InfiniTensor/examples/python/resnet_inference.py

25 lines
831 B
Python

import sys
import onnx
import torch
import numpy as np
from pyinfinitensor.onnx import OnnxStub, backend
import torchvision.models as models
if __name__ == '__main__':
model_path = './resnet18.onnx'
tv_model = models.resnet50(weights=None)
input_shape = (1, 3, 224, 224)
param = torch.rand(input_shape)
torch.onnx.export(tv_model, param, model_path, verbose=False)
onnx_model = onnx.load(model_path)
model = OnnxStub(onnx_model, backend.cuda_runtime())
images = np.random.random(input_shape).astype(np.float32)
next(iter(model.inputs.values())).copyin_numpy(images)
model.run()
outputs = next(iter(model.outputs.values())).copyout_numpy()
outputs = torch.tensor(outputs)
outputs = torch.reshape(outputs, (1, 1000))
_, predicted = torch.max(outputs, 1)
print(predicted)