next(stub.outputs.values().__iter__()).copyout_numpy()
# bench # bench
begin = time.time()
for _ in range(n): for _ in range(n):
stub.run() stub.run()
begin = time.time()
for _ in range(n * 2):
stub.run()
end = time.time() end = time.time()
avg_time = (end - begin) / (n * 2) avg_time = (end - begin) / n
print(f"average time: {avg_time}") print(f"average time: {avg_time}")
return outputs return outputs
def load_inputs(stub, world_size=1, rank=0):
for i, (name, tensor) in enumerate(stub.inputs.items()):
input = np.load(f"./data/input_{i}.npy")
if all(x == y for x,y in zip(input.shape,tensor.shape())):
tensor.copyin_numpy(input)
else:
tensor.copyin_numpy(np.hsplit(input, world_size)[rank])
def run_and_compare(name, model, runtime, world_size=1, rank = 0):
def run_and_compare(name, model, runtime, world_size=1, rank=0, data_type="default"):
results = np.load(f"./data/output.npy") results = np.load(f"./data/output.npy")
outputs = run_model(model, runtime, world_size, rank, data_type=data_type) outputs = run_model(model, runtime, world_size, rank)
print("outputs abs mean:", abs(outputs).mean()) print("answer argmax:", np.argmax(results))
print("max abs diff:", abs(outputs - results).max()) print("output argmax:", np.argmax(outputs))
#np.testing.assert_allclose(outputs, results, rtol=1e-3, atol=1e-3)
getDiff(results, outputs)
def start_worker( def start_worker(
name: str, world_size: int, rank: int, local_rank: int, model: onnx.ModelProto, data_type: str name: str, world_size: int, rank: int, local_rank: int, model: onnx.ModelProto
): ):
dist_name = name + "_dist" dist_name = name + "_dist"
model = parallel_model(model, world_size, rank) model = parallel_model(model, world_size, rank)
@ -96,7 +85,7 @@ def start_worker(
save_as_external_data=True, save_as_external_data=True,
location=extern_path, location=extern_path,
) )
#infer_shapes_path(f"./{dist_name}_rank{rank}.onnx") infer_shapes_path(f"./{dist_name}_rank{rank}.onnx")
runtime = backend.BangRuntime(local_rank) runtime = backend.BangRuntime(local_rank)
# print("init comm") # print("init comm")
runtime.init_comm( runtime.init_comm(
@ -104,12 +93,13 @@ def start_worker(
world_size, world_size,
rank, rank,
) )
run_and_compare(name, model, runtime, world_size, rank, data_type) run_and_compare(name, model, runtime, world_size, rank)
def start_single(name, model, data_type): def start_single(name, model):
runtime = backend.BangRuntime(0) runtime = backend.BangRuntime(0)
run_and_compare(name, model, runtime, data_type=data_type) run_and_compare(name, model, runtime)
def generate_input_output(model): def generate_input_output(model):
os.makedirs(os.path.dirname("./data/"), exist_ok=True) os.makedirs(os.path.dirname("./data/"), exist_ok=True)
@ -142,36 +132,55 @@ def generate_input_output(model):
np.save(f"./data/output", output) np.save(f"./data/output", output)
def load_inputs(stub, world_size=1, rank=0):
for i, (name, tensor) in enumerate(stub.inputs.items()):
input = np.load(f"./data/input_{i}.npy")
if all(x == y for x,y in zip(input.shape,tensor.shape())):
tensor.copyin_numpy(input)
else:
tensor.copyin_numpy(np.hsplit(input, world_size)[rank])
def getDiff(base, test):
absolute_diff = np.abs(np.subtract(base, test))
max_absolute_diff = np.max(absolute_diff)
baseCopy = base.astype(np.float64).ravel()
testCopy = test.astype(np.float64).ravel()
upValue = np.sum(np.abs(baseCopy - testCopy))
downValue = np.sum(np.abs(baseCopy)) + np.float64(1e-9)
max_relative_diff = upValue / downValue
print(f"Max absolute difference: {max_absolute_diff}\n"
f"Max relative difference: {max_relative_diff}")
return max_absolute_diff, max_relative_diff
def main(): def main():
nnodes, nproc_per_node, name, model_path, bs, length, gen_std, data_type = parse_args() nnodes, nproc_per_node, name, model_path, bs, length, gen_std = parse_args()
data_type = "default" if data_type == "fp32" else data_type
model = onnx.load(model_path) model = onnx.load(model_path)
# generate standart output # generate standart output
if gen_std: if gen_std:
print(f"generate standard data for {name}.") print("Generate inputs and outputs.")
# a small vocabulary size to fit all LLM. p = mp.Process(target=generate_input_output, args=[model])
generate_input_output(model) p.start()
p.join()
return return
if nproc_per_node == 1:
# run single process. # run single process.
# use standalone process to isolate bang. # use standalone process to isolate cuda.
print("run model by single MLU.") print("run model by single MLU.")
# p = mp.Process(target=start_single, args=(name, model, data_type)) p = mp.Process(target=start_single, args=(name, model))
# p.start() p.start()
# p.join() p.join()
start_single(name, model, data_type)
return
# run distributed parallel. # run distributed parallel.
world_size = nnodes * nproc_per_node world_size = nnodes * nproc_per_node
print(f"run model by {world_size} MLU in parallel.") print(f"run model by {world_size} MLUs in parallel.")
workers = [ workers = [
mp.Process( mp.Process(
target=start_worker, target=start_worker,
args=(name, world_size, rank, rank % nproc_per_node, model, data_type), args=(name, world_size, rank, rank % nproc_per_node, model),
) )
for rank in range(world_size) for rank in range(world_size)
] ]

View File

@ -80,16 +80,18 @@ def start_worker(
name: str, world_size: int, rank: int, local_rank: int, model: onnx.ModelProto, data_type: str name: str, world_size: int, rank: int, local_rank: int, model: onnx.ModelProto, data_type: str
): ):
dist_name = name + "_dist" dist_name = name + "_dist"
model = parallel_model(model, world_size, rank) #model = parallel_model(model, world_size, rank)
extern_path = f"./{dist_name}_rank{rank}.pb" graph = parallel_model(model, world_size, rank)
if os.path.exists(extern_path):
os.remove(extern_path) # extern_path = f"./{dist_name}_rank{rank}.pb"
onnx.save_model( # if os.path.exists(extern_path):
model, # os.remove(extern_path)
f"./{dist_name}_rank{rank}.onnx", # onnx.save_model(
save_as_external_data=True, # model,
location=extern_path, # f"./{dist_name}_rank{rank}.onnx",
) # save_as_external_data=True,
# location=extern_path,
# )
#infer_shapes_path(f"./{dist_name}_rank{rank}.onnx") #infer_shapes_path(f"./{dist_name}_rank{rank}.onnx")
runtime = backend.CudaRuntime(local_rank) runtime = backend.CudaRuntime(local_rank)
# print("init comm") # print("init comm")
@ -98,7 +100,8 @@ def start_worker(
world_size, world_size,
rank, rank,
) )
run_and_compare(name, model, runtime, data_type) #run_and_compare(name, model, runtime, data_type)
run_and_compare(name, graph, runtime, data_type)
def start_single(name, model, data_type): def start_single(name, model, data_type):

View File

@ -1,14 +0,0 @@
export HF_ENDPOINT=https://hf-mirror.com
models=("bert" "gpt2" "llama")
batch_size=(1 32)
seq_len=(100 500)
nproc=(1 2 4)
for model in "${models[@]}"; do
for bs in "${batch_size[@]}"; do
for len in "${seq_len[@]}"; do
python run_pytorch.py --model "$model" --batch_size "$bs" --length "$len" --export_onnx ../models/"$model" --export_only
done
done
done

View File

@ -1,280 +0,0 @@
import sys
sys.path.append('../')
import argparse
import os
import time
import multiprocessing as mp
from pyinfinitensor.onnx import OnnxStub, backend
import onnx
from onnx.external_data_helper import convert_model_to_external_data
from onnx.shape_inference import infer_shapes_path
import numpy as np
from parallel_opt import parallel_model
from functools import wraps
def parse_args():
parser = argparse.ArgumentParser(description="launch distributed infinitensor")
parser.add_argument("--num_nodes", type=int, default=1, help="number of nodes")
parser.add_argument(
"--nproc_per_node", type=int, default=2, help="number of processes per node"
)
parser.add_argument(
"--name", type=str, choices=["gpt2", "bert", "llama"], help="name of model."
)
parser.add_argument(
"--model", type=str, default="", help="path to the ONNX model file."
)
parser.add_argument(
"--gen_std",
default=False,
action="store_true",
help="whether to generate the standard results.",
)
parser.add_argument(
"--run_single",
default=False,
action="store_true",
help="whether run model with single process with standard inputs"
)
parser.add_argument(
"--input_dir",
default="./",
help="path to save model input data"
)
parser.add_argument(
"--result_dir",
default="./",
help="path to save model standard output"
)
parser.add_argument(
"--internal_model_dir",
default="./",
help="path to save internal onnx model for parallel run"
)
args = parser.parse_args()
# check path, mkdir if not exist
check_exists(args.input_dir)
check_exists(args.result_dir)
check_exists(args.internal_model_dir)
print("arg setting: ", args)
return (
args.num_nodes,
args.nproc_per_node,
args.name,
args.model,
args.gen_std,
args.run_single,
args.input_dir,
args.result_dir,
args.internal_model_dir
)
"""
utils function for this scripts
"""
def check_exists(path: str):
if not os.path.exists(path):
os.makedirs(path)
def np_assert(base, test, rtol=1e-2, atol=1e-1):
# np.testing.assert_allclose(test, base, rtol, atol)
print("max abs diff:", abs(base - test).max())
"""
Perf wrapper, run function n times
then average
"""
def perf_it(n):
def decorator(func):
@wraps(func)
def wrapper(*args, **kwargs):
# warmup
for _ in range(n):
func(*args, **kwargs)
t_total = 0
for _ in range(n):
t0 = time.time()
func(*args, **kwargs)
t1 = time.time()
t_total += t1 - t0
avg_time = (t_total) / n
print(f"Avg runtime of {n} time is {avg_time:.6f} seconds")
return avg_time
return wrapper
return decorator
"""
Run InfiniTensor model with Standard input
check=True: check with standard output gen by pytorch
perf=True: run n times to get avg time
"""
def run_model(task_name,
model,
runtime,
world_size=1,
rank=0,
n=10,
check=True,
perf=True):
stub = OnnxStub(model, runtime,
use_naive_allocator=True \
if task_name == "llama" else False)
# load in Onnx model inputs
def load_inputs(stub: OnnxStub):
# check exists
inputs = []
for i, (name, tensor) in enumerate(stub.inputs.items()):
input_path = os.path.join(input_dir, \
f"{task_name}_input_{i}.npy")
print(input_path)
if os.path.exists(input_path):
input = np.load(input_path)
else :
raise KeyError(f"{i} th input of model not exists")
# check shape
if all(x == y for x,y in zip(input.shape, tensor.shape())):
tensor.copyin_numpy(input)
else:
tensor.copyin_numpy(np.hsplit(input, world_size)[rank])
load_inputs(stub)
# stub.tune()
stub.run()
time.sleep(0.01)
output = next(stub.outputs.values().__iter__()).copyout_numpy()
# check output results with standard output
if check:
st_output_path = os.path.join(result_dir, \
f"{task_name}_output.npy")
assert os.path.exists(st_output_path) , \
"standard output not exists"
st_output = np.load(st_output_path)
if np.isnan(output).any():
print("Nan in output")
exit()
np_assert(st_output, output)
# perf
if perf:
@perf_it(n)
def perf_infinitensor(stub: OnnxStub):
stub.run()
perf_infinitensor(stub)
return output
"""
Start a worker in Parallel
"""
def start_worker(name: str,
world_size: int,
rank: int,
local_rank: int,
model: onnx.ModelProto):
dist_name = name + "_dist"
# partial a onnx model to world_size part
model = parallel_model(model, world_size, rank)
onnx.save(model, os.path.join(internal_model_dir, \
f"{dist_name}_rank{rank}.onnx"), save_as_external_data=True)
runtime = backend.KUNLUNRuntime(local_rank)
# print("init comm")
runtime.init_comm(
dist_name,
world_size,
rank,
)
run_model(name, model, runtime, world_size, rank)
"""
generate standard input/output with
sigle card run
"""
def gen_standard(task_name: str, model: onnx.ModelProto):
runtime = backend.KUNLUNRuntime(0)
stub = OnnxStub(model, runtime)
position_id = 0
# generate random input for model
for i, (name, tensor) in enumerate(stub.inputs.items()):
input = tensor.copyout_numpy()
if np.issubdtype(input.dtype, np.integer):
if input.size == 1:
input = np.random.randint(0,2,size=input.shape, dtype=input.dtype)
else:
input = np.random.randint(0,2,size=input.shape, dtype=input.dtype)
elif input.dtype == np.bool_:
input = np.random.randint(0,2,size=input.shape) > 0
else:
if i == 0:
input = np.ones(input.shape).astype(input.dtype)
position_id = input.shape[-1] - 1
else:
input = np.random.rand(*input.shape).astype(input.dtype)
tensor.copyin_numpy(input)
np.save(os.path.join(input_dir, \
f"{task_name}_input_{i}.npy"), input)
stub.run()
# print(stub.outputs)
output = next(stub.outputs.values().__iter__()).copyout_numpy()
if np.isnan(output).any():
print("Nan in output")
exit()
np.save(os.path.join(result_dir, f"{task_name}_output.npy"), output)
def main():
global input_dir, result_dir, internal_model_dir
nnodes, nproc_per_node, task_name, \
model_path, gen_std, run_single, \
input_dir, result_dir, internal_model_dir = parse_args()
# load input onnx model
model = onnx.load(model_path)
# generate standart output
if gen_std:
print("Generate inputs and outputs.")
gen_standard(task_name, model)
return
if run_single:
print("Run model by one GPU card.")
runtime = backend.KUNLUNRuntime(0)
run_model(task_name, model, runtime)
return
# run distributed parallel.
world_size = nnodes * nproc_per_node
print(f"Run model by {world_size} GPU in parallel.")
workers = [
mp.Process(
target=start_worker,
args=(task_name, world_size, rank, rank % nproc_per_node, model),
)
for rank in range(world_size)
]
for w in workers:
w.start()
for w in workers:
w.join()
if __name__ == "__main__":
main()

View File

@ -1,36 +0,0 @@
export HF_ENDPOINT=https://hf-mirror.com
# models=("bert" "gpt2" "llama")
models=("bert" "gpt2")
batch_size=(1 32)
seq_len=(100 500)
nproc=(1 2 4)
results_dir="results"
if [ -d "$results_dir" ]; then
echo "directory ./$results_dir exists"
else
mkdir -p "$results_dir"
echo "mkdir $results_dir, logs saved there"
fi
for model in "${models[@]}"; do
for bs in "${batch_size[@]}"; do
for len in "${seq_len[@]}"; do
# run pytorch model
echo "Run pytorch $model with batch_size=$bs length=$len ."
python run_pytorch.py --model "$model" --batch_size "$bs" --length "$len" #> results/"$model"_"$bs"_"$len"_pytorch
for n in "${nproc[@]}"; do
# run infinitensor
echo "Run $n parallel infinitensor "$model" with batch_size=$bs and length=$len ."
python kunlun_launch.py --name "$model" --model ../models/"$model"/"$model"_"$bs"_"$len".onnx --nproc_per_node=$n # >> results/"$model"_"$bs"_"$len"_infini
# delete internal files
find ./ -type f -name "*.onnx" -delete
find ./ -type f -name "*.pb" -delete
done
find ./ -type f -name "*.npy" -delete
done
done
done

View File

@ -1,35 +0,0 @@
export HF_ENDPOINT=https://hf-mirror.com
# models=("bert" "gpt2" "llama")
models=("llama")
batch_size=(1 )
seq_len=(100 500)
nproc=(1 2 4)
results_dir="results"
if [ -d "$results_dir" ]; then
echo "directory ./$results_dir exists"
else
mkdir -p "$results_dir"
echo "mkdir $results_dir, logs saved there"
fi
for model in "${models[@]}"; do
for bs in "${batch_size[@]}"; do
for len in "${seq_len[@]}"; do
echo "Run pytorch llama with batch_size="$bs" and length="$len""
python run_pytorch.py --model "$model" --batch_size "$bs" --length "$len"
for n in "${nproc[@]}"; do
# run pytorch model
echo "Run infinitensor llama with batch_size="$bs" and length="$len" and nproc="$n"."
python kunlun_launch.py --name llama --model ../models/llama/llama_"$bs"_"$len"_fp32.onnx --nproc_per_node=$n
# delete internal files
find ./ -type f -name "*.onnx" -delete
find ./ -type f -name "*0c" -delete
done
find ./ -type f -name "*.npy" -delete
done
done
done

View File

@ -1,245 +0,0 @@
import argparse
import torch
from transformers import BertModel, BertConfig
from transformers import GPT2Model, GPT2Config
from transformers import OPTModel, OPTConfig
from transformers import LlamaModel, LlamaConfig
import time
import numpy as np
import onnx
import os
import sys
from onnx.external_data_helper import convert_model_to_external_data
from onnxsim import simplify
torch.backends.cuda.matmul.allow_tf32 = False
torch.backends.cudnn.allow_tf32 = False
def parse_args():
parser = argparse.ArgumentParser(description="Run pytorch gpt2/bert/opt and optionally export onnx.")
parser.add_argument(
"--model", type=str, choices=["gpt2", "bert", "opt", "llama"], required=True, help="model type"
)
parser.add_argument("--batch_size", type=int, default=1, help="batch size.")
parser.add_argument("--length", type=int, default=1, help="sequence length.")
parser.add_argument(
"--export_onnx",
type=str,
nargs="?",
default=None,
const="./",
help="whether and where to export onnx file",
)
parser.add_argument(
"--input_dir",
type=str,
default="./",
help="path to save pytorch model input data"
)
parser.add_argument(
"--result_dir",
type=str,
default="./",
help="path to save pytorch model output data"
)
parser.add_argument(
"--export_only",
action="store_true"
)
args = parser.parse_args()
print("arg setting: ", args)
return (
args.model,
args.batch_size,
args.length,
args.export_onnx,
args.input_dir,
args.result_dir,
args.export_only
)
def get_model(modelname):
if modelname == "bert":
model = BertModel.from_pretrained("bert-base-uncased", add_pooling_layer=False, hidden_act="gelu_new") # erf is not impl by infini
voc_size = BertConfig().vocab_size
elif modelname == "gpt2":
model = GPT2Model.from_pretrained("gpt2")
voc_size = GPT2Config().vocab_size
elif modelname == "opt":
model = OPTModel.from_pretrained("./opt-125m")
voc_size = OPTConfig().vocab_size
elif modelname == "llama":
model = LlamaModel.from_pretrained("meta-llama/Llama-2-7b-hf")
voc_size = LlamaConfig().vocab_size
else :
raise KeyError(modelname)
model = model.eval()
return model, voc_size
def run_pytorch(torch_model, voc_size, batchsize, len, model_name):
data = np.random.randint(0, voc_size, (batchsize, len), dtype=np.int32)
np.save(os.path.join(input_dir, f"{model_name}_input_0.npy"), data)
inputs = torch.from_numpy(data).to("cuda")
torch_model = torch_model.to("cuda")
n_iter = 10
with torch.no_grad():
for _ in range(10):
outputs = torch_model(inputs)
torch.cuda.synchronize()
begin = time.time()
with torch.no_grad():
for _ in range(n_iter):
torch.cuda.synchronize()
outputs = torch_model(inputs)
#
torch.cuda.synchronize()
torch.cuda.synchronize()
end = time.time()
avg_time = (end - begin) / n_iter
outputs = outputs.last_hidden_state.to("cpu")
print("outputs abs mean:", abs(np.array(outputs)).mean())
print(f"average time: {avg_time}")
torch.cuda.memory.empty_cache()
np.save(os.path.join(result_dir, f"{model_name}_output.npy"), \
np.array(outputs))
print(f"Save input & output as {model_name}_input_0.npy and {model_name}_output.npy")
def export_onnx(model_name, model, data, path, extern=False):
# torch.onnx.export(model, data, path, verbose=False, do_constant_folding=True)
if model_name != "llama":
onnx_model = onnx.load(path)
onnx_model, check = simplify(onnx_model,
skipped_optimizers=['fuse_qkv', 'eliminate_duplicate_initializer'])
# skipped_optimizers=['fuse_qkv'])
assert check
add_value_info_for_constants(onnx_model)
onnx_model = onnx.shape_inference.infer_shapes(onnx_model)
if extern:
extern_path = path.replace('.onnx', '.pb')
if os.path.exists(extern_path):
os.remove(extern_path)
convert_model_to_external_data(
onnx_model,
all_tensors_to_one_file=True,
location=extern_path.split("/")[-1],
size_threshold=1024,
convert_attribute=False,
)
onnx.save(onnx_model, path)
else:
sys.path.append("onnxsim_large_model")
from onnx_utils import set_onnx_input_shape
from compress_model import SIZE_1MB, compress_onnx_model, uncompress_onnx_model
in_model_path = path
out_model_path = in_model_path[:-5] + ".sim.onnx"
onnx_model = onnx.load(in_model_path)
print(f"load model from {in_model_path} success")
size_th_bytes = 1024 * 1024
onnx_model, removed_inits = compress_onnx_model(onnx_model, size_th_bytes=size_th_bytes)
print("compress model success")
onnx_model = set_onnx_input_shape(onnx_model, "")
tensor_size_threshold = f"1024KB"
skipped_optimizers = []
skipped_optimizers.append("eliminate_duplicate_initializer")
onnx_model, check = simplify(onnx_model, skipped_optimizers=skipped_optimizers,
tensor_size_threshold=tensor_size_threshold)
if not check:
raise ValueError(f"simplify compressed model {in_model_path} failed")
print(f"simplify model success")
onnx_model = uncompress_onnx_model(onnx_model, removed_inits)
print(f"uncompress model success")
add_value_info_for_constants(onnx_model)
onnx.save(onnx_model, out_model_path, save_as_external_data=True)
def add_value_info_for_constants(model : onnx.ModelProto):
"""
Currently onnx.shape_inference doesn't use the shape of initializers, so add
that info explicitly as ValueInfoProtos.
Mutates the model.
Args:
model: The ModelProto to update.
"""
# All (top-level) constants will have ValueInfos before IRv4 as they are all inputs
if model.ir_version < 4:
return
def add_const_value_infos_to_graph(graph : onnx.GraphProto):
inputs = {i.name for i in graph.input}
existing_info = {vi.name: vi for vi in graph.value_info}
for init in graph.initializer:
# Check it really is a constant, not an input
if init.name in inputs:
continue
# The details we want to add
elem_type = init.data_type
shape = init.dims
# Get existing or create new value info for this constant
vi = existing_info.get(init.name)
if vi is None:
vi = graph.value_info.add()
vi.name = init.name
# Even though it would be weird, we will not overwrite info even if it doesn't match
tt = vi.type.tensor_type
if tt.elem_type == onnx.TensorProto.UNDEFINED:
tt.elem_type = elem_type
if not tt.HasField("shape"):
# Ensure we set an empty list if the const is scalar (zero dims)
tt.shape.dim.extend([])
for dim in shape:
tt.shape.dim.add().dim_value = dim
# Handle subgraphs
for node in graph.node:
for attr in node.attribute:
# Ref attrs refer to other attrs, so we don't need to do anything
if attr.ref_attr_name != "":
continue
if attr.type == onnx.AttributeProto.GRAPH:
add_const_value_infos_to_graph(attr.g)
if attr.type == onnx.AttributeProto.GRAPHS:
for g in attr.graphs:
add_const_value_infos_to_graph(g)
return add_const_value_infos_to_graph(model.graph)
def main():
global input_dir, result_dir
modelname, batchsize, seqlen, \
export_path, input_dir, result_dir, export_only = parse_args()
model, voc_size = get_model(modelname) # pytorch model
if export_path is not None:
os.makedirs(export_path, exist_ok=True)
filename = "{}_{}_{}.onnx".format(modelname, batchsize, seqlen)
path = os.path.join(export_path, filename)
param = torch.zeros((batchsize, seqlen), dtype=torch.int)
export_onnx(modelname, model, param, path, True) # export pytorch model to onnx model
if export_only:
return
run_pytorch(model, voc_size, batchsize, seqlen, modelname)
if __name__ == "__main__":
main()

View File

@ -0,0 +1,213 @@
import argparse
import os
import time
import multiprocessing as mp
from pyinfinitensor.onnx import OnnxStub, backend
import onnx
from onnx.external_data_helper import convert_model_to_external_data
from onnx.shape_inference import infer_shapes_path
import numpy as np
from parallel_opt import parallel_model
st_input_dir = "standard/inputs/"
st_output_dir = "standard/outputs/"
def parse_args():
parser = argparse.ArgumentParser(description="launch distributed infinitensor")
parser.add_argument("--num_nodes", type=int, default=1, help="number of nodes")
parser.add_argument(
"--nproc_per_node", type=int, default=2, help="number of processes per node"
)
parser.add_argument(
"--name", type=str, default="test", help="name of this instance."
)
parser.add_argument(
"--model", type=str, default="/data1/shared/panzezhong/llama/fp32/my_llama_fp32.sim.onnx", help="path to the ONNX model file."
)
parser.add_argument("--batch_size", type=int, default=1, help="batch size.")
parser.add_argument("--length", type=int, default=1, help="sequence length.")
parser.add_argument(
"--gen_std",
default=False,
action="store_true",
help="whether to generate the standard results.",
)
parser.add_argument(
"--run_single",
default=False,
action="store_true",
help="whether run model with single process with standard inputs"
)
args = parser.parse_args()
print("arg setting: ", args)
return (
args.num_nodes,
args.nproc_per_node,
args.name,
args.model,
args.batch_size,
args.length,
args.gen_std,
args.run_single
)
def run_model(model, runtime, world_size=1, rank=0, n=10):
stub = OnnxStub(model, runtime)
load_inputs(stub, world_size, rank)
# stub.tune()
stub.run()
# get outputs
time.sleep(0.01)
outputs = next(stub.outputs.values().__iter__()).copyout_numpy()
# bench
begin = time.time()
for _ in range(n):
stub.run()
end = time.time()
avg_time = (end - begin) / n
print(f"average time: {avg_time}")
return outputs
def run_and_compare(name, model, runtime, world_size=1, rank = 0):
results = np.load(os.path.join(st_output_dir,f"output.npy"))
outputs = run_model(model, runtime, world_size, rank)
print(outputs[:100])
if np.isnan(outputs).any():
print("Nan in output")
print("answer argmax:", np.argmax(results))
print("output argmax:", np.argmax(outputs))
#np.testing.assert_allclose(outputs, results, rtol=1e-3, atol=1e-3)
getDiff(results, outputs)
def start_worker(
name: str, world_size: int, rank: int, local_rank: int, model: onnx.ModelProto
):
dist_name = name + "_dist"
model = parallel_model(model, world_size, rank)
extern_path = f"./{dist_name}_rank{rank}.pb"
if os.path.exists(extern_path):
os.remove(extern_path)
onnx.save_model(
model,
f"./{dist_name}_rank{rank}.onnx",
save_as_external_data=True,
location=extern_path,
)
infer_shapes_path(f"./{dist_name}_rank{rank}.onnx")
runtime = backend.KUNLUNRuntime(local_rank)
# print("init comm")
runtime.init_comm(
dist_name,
world_size,
rank,
)
run_and_compare(name, model, runtime, world_size, rank)
def start_single(name, model):
runtime = backend.KUNLUNRuntime(0)
run_and_compare(name, model, runtime)
def generate_input_output(model):
runtime = backend.KUNLUNRuntime(0)
stub = OnnxStub(model, runtime)
position_id = 0
for i, (name, tensor) in enumerate(stub.inputs.items()):
input = tensor.copyout_numpy()
if np.issubdtype(input.dtype, np.integer):
if input.size == 1:
# input = np.array([position_id])
input = np.random.randint(0,2,size=input.shape, dtype=input.dtype)
else:
input = np.random.randint(0,2,size=input.shape, dtype=input.dtype)
elif input.dtype == np.bool_:
input = np.random.randint(0,2,size=input.shape) > 0
else:
if i == 0:
input = np.ones(input.shape).astype(input.dtype)
position_id = input.shape[-1] - 1
else:
input = np.random.rand(*input.shape).astype(input.dtype)
tensor.copyin_numpy(input)
np.save(os.path.join(st_input_dir, f"input_{i}"), input)
stub.run()
# print(stub.outputs)
time.sleep(0.01)
output = next(stub.outputs.values().__iter__()).copyout_numpy()
print(output[:100])
if np.isnan(output).any():
print("Nan in output")
np.save(os.path.join(st_output_dir, f"output"), output)
def load_inputs(stub, world_size=1, rank=0):
for i, (name, tensor) in enumerate(stub.inputs.items()):
input = np.load(os.path.join(st_input_dir, f"input_{i}.npy"))
if all(x == y for x,y in zip(input.shape,tensor.shape())):
tensor.copyin_numpy(input)
else:
tensor.copyin_numpy(np.hsplit(input, world_size)[rank])
def getDiff(base, test):
absolute_diff = np.abs(np.subtract(base, test))
max_absolute_diff = np.max(absolute_diff)
baseCopy = base.astype(np.float64).ravel()
testCopy = test.astype(np.float64).ravel()
upValue = np.sum(np.abs(baseCopy - testCopy))
downValue = np.sum(np.abs(baseCopy)) + np.float64(1e-9)
max_relative_diff = upValue / downValue
print(f"Max absolute difference: {max_absolute_diff}\nMax relative difference: {max_relative_diff}")
return max_absolute_diff, max_relative_diff
def main():
nnodes, nproc_per_node, name, model_path, bs, length, gen_std, run_single = parse_args()
model = onnx.load(model_path)
# generate standart output
if gen_std:
print("Generate inputs and outputs.")
p = mp.Process(target=generate_input_output, args=[model])
p.start()
p.join()
return
# # run single process.
# # use standalone process to isolate cuda.
if run_single:
print("run model by single GPU.")
p = mp.Process(target=start_single, args=(name, model))
p.start()
p.join()
return
# run distributed parallel.
world_size = nnodes * nproc_per_node
print(f"run model by {world_size} GPU in parallel.")
workers = [
mp.Process(
target=start_worker,
args=(name, world_size, rank, rank % nproc_per_node, model),
)
for rank in range(world_size)
]
for w in workers:
w.start()
for w in workers:
w.join()
if __name__ == "__main__":
main()

@ -1 +0,0 @@
Subproject commit cbcf3fbf985a00494b0f136c92eaccd42031bf65

View File

@ -110,6 +110,7 @@ def parallel_model(model: ModelProto, tp_world_size: int = 1, tp_rank: int = 0):
s_dim = 0 s_dim = 0
elif in_plc.dim == 2: elif in_plc.dim == 2:
s_dim = 1 s_dim = 1
assert s_dim != -1 assert s_dim != -1
assert out_dims[s_dim] % tp_world_size == 0, out_dims assert out_dims[s_dim] % tp_world_size == 0, out_dims
out_dims[s_dim] //= tp_world_size out_dims[s_dim] //= tp_world_size
@ -242,6 +243,7 @@ def parallel_model(model: ModelProto, tp_world_size: int = 1, tp_rank: int = 0):
tt = output.type.tensor_type tt = output.type.tensor_type
if tt.HasField("shape"): if tt.HasField("shape"):
tt.ClearField("shape") tt.ClearField("shape")
model = helper.make_model(graph) #model = helper.make_model(graph)
#model = onnx.shape_inference.infer_shapes(model) #model = onnx.shape_inference.infer_shapes(model)
return model #return model
return graph

View File

@ -57,7 +57,7 @@ def get_model(modelname):
return model, voc_size return model, voc_size
def run_pytorch(torch_model, voc_size, batchsize, len): def run_pytorch(torch_model, voc_size, batchsize, len):
data = np.random.randint(0, voc_size, (batchsize, len), dtype=np.int32) data = np.random.randint(0, voc_size, (batchsize, len), dtype=np.int64)
np.save("test_inputs", data) np.save("test_inputs", data)
inputs = torch.from_numpy(data).to("cuda") inputs = torch.from_numpy(data).to("cuda")
torch_model = torch_model.to("cuda") torch_model = torch_model.to("cuda")
@ -177,7 +177,7 @@ def main():
if export_path is not None: if export_path is not None:
filename = "{}_{}_{}.onnx".format(modelname, batchsize, seqlen) filename = "{}_{}_{}.onnx".format(modelname, batchsize, seqlen)
path = os.path.join(export_path, filename) path = os.path.join(export_path, filename)
param = torch.zeros((batchsize, seqlen), dtype=torch.int) param = torch.zeros((batchsize, seqlen), dtype=torch.int64)
export_onnx(model, param, path, True) export_onnx(model, param, path, True)
if data_type == "fp16": if data_type == "fp16":

View File

@ -21,7 +21,7 @@ class KUNLUNRuntimeObj : public RuntimeObj {
ctx = xdnn::create_context(); ctx = xdnn::create_context();
// 10GB for Longformer // 10GB for Longformer
// size_t longformerNum = 3lu * (1 << 30); // size_t longformerNum = 3lu * (1 << 30);
size_t workspaceSize = 2llu << 30; // 2 GB size_t workspaceSize = 3llu << 30; // 3 GB
KUNLUNPtr wkspacePtr = alloc(workspaceSize); KUNLUNPtr wkspacePtr = alloc(workspaceSize);
workspace = workspace =
make_ref<WorkspaceObj<KUNLUNPtr>>(wkspacePtr, workspaceSize); make_ref<WorkspaceObj<KUNLUNPtr>>(wkspacePtr, workspaceSize);
@ -42,7 +42,7 @@ class KUNLUNRuntimeObj : public RuntimeObj {
KUNLUNPtr alloc(size_t size) override { KUNLUNPtr alloc(size_t size) override {
void *ptr; void *ptr;
checkKUNLUNError( checkKUNLUNError(
xpu_malloc((void **)&ptr, size, XPUMemoryKind::XPU_MEM_HBM)); xpu_malloc_ex((void **)&ptr, size, XPUMemoryKind::XPU_MEM_MAIN));
return ptr; return ptr;
} }
void dealloc(void *ptr) override { xpu_free(ptr); } void dealloc(void *ptr) override { xpu_free(ptr); }

View File

@ -34,8 +34,8 @@ class XcclCommunicatorObj final : public CommunicatorObj {
auto begin = std::chrono::steady_clock::now(); auto begin = std::chrono::steady_clock::now();
while (!std::filesystem::exists(filePath)) { while (!std::filesystem::exists(filePath)) {
auto now = std::chrono::steady_clock::now(); auto now = std::chrono::steady_clock::now();
_IT_ASSERT_2(now < begin + std::chrono::seconds(100), _IT_ASSERT_2(now < begin + std::chrono::seconds(10),
"time limit (100s) exceeded."); "time limit (10s) exceeded.");
std::this_thread::sleep_for(std::chrono::milliseconds(100)); std::this_thread::sleep_for(std::chrono::milliseconds(100));
} }
std::ifstream ifs(filePath, std::ios::binary); std::ifstream ifs(filePath, std::ios::binary);

View File

@ -6,6 +6,7 @@ from onnx import (
AttributeProto, AttributeProto,
TensorShapeProto, TensorShapeProto,
ValueInfoProto, ValueInfoProto,
GraphProto,
) )
from onnx.helper import ( from onnx.helper import (
make_node, make_node,
@ -40,11 +41,12 @@ class OnnxStub:
def __init__( def __init__(
self, self,
model: ModelProto, model: ModelProto | GraphProto,
runtime, runtime,
use_naive_allocator: bool = False, use_naive_allocator: bool = False,
matmul_compute_type: str = "default", matmul_compute_type: str = "default",
): ):
if isinstance(model, ModelProto):
# We use some user-defined operators for distributed inference # We use some user-defined operators for distributed inference
try: try:
# onnx simplifier performs inplace simplify # onnx simplifier performs inplace simplify
@ -55,7 +57,11 @@ class OnnxStub:
pass pass
except RuntimeError: except RuntimeError:
pass pass
graph = model.graph
elif isinstance(model, GraphProto):
graph = model
else:
raise RuntimeError("Expect onnx ModelProto or GraphProto as input.")
self.inputs: Dict[str, backend.Tensor] = {} self.inputs: Dict[str, backend.Tensor] = {}
self.outputs: Dict[str, backend.Tensor] = {} self.outputs: Dict[str, backend.Tensor] = {}
self.tensors: Dict[str, backend.Tensor] = {} self.tensors: Dict[str, backend.Tensor] = {}
@ -67,10 +73,12 @@ class OnnxStub:
# except: # except:
# warnings.warn("infer_shapes failed.") # warnings.warn("infer_shapes failed.")
self.handler = backend.GraphHandler(runtime) self.handler = backend.GraphHandler(runtime)
self.init_graph(graph, matmul_compute_type)
def init_graph(self, graph: GraphProto, matmul_compute_type: str):
# 处理重名和匿名算子 # 处理重名和匿名算子
names = {} names = {}
for node in model.graph.node: for node in graph.node:
if node.name == "": if node.name == "":
node.name = "missing_name(" + node.op_type + ")" node.name = "missing_name(" + node.op_type + ")"
if node.name in names: if node.name in names:
@ -80,11 +88,11 @@ class OnnxStub:
names[node.name] = 0 names[node.name] = 0
# 拓扑排序 # 拓扑排序
sorted_nodes = [] sorted_nodes = []
known_edge = set(t.name for t in model.graph.input) known_edge = set(t.name for t in graph.input)
known_edge.update(t.name for t in model.graph.initializer) known_edge.update(t.name for t in graph.initializer)
while len(sorted_nodes) < len(model.graph.node): while len(sorted_nodes) < len(graph.node):
updated = False updated = False
for i, node in enumerate(model.graph.node): for i, node in enumerate(graph.node):
if all(t in known_edge for t in node.input): if all(t in known_edge for t in node.input):
node.name = str(len(sorted_nodes)) + "_" + node.name node.name = str(len(sorted_nodes)) + "_" + node.name
sorted_nodes.append(i) sorted_nodes.append(i)
@ -98,13 +106,13 @@ class OnnxStub:
tensors: Dict[str, backend.Tensor] = dict() tensors: Dict[str, backend.Tensor] = dict()
data: Dict[str, TensorProto] = dict() data: Dict[str, TensorProto] = dict()
for initializer in model.graph.initializer: for initializer in graph.initializer:
dims = [d for d in initializer.dims] dims = [d for d in initializer.dims]
tensors[initializer.name] = self.handler.tensor(dims, initializer.data_type) tensors[initializer.name] = self.handler.tensor(dims, initializer.data_type)
data[initializer.name] = initializer data[initializer.name] = initializer
tensors[initializer.name].set_weight() tensors[initializer.name].set_weight()
for input in model.graph.input: for input in graph.input:
dims = _take_shape_dim(input.type.tensor_type.shape) dims = _take_shape_dim(input.type.tensor_type.shape)
if input.name not in tensors.keys(): if input.name not in tensors.keys():
tensors[input.name] = self.handler.tensor( tensors[input.name] = self.handler.tensor(
@ -114,7 +122,7 @@ class OnnxStub:
for node_idx in sorted_nodes: for node_idx in sorted_nodes:
node = model.graph.node[node_idx] node = graph.node[node_idx]
if node.op_type == "Conv": if node.op_type == "Conv":
attributes = _parse_attribute( attributes = _parse_attribute(
node, node,
@ -967,7 +975,7 @@ class OnnxStub:
tensors[node.input[0]], tensors[node.input[0]],
tensors.get(node.output[0]), tensors.get(node.output[0]),
) )
elif node.op_type in ["Constant", "ConstantOfShape"]: elif node.op_type == "Constant":
output_name = node.output[0] output_name = node.output[0]
attributes = _parse_attribute(node) attributes = _parse_attribute(node)
tensor = attributes["value"] tensor = attributes["value"]
@ -994,7 +1002,7 @@ class OnnxStub:
else: else:
raise Exception('Unsupported operator "{}"'.format(node.op_type)) raise Exception('Unsupported operator "{}"'.format(node.op_type))
for output in model.graph.output: for output in graph.output:
tensors[output.name].set_output() tensors[output.name].set_output()
################################ ################################
# Allocate memory space for data # Allocate memory space for data
@ -1007,7 +1015,7 @@ class OnnxStub:
for name, obj in tensors.items(): for name, obj in tensors.items():
tensor = data.get(name) tensor = data.get(name)
if tensor == None: if tensor == None:
if any(input.name == name for input in model.graph.input): if any(input.name == name for input in graph.input):
self.inputs[name] = obj self.inputs[name] = obj
else: else:
self.initializer[obj.fuid()] = tensor self.initializer[obj.fuid()] = tensor
@ -1033,7 +1041,7 @@ class OnnxStub:
for name, obj in tensors.items(): for name, obj in tensors.items():
self.tensors[name] = obj self.tensors[name] = obj
for output in model.graph.output: for output in graph.output:
self.outputs[output.name] = tensors[output.name] self.outputs[output.name] = tensors[output.name]
def to_onnx(self, name: str) -> ModelProto: def to_onnx(self, name: str) -> ModelProto:

View File

@ -199,24 +199,6 @@ class CastCnnl : public BangKernelWithoutConfig {
dim.data())); dim.data()));
NlCastType = CNNL_CAST_UINT32_TO_INT64; NlCastType = CNNL_CAST_UINT32_TO_INT64;
break; break;
case CastType::Float162Float:
checkCnnlError(cnnlSetTensorDescriptor(aDesc, CNNL_LAYOUT_NCHW,
CNNL_DTYPE_HALF, dim.size(),
dim.data()));
checkCnnlError(cnnlSetTensorDescriptor(cDesc, CNNL_LAYOUT_NCHW,
CNNL_DTYPE_FLOAT, dim.size(),
dim.data()));
NlCastType = CNNL_CAST_HALF_TO_FLOAT;
break;
case CastType::Float2Float16:
checkCnnlError(cnnlSetTensorDescriptor(aDesc, CNNL_LAYOUT_NCHW,
CNNL_DTYPE_FLOAT, dim.size(),
dim.data()));
checkCnnlError(cnnlSetTensorDescriptor(cDesc, CNNL_LAYOUT_NCHW,
CNNL_DTYPE_HALF, dim.size(),
dim.data()));
NlCastType = CNNL_CAST_FLOAT_TO_HALF;
break;
default: default:
IT_TODO_HALT(); IT_TODO_HALT();
} }

View File

@ -19,16 +19,14 @@ class LayerNormCnnl : public BangKernelWithoutConfig {
void *const outputData = (op->getOutput()->getRawDataPtr<void *>()); void *const outputData = (op->getOutput()->getRawDataPtr<void *>());
auto inDims = op->getInputs(0)->getDims(); auto inDims = op->getInputs(0)->getDims();
auto fiterDims = op->getInputs(1)->getDims();
auto outDims = op->getOutput()->getDims(); auto outDims = op->getOutput()->getDims();
auto fiterDims = op->getOutput(1)->getDims();
float eps = op->getEps(); float eps = op->getEps();
const int axis = op->getAxis(); const int axis = op->getAxis();
Shape outMeanDims(outDims); cnnlTensorDescriptor_t inDesc, fiterDesc, outDesc;
outMeanDims.erase(outMeanDims.begin() + axis);
cnnlTensorDescriptor_t inDesc, fiterDesc, outDesc, outMeanDesc;
checkCnnlError(cnnlCreateTensorDescriptor(&inDesc)); checkCnnlError(cnnlCreateTensorDescriptor(&inDesc));
checkCnnlError(cnnlSetTensorDescriptor( checkCnnlError(cnnlSetTensorDescriptor(
inDesc, CNNL_LAYOUT_ARRAY, cnnlDataTypeConvert(op->getDType()), inDesc, CNNL_LAYOUT_ARRAY, cnnlDataTypeConvert(op->getDType()),
@ -41,23 +39,15 @@ class LayerNormCnnl : public BangKernelWithoutConfig {
checkCnnlError(cnnlSetTensorDescriptor( checkCnnlError(cnnlSetTensorDescriptor(
outDesc, CNNL_LAYOUT_ARRAY, cnnlDataTypeConvert(op->getDType()), outDesc, CNNL_LAYOUT_ARRAY, cnnlDataTypeConvert(op->getDType()),
outDims.size(), outDims.data())); outDims.size(), outDims.data()));
checkCnnlError(cnnlCreateTensorDescriptor(&outMeanDesc));
checkCnnlError(cnnlSetTensorDescriptor(
outMeanDesc, CNNL_LAYOUT_ARRAY, cnnlDataTypeConvert(op->getDType()),
outMeanDims.size(), outMeanDims.data()));
size_t wsSize; size_t wsSize;
cnnlGetLayerNormOpWorkspaceSize(context->cnnlHandle(), axis, inDesc, cnnlGetLayerNormOpWorkspaceSize(context->cnnlHandle(), axis, inDesc,
&wsSize); &wsSize);
BangPtr wsData = context->getWorkspace(wsSize); BangPtr wsData = context->getWorkspace(wsSize);
size_t meanSize =
cnnlGetTensorElementNum(outMeanDesc) * op->getDType().getSize();
BangPtr meanData = context->getWorkspace(meanSize);
BangPtr rstdData = context->getWorkspace(meanSize);
cnnlStatus_t stat = cnnlLayerNormForward( cnnlStatus_t stat = cnnlLayerNormForward(
context->cnnlHandle(), inDesc, inputData, axis, fiterDesc, context->cnnlHandle(), inDesc, inputData, axis, fiterDesc,
scaleData, biasData, eps, wsData, wsSize, outDesc, outputData, scaleData, biasData, eps, wsData, wsSize, outDesc, outputData,
outMeanDesc, meanData, rstdData); inDesc, NULL, NULL);
if (stat != CNNL_STATUS_SUCCESS) if (stat != CNNL_STATUS_SUCCESS)
return; return;

View File

@ -66,13 +66,6 @@ class MatmulCnnl : public BangKernelWithoutConfig {
cnnlSetMatMulDescAttr(bmm_desc, CNNL_MATMUL_DESC_TRANSB, &transB, cnnlSetMatMulDescAttr(bmm_desc, CNNL_MATMUL_DESC_TRANSB, &transB,
sizeof(int32_t)); sizeof(int32_t));
std::string computeTypeStr = op->getComputeType();
if (computeTypeStr == "tf32") {
int32_t tf32 = 1;
cnnlSetMatMulDescAttr(bmm_desc, CNNL_MATMUL_ALLOW_TF32, &tf32,
sizeof(int32_t));
}
cnnlMatMulAlgo_t bmm_algo; cnnlMatMulAlgo_t bmm_algo;
cnnlMatMulAlgoCreate(&bmm_algo); cnnlMatMulAlgoCreate(&bmm_algo);

View File

@ -97,14 +97,11 @@ class DivXdnn : public KUNLUNKernelWithoutConfig {
auto aDim = op->getInputs(0)->getDims(); auto aDim = op->getInputs(0)->getDims();
auto bSize = op->getInputs(1)->size(); auto bSize = op->getInputs(1)->size();
auto bDim = op->getInputs(1)->getDims(); auto bDim = op->getInputs(1)->getDims();
auto dtype = op->getDType();
// op input a, b is scalar while aDim and b Dim is empty
if (bDim.size() == 0) { if (bDim.size() == 0) {
bDim.push_back(1); bDim.push_back(1);
} }
if (aDim.size() == 0) {
aDim.push_back(1);
}
if (aSize == bSize) { if (aSize == bSize) {
// Do ElementWise Sub with no broadcast // Do ElementWise Sub with no broadcast
@ -112,9 +109,23 @@ class DivXdnn : public KUNLUNKernelWithoutConfig {
(float *)aData, (float *)bData, (float *)aData, (float *)bData,
(float *)cData, aSize)); (float *)cData, aSize));
} else { } else {
// Do broadcast div
Shape aligned = infer_broadcast(aDim, bDim);
if (aligned == aDim) {
// BData need to be broadcasted
checkKUNLUNError(xdnn::broadcast_div<float>( checkKUNLUNError(xdnn::broadcast_div<float>(
context->KUNLUNHandle(), (float *)aData, (float *)bData, context->KUNLUNHandle(), (float *)aData, (float *)bData,
(float *)cData, aDim, bDim)); (float *)cData, aDim, bDim));
} else {
// Use workspace to broadcast aData
KUNLUNPtr wks = context->getWorkspace(bSize * dtype.getSize());
checkKUNLUNError(xdnn::broadcast<float>(
context->KUNLUNHandle(), (float *)aData, (float *)wks, aDim,
bDim));
checkKUNLUNError(xdnn::div<float>(context->KUNLUNHandle(),
(float *)wks, (float *)bData,
(float *)cData, bSize));
}
} }
return; return;
} }

View File

@ -570,7 +570,6 @@ REGISTER_KERNEL(Device::KUNLUN, OpType::Reciprocal, ReciprocalXdnn,
REGISTER_KERNEL(Device::KUNLUN, OpType::Reshape, CopyXdnn, "Reshape_xdnn"); REGISTER_KERNEL(Device::KUNLUN, OpType::Reshape, CopyXdnn, "Reshape_xdnn");
REGISTER_KERNEL(Device::KUNLUN, OpType::Flatten, CopyXdnn, "Flatten_xdnn"); REGISTER_KERNEL(Device::KUNLUN, OpType::Flatten, CopyXdnn, "Flatten_xdnn");
REGISTER_KERNEL(Device::KUNLUN, OpType::Identity, CopyXdnn, "Identity_xdnn"); REGISTER_KERNEL(Device::KUNLUN, OpType::Identity, CopyXdnn, "Identity_xdnn");
REGISTER_KERNEL(Device::KUNLUN, OpType::Squeeze, CopyXdnn, "Squeeze_xdnn");
REGISTER_KERNEL(Device::KUNLUN, OpType::Abs, AbsXdnn, "Abs_xdnn"); REGISTER_KERNEL(Device::KUNLUN, OpType::Abs, AbsXdnn, "Abs_xdnn");
REGISTER_KERNEL(Device::KUNLUN, OpType::Atan, ATanXdnn, "Atan_xdnn"); REGISTER_KERNEL(Device::KUNLUN, OpType::Atan, ATanXdnn, "Atan_xdnn");
REGISTER_KERNEL(Device::KUNLUN, OpType::Log, LogXdnn, "Log_xdnn"); REGISTER_KERNEL(Device::KUNLUN, OpType::Log, LogXdnn, "Log_xdnn");